HFA-0005 ® CT ODU 105 R P er at ETE 0, HFA1 ort Cent sc L O OBSHFA110 al Supp il.com/t See Technic w.inters t our IL or ww ntac or co 8-INTERS 1-88 September 1998 High Slew Rate Operational Amplifier Features Description • Unity Gain Bandwidth . . . . . . . . . . . . . . . . . . . . 300MHz The HFA-0005 is an all bipolar op amp featuring high slew rate (420V/µs), and high unity gain bandwidth (300MHz). These features combined with fast settling time (20ns) make this product very useful in high speed data acquisition systems as well as RF, video, and pulse amplifier designs. • Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . 22MHz • High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 420V/µs • High Output Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50mA Other outstanding characteristics include low bias currents (15µA), low offset current (6µA), and low offset voltage (6mV). These high performance characteristics are achieved with only 40mA of supply current. • Monolithic Bipolar Construction Applications The HFA-0005 offers high performance at low cost. It can replace hybrids and RF transistor amplifiers, simplifying designs while providing increased reliability due to monolithic construction. To enhance the ease of design, the HFA-0005 has a 50Ω ±20% resistor connected from the output of the op amp to a separate pin. This can be used when driving 50Ω strip line, microstrip, or coax cable. • RF/IF Processors • Video Amplifiers • Radar Systems • Pulse Amplifiers • High Speed Communications • Fast Data Acquisition Systems Part Number Information PART NUMBER HFA2-0005-5 TEMPERATURE RANGE 0 oC to +75oC HFA2-0005-9 -40oC to +85oC HFA3-0005-5 0oC to +75oC HFA3-0005-9 -40oC to +85oC HFA7-0005-5 0oC to +75oC HFA7-0005-9 -40oC to +85oC HFA9P0005-5 0oC to +75oC PACKAGE 8 Pin Can 8 Pin Can 8 Lead Plastic DIP 8 Lead Plastic DIP 8 Lead Ceramic Sidebraze DIP 8 Lead Ceramic Sidebraze DIP 8 Lead SOIC Pinouts HFA-0005 (PDIP, CDIP, SOIC) TOP VIEW NC 1 8 RSENSE -IN 2 7 V+ 6 OUT 5 NC +IN 3 V- 4 + HFA-0005 (TO-99 METAL CAN) TOP VIEW RSENSE 8 NC 1 -IN 2 7 V+ 6 OUT + 5 NC +IN 3 4 DB500 V- CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2002. All Rights Reserved 1 File Number 2918.2 Specifications HFA-0005 Absolute Maximum Ratings (Note 1) Operating Conditions Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 12V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4V Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC Junction Temperature (Plastic Packages) . . . . . . . . . . . . . . +150oC Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . . 300oC Operating Temperature Range HFA-0005-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ +85oC HFA-0005-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC ≤ TA ≤ +75oC Storage Temperature Range . . . . . . . . . . . . . -65oC ≤ TA ≤ +150oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified HFA-0005-9 PARAMETERS TEMP MIN TYP HFA-0005-5 MAX MIN TYP MAX UNITS INPUT CHARACTERISTICS Offset Voltage Average Offset Voltage Drift +25oC - 6 15 - 6 30 mV Full - 11 45 - 11 35 mV Full - 100 - - 100 - µV/oC o Bias Current +25 C - 15 50 - 15 100 µA Full - 20 50 - 20 100 µA Offset Current +25oC - 6 25 - 6 50 µA Full - 12 50 - 12 50 µA Full ±3 - - ±3 - - V Differential Input Resistance +25 oC - 10 - - 10 - kΩ Input Capacitance +25oC - 2 - - 2 - pF +25oC - 2.5 - - 2.5 - µVRMS +25 C - 5.8 - - 5.8 - µVRMS fO = 10Hz +25oC - 450 - - 450 - nV/√Hz fO = 100Hz +25oC - 160 - - 160 - nV/√Hz fO = 100kHz +25oC - 5 - - 5 - nV/√Hz fO = 10Hz +25oC - 2.0 - - 2.0 - nA/√Hz fO = 100Hz +25oC - 0.57 - - 0.57 - nA/√Hz fO = 1000Hz +25oC - 0.11 - - 0.11 - nA/√Hz Common Mode Range Input Noise Voltage 0.1Hz to 10Hz 10Hz to 1MHz o Input Noise Voltage Input Noise Current TRANSFER CHARACTERISTICS Large Signal Voltage Gain (Note 2) Common Mode Rejection Ratio (Note 3) Unity Gain Bandwidth Minimum Stable Gain +25oC 150 230 - 150 230 - V/V High 150 180 - 150 180 - V/V Low 150 250 - 150 250 - V/V Full 45 47 - 42 45 - dB oC - 300 - - 300 - MHz 1 - - 1 - - V/V +25oC - ±3.5 - - ±3.5 - V Full ±3.5 ±4.0 - ±3.5 ±4.0 - V +25 Full OUTPUT CHARACTERISTICS Output Voltage Swing RL = 100Ω RL = 1kΩ Full Power Bandwidth (Note 5) +25 oC - 22 - - 22 - MHz Output Resistance, Open Loop +25oC - 3.0 - - 3.0 - Ω Full ±25 ±50 - ±25 ±50 - mA Output Current 2 Specifications HFA-0005 Electrical Specifications V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued) HFA-0005-9 PARAMETERS HFA-0005-5 TEMP MIN TYP MAX MIN TYP MAX UNITS +25oC - 480 - - 480 - ps TRANSIENT RESPONSE Rise Time (Note 4, 6) o Slew Rate (Note 7) +25 C - 420 - - 420 - V/µs Settling Time (3V Step) 0.1% +25oC - 20 - - 20 - ns oC - 30 - - 30 - % Overshoot (Note 4, 6) +25 POWER SUPPLY CHARACTERISTICS Supply Current Power Supply Rejection Ratio (Note 8) +25oC - 35 40 - 35 40 mA Full - 37 40 - 37 45 mA +25oC 40 42 - 37 40 - dB NOTES: 1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied. 2. VOUT = 0 to ±2V, RL = 1kΩ. 3. ∆VCM = ±2V. 4. RL = 100Ω. 5. Full Power Bandwidth is calculated by equation: FP BW 6. VOUT = ±200mV, AV = +1. Slew Rate = ------------------- , V PEAK = 2 πV PEAK 3.0V . 7. VOUT = ±3V, AV = +1. 8. ∆VS = ±4V to ±6V. 9. See Thermal Constants in “Applications Information” section. Maximum power dissipation, including output load, must be designed to maintain the junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages. Simplified Schematic Diagram Die Characteristics V+ RSENSE + - +IN -IN OUT + - V- 3 Thermal Constants (oC/W) CAN . . . . . . . . . . . . . . . . . . PDIP . . . . . . . . . . . . . . . . . CDIP . . . . . . . . . . . . . . . . . SOIC . . . . . . . . . . . . . . . . . θJA 120 98 75 158 θJC 37 36 13 43 HFA-0005 Test Circuits + VIN 50Ω 50Ω 1kΩ + VIN VOUT 50Ω 20pF VOUT 50Ω 100Ω FIGURE 1. LARGE SIGNAL RESPONSE TEST CIRCUIT FIGURE 2. SMALL SIGNAL RESPONSE TEST CIRCUIT LARGE SIGNAL RESPONSE VOUT = 0 to 3V Vertical Scale: 1V/Div. Horizontal Scale: 5ns/Div. SMALL SIGNAL RESPONSE VOUT = 0 to 200mV Vertical Scale: 100mV/Div. Horizontal Scale: 2ns/Div. 3V 200mV VIN VIN 0V 3V 0V 200mV VOUT VOUT 0V 0V NOTE: Initial step in output is due to fixture feedthrough PROPAGATION DELAY Vertical Scale: 500mV/Div. Horizontal Scale: 5ns/Div. AV = +1, RL = 1kΩ, VOUT = 0 to 3V VSETTLE 3V 1kΩ 1kΩ 100Ω 100Ω VIN + 0V NOTE: Test fixture delay of 450ps is included FIGURE 3. SETTLING TIME SCHEMATIC 4 VOUT HFA-0005 VIN RL = 100Ω 30 GAIN (dB) 20 10 0 180 135 PHASE 90 45 300K 1M 50Ω 20 GAIN 0 1G 10M 100M FREQUENCY (Hz) VOUT + - 30 PHASE MARGIN (DEGREES) GAIN (dB) 40 100Ω 50Ω 10 GAIN 0 -10 -20 1M GAIN (dB) 10 GAIN VIN 50Ω + 100Ω 135 VOUT 90 100Ω 45 1M 0 1G 10M 100M FREQUENCY (Hz) PHASE MARGIN (DEGREES) GAIN (dB) 20 180 AV = +10, RL = 100Ω GAIN 10 0 -10 -20 180 VIN PHASE VOUT + 900Ω 135 100Ω 90 100Ω 100K FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY 45 1M 10M FREQUENCY (Hz) 100M 0 1G FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY 80 80 70 70 60 60 50 50 PSRR (dB) CMRR (dB) 0 1G 10M 100M FREQUENCY (Hz) 20 PHASE 45 FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY 30 -20 90 AV = +1, RL = 100, RF = 50Ω VIN = 70.7mVRMS 30 -10 180 PHASE 135 FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY 0 PHASE MARGIN (DEGREES) 50 VS = ±5V, TA = +25oC, Unless Otherwise Specified PHASE MARGIN (DEGREES) Typical Performance Curves 40 30 40 -PSRR 30 +PSRR 20 20 10 10 0 100K 1M 10M FREQUENCY (Hz) 100M 0 100K 1G 1M 10M 100M FREQUENCY (Hz) FIGURE 8. CMRR vs FREQUENCY FIGURE 9. PSRR vs FREQUENCY 5 1G HFA-0005 VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) 20 50 15 40 10 30 BIAS CURRENT (µA) OFFSET VOLTAGE (mV) Typical Performance Curves 5 0 -5 -10 -15 10 0 -10 -20 -30 -20 -25 -60 20 -40 -40 -20 0 20 40 60 80 100 -50 -60 120 -40 -20 0 TEMPERATURE (oC) FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE (3 REPRESENTATIVE UNITS) OPEN LOOP GAIN (V/V) OFFSET CURRENT (µA) 100 120 100 120 -AVOL 0 -10 -20 -30 250 +AVOL 200 150 100 50 -40 -40 -20 0 20 40 60 80 100 RL = 1kΩ, VOUT = 0 to ±2V 0 -60 120 -40 -20 0 TEMPERATURE (oC) 20 40 60 80 TEMPERATURE (oC) FIGURE 12. OFFSET CURRENT vs TEMPERATURE (3 REPRESENTATIVE UNITS) FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE 600 RL = 1kΩ - SLEW RATE 4.6 500 4.4 4.2 SLEW RATE (V/µs) OUTPUT VOLTAGE SWING (V) 80 300 10 4.8 60 350 20 5.0 40 FIGURE 11. BIAS CURRENT vs TEMPERATURE (3 REPRESENTATIVE UNITS) 30 -50 -60 20 TEMPERATURE (oC) 4.0 3.8 3.6 3.4 3.2 + SLEW RATE 400 300 200 3.0 100 2.8 AV = +1, RL = 100Ω, VOUT = 3V 2.6 2.4 -60 -40 -20 0 20 40 60 80 100 0 -60 120 TEMPERATURE (oC) -40 -20 0 20 40 60 80 100 TEMPERATURE (C) FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE FIGURE 15. SLEW RATE vs TEMPERATURE 6 120 HFA-0005 Typical Performance Curves VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) 100 70 90 ∆VS = ±4V to ±6V 60 80 70 PSRR (dB) CMRR (dB) 50 40 30 -PSRR 60 50 40 +PSRR 30 20 20 10 10 0 -60 -40 -20 0 20 40 60 80 100 0 -60 120 -40 -20 0 80 100 120 100 120 40 35 30 25 20 15 1.5 2.5 3.5 SUPPLY VOLTAGE (±V) 10 -60 4.5 5.0 PEAK OUTPUT VOLTAGE SWING (V) AV = +1, RL = 100Ω VOUT = 0 TO 200mV 500 400 300 200 -20 0 20 40 60 80 100 -20 0 20 40 60 80 FIGURE 19. SUPPLY CURRENT vs TEMPERATURE 700 -40 -40 TEMPERATURE (οC) FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE RISE TIME (ps) 60 45 34 32 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 0.5 100 -60 40 FIGURE 17. PSRR vs TEMPERATURE SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) FIGURE 16. CMRR vs TEMPERATURE 600 20 TEMPERATURE (oC) TEMPERATURE (oC) AV = +1, RL = 1kΩ, THD ≤ 1% 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1M 120 TEMPERATURE (oC) 10M 100M 1G FREQUENCY (Hz) FIGURE 20. RISE TIME vs TEMPERATURE FIGURE 21. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY 7 HFA-0005 VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued) 5.0 250 4.5 225 200 4.0 +VOUT 3.0 2.5 2.0 -VOUT 1.5 125 100 75 50 0.5 25 100 1K LOAD RESISTANCE (Ω) 0 10 10K FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE -A VOL +AVOL 150 1.0 0 10 100 1K LOAD RESISTANCE (Ω) 10K FIGURE 23. OPEN LOOP GAIN vs LOAD RESISTANCE 10 800 800 9 9 700 700 8 8 600 600 7 7 6 6 NOISE CURRENT 5 5 4 4 3 3 2 2 NOISE VOLTAGE 1 NOISE VOLTAGE (nV/√Hz) 10 NOISE CURRENT (nA/√Hz) NOISE VOLTAGE (µV/√Hz) 175 VOUT = 0 to ±3V 1 10 100 1K 10K 500 NOISE CURRENT 400 400 300 300 200 200 NOISE VOLTAGE 100 1 0 500 0 100K 0 100 100 1K 10K 0 100K FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 24. INPUT NOISE vs FREQUENCY FIGURE 25. INPUT NOISE vs FREQUENCY FIGURE 26. INPUT NOISE VOLTAGE AV = 50, Noise Voltage = 1.646µVRMS (RTI) FIGURE 27. INPUT NOISE VOLTAGE AV = 50, Noise Voltage = 5.568µVRMS (RTI) 8 NOISE CURRENT (pA/ √Hz) 3.5 OPEN LOOP GAIN (V/ V) OUTPUT VOLTAGE SWING (V) Typical Performance Curves HFA-0005 Applications Information VIN When applications require the offset voltage to be as low as possible, the figure below shows two possible schemes for adjusting offset voltage. FIGURE 30. PC board traces can be made to look like a 50Ω or 75Ω transmission line, called microstrip. Microstrip is a PC board trace with a ground plane directly beneath, on the opposite side of the board, as shown in Figure 31. RI VOUT 50 + R1 100K R2 100 -5V VOUT RF +5V 50K COAX CABLE 50Ω RF VIN 50Ω 50Ω + Offset Adjustment SIGNAL TRACE w t R Adjustment Range ≅ ±V R ----- 2 1 h ER FIGURE 28. INVERTING GAIN For a voltage follower application, use the circuit in Figure 29 without R2 and with RI shorted. R1 should then be 1MΩ to 10MΩ, so the adjustment resistors will cause only a very small gain error. DIELECTRIC (PC BOARD) GROUND PLANE FIGURE 31. VIN +V R1 100K + When manufacturing pc boards the trace width can be calculated based on a number of variables. VOUT RI The following equation is reasonably accurate for calculating the proper trace width for a 50Ω transmission line. 87 5.98h Z = ------------------------- In ------------------ Ω 0 0.8 w + t E + 1.41 R 50K RF R2 100 -V R Adjustment Range ≅ ± V R----2- 1 R G a in Power supply decoupling is essential for high frequency op amps. A 0.01µF high quality ceramic capacitor at each supply pin in parallel with a 1µF tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and they have negligible lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance. The figures that follow illustrate two different decoupling schemes. Figure 33 improves the PSRR because the resistor and capacitors create low pass filters. Note that the supply current will create a voltage drop across the resistor. F ≅ 1 + --------------R +R I 2 FIGURE 29. NON-INVERTING GAIN PC Board Layout Guidelines When designing with the HFA-0005, good high frequency (RF) techniques should be used when making a PC board. A massive ground plane should be used to maintain a low impedance ground. Proper shielding and use of short interconnection leads are also very important. To achieve maximum high frequency performance, the use of low impedance transmission lines with impedance matching is recommended: 50Ω lines are common in communications and 75Ω lines in video systems. Impedance matching is important to minimize reflected energy therefore minimizing transmitted signal distortion. This is accomplished by using a series matching resistor (50Ω or 75Ω), matched transmission line (50Ω or 75Ω), and a matched terminating resistor, as shown in Figure 30. Note that there will be a 6dB loss from input to output. The HFA-0005 has an integral 50Ω ±20% resistor connected to the op amp’s output with the other end of the resistor pinned out. This 50Ω resistor can be used as the series resistor instead of an external resistor. V+ 1.0µF 0.01µF + 0.01µF 1.0µF V- FIGURE 32. 9 HFA-0005 Saturation Recovery V+ C When an op amp is over driven output devices can saturate and sometimes take a long time to recover. By clamping the input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time from 25% overdrive is 20ns and 30ns from 50% overdrive. R C + C R C V- FIGURE 33. 10