TI1 INA195AQDBVRQ1 Current shunt monitors â 16-v to 80-v common-mode range Datasheet

Product
Folder
Sample &
Buy
Support &
Community
Tools &
Software
Technical
Documents
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
INA19xA-Q1 Current Shunt Monitors –16-V to 80-V Common-Mode Range
1 Features
3 Description
•
•
The INA19xA-Q1 family of current shunt monitors
with voltage output can sense drops across shunts at
common-mode voltages from –16 V to 80 V,
independent of the INA19xA supply voltage. They are
available with three output voltage scales: 20 V/V,
50 V/V, and 100 V/V. The 500-kHz bandwidth
simplifies use in current control loops and monitoring
DC motor health. The INA193A–INA195A provide
identical functions but alternative pin configurations to
the INA196A–INA198A, respectively.
1
•
•
•
•
Qualified for Automotive Applications
Wide Common-Mode Voltage:
–16 V to 80 V
Low Error: 3% Overtemperature (Maximum)
Bandwidth: Up to 500 kHz
Three Transfer Functions Available:
20 V/V, 50 V/V, and 100 V/V
Complete Current-Sense Solution
The INA19xA-Q1 operate from a single 2.7-V to 18-V
supply. They are specified over the extended
operating temperature range (–40°C to 125°C), and
are offered in a space-saving SOT-23 package.
2 Applications
•
•
•
•
•
•
•
Welding Equipment
Body Control Modules
Load Health Monitoring
Telecom Equipment
HEV/EV Powertrain
Power Management
Battery Chargers
Device Information(1)
PART NUMBER
PACKAGE
INA19xA-Q1
SOT-23 (5)
BODY SIZE (NOM)
2.90 mm × 1.60 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Simplified Schematic
RS
IS
VIN+
–16 V to +80 V
Negative
and
Positive
Common-Mode
Voltage
V+
2.7 V to 18 V
VIN+
VIN–
Load
5 kΩ
5 kΩ
A1
A2
OUT =
ISRSRL
5 kΩ
RL
INA193A–INA198A
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Table of Contents
1
2
3
4
5
6
7
8
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
4
4
4
4
5
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Typical Characteristics.......................................... 7
Detailed Description ............................................ 11
8.1 Overview ................................................................. 11
8.2 Functional Block Diagram ....................................... 11
8.3 Feature Description................................................. 11
8.4 Device Functional Modes........................................ 16
9
Application and Implementation ........................ 20
9.1 Application Information............................................ 20
9.2 Typical Application ................................................. 20
10 Power Supply Recommendations ..................... 21
11 Layout................................................................... 22
11.1 Layout Guidelines ................................................. 22
11.2 Layout Example .................................................... 22
12 Device and Documentation Support ................. 23
12.1
12.2
12.3
12.4
12.5
Related Links ........................................................
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
23
23
23
23
23
13 Mechanical, Packaging, and Orderable
Information ........................................................... 23
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision C (October 2008) to Revision D
Page
•
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section ................................................................................................. 1
•
Added Input Bias Current vs Common Mode Voltage graph toTypical Characteristics......................................................... 7
•
Added Input Bias Current vs Common Mode Voltage Vs=12 V graph to Typical Characteristics ......................................... 7
2
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
5 Pin Configuration and Functions
DBV Package
5-Pin SOT-23
INA193A-Q1, INA194A-Q1, INA195A-Q1 Top View
OUT
1
GND
2
VIN+
3
5
4
DBV Package
5-Pin SOT-23
INA196A-Q1, INA197A-Q1, INA198A-Q1 Top View
V+
VIN-
OUT
1
GND
2
V+
3
5
VIN-
4
VIN+
Pin Functions
PIN
INA193A-Q1,
INA194A-Q1,
INA195A-Q1
INA196A-Q1,
INA197A-Q1,
INA198A-Q1
TYPE
GND
2
2
GND
OUT
1
1
O
V+
5
3
Analog
VIN+
3
4
I
Connect to supply side of shunt resistor
VIN–
4
5
I
Connect to load side of shunt resistor
NAME
Copyright © 2006–2015, Texas Instruments Incorporated
DESCRIPTION
Ground
Output voltage
Power supply, 2.7 to 18 V
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
3
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
18
V
Supply voltage
Differential input voltage range, analog inputs (VIN+ – VIN–)
–18
18
V
Common-mode voltage range (2)
–16
80
V
GND – 0.3
(V+) + 0.3
V
Analog output voltage range (2)
Input current into any pin
OUT
(2)
Junction temperature
Storage temperature, Tstg
(1)
(2)
–65
5
mA
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Input voltage at any pin may exceed the voltage shown if the current at that pin is limited to 5 mA.
6.2 ESD Ratings
VALUE
Human-body model (HBM), per AEC Q100-002
V(ESD)
(1)
Electrostatic discharge
(1)
UNIT
±4000
Charged-device model (CDM), per AEC Q100-011
±1000
Machine model
±200
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
VCM
Common-mode input voltage
V+
Operating supply voltage
TA
Operating free-air temperature
NOM
MAX
12
UNIT
V
12
V
-40
125
ºC
6.4 Thermal Information
INA19xA-Q1
THERMAL METRIC (1)
DBV (SOT-23)
UNIT
5 PINS
RθJA
Junction-to-ambient thermal resistance
221.7
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
144.7
°C/W
RθJB
Junction-to-board thermal resistance
49.7
°C/W
ψJT
Junction-to-top characterization parameter
26.1
°C/W
ψJB
Junction-to-board characterization parameter
49
°C/W
(1)
4
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
6.5 Electrical Characteristics
VS = 12 V, VIN+ = 12 V, VSENSE = 100 mV (unless otherwise noted) Full range TA = –40°C to 125°C
PARAMETER
TEST CONDITIONS
TA
MIN
TYP
MAX
UNIT
0.15
(VS – 0.2)/
Gain
V
80
V
INPUT
VSENSE = VIN+ − VIN–
VSENSE
Full-scale input voltage
VCM
Common-mode input
CMR
Common-mode rejection
VOS
Offset voltage, RTI
dVOS/dT
Offset voltage vs temperature
PSR
Offset voltage vs
power supply
VS = 2.7 V to 18 V,
VIN+ = 18 V
IB
Input bias current
VIN– pin
25°C
Full range
–16
VIN+ = −16 V to 80 V
25°C
80
94
VIN+ = 12 V to 80 V
Full range
100
120
dB
25°C
±0.5
2
Full range
0.5
3
Full range
2.5
Full range
5
100
μV/V
Full range
±8
±23
μA
mV
μV/°C
OUTPUT (VSENSE ≥ 20 mV)
INA193A, INA196A
G
Gain
INA194A, INA197A
20
25°C
INA195A, INA198A
Gain error
VSENSE = 20 mV to 100 mV
Nonlinearity error
RO
OUTPUT (VSENSE < 20 mV)
No sustained oscillation
±0.2%
±1%
±0.75%
±2.2%
±2%
±1%
±3%
25°C
±0.002%
±0.1%
25°C
1.5
Ω
25°C
10
nF
(2)
All devices
VOUT
V/V
Full range
Full range
VSENSE = 20 mV to 100 mV
Output impedance
Maximum capacitive load
25°C
25°C
Total output error (1)
50
100
Output voltage
–16 V ≤ VCM < 0
300
VS < VCM ≤ 80 V
300
INA193A,
INA196A
INA194A,
INA197A
mV
0.4
25°C
0 V ≤ VCM ≤ VS,
VS = 5 V
1
INA195A,
INA198A
V
2
VOLTAGE OUTPUT (3)
(1)
(2)
(3)
(4)
Swing to V+ power-supply rail
RL = 100 kΩ to GND
Full range
V+ – 0.1
Swing to GND (4)
RL = 100 kΩ to GND
Full range
VGND + 3 VGND + 50
V+ – 0.2
V
mV
Total output error includes effects of gain error and VOS.
For details on this region of operation, see Accuracy Variations as a Result Of VSENSE and Common Mode Voltage.
See Figure 7.
Specified by design
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
5
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Electrical Characteristics (continued)
VS = 12 V, VIN+ = 12 V, VSENSE = 100 mV (unless otherwise noted) Full range TA = –40°C to 125°C
PARAMETER
TEST CONDITIONS
TA
MIN
TYP
MAX
UNIT
FREQUENCY RESPONSE
INA193A,
INA196A
BW
Bandwidth
INA194A,
INA197A
500
CLOAD = 5 pF
25°C
300
INA195A,
INA198A
Phase margin
SR
Slew rate
ts
Settling time (1%)
kHz
200
CLOAD < 10 nF
VSENSE = 10 mV to 100 mVPP,
CLOAD = 5 pF
25°C
40
°
1
V/μs
25°C
2
μs
25°C
40
nV/√Hz
NOISE, RTI
Voltage noise density
POWER SUPPLY
VS
Operating voltage
Full range
VOUT = 2 V
IQ
Quiescent current
INA193A,
INA194A,
INA196A,
INA197A
2.7
Full range
VSENSE = 0 mV
18
700
1250
370
950
370
1050
Full range
INA195A,
INA198A
V
μA
TEMPERATURE RANGE
6
Operating temperature
–40
125
°C
Storage temperature
–65
150
°C
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
7 Typical Characteristics
TA = 25°C, VS = 12 V, VIN+ = 12 V, and VSENSE = 100 mV (unless otherwise noted)
45
45
40
G = 50
35
Gain (dB)
30
G = 100
40
G = 50
35
Gain (dB)
CLOAD = 1000 pF
G = 100
G = 20
25
20
30
20
15
15
10
10
5
G = 20
25
5
10k
100k
10k
1M
100k
Frequency (Hz)
Figure 1. Gain vs Frequency
Figure 2. Gain vs Frequency
20
140
18
130
Common- Mode and
Power- Supply Rejection (dB)
100V/V
16
VOUT (V)
14
50V/V
12
10
8
20V/V
6
4
2
120
CMR
110
100
90
PSR
80
70
60
50
40
0
20
100
200
300
400
500
600
700
800
900
10
100
1k
VDIFFERENTIAL (mV)
100k
10k
Frequency (Hz)
Figure 4. Common-Mode and Power-Supply Rejection vs
Frequency
Figure 3. Gain Plot
4.0
0.1
3.5
0.09
0.08
3.0
Output Error (%)
Output Error
(% error of the ideal output value)
1M
Frequency (Hz)
2.5
2.0
1.5
1.0
0.07
0.06
0.05
0.04
0.03
0.02
0.5
0.01
0
0
50
100 150
200
250 300
350 400
0
450 500
–16 –12 –8 –4
0
4
8
12 16 20
...
76 80
VSENSE (mV)
Common-Mode Voltage (V)
Figure 5. Output Error vs Vsense
Figure 6. Output Error vs Common-Mode Voltage
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
7
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Typical Characteristics (continued)
TA = 25°C, VS = 12 V, VIN+ = 12 V, and VSENSE = 100 mV (unless otherwise noted)
12
1000
11
800
25°C
8
700
125°C
7
6
5
VS = 3 V
Sourcing Current
4
25°C
–40°C
600
500
400
300
Output stage is designed
to source current. Current
sinking capability is
approximately 400 µA.
3
2
1
0
–40°C
IQ (µA)
Output Voltage (V)
900
VS = 12 V
Sourcing Current
10
9
200
100
125°C
0
0
5
10
15
20
25
30
0
1
2
Output Current (mA)
Input Bias Current (PA)
Input Bias Current (PA)
8
9
10
10
7.5
IN+
5
2.5
0
-2.5
-5
7.5
5
2.5
0
-2.5
-5
-7.5
-7.5
-10
-10
-10
0
10
20
30
40
50
Common-Mode Voltage (V)
60
70
80
-10
0
D001
10
20
30
40
50
Common-Mode Voltage (V)
60
70
80
D102
Vs =12 V
Figure 9. Input Bias Current vs Common Mode Voltage
Figure 10. Input Bias Current vs Common Mode Voltage
VS = 12 V
VS = 2.7 V
775
675
575
475
VS = 12 V
VSENSE = 0 mV
VS = 2.7 V
275
Output Short-Circuit Current (mA)
34
VSENSE = 100 mV
175
–16 –12 –8 –4
IN+
IN-
-12.5
-20
Vs=5 V
IQ (µA)
7
12.5
IN-
10
–40°C
30
25°C
26
125°C
22
18
14
10
6
0
4
8
12 16
20
...
76 80
VCM (V)
Figure 11. Quiescent Current vs Common Mode Voltage
8
6
15
12.5
375
5
Figure 8. Quiescent Current vs Output Voltage
15
875
4
Output Voltage (V)
Figure 7. Positive Output Voltage Swing vs Output Current
-12.5
-20
3
Submit Documentation Feedback
2.5 3.5
4.5
5.5 6.5
7.5
8.5
9.5 10.5 11.5 17
18
Supply Voltage (V)
Figure 12. Output Short Circuit Current vs Supply Voltage
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Typical Characteristics (continued)
TA = 25°C, VS = 12 V, VIN+ = 12 V, and VSENSE = 100 mV (unless otherwise noted)
G = 20
Output Voltage (50 mV/div)
Output Voltage (500 mV/div)
G = 20
VSENSE = 10 mV to 100 mV
VSENSE = 10 mV to 20 mV
Time (2 µs/div)
Time (2 µs/div)
Figure 13. Step Response
Figure 14. Step Response
G = 50
Output Voltage (50 mV/div)
Output Voltage (100 mV/div)
G = 20
VSENSE = 90 mV to 100 mV
VSENSE = 10 mV to 20 mV
Time (2 µs/div)
Time (5 µs/div)
Figure 15. Step Response
Figure 16. Step Response
G = 50
Output Voltage (1 V/div)
Output Voltage (100 mV/div)
G = 50
VSENSE = 10 mV to 100 mV
Time (5 µs/div)
Figure 17. Step Response
Copyright © 2006–2015, Texas Instruments Incorporated
VSENSE = 90 mV to 100 mV
Time (5 µs/div)
Figure 18. Step Response
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
9
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Typical Characteristics (continued)
TA = 25°C, VS = 12 V, VIN+ = 12 V, and VSENSE = 100 mV (unless otherwise noted)
Output Voltage (2 V/div)
G = 100
VSENSE = 10 mV to 100 mV
Time (10 µs/div)
Figure 19. Step Response
10
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
8 Detailed Description
8.1 Overview
The INA193A−INA198A family of current shunt monitors with voltage output can sense drops across shunts at
common mode voltages from −16 V to 80 V, independent of the INA19x supply voltage. They are available with
three output voltage scales: 20 V/V, 50 V/V, and 100 V/V. The 500-kHz bandwidth simplifies use in current
control loops. The INA193A−INA195A devices provide identical functions but alternative pin configurations to the
INA196A−INA198A, respectively.
The INA193A−INA198A devices operate from a single 2.7-V to 18-V supply, drawing a maximum of 900 μA of
supply current. They are specified over the extended operating temperature range (−40°C to 125°C), and are
offered in a space-saving SOT-23 package.
8.2 Functional Block Diagram
VIN+
VIN
R1(1)
5 k:
R1(1)
5 k:
V+
A1
A2
G = 20, RL = 100 k:
G = 50, RL = 250 k:
G = 100, RL = 500 k:
INA193A-INA198A
OUT
RL(1)
GND
8.3 Feature Description
8.3.1 Basic Connection
Figure 20 shows the basic connection of the INA19xA. The input pins, VIN+ and VIN–, should be connected as
closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistance.
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power
supplies may require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors
close to the device pins.
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
11
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Feature Description (continued)
RS
IS
VIN+
V+
2.7 V to 18 V
–16 V to +80 V
VIN+
5 kΩ
Load
VIN–
5 kΩ
OUT
INA193A–INA198A
Figure 20. INA19xA Basic Connections
8.3.2 Selecting RS
The value chosen for the shunt resistor, RS, depends on the application and is a compromise between smallsignal accuracy and maximum permissible voltage loss in the measurement line. High values of RS provide better
accuracy at lower currents by minimizing the effects of offset, while low values of RS minimize voltage loss in the
supply line. For most applications, best performance is attained with an RS value that provides a full-scale shunt
voltage range of 50 mV to 100 mV. Maximum input voltage for accurate measurements is 500 mV.
8.3.3 Inside the INA19xA
The INA19xA uses a new, unique, internal circuit topology that provides common mode range extending from
–16 V to 80 V while operating from a single power supply. The common mode rejection in a classic
instrumentation amplifier approach is limited by the requirement for accurate resistor matching. By converting the
induced input voltage to a current, the INA19xA provides common mode rejection that is no longer a function of
closely matched resistor values, providing the enhanced performance necessary for such a wide common mode
range. A simplified diagram (see Figure 20) shows the basic circuit function. When the common mode voltage is
positive, amplifier A2 is active.
The differential input voltage, VIN+ – VIN– applied across RS, is converted to a current through a 5-kΩ resistor.
This current is converted back to a voltage through RL, and then amplified by the output buffer amplifier. When
the common mode voltage is negative, amplifier A1 is active. The differential input voltage, VIN+ – VIN– applied
across RS, is converted to a current through a 5-kΩ resistor. This current is sourced from a precision current
mirror whose output is directed into RL, converting the signal back into a voltage and amplified by the output
buffer amplifier. Patent-pending circuit architecture ensures smooth device operation, even during the transition
period where both amplifiers A1 and A2 are active.
12
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Feature Description (continued)
RSHUNT
LOAD
12 V
I1
5V
VIN+
5 kΩ
VIN–
V+
5 kΩ
V+
INA193A–INA198A
OUT
for 12-V
common mode
INA193A–INA198A
5 kΩ
GND
5 kΩ
OUT
for –12-V
common mode
VIN+
VIN–
GND
RSHUNT
–12 V
LOAD
I2
Figure 21. Monitor Bipolar Output Power-Supply Current
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
13
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Feature Description (continued)
RSHUNT
LOAD
VSUPPLY
5V
VIN+
5 kΩ
VIN–
5V
VIN+
V+
5 kΩ
VIN–
5 kΩ
V+
5 kΩ
5V
40 kΩ
OUT
40 kΩ
INA152
OUT
INA193A–
INA198A
INA193A–
INA198A
VOUT
40 kΩ
40 kΩ
2.5 V
VREF
Figure 22. Bidirectional Current Monitoring
Up to 80 V
RSHUNT
2.7 V to 18 V
Solenoid
VIN+
5 kΩ
VIN–
V+
5 kΩ
OUT
INA193A–
INA198A
Figure 23. Inductive Current Monitor Including Flyback
14
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Feature Description (continued)
VIN+
VIN–
5 kΩ
V+
5 kΩ
OUT
For output signals > comparator trip point
R1
INA193A–
INA198A
TLV3012
R2
REF
1.25V
Internal
Reference
(a) INA19xA Output Adjusted by Voltage Divider
VIN+
VIN–
5 kΩ
V+
5 kΩ
OUT
INA193A–
INA198A
TLV3012
R1
R2
REF
1.25V
Internal
Reference
For use with
small output signals.
(b) Comparator Reference Voltage Adjusted by Voltage Divider
Figure 24. INA19xA With Comparator
8.3.4 Power Supply
The input circuitry of the INA19xA can accurately measure beyond its power-supply voltage, V+. For example,
the V+ power supply can be 5 V, whereas the load power-supply voltage is up to 80 V. The output voltage range
of the OUT terminal, however, is limited by the voltages on the power-supply pin.
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
15
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
8.4 Device Functional Modes
8.4.1 Input Filtering
An obvious and straightforward location for filtering is at the output of the INA19xA series; however, this location
negates the advantage of the low output impedance of the internal buffer. The only other option for filtering is at
the input pins of the INA19xA, which is complicated by the internal 5-kΩ ± 30% input impedance (see Figure 25).
Using the lowest possible resistor values minimizes both the initial shift in gain and effects of tolerance. The
effect on initial gain is given by:
5 kΩ
Gain Error % = 100 – ( 100 ×
(
5 kΩ + RFILT
(1)
Total effect on gain error can be calculated by replacing the 5-kΩ term with 5 kΩ – 30% (or 3.5 kΩ) or
5 kΩ + 30% (or 6.5 kΩ). The tolerance extremes of RFILT can also be inserted into the equation. If a pair of 100Ω 1% resistors are used on the inputs, the initial gain error is 1.96%. Worst-case tolerance conditions always
occur at the lower excursion of the internal 5-kΩ resistor (3.5 kΩ), and the higher excursion of RFILT, 3% in this
case.
The specified accuracy of the INA19xA must then be combined in addition to these tolerances. While this
discussion treats accuracy worst-case conditions by combining the extremes of the resistor values, it is
appropriate to use geometric mean or root sum square calculations to total the effects of accuracy variations.
RSHUNT << RFILTER
LOAD
VSUPPLY
RFILTER < 100
RFILTER < 100
CFILTER
f
f
3dB =
3dB
1
2π (2 RFILTER) CFILTER
5V
VIN+
5 kΩ
VIN–
V+
5 kΩ
OUT
INA193A–INA198A
Figure 25. Input Filter (Gain Error = 1.5% to –2.2%)
8.4.2 Accuracy Variations as a Result Of VSENSE and Common Mode Voltage
The accuracy of the INA19xA-Q1 current shunt monitors is a function of two main variables:
VSENSE (VIN+ – VIN–) and common mode voltage, VCM, relative to the supply voltage, VS. VCM is expressed as
(VIN+ + VIN–)/2; however, in practice, VCM is seen as the voltage at VIN+ because the voltage drop across VSENSE
is usually small.
16
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Device Functional Modes (continued)
This section addresses the accuracy of these specific operating regions:
Normal Case 1:
VSENSE ≥ 20 mV, VCM ≥ VS
Normal Case 2:
VSENSE ≥ 20 mV, VCM < VS
Low VSENSE Case 1:
VSENSE < 20 mV, –16 V ≤ VCM < 0
Low VSENSE Case 2:
VSENSE < 20 mV, 0 V ≤ VCM ≤ VS
Low VSENSE Case 3:
VSENSE < 20 mV, VS < VCM ≤ 80 V
8.4.2.1 Normal Case 1: VSENSE ≥ 20 mV, VCM ≥ VS
This region of operation provides the highest accuracy. Here, the input offset voltage is characterized and
measured using a two-step method. First, the gain is determined by (Equation 2).
V
- VOUT2
G = OUT1
100 mV - 20 mV
where
•
•
VOUT1 = Output voltage with VSENSE = 100 mV
VOUT2 = Output voltage with VSENSE = 20 mV
(2)
The offset voltage is then measured at VSENSE = 100 mV and referred to the input (RTI) of the current shunt
monitor, as shown in (Equation 3).
æ VOUT1 ö
VOSRTI (Referred- To - Input) = ç
÷ - 100 mV
è G ø
(3)
In the Typical Characteristics, the Output Error vs Common Mode Voltage curve shows the highest accuracy for
the this region of operation. In this plot, VS = 12 V; for VCM ≥ 12 V, the output error is at its minimum. This case is
also used to create the VSENSE ≥ 20 mV output specifications in the Electrical Characteristics table.
8.4.2.2 Normal Case 2: VSENSE ≥ 20 mV, VCM < VS
This region of operation has slightly less accuracy than Normal Case 1 as a result of the common mode
operating area in which the part functions, as seen in Figure 6. As noted, for this graph VS = 12 V; for VCM < 12
V, the Output Error increases as VCM becomes less than 12 V, with a typical maximum error of 0.005% at the
most negative VCM = –16 V.
8.4.2.3 Low VSENSE Case 1: VSENSE < 20 mV, –16 V ≤ VCM < 0; and Low VSENSE Case 3: VSENSE < 20 mV,
VS < VCM ≤ 80 V
Although the INA19xA-Q1 family of devices are not designed for accurate operation in either of these regions,
some applications are exposed to these conditions; for example, when monitoring power supplies that are
switched on and off while VS is still applied to the INA19xA-Q1. It is important to know what the behavior of the
devices will be in these regions.
As VSENSE approaches 0 mV, in these VCM regions, the device output accuracy degrades. A larger-than-normal
offset can appear at the current shunt monitor output with a typical maximum value of VOUT = 300 mV for
VSENSE = 0 mV. As VSENSE approaches 20 mV, VOUT returns to the expected output value with accuracy as
specified in Electrical Characteristics. Figure 26 illustrates this effect using the INA195A and INA198A
(Gain = 100).
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
17
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
Device Functional Modes (continued)
2.0
1.8
1.6
VOUT (V)
1.4
1.2
Actual
1.0
0.8
Ideal
0.6
0.4
0.2
0
0
2
4
6
8
10
12
14
16
18
20
VSENSE (mV)
Figure 26. Example for Low VSENSE Cases 1 and 3
(INA195A-Q1, INA198A-Q1: Gain = 100)
8.4.2.4 Low VSENSE Case 2: VSENSE < 20 mV, 0 V ≤ VCM ≤ VS
This region of operation is the least accurate for the INA19xA-Q1 family. To achieve the wide input common
mode voltage range, these devices use two operational amplifier front ends in parallel. One operational amplifier
front end operates in the positive input common mode voltage range, and the other in the negative input region.
For this case, neither of these two internal amplifiers dominates and overall loop gain is very low. Within this
region, VOUT approaches voltages close to linear operation levels for Normal Case 2. This deviation from linear
operation becomes greatest the closer VSENSE approaches 0 V. Within this region, as VSENSE approaches 20 mV,
device operation is closer to that described by Normal Case 2. Figure 27 illustrates this behavior for the
INA195A. The VOUT maximum peak for this case is tested by maintaining a constant VS, setting VSENSE = 0 mV
and sweeping VCM from 0 V to VS. The exact VCM at which VOUT peaks during this test varies from part to part,
but the VOUT maximum peak is tested to be less than the specified VOUT tested limit.
2.4
INA195, INA198 VOUT Tested Limit(1)
VCM1
2.2
2.0
Ideal
1.8
VCM2
VOUT (V)
1.6
1.4
VCM3
1.2
1.0
VCM4
0.8
0.6
0.4
0.2
0
0
2
4
6
8
10
12
14
16
18
20
22
24
VSENSE (mV)
(1)
INA193, INA196 VOUT Tested Limit = 0.4 V
INA194, INA197 VOUT Tested Limit = 1 V
NOTE: VOUT tested limit at VSENSE = 0 mV, 0 ≤ VCM1 ≤ VS.
VCM2, VCM3, and VCM4 illustrate the variance from part to part of the VCM that can cause maximum VOUT with VSENSE
< 20 mV.
Figure 27. Example for Low VSENSE Case 2
(INA195A, INA198A: Gain = 100)
18
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Device Functional Modes (continued)
8.4.3 Shutdown
Because the INA19xA-Q1 consume a quiescent current less than 1 mA, they can be powered by either the
output of logic gates or by transistor switches to supply power. Use a totem pole output buffer or gate that can
provide sufficient drive along with 0.1 μF bypass capacitor, preferably ceramic with good high frequency
characteristics. This gate should have a supply voltage of 3 V or greater because the INA19xA-Q1 requires a
minimum supply greater than 2.7 V. In addition to eliminating quiescent current, this gate also turns off the 10 μA
bias current present at each of the inputs. An example shutdown circuit is shown in Figure 28.
IL
RS
VIN+
-16 V to 80 V
Negative
and
Positive
Common-Mode
Voltage
VIN+
VIN-
R1
R2
V+
Load
V+ > 3 V
A1
0.1 mF
A2
OUT
RL
INA193A-INA198A
Figure 28. INA19xA-Q1 Example Shutdown Circuit
8.4.4 Transient Protection
The –16-V to 80-V common mode range of the INA19xA is ideal for withstanding automotive fault conditions
ranging from 12-V battery reversal up to 80-V transients, because no additional protective components are
needed up to those levels. In the event that the INA19xA is exposed to transients on the inputs in excess of its
ratings, then external transient absorption with semiconductor transient absorbers (zeners or Transzorbs) are
necessary. TI does not recommend using MOVs or VDRs except when they are used in addition to a
semiconductor transient absorber. Select the transient absorber such that it never allows the INA19xA to be
exposed to transients greater than 80 V (that is, allow for transient absorber tolerance, as well as additional
voltage due to transient absorber dynamic impedance). Despite the use of internal zener-type ESD protection,
the INA19xA does not lend itself to using external resistors in series with the inputs because the internal gain
resistors can vary up to ±30%. (If gain accuracy is not important, then resistors can be added in series with the
INA19xA inputs with two equal resistors on each input.)
8.4.5 Output Voltage Range
The output of the INA19xA is accurate within the output voltage swing range set by the power supply pin, V+.
This is best illustrated when using the INA195A or INA198A (which are both versions using a gain of 100), where
a 100-mV full-scale input from the shunt resistor requires an output voltage swing of 10 V, and a power-supply
voltage sufficient to achieve 10 V on the output.
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
19
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
9 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
9.1 Application Information
The INA193A-INA198A devices measure the voltage developed across a current-sensing resistor when current
passes through it. The ability to have shunt common mode voltages from −16-V to 80-V drive and control the
output signal with Vs offers multiple configurations, as discussed throughout this section.
9.2 Typical Application
The device is a unidirectional, current-sense amplifier capable of measuring currents through a resistive shunt
with shunt common mode voltages from −16 V to 80 V. Two devices can be configured for bidirectional
monitoring and is common in applications that include charging and discharging operations where the current
flow-through resistor can change directions.
RSHUNT
LOAD
VSUPPLY
5V
VIN+
5 kΩ
VIN–
5V
VIN+
V+
5 kΩ
5 kΩ
VIN–
V+
5 kΩ
5V
40 kΩ
OUT
40 kΩ
INA152
OUT
INA193A–
INA198A
INA193A–
INA198A
VOUT
40 kΩ
40 kΩ
2.5 V
VREF
Figure 29. Bidirectional Current Monitoring
9.2.1 Design Requirements
Vsupply is set to 12 V, Vref at 2.5 V and a 10-mΩ shunt. The accuracy of the current will typically be less than
0.5% for current greater than ±2 A. For current lower than ±2 A, the accuracy will vary; use the Accuracy
Variations as a Result Of VSENSE and Common Mode Voltage section for accuracy considerations.
20
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
Typical Application (continued)
9.2.2 Detailed Design Procedure
The ability to measure this current flowing in both directions is enabled by adding a unity gain amplifier with a
VREF, as shown in Figure 29. The output then responds by increasing above VREF for positive differential signals
(relative to the IN – pin) and responds by decreasing below VREF for negative differential signals. This reference
voltage applied to the REF pin can be set anywhere from 0 V to V+. For bidirectional applications, VREF is
typically set at mid- scale for equal signal range in both current directions. In some cases, however, VREF is set
at a voltage other than mid-scale when the bidirectional current and corresponding output signal are not required
to be symmetrical.
9.2.3 Application Curve
An example output response of a bidirectional configuration is shown in Figure 30. With the REF pin connected
to a reference voltage, 2.5 V in this case, the output voltage is biased upwards by this reference level. The
output rises above the reference voltage for positive differential input signals and falls below the reference
voltage for negative differential input signals.
10
I_in
VOUT
Current (I), Voltage (V)
7.5
5
2.5
0
-2.5
-5
-7.5
-10
0
2
4
6
8
10
12
14
16
18
20
Time (µs)
Figure 30. Output Voltage vs Shunt Input Current
10 Power Supply Recommendations
The input circuitry of the INA193A-INA198A devices can accurately measure beyond its power-supply voltage,
V+. For example, the V+ power supply can be 5 V, whereas the load power-supply voltage is up to 80 V. The
output voltage range of the OUT terminal, however, is limited by the voltages on the power-supply pin.
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
21
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
SBOS366D – AUGUST 2006 – REVISED JULY 2015
www.ti.com
11 Layout
11.1 Layout Guidelines
11.1.1 RFI/EMI
TI always recommends adhering to good layout practices. Keep traces short and, when possible, use a printedcircuit-board (PCB) ground plane with surface-mount components placed as close to the device pins as possible.
Small ceramic capacitors placed directly across amplifier inputs can reduce RFI/EMI sensitivity. PCB layout
should locate the amplifier as far away as possible from RFI sources. Sources can include other components in
the same system as the amplifier itself, such as inductors (particularly switched inductors handling a lot of current
and at high frequencies). RFI can generally be identified as a variation in offset voltage or dc signal levels with
changes in the interfering RF signal. If the amplifier cannot be located away from sources of radiation, shielding
may be needed. Twisting wire input leads makes them more resistant to RF fields. The difference in input pin
location of the INA193A–INA195A versus the INA196A–INA198A may provide different EMI performance.
11.2 Layout Example
Via to Power or Ground Plane
Via to Internal Layer
Supply Bypass
Capacitor
Supply Voltage
Output Signal
OUT
V+
GND
IN+
IN-
Shunt Resistor
Figure 31. Recommended Layout
22
Submit Documentation Feedback
Copyright © 2006–2015, Texas Instruments Incorporated
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
INA193A-Q1, INA194A-Q1, INA195A-Q1
INA196A-Q1, INA197A-Q1, INA198A-Q1
www.ti.com
SBOS366D – AUGUST 2006 – REVISED JULY 2015
12 Device and Documentation Support
12.1 Related Links
The following table lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 1. Related Links
PARTS
PRODUCT FOLDER
SAMPLE & BUY
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
INA193A-Q1
Click here
Click here
Click here
Click here
Click here
INA194A-Q1
Click here
Click here
Click here
Click here
Click here
INA195A-Q1
Click here
Click here
Click here
Click here
Click here
INA196A-Q1
Click here
Click here
Click here
Click here
Click here
INA197A-Q1
Click here
Click here
Click here
Click here
Click here
INA198A-Q1
Click here
Click here
Click here
Click here
Click here
12.2 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
12.3 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
12.4 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
12.5 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2006–2015, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: INA193A-Q1 INA194A-Q1 INA195A-Q1 INA196A-Q1 INA197A-Q1 INA198A-Q1
23
PACKAGE OPTION ADDENDUM
www.ti.com
1-Jul-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
INA193AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOG
INA194AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOH
INA195AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOI
INA196AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOJ
INA197AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOK
INA198AQDBVRQ1
ACTIVE
SOT-23
DBV
5
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
BOL
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4)
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
1-Jul-2015
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
1-Jul-2015
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
INA193AQDBVRQ1
SOT-23
DBV
5
3000
178.0
9.0
INA194AQDBVRQ1
SOT-23
DBV
5
3000
178.0
INA195AQDBVRQ1
SOT-23
DBV
5
3000
178.0
INA196AQDBVRQ1
SOT-23
DBV
5
3000
INA197AQDBVRQ1
SOT-23
DBV
5
INA198AQDBVRQ1
SOT-23
DBV
5
3.3
3.2
1.4
4.0
8.0
Q3
9.0
3.3
3.2
1.4
4.0
8.0
Q3
9.0
3.3
3.2
1.4
4.0
8.0
Q3
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
3000
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
3000
178.0
9.0
3.3
3.2
1.4
4.0
8.0
Q3
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
1-Jul-2015
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
INA193AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
INA194AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
INA195AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
INA196AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
INA197AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
INA198AQDBVRQ1
SOT-23
DBV
5
3000
190.0
190.0
30.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
Similar pages