M48Z129Y* M48Z129V 5.0V OR 3.3V, 1 Mbit (128 Kb x 8) ZEROPOWER® SRAM FEATURES SUMMARY ■ ■ ■ ■ ■ ■ ■ ■ ■ INTEGRATED, ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT, AND BATTERY CONVENTIONAL SRAM OPERATION; UNLIMITED WRITE CYCLES 10 YEARS OF DATA RETENTION IN THE ABSENCE OF POWER MICROPROCESSOR POWER-ON RESET (RESET VALID EVEN DURING BATTERY BACK-UP MODE) BATTERY LOW PIN - PROVIDES WARNING OF BATTERY END-OF-LIFE AUTOMATIC POWER-FAIL CHIP DESELECT AND WRITE PROTECTION WRITE PROTECT VOLTAGES (VPFD = Power-fail Deselect Voltage): – M48Z129Y: VCC = 4.5 to 5.5V 4.2V ≤ VPFD ≤ 4.5V – M48Z129V: VCC = 3.0 to 3.6V 2.7V ≤ VPFD ≤ 3.0V SELF-CONTAINED BATTERY IN THE CAPHAT™ DIP PACKAGE PIN AND FUNCTION COMPATIBLE WITH JEDEC STANDARD 128K x 8 SRAMs Figure 1. 32-pin PMDIP Module 32 1 PMDIP32 (PM) Module * Contact local ST sales office for availability. March 2005 1/16 M48Z129Y*, M48Z129V TABLE OF CONTENTS FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Figure 1. 32-pin PMDIP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Figure 2. Table 1. Figure 3. Figure 4. Logic Diagram . . Signal Names . . DIP Connections Block Diagram . . ................... ................... ................... ................... ....... ....... ....... ....... ...... ...... ...... ...... ....... ....... ....... ....... ...... ...... ...... ...... ...... ...... ...... ...... .....4 .....4 .....4 .....5 OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 READ Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 5. Address Controlled, READ Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms . . . . . . . . . . . . . 6 Table 3. READ Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 WRITE Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . 7 Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Table 4. WRITE Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Data Retention Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 VCC Noise And Negative Going Transients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Figure 9. Supply Voltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 5. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Table 6. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Figure 10.AC Testing Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 7. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Table 8. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Figure 11.Power Down/Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 9. Power Down/Up AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Table 10. Power Down/Up Trip Points DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PACKAGE MECHANICAL INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Figure 12.PMDIP32 – 32-pin Plastic Module DIP, Package Outline . . . . . . . . . . . . . . . . . . . . . . . . 13 Table 11. PMDIP32 – 32-pin Plastic DIP, Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . 13 PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2/16 M48Z129Y*, M48Z129V Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3/16 M48Z129Y*, M48Z129V SUMMARY DESCRIPTION The M48Z129Y/V ZEROPOWER® SRAM is a 1,048,576 bit non-volatile static RAM organized as 131,072 words by 8 bits. The device combines an internal lithium battery, a CMOS SRAM and a control circuit in a plastic 32-pin DIP Module. The M48Z129Y/V directly replaces industry standard 128K x 8 SRAM. It also provides the non-volatility of FLASH without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed. Figure 2. Logic Diagram Table 1. Signal Names A0-A16 VCC DQ0-DQ7 17 8 A0-A16 W Data Inputs / Outputs E Chip Enable G Output Enable W WRITE Enable DQ0-DQ7 M48Z129Y M48Z129V E RST BL RST Reset Output (Open Drain) Battery Low Output (Open Drain) BL G VSS VCC Supply Voltage VSS Ground AI02309 Figure 3. DIP Connections RST A16 A14 A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ1 DQ2 VSS 1 32 2 31 3 30 4 29 28 5 27 6 7 26 8 M48Z129Y 25 9 M48Z129V 24 10 23 11 22 12 21 13 20 14 19 15 18 16 17 AI02310 4/16 Address Inputs VCC A15 BL W A13 A8 A9 A11 G A10 E DQ7 DQ6 DQ5 DQ4 DQ3 M48Z129Y*, M48Z129V Figure 4. Block Diagram VCC A0-A16 POWER E VOLTAGE SENSE AND SWITCHING CIRCUITRY 131,072 x 8 SRAM ARRAY E DQ0-DQ7 W G INTERNAL BATTERY RST VSS BL AI03608 OPERATION MODES The M48Z129Y/V also has its own Power-Fail Detect circuit. This control circuitry constantly monitors the supply voltage for an out of tolerance condition. When VCC is out of tolerance, the circuit write protects the SRAM, providing data security in the midst of unpredictable system operation. As VCC falls, the control circuitry automatically switches to the battery, maintaining data until valid power is restored. Table 2. Operating Modes Mode VCC Deselect WRITE READ 4.5 to 5.5V or 3.0to 3.6V READ E G W DQ0-DQ7 Power VIH X X High Z Standby VIL X VIL DIN Active VIL VIL VIH DOUT Active VIL VIH VIH High Z Active Deselect VSO to VPFD (min)(1) X X X High Z CMOS Standby Deselect ≤ VSO(1) X X X High Z Battery Back-up Mode Note: X = VIH or VIL; VSO = Battery Back-up Switchover Voltage. 1. See Table 10., page 12 for details. 5/16 M48Z129Y*, M48Z129V READ Mode The M48Z129Y/V is in the READ Mode whenever W (WRITE Enable) is high and E (Chip Enable) is low. The unique address specified by the 17 address inputs defines which one of the 131,072 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within tAVQV (Address Access Time) after the last address input signal is stable, providing the E and G access times are also satisfied. If the E and G access times are not met, valid data will be available after the latter of the Chip Enable Access Times (tELQV) or Output Enable Access Time (tGLQV). The state of the eight three-state Data I/O signals is controlled by E and G. If the outputs are activated before tAVQV, the data lines will be driven to an indeterminate state until tAVQV. If the Address Inputs are changed while E and G remain active, output data will remain valid for tAXQX (Output Data Hold Time) but will go indeterminate until the next Address Access. Figure 5. Address Controlled, READ Mode AC Waveforms tAVAV VALID A0-A16 tAVQV tAXQX DQ0-DQ7 DATA VALID DATA VALID AI02324 Note: Chip Enable (E) and Output Enable (G) = Low, WRITE Enable (W) = High. Figure 6. Chip Enable or Output Enable Controlled, READ Mode AC Waveforms tAVAV A0-A16 VALID tAVQV tAXQX tELQV tEHQZ E tELQX tGLQV tGHQZ G tGLQX DQ0-DQ7 DATA OUT AI01197 6/16 M48Z129Y*, M48Z129V Table 3. READ Mode AC Characteristics M48Z129Y M48Z129V –70 –85 (1) Symbol Parameter Min Max Min Unit Max tAVAV READ Cycle Time tAVQV Address Valid to Output Valid 70 85 ns tELQV Chip Enable Low to Output Valid 70 85 ns tGLQV Output Enable Low to Output Valid 35 45 ns 70 85 ns tELQX(2) Chip Enable Low to Output Transition 5 5 ns tGLQX(2) Output Enable Low to Output Transition 3 5 ns tEHQZ(2) Chip Enable High to Output Hi-Z 30 40 ns tGHQZ(2) Output Enable High to Output Hi-Z 20 25 ns tAXQX Address Transition to Output Transition 5 5 ns Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. CL = 5pF (see Figure 10., page 11). WRITE Mode able prior to the initiation of another READ or WRITE cycle. Data-in must be valid tDVWH prior to the end of WRITE and remain valid for tWHDX afterward. G should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on E and G a low on W will disable the outputs tWLQZ after W falls. The M48Z129Y/V is in the WRITE Mode whenever W (WRITE Enable) and E (Chip Enable) are active. The start of a WRITE is referenced from the latter occurring falling edge of W or E. A WRITE is terminated by the earlier rising edge of W or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tEHAX from Chip Enable or tWHAX from WRITE En- Figure 7. WRITE Enable Controlled, WRITE Mode AC Waveform tAVAV VALID A0-A16 tAVWH tAVEL tWHAX E tWLWH tAVWL W tWHQX tWLQZ tWHDX DQ0-DQ7 DATA INPUT tDVWH AI02382 7/16 M48Z129Y*, M48Z129V Figure 8. Chip Enable Controlled, WRITE Mode AC Waveforms tAVAV VALID A0-A16 tAVEH tAVEL tELEH tEHAX E tWLWH tAVWL W tEHDX tDVEH DQ0-DQ7 DATA INPUT AI03611 Table 4. WRITE Mode AC Characteristics Symbol M48Z129Y M48Z129V –70 –85 Parameter(1) Min Max Min Unit Max tAVAV WRITE Cycle Time 70 85 ns tAVWL Address Valid to WRITE Enable Low 0 0 ns tAVEL Address Valid to Chip Enable Low 0 0 ns tWLWH WRITE Enable Pulse Width 55 65 ns tELEH Chip Enable Low to Chip Enable High 55 75 ns tWHAX WRITE Enable High to Address Transition 5 5 ns tEHAX Chip Enable High to Address Transition 15 15 ns tDVWH Input Valid to WRITE Enable High 30 35 ns tDVEH Input Valid to Chip Enable High 30 35 ns tWHDX WRITE Enable High to Input Transition 0 0 ns tEHDX Chip Enable High to Input Transition 10 15 ns tWLQZ(2,3) WRITE Enable Low to Output Hi-Z 25 30 tAVWH Address Valid to WRITE Enable High 65 75 ns tAVEH Address Valid to Chip Enable High 65 75 ns WRITE Enable High to Output Transition 5 5 ns tWHQX(2,3) Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. CL = 5pF (see Figure 10., page 11). 3. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. 8/16 ns M48Z129Y*, M48Z129V Data Retention Mode With valid VCC applied, the M48Z129Y/V operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically deselect, write protecting itself when VCC falls between VPFD (max), VPFD (min) window. All outputs become high impedance and all inputs are treated as “Don’t care”. Note: A power failure during a WRITE cycle may corrupt data at the current addressed location, but does not jeopardize the rest of the RAM’s content. At voltages below VPFD(min), the memory will be in a write protected state, provided the VCC fall time is not less than tF. The M48Z129Y/V may respond to transient noise spikes on VCC that cross into the deselect window during the time the device is sampling VCC. Therefore, decoupling of the power supply lines is recommended. When VCC drops below VSO , the control circuit switches power to the internal battery, preserving data. The internal energy source will maintain data in the M48Z129Y/V for an accumulated period of at least 10 years at room temperature. As system power rises above VSO, the battery is disconnected, and the power supply is switched to external VCC. Deselect continues for tREC after VCC reaches VPFD(max). For more information on Battery Storage Life refer to the Application Note AN1012. VCC Noise And Negative Going Transients ICC transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the VCC bus. These transients can be reduced if capacitors are used to store energy which stabilizes the VCC bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in Figure 9.) is recommended in order to provide the needed filtering. In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on VCC that drive it to values below VSS by as much as one volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to connect a schottky diode from VCC to VSS (cathode connected to VCC, anode to VSS). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount. Figure 9. Supply Voltage Protection VCC VCC 0.1µF DEVICE VSS AI02169 9/16 M48Z129Y*, M48Z129V MAXIMUM RATING Stressing the device above the rating listed in the “Absolute Maximum Ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 5. Absolute Maximum Ratings Symbol TA TSTG TSLD(1) Parameter Ambient Operating Temperature Storage Temperature (VCC Off, Oscillator Off) Lead Solder Temperature for 10 seconds Value Unit 0 to 70 °C –40 to 85 °C 260 °C VIO Input or Output Voltages –0.3 to 7 V VCC Supply Voltage –0.3 to 7 V IO Output Current 20 mA PD Power Dissipation 1 W Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). No preheat above 150°C, or direct exposure to IR reflow (or IR preheat) allowed, to avoid damaging the Lithium battery. CAUTION: Negative undershoots below –0.3V are not allowed on any pin while in the Battery Back-up mode. DC AND AC PARAMETERS This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure- ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters. Table 6. Operating and AC Measurement Conditions Parameter M48Z129Y M48Z129V Unit 4.5 to 5.5 3.0 to 3.6 V 0 to 70 0 to 70 °C Load Capacitance (CL) 100 50 pF Input Rise and Fall Times ≤5 ≤5 ns 0 to 3 0 to 3 V 1.5 1.5 V Supply Voltage (VCC) Ambient Operating Temperature (TA) Input Pulse Voltages Input and Output Timing Ref. Voltages Note: Output Hi-Z is defined as the point where data is no longer driven. 10/16 M48Z129Y*, M48Z129V Figure 10. AC Testing Load Circuit 650Ω DEVICE UNDER TEST 1.75V CL = 100pF or 50pF(1) CL includes JIG capacitance AI03630 Note: 1. 50pF for M48Z129V (3.3V). Table 7. Capacitance Parameter(1,2) Symbol CIN CIO(3) Min Max Unit Input Capacitance 10 pF Input / Output Capacitance 10 pF Note: 1. Effective capacitance measured with power supply at 5V; sampled only, not 100% tested. 2. At 25°C, f = 1MHz. 3. Outputs deselected. Table 8. DC Characteristics Sym Parameter M48Z129Y M48Z129V –70 –85 Test Condition(1) Min ILI ILO(2) Input Leakage Current Output Leakage Current Max Min Unit Max 0V ≤ VIN ≤ VCC ±1 ±1 µA 0V ≤ VOUT ≤ VCC ±1 ±1 µA Outputs open 95 50 mA E = VIH 7 4 mA E = VCC – 0.2V 4 3 mA ICC Supply Current ICC1 Supply Current (Standby) TTL ICC2 Supply Current (Standby) CMOS VIL Input Low Voltage –0.3 0.8 –0.3 0.6 V VIH Input High Voltage 2.2 VCC + 0.3 2.2 VCC + 0.3 V VOL Output Low Voltage IOL = 2.1mA 0.4 V VOH Output High Voltage IOH = –1mA 0.4 2.4 2.2 V Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. Outputs deselected. 11/16 M48Z129Y*, M48Z129V Figure 11. Power Down/Up Mode AC Waveforms VCC VPFD (max) VPFD (min) VSO tF tR tDR tFB tRB tREC tWPT E DON'T CARE RECOGNIZED RECOGNIZED HIGH-Z OUTPUTS VALID VALID (PER CONTROL INPUT) (PER CONTROL INPUT) RST AI03610 Table 9. Power Down/Up AC Characteristics Parameter(1) Symbol tF(2) VPFD (max) to VPFD (min) VCC Fall Time tFB(3) VPFD (min) to VSS VCC Fall Time Min Max 300 M48Z129Y 10 M48Z129V 150 Unit µs µs tR VPFD (min) to VPFD (max) VCC Rise Time 10 µs tRB VSS to VPFD (min) VCC Rise Time 1 µs tWPT Write Protect Time tREC VPFD (max) to RST High M48Z129Y 40 150 M48Z129V 40 250 40 200 µs ms Note: 1. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 2. VPFD (max) to VPFD (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after VCC passes VPFD (min). 3. VPFD (min) to VSS fall time of less than tFB may cause corruption of RAM data. Table 10. Power Down/Up Trip Points DC Characteristics Symbol Parameter(1,2) VPFD Power-fail Deselect Voltage VSO Battery Back-up Switchover Voltage tDR(3) Expected Data Retention Time Min Typ Max Unit M48Z129Y 4.2 4.35 4.5 V M48Z129V 2.7 2.9 3.0 V M48Z129Y 3.0 V M48Z129V 2.45 V 10 Note: 1. All voltages referenced to VSS. 2. Valid for Ambient Operating Temperature: TA = 0 to 70°C; VCC = 4.5 to 5.5V or 3.0 to 3.6V (except where noted). 3. At 25°C, VCC = 0V. 12/16 YEARS M48Z129Y*, M48Z129V PACKAGE MECHANICAL INFORMATION Figure 12. PMDIP32 – 32-pin Plastic Module DIP, Package Outline A A1 B S L C eA e1 e3 D N E 1 PMDIP Note: Drawing is not to scale. Table 11. PMDIP32 – 32-pin Plastic DIP, Package Mechanical Data mm inches Symb Typ Min Max A 9.27 A1 Typ Min Max 9.52 0.365 0.375 0.38 – 0.015 – B 0.43 0.59 0.017 0.023 C 0.20 0.33 0.008 0.013 D 42.42 43.18 1.670 1.700 E 18.03 18.80 0.710 0.740 e1 2.29 2.79 0.090 0.110 e3 34.29 41.91 1.350 1.650 eA 14.99 16.00 0.590 0.630 L 3.05 3.81 0.120 0.150 S 1.91 2.79 0.075 0.110 N 32 32 13/16 M48Z129Y*, M48Z129V PART NUMBERING Table 12. Ordering Information Scheme Example: M48Z 129Y –70 PM 1 TR Device Type M48Z Supply Voltage and Write Protect Voltage 129Y(1) = VCC = 4.5 to 5.5V; 4.2V ≤ VPFD ≤ 4.5V 129V = VCC = 3.0 to 3.6V; 2.7V ≤ VPFD ≤ 3.0V Speed –70 = 70ns (M48Z129Y) –85 = 85ns (M48Z129V) Package PM = PMDIP32 Temperature Range 1 = 0 to 70°C Shipping Method blank = Tubes TR = Tape & Reel Note: 1. Contact Local Sales Office For other options, or for more information on any aspect of this device, please contact the ST Sales Office nearest you. 14/16 M48Z129Y*, M48Z129V REVISION HISTORY Table 13. Document Revision History Date Version Revision Details December 1999 1.0 First Issue 30-Mar-00 2.0 From Preliminary Data to Data Sheet 20-Jun-00 2.1 tGLQX changed for M48Z129Y (Table 3) 14-Sep-01 3.0 Reformatted; Temperature information added to tables (Table 7, 8, 3, 4, 9, 10) 29-May-02 3.1 Add countries to disclaimer 02-Apr-03 4.0 v2.2 template applied; test condition updated (Table 10) 18-Feb-05 5.0 Reformatted; IR reflow update (Table 5) 15/16 M48Z129Y*, M48Z129V Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 16/16