ADPOW APT50GP60S Power mos 7 igbt Datasheet

APT50GP60B
APT50GP60S
600V
®
POWER MOS 7 IGBT
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 200 kHz operation @ 400V, 26A
• Low Gate Charge
• 100 kHz operation @ 400V, 41A
• Ultrafast Tail Current shutoff
• SSOA rated
D3PAK
G
C
C
E
G
E
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT50GP60B_S
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
7
I C1
Continuous Collector Current
I C2
Continuous Collector Current @ TC = 110°C
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
100
@ TC = 25°C
Amps
72
190
@ TC = 150°C
190A@600V
Safe Operating Area @ TJ = 150°C
Watts
625
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 50A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
500
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
2-2004
MIN
Rev B
Characteristic / Test Conditions
050-7434
Symbol
APT50GP60B_S
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
5700
VGE = 0V, VCE = 25V
465
Reverse Transfer Capacitance
f = 1 MHz
30
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
165
VCE = 300V
40
I C = 50A
50
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
SSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
190
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Eon1
Eon2
Turn-on Delay Time
Current Rise Time
Turn-on Switching Energy
Turn-on Delay Time
I C = 50A
60
R G = 5Ω
837
Inductive Switching (125°C)
VCC = 400V
19
VGE = 15V
116
I C = 50A
86
Current Fall Time
Turn-on Switching Energy (Diode)
36
R G = 5Ω
4
Eon2
µJ
637
Turn-off Delay Time
Turn-on Switching Energy
ns
465
TJ = +25°C
5
Current Rise Time
Turn-off Switching Energy
36
6
Eon1
Eoff
83
4
Turn-on Switching Energy (Diode)
td(on)
tf
VGE = 15V
Current Fall Time
Turn-off Switching Energy
td(off)
19
Turn-off Delay Time
Eoff
tr
Inductive Switching (25°C)
VCC = 400V
5
ns
465
TJ = +125°C
1261
6
µJ
1058
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.20
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 Continuous current limited by package lead temperature.
050-7434
Rev B
2-2004
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT50GP60B_S
70
70
TC=25°C
20
TC=-55°C
10 TC=125°C
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
TJ = 125°C
20
2
3
4 5
6 7
8
9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3
IC =100A
2.5
IC = 50A
2
IC = 25A
1.5
1
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
1.2
1.15
1.10
1.05
1.0
0.95
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
IC = 50A
TJ = 25°C
14
VCE=120V
12
VCE=300V
10
VCE=480V
8
6
4
2
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
TC=-55°C
TC=125°C
10
FIGURE 2, Output Characteristics (VGE = 10V)
16
0
20
40
60 80 100 120 140 160 180
GATE CHARGE (nC)
FIGURE 4, Gate Charge
3
IC =100A
2.5
IC = 50A
2
IC = 25A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
200
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
TJ = 25°C
40
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = -55°C
60
TC=25°C
20
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
100
80
30
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
40
180
160
140
120
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
2-2004
30
50
Rev B
40
60
050-7434
IC, COLLECTOR CURRENT (A)
50
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
60
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT50GP60B_S
TYPICAL PERFORMANCE CURVES
140
35
VGE= 10V
30
25
VGE= 15V
20
15
10
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
05
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
40
20
VCE = 400V
RG = 5Ω
L = 100 µH
120
TJ = 125°C, VGE = 10V or 15V
100
70
tf, FALL TIME (ns)
tr, RISE TIME (ns)
VGE =10V,TJ=25°C
40
TJ = 25 or 125°C,VGE = 10V
60
50
40
30
3500
60
TJ = 25°C, VGE = 10V or 15V
40
20
RG =5Ω, L = 100µH, VCE = 400V
0
3500
VCE = 400V
L = 100 µH
RG = 5 Ω
TJ =125°C, VGE=15V
3000
TJ =125°C,VGE=10V
2500
2000
1500
1000
TJ = 25°C, VGE=15V
500
TJ = 25°C, VGE=10V
RG =5Ω, L = 100µH, VCE = 400V
20 30 40 50 60 70 80
90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
4000
80
TJ = 25 or 125°C,VGE = 15V
0
20 30
40 50 60
70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
3000
VCE = 400V
L = 100 µH
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
2500
2000
1500
1000
500
T = 25°C, VGE = 10V or 15V
J
0
10 20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
20 30 40 50 60
70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
6000
4000
VCE = 400V
VGE = +15V
TJ = 125°C
5000
Eon2 100A
4000
Eoff 100A
3000
2000
Eon2 50A
1000
Eon2 25A
Eoff 50A
Eoff 25A
0
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
VGE =15V,TJ=25°C
100
10
SWITCHING ENERGY LOSSES (µJ)
60
20 30 40 50 60 70 80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
20
2-2004
80
0
80
Rev B
VGE =10V,TJ=125°C
100
0
20 30
40 50
60 70
80 90 100
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
90
050-7434
VGE =15V,TJ=125°C
120
3500
3000
VCE = 400V
VGE = +15V
RG = 5 Ω
Eon2 100A
2500
Eoff 100A
2000
1500
1000
500
0
-50
Eon2 50A
Eon2 25A
Eoff 50A
Eoff 25A
-25
0
25
50
75 100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
10,000
APT50GP60B_S
200
IC, COLLECTOR CURRENT (A)
Cies
C, CAPACITANCE ( F)
5,000
P
1,000
500
Coes
100
50
Cres
180
160
140
120
100
180
160
140
120
0
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.20
0.16
0.7
0.12
0.5
Note:
0.08
0.3
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.9
t1
t2
0.04
0.1
Duty Factor D = t1/t2
0.05
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
0
10
-5
-4
-3
10
10
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
10
-2
1.0
RC MODEL
Power
(Watts)
0.0658343
0.1055619
0.0142175
0.345873
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
50
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
10
10 20
30 40 50 60 70 80 90 100
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
2-2004
Junction
temp. ( ”C)
0.0021766
100
Rev B
0.0192963
0.0046253
050-7434
0.0090806
FMAX, OPERATING FREQUENCY (kHz)
210
APT50GP60B_S
TYPICAL PERFORMANCE CURVES
APT30DF60
10%
Gate Voltage
TJ = 125 C
td(on)
V CE
IC
V CC
Collector Current
tr
90%
A
D.U.T.
10%
5%
5 % Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
Gate Voltage
td(off)
*DRIVER SAME TYPE AS D.U.T.
TJ = 125 C
A
tf
V CE
Collector Voltage
IC
90%
100uH
V CLAMP
B
0
Switching Energy
10%
A
Collector Current
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
2-2004
Rev B
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
20.80 (.819)
21.46 (.845)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
15.95 (.628)
16.05 (.632)
Revised
4/18/95
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
050-7434
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
D PAK Package Outline
1.04 (.041)
1.15 (.045)
13.79 (.543)
13.99 (.551)
0.46 (.018)
0.56 (.022)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.22 (.048)
1.32 (.052)
1.27 (.050)
1.40 (.055)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
13.41 (.528)
13.51 (.532)
Revised
8/29/97
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters and (Inches)
Dimensions in Millimeters (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
2.21 (.087)
2.59 (.102)
5.45 (.215) BSC
2-Plcs.
11.51 (.453)
11.61 (.457)
Similar pages