ETC2 LM3S601-IQN20-B0T Microcontroller Datasheet

P R E L IMI NARY
LM3S601 Microcontroller
D ATA SH E E T
D S -LM3 S 6 01- 1 7 2 8
Copyr i ght © 2007 Lum i nar y M i c ro, Inc.
Legal Disclaimers and Trademark Information
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH LUMINARY MICRO PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN LUMINARY MICRO'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, LUMINARY MICRO ASSUMES NO
LIABILITY WHATSOEVER, AND LUMINARY MICRO DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR
USE OF LUMINARY MICRO'S PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
LUMINARY MICRO'S PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE-SUSTAINING APPLICATIONS.
Luminary Micro may make changes to specifications and product descriptions at any time, without notice. Contact your local Luminary Micro sales office
or your distributor to obtain the latest specifications before placing your product order.
Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Luminary Micro reserves these
for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.
Copyright © 2007 Luminary Micro, Inc. All rights reserved. Stellaris is a registered trademark and Luminary Micro and the Luminary Micro logo are
trademarks of Luminary Micro, Inc. or its subsidiaries in the United States and other countries. ARM and Thumb are registered trademarks and Cortex
is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.
Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
2
October 01, 2007
Preliminary
LM3S601 Microcontroller
Table of Contents
About This Document .................................................................................................................... 18
Audience ..............................................................................................................................................
About This Manual ................................................................................................................................
Related Documents ...............................................................................................................................
Documentation Conventions ..................................................................................................................
18
18
18
18
1
Architectural Overview ...................................................................................................... 20
1.1
1.2
1.3
1.4
1.4.1
1.4.2
1.4.3
1.4.4
1.4.5
1.4.6
1.4.7
1.4.8
1.4.9
Product Features ......................................................................................................................
Target Applications ....................................................................................................................
High-Level Block Diagram .........................................................................................................
Functional Overview ..................................................................................................................
ARM Cortex™-M3 .....................................................................................................................
Motor Control Peripherals ..........................................................................................................
Analog Peripherals ....................................................................................................................
Serial Communications Peripherals ............................................................................................
System Peripherals ...................................................................................................................
Memory Peripherals ..................................................................................................................
Additional Features ...................................................................................................................
Hardware Details ......................................................................................................................
System Block Diagram ..............................................................................................................
2
ARM Cortex-M3 Processor Core ...................................................................................... 34
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
Block Diagram ..........................................................................................................................
Functional Description ...............................................................................................................
Serial Wire and JTAG Debug .....................................................................................................
Embedded Trace Macrocell (ETM) .............................................................................................
Trace Port Interface Unit (TPIU) .................................................................................................
ROM Table ...............................................................................................................................
Memory Protection Unit (MPU) ...................................................................................................
Nested Vectored Interrupt Controller (NVIC) ................................................................................
3
Memory Map ....................................................................................................................... 40
4
Interrupts ............................................................................................................................ 42
5
JTAG Interface .................................................................................................................... 44
5.1
5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.3
5.4
5.4.1
5.4.2
Block Diagram ..........................................................................................................................
Functional Description ...............................................................................................................
JTAG Interface Pins ..................................................................................................................
JTAG TAP Controller .................................................................................................................
Shift Registers ..........................................................................................................................
Operational Considerations ........................................................................................................
Initialization and Configuration ...................................................................................................
Register Descriptions ................................................................................................................
Instruction Register (IR) .............................................................................................................
Data Registers ..........................................................................................................................
6
System Control ................................................................................................................... 54
6.1
6.1.1
Functional Description ............................................................................................................... 54
Device Identification .................................................................................................................. 54
October 01, 2007
20
25
25
26
27
27
28
29
30
30
31
32
33
35
35
35
36
36
36
36
36
45
45
46
47
48
48
49
50
50
52
3
Preliminary
Table of Contents
6.1.2
6.1.3
6.1.4
6.1.5
6.2
6.3
6.4
Reset Control ............................................................................................................................
Power Control ...........................................................................................................................
Clock Control ............................................................................................................................
System Control .........................................................................................................................
Initialization and Configuration ...................................................................................................
Register Map ............................................................................................................................
Register Descriptions ................................................................................................................
7
Internal Memory ............................................................................................................... 113
7.1
7.2
7.2.1
7.2.2
7.3
7.3.1
7.3.2
7.4
7.5
7.6
Block Diagram ........................................................................................................................ 113
Functional Description ............................................................................................................. 113
SRAM Memory ........................................................................................................................ 113
Flash Memory ......................................................................................................................... 114
Flash Memory Initialization and Configuration ........................................................................... 116
Changing Flash Protection Bits ................................................................................................ 116
Flash Programming ................................................................................................................. 117
Register Map .......................................................................................................................... 117
Flash Register Descriptions (Flash Control Offset) ..................................................................... 118
Flash Register Descriptions (System Control Offset) .................................................................. 125
8
General-Purpose Input/Outputs (GPIOs) ....................................................................... 129
8.1
8.2
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.3
8.4
8.5
Block Diagram ........................................................................................................................ 130
Functional Description ............................................................................................................. 130
Data Control ........................................................................................................................... 131
Interrupt Control ...................................................................................................................... 132
Mode Control .......................................................................................................................... 133
Pad Control ............................................................................................................................. 133
Identification ........................................................................................................................... 133
Initialization and Configuration ................................................................................................. 133
Register Map .......................................................................................................................... 134
Register Descriptions .............................................................................................................. 136
9
General-Purpose Timers ................................................................................................. 168
9.1
9.2
9.2.1
9.2.2
9.2.3
9.3
9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.4
9.5
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
GPTM Reset Conditions ..........................................................................................................
32-Bit Timer Operating Modes ..................................................................................................
16-Bit Timer Operating Modes ..................................................................................................
Initialization and Configuration .................................................................................................
32-Bit One-Shot/Periodic Timer Mode .......................................................................................
32-Bit Real-Time Clock (RTC) Mode .........................................................................................
16-Bit One-Shot/Periodic Timer Mode .......................................................................................
16-Bit Input Edge Count Mode .................................................................................................
16-Bit Input Edge Timing Mode ................................................................................................
16-Bit PWM Mode ...................................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
10
Watchdog Timer ............................................................................................................... 204
10.1
10.2
Block Diagram ........................................................................................................................ 204
Functional Description ............................................................................................................. 204
4
54
57
57
60
60
61
62
169
169
169
169
171
175
175
176
176
177
177
178
178
179
October 01, 2007
Preliminary
LM3S601 Microcontroller
10.3
10.4
10.5
Initialization and Configuration ................................................................................................. 205
Register Map .......................................................................................................................... 205
Register Descriptions .............................................................................................................. 206
11
Universal Asynchronous Receivers/Transmitters (UARTs) ......................................... 227
11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.2.6
11.3
11.4
11.5
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
Transmit/Receive Logic ...........................................................................................................
Baud-Rate Generation .............................................................................................................
Data Transmission ..................................................................................................................
FIFO Operation .......................................................................................................................
Interrupts ................................................................................................................................
Loopback Operation ................................................................................................................
Initialization and Configuration .................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
12
Synchronous Serial Interface (SSI) ................................................................................ 265
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.3
12.4
12.5
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
Bit Rate Generation .................................................................................................................
FIFO Operation .......................................................................................................................
Interrupts ................................................................................................................................
Frame Formats .......................................................................................................................
Initialization and Configuration .................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
13
Inter-Integrated Circuit (I2C) Interface ............................................................................ 302
13.1
13.2
13.2.1
13.2.2
13.2.3
13.2.4
13.2.5
13.3
13.4
13.5
13.6
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
I2C Bus Functional Overview ....................................................................................................
Available Speed Modes ...........................................................................................................
Interrupts ................................................................................................................................
Loopback Operation ................................................................................................................
Command Sequence Flow Charts ............................................................................................
Initialization and Configuration .................................................................................................
I2C Register Map .....................................................................................................................
Register Descriptions (I2C Master) ...........................................................................................
Register Descriptions (I2C Slave) .............................................................................................
14
Analog Comparators ....................................................................................................... 337
14.1
14.2
14.2.1
14.3
14.4
14.5
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
Internal Reference Programming ..............................................................................................
Initialization and Configuration .................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
15
Pulse Width Modulator (PWM) ........................................................................................ 350
15.1
15.2
Block Diagram ........................................................................................................................ 350
Functional Description ............................................................................................................. 350
October 01, 2007
228
228
228
229
230
230
230
231
231
232
233
265
265
266
266
266
267
274
275
276
302
302
303
305
306
306
307
313
314
315
328
338
338
340
341
341
342
5
Preliminary
Table of Contents
15.2.1
15.2.2
15.2.3
15.2.4
15.2.5
15.2.6
15.2.7
15.2.8
15.3
15.4
15.5
PWM Timer .............................................................................................................................
PWM Comparators ..................................................................................................................
PWM Signal Generator ............................................................................................................
Dead-Band Generator .............................................................................................................
Interrupt Selector .....................................................................................................................
Synchronization Methods .........................................................................................................
Fault Conditions ......................................................................................................................
Output Control Block ...............................................................................................................
Initialization and Configuration .................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
16
Quadrature Encoder Interface (QEI) ............................................................................... 386
16.1
16.2
16.3
16.4
16.5
Block Diagram ........................................................................................................................
Functional Description .............................................................................................................
Initialization and Configuration .................................................................................................
Register Map ..........................................................................................................................
Register Descriptions ..............................................................................................................
17
Pin Diagram ...................................................................................................................... 403
18
Signal Tables .................................................................................................................... 404
19
Operating Characteristics ............................................................................................... 412
20
Electrical Characteristics ................................................................................................ 413
20.1
20.1.1
20.1.2
20.1.3
20.1.4
20.1.5
20.2
20.2.1
20.2.2
20.2.3
20.2.4
20.2.5
20.2.6
20.2.7
20.2.8
DC Characteristics .................................................................................................................. 413
Maximum Ratings ................................................................................................................... 413
Recommended DC Operating Conditions .................................................................................. 413
On-Chip Low Drop-Out (LDO) Regulator Characteristics ............................................................ 414
Power Specifications ............................................................................................................... 414
Flash Memory Characteristics .................................................................................................. 415
AC Characteristics ................................................................................................................... 415
Load Conditions ...................................................................................................................... 415
Clocks .................................................................................................................................... 415
Analog Comparator ................................................................................................................. 416
I2C ......................................................................................................................................... 416
Synchronous Serial Interface (SSI) ........................................................................................... 417
JTAG and Boundary Scan ........................................................................................................ 418
General-Purpose I/O ............................................................................................................... 420
Reset ..................................................................................................................................... 420
21
Package Information ........................................................................................................ 423
A
Serial Flash Loader .......................................................................................................... 425
A.1
A.2
A.2.1
A.2.2
A.3
A.3.1
A.3.2
A.3.3
Serial Flash Loader .................................................................................................................
Interfaces ...............................................................................................................................
UART .....................................................................................................................................
SSI .........................................................................................................................................
Packet Handling ......................................................................................................................
Packet Format ........................................................................................................................
Sending Packets .....................................................................................................................
Receiving Packets ...................................................................................................................
6
350
351
352
353
353
353
354
354
354
355
357
386
387
389
389
390
425
425
425
425
426
426
426
426
October 01, 2007
Preliminary
LM3S601 Microcontroller
A.4
A.4.1
A.4.2
A.4.3
A.4.4
A.4.5
A.4.6
Commands .............................................................................................................................
COMMAND_PING (0X20) ........................................................................................................
COMMAND_GET_STATUS (0x23) ...........................................................................................
COMMAND_DOWNLOAD (0x21) .............................................................................................
COMMAND_SEND_DATA (0x24) .............................................................................................
COMMAND_RUN (0x22) .........................................................................................................
COMMAND_RESET (0x25) .....................................................................................................
B
Register Quick Reference ............................................................................................... 430
C
Ordering and Contact Information ................................................................................. 445
C.1
C.2
C.3
C.4
Ordering Information ................................................................................................................
Kits .........................................................................................................................................
Company Information ..............................................................................................................
Support Information .................................................................................................................
October 01, 2007
427
427
427
427
428
428
428
445
445
445
446
7
Preliminary
Table of Contents
List of Figures
Figure 1-1.
Figure 1-2.
Figure 2-1.
Figure 2-2.
Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 6-1.
Figure 6-2.
Figure 7-1.
Figure 8-1.
Figure 8-2.
Figure 8-3.
Figure 8-4.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 10-1.
Figure 11-1.
Figure 11-2.
Figure 12-1.
Figure 12-2.
Figure 12-3.
Figure 12-4.
Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.
Figure 12-10.
Figure 12-11.
Figure 12-12.
Figure 13-1.
Figure 13-2.
Figure 13-3.
Figure 13-4.
Figure 13-5.
Figure 13-6.
Figure 13-7.
Figure 13-8.
Figure 13-9.
Figure 13-10.
®
Stellaris 600 Series High-Level Block Diagram ................................................................ 26
LM3S601 Controller System-Level Block Diagram ............................................................. 33
CPU Block Diagram ......................................................................................................... 35
TPIU Block Diagram ........................................................................................................ 36
JTAG Module Block Diagram ............................................................................................ 45
Test Access Port State Machine ....................................................................................... 48
IDCODE Register Format ................................................................................................. 52
BYPASS Register Format ................................................................................................ 52
Boundary Scan Register Format ....................................................................................... 53
External Circuitry to Extend Reset .................................................................................... 55
Main Clock Tree .............................................................................................................. 58
Flash Block Diagram ...................................................................................................... 113
GPIO Module Block Diagram .......................................................................................... 130
GPIO Port Block Diagram ............................................................................................... 131
GPIODATA Write Example ............................................................................................. 132
GPIODATA Read Example ............................................................................................. 132
GPTM Module Block Diagram ........................................................................................ 169
16-Bit Input Edge Count Mode Example .......................................................................... 173
16-Bit Input Edge Time Mode Example ........................................................................... 174
16-Bit PWM Mode Example ............................................................................................ 175
WDT Module Block Diagram .......................................................................................... 204
UART Module Block Diagram ......................................................................................... 228
UART Character Frame ................................................................................................. 229
SSI Module Block Diagram ............................................................................................. 265
TI Synchronous Serial Frame Format (Single Transfer) .................................................... 267
TI Synchronous Serial Frame Format (Continuous Transfer) ............................................ 268
Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 ...................................... 269
Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 .............................. 269
Freescale SPI Frame Format with SPO=0 and SPH=1 ..................................................... 270
Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 ........................... 271
Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 .................... 271
Freescale SPI Frame Format with SPO=1 and SPH=1 ..................................................... 272
MICROWIRE Frame Format (Single Frame) .................................................................... 273
MICROWIRE Frame Format (Continuous Transfer) ......................................................... 274
MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements ........................ 274
I2C Block Diagram ......................................................................................................... 302
I2C Bus Configuration .................................................................................................... 303
START and STOP Conditions ......................................................................................... 303
Complete Data Transfer with a 7-Bit Address ................................................................... 304
R/S Bit in First Byte ........................................................................................................ 304
Data Validity During Bit Transfer on the I2C Bus ............................................................... 304
Master Single SEND ...................................................................................................... 307
Master Single RECEIVE ................................................................................................. 308
Master Burst SEND ....................................................................................................... 309
Master Burst RECEIVE .................................................................................................. 310
8
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 13-11.
Figure 13-12.
Figure 13-13.
Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 15-1.
Figure 15-2.
Figure 15-3.
Figure 15-4.
Figure 15-5.
Figure 16-1.
Figure 16-2.
Figure 17-1.
Figure 20-1.
Figure 20-2.
Figure 20-3.
Figure 20-4.
Figure 20-5.
Figure 20-6.
Figure 20-7.
Figure 20-8.
Figure 20-9.
Figure 20-10.
Figure 20-11.
Figure 20-12.
Figure 20-13.
Figure 20-14.
Figure 21-1.
Master Burst RECEIVE after Burst SEND ........................................................................
Master Burst SEND after Burst RECEIVE ........................................................................
Slave Command Sequence ............................................................................................
Analog Comparator Module Block Diagram .....................................................................
Structure of Comparator Unit ..........................................................................................
Comparator Internal Reference Structure ........................................................................
PWM Module Block Diagram ..........................................................................................
PWM Count-Down Mode ................................................................................................
PWM Count-Up/Down Mode ..........................................................................................
PWM Generation Example In Count-Up/Down Mode .......................................................
PWM Dead-Band Generator ...........................................................................................
QEI Block Diagram ........................................................................................................
Quadrature Encoder and Velocity Predivider Operation ....................................................
Pin Connection Diagram ................................................................................................
Load Conditions ............................................................................................................
I2C Timing .....................................................................................................................
SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement ..............
SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer .............................
SSI Timing for SPI Frame Format (FRF=00), with SPH=1 .................................................
JTAG Test Clock Input Timing .........................................................................................
JTAG Test Access Port (TAP) Timing ..............................................................................
JTAG TRST Timing ........................................................................................................
External Reset Timing (RST) ..........................................................................................
Power-On Reset Timing .................................................................................................
Brown-Out Reset Timing ................................................................................................
Software Reset Timing ...................................................................................................
Watchdog Reset Timing .................................................................................................
LDO Reset Timing .........................................................................................................
48-Pin LQFP Package ...................................................................................................
October 01, 2007
311
312
313
338
339
340
350
351
352
352
353
386
388
403
415
417
417
418
418
419
420
420
421
421
422
422
422
422
423
9
Preliminary
Table of Contents
List of Tables
Table 1.
Table 3-1.
Table 4-1.
Table 4-2.
Table 5-1.
Table 5-2.
Table 6-1.
Table 6-2.
Table 7-1.
Table 7-2.
Table 8-1.
Table 8-2.
Table 8-3.
Table 9-1.
Table 9-2.
Table 10-1.
Table 11-1.
Table 12-1.
Table 13-1.
Table 13-2.
Table 13-3.
Table 14-1.
Table 14-2.
Table 14-3.
Table 14-4.
Table 14-5.
Table 15-1.
Table 16-1.
Table 18-1.
Table 18-2.
Table 18-3.
Table 18-4.
Table 19-1.
Table 19-2.
Table 20-1.
Table 20-2.
Table 20-3.
Table 20-4.
Table 20-5.
Table 20-6.
Table 20-7.
Table 20-8.
Table 20-9.
Table 20-10.
Table 20-11.
Table 20-12.
Documentation Conventions ............................................................................................ 18
Memory Map ................................................................................................................... 40
Exception Types .............................................................................................................. 42
Interrupts ........................................................................................................................ 43
JTAG Port Pins Reset State ............................................................................................. 46
JTAG Instruction Register Commands ............................................................................... 50
System Control Register Map ........................................................................................... 61
PLL Mode Control ........................................................................................................... 76
Flash Protection Policy Combinations ............................................................................. 115
Flash Register Map ........................................................................................................ 118
GPIO Pad Configuration Examples ................................................................................. 133
GPIO Interrupt Configuration Example ............................................................................ 134
GPIO Register Map ....................................................................................................... 135
16-Bit Timer With Prescaler Configurations ..................................................................... 172
Timers Register Map ...................................................................................................... 178
Watchdog Timer Register Map ........................................................................................ 205
UART Register Map ....................................................................................................... 232
SSI Register Map .......................................................................................................... 275
Examples of I2C Master Timer Period versus Speed Mode ............................................... 305
Inter-Integrated Circuit (I2C) Interface Register Map ......................................................... 314
Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) ................................................ 319
Comparator 0 Operating Modes ...................................................................................... 339
Comparator 1 Operating Modes ..................................................................................... 339
Comparator 2 Operating Modes ...................................................................................... 340
Internal Reference Voltage and ACREFCTL Field Values ................................................. 340
Analog Comparators Register Map ................................................................................. 342
PWM Register Map ........................................................................................................ 355
QEI Register Map .......................................................................................................... 389
Signals by Pin Number ................................................................................................... 404
Signals by Signal Name ................................................................................................. 406
Signals by Function, Except for GPIO ............................................................................. 409
GPIO Pins and Alternate Functions ................................................................................. 410
Temperature Characteristics ........................................................................................... 412
Thermal Characteristics ................................................................................................. 412
Maximum Ratings .......................................................................................................... 413
Recommended DC Operating Conditions ........................................................................ 413
LDO Regulator Characteristics ....................................................................................... 414
Detailed Power Specifications ........................................................................................ 414
Flash Memory Characteristics ........................................................................................ 415
Phase Locked Loop (PLL) Characteristics ....................................................................... 415
Clock Characteristics ..................................................................................................... 415
Analog Comparator Characteristics ................................................................................. 416
Analog Comparator Voltage Reference Characteristics .................................................... 416
I2C Characteristics ......................................................................................................... 416
SSI Characteristics ........................................................................................................ 417
JTAG Characteristics ..................................................................................................... 418
10
October 01, 2007
Preliminary
LM3S601 Microcontroller
Table 20-13. GPIO Characteristics ..................................................................................................... 420
Table 20-14. Reset Characteristics ..................................................................................................... 420
Table C-1.
Part Ordering Information ............................................................................................... 445
October 01, 2007
11
Preliminary
Table of Contents
List of Registers
System Control .............................................................................................................................. 54
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Register 21:
Register 22:
Register 23:
Register 24:
Register 25:
Register 26:
Register 27:
Register 28:
Register 29:
Register 30:
Device Identification 0 (DID0), offset 0x000 ....................................................................... 63
Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030 .................................... 65
LDO Power Control (LDOPCTL), offset 0x034 ................................................................... 66
Raw Interrupt Status (RIS), offset 0x050 ........................................................................... 67
Interrupt Mask Control (IMC), offset 0x054 ........................................................................ 68
Masked Interrupt Status and Clear (MISC), offset 0x058 .................................................... 70
Reset Cause (RESC), offset 0x05C .................................................................................. 71
Run-Mode Clock Configuration (RCC), offset 0x060 .......................................................... 72
XTAL to PLL Translation (PLLCFG), offset 0x064 .............................................................. 77
Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 .......................................... 78
Clock Verification Clear (CLKVCLR), offset 0x150 ............................................................. 79
Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160 ................................... 80
Device Identification 1 (DID1), offset 0x004 ....................................................................... 81
Device Capabilities 0 (DC0), offset 0x008 ......................................................................... 83
Device Capabilities 1 (DC1), offset 0x010 ......................................................................... 84
Device Capabilities 2 (DC2), offset 0x014 ......................................................................... 86
Device Capabilities 3 (DC3), offset 0x018 ......................................................................... 88
Device Capabilities 4 (DC4), offset 0x01C ......................................................................... 90
Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 .................................... 91
Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 .................................. 92
Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 ......................... 93
Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 .................................... 94
Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 .................................. 97
Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 ....................... 100
Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 ................................... 103
Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 ................................. 105
Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 ....................... 107
Software Reset Control 0 (SRCR0), offset 0x040 ............................................................. 109
Software Reset Control 1 (SRCR1), offset 0x044 ............................................................. 110
Software Reset Control 2 (SRCR2), offset 0x048 ............................................................. 112
Internal Memory ........................................................................................................................... 113
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Flash Memory Address (FMA), offset 0x000 ....................................................................
Flash Memory Data (FMD), offset 0x004 .........................................................................
Flash Memory Control (FMC), offset 0x008 .....................................................................
Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C ............................................
Flash Controller Interrupt Mask (FCIM), offset 0x010 ........................................................
Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 .....................
USec Reload (USECRL), offset 0x140 ............................................................................
Flash Memory Protection Read Enable (FMPRE), offset 0x130 .........................................
Flash Memory Protection Program Enable (FMPPE), offset 0x134 ....................................
119
120
121
123
124
125
126
127
128
General-Purpose Input/Outputs (GPIOs) ................................................................................... 129
Register 1:
Register 2:
Register 3:
GPIO Data (GPIODATA), offset 0x000 ............................................................................ 137
GPIO Direction (GPIODIR), offset 0x400 ......................................................................... 138
GPIO Interrupt Sense (GPIOIS), offset 0x404 .................................................................. 139
12
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Register 21:
Register 22:
Register 23:
Register 24:
Register 25:
Register 26:
Register 27:
Register 28:
Register 29:
Register 30:
GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 ........................................................ 140
GPIO Interrupt Event (GPIOIEV), offset 0x40C ................................................................ 141
GPIO Interrupt Mask (GPIOIM), offset 0x410 ................................................................... 142
GPIO Raw Interrupt Status (GPIORIS), offset 0x414 ........................................................ 143
GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ................................................... 144
GPIO Interrupt Clear (GPIOICR), offset 0x41C ................................................................ 145
GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 ............................................ 146
GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 ........................................................ 148
GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 ........................................................ 149
GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 ........................................................ 150
GPIO Open Drain Select (GPIOODR), offset 0x50C ......................................................... 151
GPIO Pull-Up Select (GPIOPUR), offset 0x510 ................................................................ 152
GPIO Pull-Down Select (GPIOPDR), offset 0x514 ........................................................... 153
GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 ................................................ 154
GPIO Digital Enable (GPIODEN), offset 0x51C ................................................................ 155
GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 ....................................... 156
GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 ....................................... 157
GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 ....................................... 158
GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC ...................................... 159
GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 ....................................... 160
GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 ....................................... 161
GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 ....................................... 162
GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC ...................................... 163
GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .......................................... 164
GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .......................................... 165
GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .......................................... 166
GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ......................................... 167
General-Purpose Timers ............................................................................................................. 168
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
GPTM Configuration (GPTMCFG), offset 0x000 ..............................................................
GPTM TimerA Mode (GPTMTAMR), offset 0x004 ............................................................
GPTM TimerB Mode (GPTMTBMR), offset 0x008 ............................................................
GPTM Control (GPTMCTL), offset 0x00C ........................................................................
GPTM Interrupt Mask (GPTMIMR), offset 0x018 ..............................................................
GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C .....................................................
GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 ................................................
GPTM Interrupt Clear (GPTMICR), offset 0x024 ..............................................................
GPTM TimerA Interval Load (GPTMTAILR), offset 0x028 .................................................
GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C ................................................
GPTM TimerA Match (GPTMTAMATCHR), offset 0x030 ...................................................
GPTM TimerB Match (GPTMTBMATCHR), offset 0x034 ..................................................
GPTM TimerA Prescale (GPTMTAPR), offset 0x038 ........................................................
GPTM TimerB Prescale (GPTMTBPR), offset 0x03C .......................................................
GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040 ...........................................
GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044 ...........................................
GPTM TimerA (GPTMTAR), offset 0x048 ........................................................................
GPTM TimerB (GPTMTBR), offset 0x04C .......................................................................
180
181
183
185
188
190
191
192
194
195
196
197
198
199
200
201
202
203
Watchdog Timer ........................................................................................................................... 204
Register 1:
Watchdog Load (WDTLOAD), offset 0x000 ...................................................................... 207
October 01, 2007
13
Preliminary
Table of Contents
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Watchdog Value (WDTVALUE), offset 0x004 ...................................................................
Watchdog Control (WDTCTL), offset 0x008 .....................................................................
Watchdog Interrupt Clear (WDTICR), offset 0x00C ..........................................................
Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 ..................................................
Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 .............................................
Watchdog Test (WDTTEST), offset 0x418 .......................................................................
Watchdog Lock (WDTLOCK), offset 0xC00 .....................................................................
Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 .................................
Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 .................................
Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 .................................
Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC ................................
Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 .................................
Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 .................................
Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 .................................
Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC .................................
Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 ....................................
Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 ....................................
Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 ....................................
Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC ..................................
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
Universal Asynchronous Receivers/Transmitters (UARTs) ..................................................... 227
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Register 21:
Register 22:
Register 23:
Register 24:
UART Data (UARTDR), offset 0x000 ...............................................................................
UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 ...........................
UART Flag (UARTFR), offset 0x018 ................................................................................
UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 ............................................
UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 .......................................
UART Line Control (UARTLCRH), offset 0x02C ...............................................................
UART Control (UARTCTL), offset 0x030 .........................................................................
UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ...........................................
UART Interrupt Mask (UARTIM), offset 0x038 .................................................................
UART Raw Interrupt Status (UARTRIS), offset 0x03C ......................................................
UART Masked Interrupt Status (UARTMIS), offset 0x040 .................................................
UART Interrupt Clear (UARTICR), offset 0x044 ...............................................................
UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 .....................................
UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 .....................................
UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 .....................................
UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC .....................................
UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 ......................................
UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 ......................................
UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 ......................................
UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC .....................................
UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 ........................................
UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 ........................................
UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 ........................................
UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC ........................................
234
236
238
240
241
242
244
245
247
249
250
251
253
254
255
256
257
258
259
260
261
262
263
264
Synchronous Serial Interface (SSI) ............................................................................................ 265
Register 1:
Register 2:
Register 3:
SSI Control 0 (SSICR0), offset 0x000 .............................................................................. 277
SSI Control 1 (SSICR1), offset 0x004 .............................................................................. 279
SSI Data (SSIDR), offset 0x008 ...................................................................................... 281
14
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Register 21:
SSI Status (SSISR), offset 0x00C ...................................................................................
SSI Clock Prescale (SSICPSR), offset 0x010 ..................................................................
SSI Interrupt Mask (SSIIM), offset 0x014 .........................................................................
SSI Raw Interrupt Status (SSIRIS), offset 0x018 ..............................................................
SSI Masked Interrupt Status (SSIMIS), offset 0x01C ........................................................
SSI Interrupt Clear (SSIICR), offset 0x020 .......................................................................
SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 .............................................
SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 .............................................
SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 .............................................
SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC ............................................
SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 .............................................
SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 .............................................
SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 .............................................
SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC ............................................
SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ...............................................
SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ...............................................
SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ...............................................
SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ...............................................
282
284
285
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
Inter-Integrated Circuit (I2C) Interface ........................................................................................ 302
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
I2C Master Slave Address (I2CMSA), offset 0x000 ...........................................................
I2C Master Control/Status (I2CMCS), offset 0x004 ...........................................................
I2C Master Data (I2CMDR), offset 0x008 .........................................................................
I2C Master Timer Period (I2CMTPR), offset 0x00C ...........................................................
I2C Master Interrupt Mask (I2CMIMR), offset 0x010 .........................................................
I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 .................................................
I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ...........................................
I2C Master Interrupt Clear (I2CMICR), offset 0x01C .........................................................
I2C Master Configuration (I2CMCR), offset 0x020 ............................................................
I2C Slave Own Address (I2CSOAR), offset 0x000 ............................................................
I2C Slave Control/Status (I2CSCSR), offset 0x004 ...........................................................
I2C Slave Data (I2CSDR), offset 0x008 ...........................................................................
I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C ...........................................................
I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010 ...................................................
I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014 ..............................................
I2C Slave Interrupt Clear (I2CSICR), offset 0x018 ............................................................
316
317
321
322
323
324
325
326
327
329
330
332
333
334
335
336
Analog Comparators ................................................................................................................... 337
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00 ....................................
Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04 .........................................
Analog Comparator Interrupt Enable (ACINTEN), offset 0x08 ...........................................
Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x10 .........................
Analog Comparator Status 0 (ACSTAT0), offset 0x20 .......................................................
Analog Comparator Status 1 (ACSTAT1), offset 0x40 .......................................................
Analog Comparator Status 2 (ACSTAT2), offset 0x60 .......................................................
Analog Comparator Control 0 (ACCTL0), offset 0x24 .......................................................
Analog Comparator Control 1 (ACCTL1), offset 0x44 .......................................................
Analog Comparator Control 2 (ACCTL2), offset 0x64 ......................................................
October 01, 2007
343
344
345
346
347
347
347
348
348
348
15
Preliminary
Table of Contents
Pulse Width Modulator (PWM) .................................................................................................... 350
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
Register 12:
Register 13:
Register 14:
Register 15:
Register 16:
Register 17:
Register 18:
Register 19:
Register 20:
Register 21:
Register 22:
Register 23:
Register 24:
Register 25:
Register 26:
Register 27:
Register 28:
Register 29:
Register 30:
Register 31:
Register 32:
Register 33:
Register 34:
Register 35:
Register 36:
Register 37:
Register 38:
Register 39:
Register 40:
Register 41:
Register 42:
Register 43:
Register 44:
Register 45:
Register 46:
Register 47:
PWM Master Control (PWMCTL), offset 0x000 ................................................................ 358
PWM Time Base Sync (PWMSYNC), offset 0x004 ........................................................... 359
PWM Output Enable (PWMENABLE), offset 0x008 .......................................................... 360
PWM Output Inversion (PWMINVERT), offset 0x00C ....................................................... 361
PWM Output Fault (PWMFAULT), offset 0x010 ................................................................ 362
PWM Interrupt Enable (PWMINTEN), offset 0x014 ........................................................... 363
PWM Raw Interrupt Status (PWMRIS), offset 0x018 ........................................................ 364
PWM Interrupt Status and Clear (PWMISC), offset 0x01C ................................................ 365
PWM Status (PWMSTATUS), offset 0x020 ...................................................................... 366
PWM0 Control (PWM0CTL), offset 0x040 ....................................................................... 367
PWM1 Control (PWM1CTL), offset 0x080 ....................................................................... 367
PWM2 Control (PWM2CTL), offset 0x0C0 ...................................................................... 367
PWM0 Interrupt Enable (PWM0INTEN), offset 0x044 ...................................................... 369
PWM1 Interrupt Enable (PWM1INTEN), offset 0x084 ...................................................... 369
PWM2 InterruptEnable (PWM2INTEN), offset 0x0C4 ...................................................... 369
PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 .................................................... 371
PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 .................................................... 371
PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8 ................................................... 371
PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C ........................................... 372
PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C ........................................... 372
PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC ........................................... 372
PWM0 Load (PWM0LOAD), offset 0x050 ....................................................................... 373
PWM1 Load (PWM1LOAD), offset 0x090 ....................................................................... 373
PWM2 Load (PWM2LOAD), offset 0x0D0 ....................................................................... 373
PWM0 Counter (PWM0COUNT), offset 0x054 ................................................................ 374
PWM1 Counter (PWM1COUNT), offset 0x094 ................................................................ 374
PWM2 Counter (PWM2COUNT), offset 0x0D4 ............................................................... 374
PWM0 Compare A (PWM0CMPA), offset 0x058 ............................................................. 375
PWM1 Compare A (PWM1CMPA), offset 0x098 ............................................................. 375
PWM2 Compare A (PWM2CMPA), offset 0x0D8 ............................................................. 375
PWM0 Compare B (PWM0CMPB), offset 0x05C ............................................................. 376
PWM1 Compare B (PWM1CMPB), offset 0x09C ............................................................. 376
PWM2 Compare B (PWM2CMPB), offset 0x0DC ............................................................ 376
PWM0 Generator A Control (PWM0GENA), offset 0x060 ................................................ 377
PWM1 Generator A Control (PWM1GENA), offset 0x0A0 ................................................ 377
PWM2 Generator A Control (PWM2GENA), offset 0x0E0 ................................................ 377
PWM0 Generator B Control (PWM0GENB), offset 0x064 ................................................ 380
PWM1 Generator B Control (PWM1GENB), offset 0x0A4 ................................................ 380
PWM2 Generator B Control (PWM2GENB), offset 0x0E4 ................................................ 380
PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 ................................................ 383
PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 ................................................. 383
PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8 ................................................ 383
PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C ............................. 384
PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC ............................. 384
PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC ............................. 384
PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 ............................. 385
PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0 ............................. 385
16
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 48:
PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0 ............................. 385
Quadrature Encoder Interface (QEI) .......................................................................................... 386
Register 1:
Register 2:
Register 3:
Register 4:
Register 5:
Register 6:
Register 7:
Register 8:
Register 9:
Register 10:
Register 11:
QEI Control (QEICTL), offset 0x000 ................................................................................
QEI Status (QEISTAT), offset 0x004 ................................................................................
QEI Position (QEIPOS), offset 0x008 ..............................................................................
QEI Maximum Position (QEIMAXPOS), offset 0x00C .......................................................
QEI Timer Load (QEILOAD), offset 0x010 .......................................................................
QEI Timer (QEITIME), offset 0x014 .................................................................................
QEI Velocity Counter (QEICOUNT), offset 0x018 .............................................................
QEI Velocity (QEISPEED), offset 0x01C ..........................................................................
QEI Interrupt Enable (QEIINTEN), offset 0x020 ...............................................................
QEI Raw Interrupt Status (QEIRIS), offset 0x024 .............................................................
QEI Interrupt Status and Clear (QEIISC), offset 0x028 .....................................................
October 01, 2007
391
393
394
395
396
397
398
399
400
401
402
17
Preliminary
About This Document
About This Document
This data sheet provides reference information for the LM3S601 microcontroller, describing the
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3
core.
Audience
This manual is intended for system software developers, hardware designers, and application
developers.
About This Manual
This document is organized into sections that correspond to each major feature.
Related Documents
The following documents are referenced by the data sheet, and available on the documentation CD
or from the Luminary Micro web site at www.luminarymicro.com:
■ ARM® Cortex™-M3 Technical Reference Manual
■ ARM® CoreSight Technical Reference Manual
■ ARM® v7-M Architecture Application Level Reference Manual
The following related documents are also referenced:
■ IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture
This documentation list was current as of publication date. Please check the Luminary Micro web
site for additional documentation, including application notes and white papers.
Documentation Conventions
This document uses the conventions shown in Table 1 on page 18.
Table 1. Documentation Conventions
Notation
Meaning
General Register Notation
REGISTER
APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and
Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more
than one register. For example, SRCRn represents any (or all) of the three Software Reset Control
registers: SRCR0, SRCR1 , and SRCR2.
bit
A single bit in a register.
bit field
Two or more consecutive and related bits.
offset 0xnnn
A hexadecimal increment to a register's address, relative to that module's base address as specified
in “Memory Map” on page 40.
Register N
Registers are numbered consecutively throughout the document to aid in referencing them. The
register number has no meaning to software.
18
October 01, 2007
Preliminary
LM3S601 Microcontroller
Notation
Meaning
reserved
Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to
0; however, user software should not rely on the value of a reserved bit. To provide software
compatibility with future products, the value of a reserved bit should be preserved across a
read-modify-write operation.
yy:xx
The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in
that register.
Register Bit/Field
Types
This value in the register bit diagram indicates whether software running on the controller can
change the value of the bit field.
RC
Software can read this field. The bit or field is cleared by hardware after reading the bit/field.
RO
Software can read this field. Always write the chip reset value.
R/W
Software can read or write this field.
R/W1C
Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.
This register type is primarily used for clearing interrupt status bits where the read operation
provides the interrupt status and the write of the read value clears only the interrupts being reported
at the time the register was read.
W1C
Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register.
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A
read of the register returns no meaningful data.
This register is typically used to clear the corresponding bit in an interrupt register.
WO
Only a write by software is valid; a read of the register returns no meaningful data.
Register Bit/Field
Reset Value
This value in the register bit diagram shows the bit/field value after any reset, unless noted.
0
Bit cleared to 0 on chip reset.
1
Bit set to 1 on chip reset.
-
Nondeterministic.
Pin/Signal Notation
[]
Pin alternate function; a pin defaults to the signal without the brackets.
pin
Refers to the physical connection on the package.
signal
Refers to the electrical signal encoding of a pin.
assert a signal
Change the value of the signal from the logically False state to the logically True state. For active
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value
is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL
below).
deassert a signal
Change the value of the signal from the logically True state to the logically False state.
SIGNAL
Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.
SIGNAL
Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To
assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.
Numbers
X
An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For
example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and
so on.
0x
Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.
All other numbers within register tables are assumed to be binary. Within conceptual information,
binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written
without a prefix or suffix.
October 01, 2007
19
Preliminary
Architectural Overview
1
Architectural Overview
®
The Luminary Micro Stellaris family of microcontrollers—the first ARM® Cortex™-M3 based
controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller
applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to
legacy 8- and 16-bit devices, all in a package with a small footprint.
The LM3S601 microcontroller is targeted for industrial applications, including test and measurement
equipment, factory automation, HVAC and building control, motion control, medical instrumentation,
fire and security, and power/energy.
In addition, the LM3S601 microcontroller offers the advantages of ARM's widely available
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community.
Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce
memory requirements and, thereby, cost. Finally, the LM3S601 microcontroller is code-compatible
®
to all members of the extensive Stellaris family; providing flexibility to fit our customers' precise
needs.
Luminary Micro offers a complete solution to get to market quickly, with evaluation and development
boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong
support, sales, and distributor network.
1.1
Product Features
The LM3S601 microcontroller includes the following product features:
■ 32-Bit RISC Performance
– 32-bit ARM® Cortex™-M3 v7M architecture optimized for small-footprint embedded
applications
– System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero
counter with a flexible control mechanism
– Thumb®-compatible Thumb-2-only instruction set processor core for high code density
– 50-MHz operation
– Hardware-division and single-cycle-multiplication
– Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt
handling
– 25 interrupts with eight priority levels
– Memory protection unit (MPU), providing a privileged mode for protected operating system
functionality
– Unaligned data access, enabling data to be efficiently packed into memory
– Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined
peripheral control
■ Internal Memory
20
October 01, 2007
Preliminary
LM3S601 Microcontroller
– 32 KB single-cycle flash
•
User-managed flash block protection on a 2-KB block basis
•
User-managed flash data programming
•
User-defined and managed flash-protection block
– 8 KB single-cycle SRAM
■ General-Purpose Timers
– Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit
timer/counters. Each GPTM can be configured to operate independently as timers or event
counters as a single 32-bit timer, as one 32-bit Real-Time Clock (RTC) to event capture, or
for Pulse Width Modulation (PWM)
– 32-bit Timer modes
•
Programmable one-shot timer
•
Programmable periodic timer
•
Real-Time Clock when using an external 32.768-KHz clock as the input
•
User-enabled stalling in periodic and one-shot mode when the controller asserts the CPU
Halt flag during debug
– 16-bit Timer modes
•
General-purpose timer function with an 8-bit prescaler
•
Programmable one-shot timer
•
Programmable periodic timer
•
User-enabled stalling when the controller asserts CPU Halt flag during debug
– 16-bit Input Capture modes
•
Input edge count capture
•
Input edge time capture
– 16-bit PWM mode
•
Simple PWM mode with software-programmable output inversion of the PWM signal
■ ARM FiRM-compliant Watchdog Timer
– 32-bit down counter with a programmable load register
– Separate watchdog clock with an enable
– Programmable interrupt generation logic with interrupt masking
– Lock register protection from runaway software
October 01, 2007
21
Preliminary
Architectural Overview
– Reset generation logic with an enable/disable
– User-enabled stalling when the controller asserts the CPU Halt flag during debug
■ Synchronous Serial Interface (SSI)
– Master or slave operation
– Programmable clock bit rate and prescale
– Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
– Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces
– Programmable data frame size from 4 to 16 bits
– Internal loopback test mode for diagnostic/debug testing
■ UART
– Two fully programmable 16C550-type UARTs
– Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs to reduce CPU interrupt service
loading
– Programmable baud-rate generator with fractional divider
– Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface
– FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
– Standard asynchronous communication bits for start, stop, and parity
– False-start-bit detection
– Line-break generation and detection
■ Analog Comparators
– Three independent integrated analog comparators
– Configurable for output to: drive an output pin or generate an interrupt
– Compare external pin input to external pin input or to internal programmable voltage reference
■ I2C
– Master and slave receive and transmit operation with transmission speed up to 100 Kbps in
Standard mode and 400 Kbps in Fast mode
– Interrupt generation
– Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing
mode
22
October 01, 2007
Preliminary
LM3S601 Microcontroller
■ PWM
– Three PWM generator blocks, each with one 16-bit counter, two comparators, a PWM
generator, and a dead-band generator
– One 16-bit counter
•
Runs in Down or Up/Down mode
•
Output frequency controlled by a 16-bit load value
•
Load value updates can be synchronized
•
Produces output signals at zero and load value
– Two PWM comparators
•
Comparator value updates can be synchronized
•
Produces output signals on match
– PWM generator
•
Output PWM signal is constructed based on actions taken as a result of the counter and
PWM comparator output signals
•
Produces two independent PWM signals
– Dead-band generator
•
Produces two PWM signals with programmable dead-band delays suitable for driving a
half-H bridge
•
Can be bypassed, leaving input PWM signals unmodified
– Flexible output control block with PWM output enable of each PWM signal
•
PWM output enable of each PWM signal
•
Optional output inversion of each PWM signal (polarity control)
•
Optional fault handling for each PWM signal
•
Synchronization of timers in the PWM generator blocks
•
Synchronization of timer/comparator updates across the PWM generator blocks
•
Interrupt status summary of the PWM generator blocks
■ QEI
– Hardware position integrator tracks the encoder position
– Velocity capture using built-in timer
– Interrupt generation on index pulse, velocity-timer expiration, direction change, and quadrature
error detection
October 01, 2007
23
Preliminary
Architectural Overview
■ GPIOs
– 0-36 GPIOs, depending on configuration
– 5-V-tolerant input/outputs
– Programmable interrupt generation as either edge-triggered or level-sensitive
– Bit masking in both read and write operations through address lines
– Programmable control for GPIO pad configuration:
•
Weak pull-up or pull-down resistors
•
2-mA, 4-mA, and 8-mA pad drive
•
Slew rate control for the 8-mA drive
•
Open drain enables
•
Digital input enables
■ Power
– On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable
from 2.25 V to 2.75 V
– Low-power options on controller: Sleep and Deep-sleep modes
– Low-power options for peripherals: software controls shutdown of individual peripherals
– User-enabled LDO unregulated voltage detection and automatic reset
– 3.3-V supply brown-out detection and reporting via interrupt or reset
■ Flexible Reset Sources
– Power-on reset (POR)
– Reset pin assertion
– Brown-out (BOR) detector alerts to system power drops
– Software reset
– Watchdog timer reset
– Internal low drop-out (LDO) regulator output goes unregulated
■ Additional Features
– Six reset sources
– Programmable clock source control
– Clock gating to individual peripherals for power savings
24
October 01, 2007
Preliminary
LM3S601 Microcontroller
– IEEE 1149.1-1990 compliant Test Access Port (TAP) controller
– Debug access via JTAG and Serial Wire interfaces
– Full JTAG boundary scan
■ Industrial-range 48-pin RoHS-compliant LQFP package
1.2
Target Applications
■ Factory automation and control
■ Industrial control power devices
■ Building and home automation
■ Stepper motors
■ Brushless DC motors
■ AC induction motors
1.3
High-Level Block Diagram
®
Figure 1-1 on page 26 represents the full set of features in the Stellaris 600 series of devices; not
all features may be available on the LM3S601 microcontroller.
October 01, 2007
25
Preliminary
Architectural Overview
®
Figure 1-1. Stellaris 600 Series High-Level Block Diagram
1.4
Functional Overview
The following sections provide an overview of the features of the LM3S601 microcontroller. The
page number in parenthesis indicates where that feature is discussed in detail. Ordering and support
information can be found in “Ordering and Contact Information” on page 445.
26
October 01, 2007
Preliminary
LM3S601 Microcontroller
1.4.1
ARM Cortex™-M3
1.4.1.1
Processor Core (see page 34)
®
All members of the Stellaris product family, including the LM3S601 microcontroller, are designed
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core for
a high-performance, low-cost platform that meets the needs of minimal memory implementation,
reduced pin count, and low-power consumption, while delivering outstanding computational
performance and exceptional system response to interrupts.
“ARM Cortex-M3 Processor Core” on page 34 provides an overview of the ARM core; the core is
detailed in the ARM® Cortex™-M3 Technical Reference Manual.
1.4.1.2
System Timer (SysTick)
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:
■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a
SysTick routine.
■ A high-speed alarm timer using the system clock.
■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter.
■ A simple counter. Software can use this to measure time to completion and time used.
■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field
in the control and status register can be used to determine if an action completed within a set
duration, as part of a dynamic clock management control loop.
1.4.1.3
Nested Vectored Interrupt Controller (NVIC)
The LM3S601 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM
Cortex-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are
handled in Handler Mode. The processor state is automatically stored to the stack on an exception,
and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The
vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor
supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead
of state saving and restoration. Software can set eight priority levels on 7 exceptions (system
handlers) and 25 interrupts.
“Interrupts” on page 42 provides an overview of the NVIC controller and the interrupt map. Exceptions
and interrupts are detailed in the ARM® Cortex™-M3 Technical Reference Manual.
1.4.2
Motor Control Peripherals
To enhance motor control, the LM3S601 controller features Pulse Width Modulation (PWM) outputs
and the Quadrature Encoder Interface (QEI).
1.4.2.1
PWM (see page 174)
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
October 01, 2007
27
Preliminary
Architectural Overview
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control.
On the LM3S601, PWM motion control functionality can be achieved through dedicated, flexible
motion control hardware (the PWM pins) or through the motion control features of the general-purpose
timers (using the CCP pins).
PWM Pins (see page 350)
The LM3S601 PWM module consists of three PWM generator blocks and a control block. Each
PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a
PWM signal generator, a dead-band generator, and an interrupt. The control block determines the
polarity of the PWM signals, and which signals are passed through to the pins.
Each PWM generator block produces two PWM signals that can either be independent signals or
a single pair of complementary signals with dead-band delays inserted. The output of the PWM
generation blocks are managed by the output control block before being passed to the device pins.
CCP Pins (see page 174)
The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable
to support a simple PWM mode with a software-programmable output inversion of the PWM signal.
1.4.2.2
QEI (see page 386)
A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement
into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals,
you can track the position, direction of rotation, and speed. In addition, a third channel, or index
signal, can be used to reset the position counter.
The Stellaris quadrature encoder with index (QEI) module interprets the code produced by a
quadrature encoder wheel to integrate position over time and determine direction of rotation. In
addition, it can capture a running estimate of the velocity of the encoder wheel.
1.4.3
Analog Peripherals
For support of analog signals, the LM3S601 microcontroller offers three analog comparators.
1.4.3.1
Analog Comparators (see page 337)
An analog comparator is a peripheral that compares two analog voltages, and provides a logical
output that signals the comparison result.
The LM3S601 microcontroller provides three independent integrated analog comparators that can
be configured to drive an output or generate an interrupt .
A comparator can compare a test voltage against any one of these voltages:
■ An individual external reference voltage
■ A shared single external reference voltage
■ A shared internal reference voltage
The comparator can provide its output to a device pin, acting as a replacement for an analog
comparator on the board, or it can be used to signal the application via interrupts to cause it to start
capturing a sample sequence.
28
October 01, 2007
Preliminary
LM3S601 Microcontroller
1.4.4
Serial Communications Peripherals
The LM3S601 controller supports both asynchronous and synchronous serial communications with:
■ Two fully programmable 16C550-type UARTs
■ One SSI module
■ One I2C module
1.4.4.1
UART (see page 227)
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver
(serial-to-parallel converter), each clocked separately.
The LM3S601 controller includes two fully programmable 16C550-type UARTs that support data
transfer speeds up to 460.8 Kbps. (Although similar in functionality to a 16C550 UART, it is not
register-compatible.)
Separate 16x8 transmit (TX) and 16x12 receive (RX) FIFOs reduce CPU interrupt service loading.
The UART can generate individually masked interrupts from the RX, TX, modem status, and error
conditions. The module provides a single combined interrupt when any of the interrupts are asserted
and are unmasked.
1.4.4.2
SSI (see page 265)
Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface.
The LM3S601 controller includes one SSI module that provides the functionality for synchronous
serial communications with peripheral devices, and can be configured to use the Freescale SPI,
MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also
configurable, and can be set between 4 and 16 bits, inclusive.
The SSI module performs serial-to-parallel conversion on data received from a peripheral device,
and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths
are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.
The SSI module can be configured as either a master or slave device. As a slave device, the SSI
module can also be configured to disable its output, which allows a master device to be coupled
with multiple slave devices.
The SSI module also includes a programmable bit rate clock divider and prescaler to generate the
output serial clock derived from the SSI module's input clock. Bit rates are generated based on the
input clock and the maximum bit rate is determined by the connected peripheral.
1.4.4.3
I2C (see page 302)
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL).
The I2C bus interfaces to external I2C devices such as serial memory (RAMs and ROMs), networking
devices, LCDs, tone generators, and so on. The I2C bus may also be used for system testing and
diagnostic purposes in product development and manufacture.
The LM3S601 controller includes one I2C module that provides the ability to communicate to other
IC devices over an I2C bus. The I2C bus supports devices that can both transmit and receive (write
and read) data.
October 01, 2007
29
Preliminary
Architectural Overview
Devices on the I2C bus can be designated as either a master or a slave. The I2C module supports
both sending and receiving data as either a master or a slave, and also supports the simultaneous
operation as both a master and a slave. The four I2C modes are: Master Transmit, Master Receive,
Slave Transmit, and Slave Receive.
®
A Stellaris I2C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).
Both the I2C master and slave can generate interrupts. The I2C master generates interrupts when
a transmit or receive operation completes (or aborts due to an error). The I2C slave generates
interrupts when data has been sent or requested by a master.
1.4.5
System Peripherals
1.4.5.1
Programmable GPIOs (see page 129)
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.
®
The Stellaris GPIO module is composed of five physical GPIO blocks, each corresponding to an
individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP
for Real-Time Microcontrollers specification) and supports 0-36 programmable input/output pins.
The number of GPIOs available depends on the peripherals being used (see “Signal Tables” on page
404 for the signals available to each GPIO pin).
The GPIO module features programmable interrupt generation as either edge-triggered or
level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in
both read and write operations through address lines.
1.4.5.2
Three Programmable Timers (see page 168)
Programmable timers can be used to count or time external events that drive the Timer input pins.
®
The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM
block provides two 16-bit timer/counters that can be configured to operate independently as timers
or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).
When configured in 32-bit mode, a timer can run as a one-shot timer, periodic timer, or Real-Time
Clock (RTC). When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can
extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event
capture or Pulse Width Modulation (PWM) generation.
1.4.5.3
Watchdog Timer (see page 204)
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is
reached. The watchdog timer is used to regain control when a system has failed due to a software
error or to the failure of an external device to respond in the expected way.
®
The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load
register, interrupt generation logic, and a locking register.
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,
the lock register can be written to prevent the timer configuration from being inadvertently altered.
1.4.6
Memory Peripherals
The LM3S601 controller offers both single-cycle SRAM and single-cycle Flash memory.
30
October 01, 2007
Preliminary
LM3S601 Microcontroller
1.4.6.1
SRAM (see page 113)
The LM3S601 static random access memory (SRAM) controller supports 8 KB SRAM. The internal
®
SRAM of the Stellaris devices is located at offset 0x0000.0000 of the device memory map. To
reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced
bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain
regions in the memory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation.
1.4.6.2
Flash (see page 114)
The LM3S601 Flash controller supports 32 KB of flash memory. The flash is organized as a set of
1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block
to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually
protected. The blocks can be marked as read-only or execute-only, providing different levels of code
protection. Read-only blocks cannot be erased or programmed, protecting the contents of those
blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only
be read by the controller instruction fetch mechanism, protecting the contents of those blocks from
being read by either the controller or by a debugger.
1.4.7
Additional Features
1.4.7.1
Memory Map (see page 40)
A memory map lists the location of instructions and data in memory. The memory map for the
LM3S601 controller can be found in “Memory Map” on page 40. Register addresses are given as
a hexadecimal increment, relative to the module's base address as shown in the memory map.
The ARM® Cortex™-M3 Technical Reference Manual provides further information on the memory
map.
1.4.7.2
JTAG TAP Controller (see page 44)
The Joint Test Action Group (JTAG) port provides a standardized serial interface for controlling the
Test Access Port (TAP) and associated test logic. The TAP, JTAG instruction register, and JTAG
data registers can be used to test the interconnects of assembled printed circuit boards, obtain
manufacturing information on the components, and observe and/or control the inputs and outputs
of the controller during normal operation. The JTAG port provides a high degree of testability and
chip-level access at a low cost.
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is
transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of
this data is dependent on the current state of the TAP controller. For detailed information on the
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test
Access Port and Boundary-Scan Architecture.
The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.
1.4.7.3
System Control and Clocks (see page 54)
System control determines the overall operation of the device. It provides information about the
device, controls the clocking of the device and individual peripherals, and handles reset detection
and reporting.
October 01, 2007
31
Preliminary
Architectural Overview
1.4.8
Hardware Details
Details on the pins and package can be found in the following sections:
■ “Pin Diagram” on page 403
■ “Signal Tables” on page 404
■ “Operating Characteristics” on page 412
■ “Electrical Characteristics” on page 413
■ “Package Information” on page 423
32
October 01, 2007
Preliminary
LM3S601 Microcontroller
1.4.9
System Block Diagram
Figure 1-2. LM3S601 Controller System-Level Block Diagram
VDD_3.3V
LDO
LDO
VDD_2.5V
GND
ARM Cortex-M3
(50 MHz)
CM3Core
DCode
Debug
OSC0
IOSC
Flash
(32 KB)
ICode
NVIC
Bus
PLL
APB Bridge
OSC1
SRAM
(8 KB)
POR
BOR
RST
Watchdog
Timer
System
Control
& Clocks
GPIO Port B
GPIO Port A
PB7/TRST
Analog
Comparators
PA5/SSITx
PA4/SSIRx
PA3/SSIFss
PA2/SSIClk
SSI
PA1/U0Tx
PA0/U0Rx
UART0
I 2C
PB3/I2CSDA
PB2/I2CSCL
JTAG
SWD/SWO
PC7/C2PC5/C0o/C1+
PC6/PhB/C2+
PC4/PhA
GPIO Port E
PE0/PWM4
PE1/PWM5
PWM2
PE4/CCP3
GP Timer1
PE2/CCP4
PE5/CCP5
GP Timer2
Peripheral Bus
Bus
Peripheral
Slave
GPIO Port C
PC3/TDO/SWO
PC2/TDI
PC1/TMS/SWDIO
PC0/TCK/SWCLK
Master
PB6/C0+
PB5/C1PB4/C0-
PWM1
PB1/PWM3
PB0/PWM2
GPIO Port D
PWM0
PD6/Fault
PD0/PWM0
PD1/PWM1
UART1
PD2/U1Rx
PD3/U1Tx
GP Timer0
PD4/CCP0
PD5/CCP2
QEI
PD7/IDX
PE3/CCP1
LM3S601
October 01, 2007
33
Preliminary
ARM Cortex-M3 Processor Core
2
ARM Cortex-M3 Processor Core
The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that
meets the needs of minimal memory implementation, reduced pin count, and low power consumption,
while delivering outstanding computational performance and exceptional system response to
interrupts. Features include:
■ Compact core.
■ Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory
size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of
memory for microcontroller class applications.
■ Rapid application execution through Harvard architecture characterized by separate buses for
instruction and data.
■ Exceptional interrupt handling, by implementing the register manipulations required for handling
an interrupt in hardware.
■ Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
■ Migration from the ARM7™ processor family for better performance and power efficiency.
■ Full-featured debug solution with a:
– Serial Wire JTAG Debug Port (SWJ-DP)
– Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
– Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,
and system profiling
– Instrumentation Trace Macrocell (ITM) for support of printf style debugging
– Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
®
The Stellaris family of microcontrollers builds on this core to bring high-performance 32-bit computing
to cost-sensitive embedded microcontroller applications, such as factory automation and control,
industrial control power devices, building and home automation, and stepper motors.
For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex™-M3 Technical
Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference
Manual.
34
October 01, 2007
Preliminary
LM3S601 Microcontroller
2.1
Block Diagram
Figure 2-1. CPU Block Diagram
Nested
Vectored
Interrupt
Controller
Interrupts
ARM
Cortex-M3
CM3 Core
Sleep
Debug
Instructions
Data
Trace
Port
Interface
Unit
Memory
Protection
Unit
Flash
Patch and
Breakpoint
2.2
Adv. HighPerf. Bus
Access Port
Private
Peripheral
Bus
(external)
Instrumentation
Data
Watchpoint Trace Macrocell
and Trace
ROM
Table
Private Peripheral
Bus
(internal)
Serial Wire JTAG
Debug Port
Serial
Wire
Output
Trace
Port
(SWO)
Adv. Peripheral
Bus
Bus
Matrix
I-code bus
D-code bus
System bus
Functional Description
Important: The ARM® Cortex™-M3 Technical Reference Manual describes all the features of an
ARM Cortex-M3 in detail. However, these features differ based on the implementation.
®
This section describes the Stellaris implementation.
Luminary Micro has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 35. As
noted in the ARM® Cortex™-M3 Technical Reference Manual, several Cortex-M3 components are
flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested
Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.
2.2.1
Serial Wire and JTAG Debug
Luminary Micro has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant
Serial Wire JTAG Debug Port (SWJ-DP) interface. This means Chapter 12, “Debug Port,” of the
®
ARM® Cortex™-M3 Technical Reference Manual does not apply to Stellaris devices.
The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the
CoreSight™ Design Kit Technical Reference Manual for details on SWJ-DP.
October 01, 2007
35
Preliminary
ARM Cortex-M3 Processor Core
2.2.2
Embedded Trace Macrocell (ETM)
®
ETM was not implemented in the Stellaris devices. This means Chapters 15 and 16 of the ARM®
Cortex™-M3 Technical Reference Manual can be ignored.
2.2.3
Trace Port Interface Unit (TPIU)
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace
®
Port Analyzer. The Stellaris devices have implemented TPIU as shown in Figure 2-2 on page 36.
This is similar to the non-ETM version described in the ARM® Cortex™-M3 Technical Reference
Manual, however, SWJ-DP only provides SWV output for the TPIU.
Figure 2-2. TPIU Block Diagram
2.2.4
Debug
ATB
Slave
Port
ATB
Interface
APB
Slave
Port
APB
Interface
Asynchronous FIFO
Trace Out
(serializer)
Serial Wire
Trace Port
(SWO)
ROM Table
The default ROM table was implemented as described in the ARM® Cortex™-M3 Technical
Reference Manual.
2.2.5
Memory Protection Unit (MPU)
The Memory Protection Unit (MPU) is included on the LM3S601 controller and supports the standard
ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for
protection regions, overlapping protection regions, access permissions, and exporting memory
attributes to the system.
2.2.6
Nested Vectored Interrupt Controller (NVIC)
The Nested Vectored Interrupt Controller (NVIC):
■ Facilitates low-latency exception and interrupt handling
■ Controls power management
■ Implements system control registers
36
October 01, 2007
Preliminary
LM3S601 Microcontroller
The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of
priority. The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge
of the stacked (nested) interrupts to enable tail-chaining of interrupts.
You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode
if you enable the Configuration Control Register (see the ARM® Cortex™-M3 Technical Reference
Manual). Any other user-mode access causes a bus fault.
All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.
All NVIC registers and system debug registers are little endian regardless of the endianness state
of the processor.
2.2.6.1
Interrupts
The ARM® Cortex™-M3 Technical Reference Manual describes the maximum number of interrupts
and interrupt priorities. The LM3S601 microcontroller supports 25 interrupts with eight priority levels.
2.2.6.2
System Timer (SysTick)
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter
can be used in several different ways, for example:
■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a
SysTick routine.
■ A high-speed alarm timer using the system clock.
■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock
used and the dynamic range of the counter.
■ A simple counter. Software can use this to measure time to completion and time used.
■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field
in the control and status register can be used to determine if an action completed within a set
duration, as part of a dynamic clock management control loop.
Functional Description
The timer consists of three registers:
■ A control and status counter to configure its clock, enable the counter, enable the SysTick
interrupt, and determine counter status.
■ The reload value for the counter, used to provide the counter's wrap value.
■ The current value of the counter.
®
A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris devices.
When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value
in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks.
Writing a value of zero to the Reload Value register disables the counter on the next wrap. When
the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.
October 01, 2007
37
Preliminary
ARM Cortex-M3 Processor Core
Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write
does not trigger the SysTick exception logic. On a read, the current value is the value of the register
at the time the register is accessed.
If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect
to a reference clock. The reference clock can be the core clock or an external clock source.
SysTick Control and Status Register
Use the SysTick Control and Status Register to enable the SysTick features. The reset is
0x0000.0000.
Bit/Field
Name
31:17
reserved
16
15:3
2
Type Reset Description
RO
0
Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.
COUNTFLAG R/W
0
Returns 1 if timer counted to 0 since last time this was read. Clears on read by
application. If read by the debugger using the DAP, this bit is cleared on read-only
if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the
COUNTFLAG bit is not changed by the debugger read.
RO
0
Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.
CLKSOURCE R/W
0
0 = external reference clock. (Not implemented for Stellaris microcontrollers.)
reserved
1 = core clock.
If no reference clock is provided, it is held at 1 and so gives the same time as the
core clock. The core clock must be at least 2.5 times faster than the reference clock.
If it is not, the count values are unpredictable.
1
TICKINT
R/W
0
1 = counting down to 0 pends the SysTick handler.
0 = counting down to 0 does not pend the SysTick handler. Software can use the
COUNTFLAG to determine if ever counted to 0.
0
ENABLE
R/W
0
1 = counter operates in a multi-shot way. That is, counter loads with the Reload
value and then begins counting down. On reaching 0, it sets the COUNTFLAG to
1 and optionally pends the SysTick handler, based on TICKINT. It then loads the
Reload value again, and begins counting.
0 = counter disabled.
SysTick Reload Value Register
Use the SysTick Reload Value Register to specify the start value to load into the current value
register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value
of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated
when counting from 1 to 0.
Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is
any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99
must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single
shot, then the actual count down must be written. For example, if a tick is next required after 400
clock pulses, 400 must be written into the RELOAD.
Bit/Field
Name
31:24
reserved
Type Reset Description
RO
0
Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a read-modify-write
operation.
38
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
23:0
Name
Type Reset Description
RELOAD W1C
-
Value to load into the SysTick Current Value Register when the counter reaches 0.
SysTick Current Value Register
Use the SysTick Current Value Register to find the current value in the register.
Bit/Field
Name
31:24
reserved
23:0
Type Reset Description
RO
CURRENT W1C
0
Software should not rely on the value of a reserved bit. To provide compatibility with
future products, the value of a reserved bit should be preserved across a
read-modify-write operation.
-
Current value at the time the register is accessed. No read-modify-write protection is
provided, so change with care.
This register is write-clear. Writing to it with any value clears the register to 0. Clearing
this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.
SysTick Calibration Value Register
The SysTick Calibration Value register is not implemented.
October 01, 2007
39
Preliminary
Memory Map
3
Memory Map
The memory map for the LM3S601 controller is provided in Table 3-1 on page 40.
In this manual, register addresses are given as a hexadecimal increment, relative to the module’s
base address as shown in the memory map. See also Chapter 4, “Memory Map” in the ARM®
Cortex™-M3 Technical Reference Manual.
Important: In Table 3-1 on page 40, addresses not listed are reserved.
a
Table 3-1. Memory Map
Start
End
Description
For details on
registers, see
page ...
0x0000.0000
0x0000.7FFF
On-chip flash
0x2000.0000
0x2000.1FFF
Bit-banded on-chip SRAM
118
0x2010.0000
0x200F.FFFF
Reserved
-
0x2200.0000
0x22003.FFFF
Bit-band alias of 0x2000.0000 through 0x200F.FFFF
113
0x2204.0000
0x23FF.FFFF
Reserved
-
0x4000.0000
0x4000.0FFF
Watchdog timer
206
0x4000.4000
0x4000.4FFF
GPIO Port A
136
0x4000.5000
0x4000.5FFF
GPIO Port B
136
0x4000.6000
0x4000.6FFF
GPIO Port C
136
0x4000.7000
0x4000.7FFF
GPIO Port D
136
0x4000.8000
0x4000.8FFF
SSI0
276
0x4000.C000
0x4000.CFFF
UART0
233
0x4000.D000
0x4000.DFFF
UART1
233
0x4002.0000
0x4002.07FF
I2C Master 0
315
0x4002.0800
0x4002.0FFF
I2C Slave 0
328
0x4002.4000
0x4002.7FFF
GPIO Port E
136
0x4002.8000
0x4002.8FFF
PWM
357
0x4002.C000
0x4002.CFFF
QEI0
390
0x4003.0000
0x4003.0FFF
Timer0
179
0x4003.1000
0x4003.1FFF
Timer1
179
0x4003.2000
0x4003.2FFF
Timer2
179
0x4003.C000
0x4003.CFFF
Analog Comparators
337
0x400F.D000
0x400F.DFFF
Flash control
118
0x400F.E000
0x400F.FFFF
System control
62
0x4200.0000
0x43FF.FFFF
Bit-banded alias of 0x4000.0000 through 0x400F.FFFF
-
Memory
b
118
c
FiRM Peripherals
Peripherals
Private Peripheral Bus
40
October 01, 2007
Preliminary
LM3S601 Microcontroller
Start
End
Description
For details on
registers, see
page ...
0xE000.0000
0xE000.0FFF
Instrumentation Trace Macrocell (ITM)
0xE000.1000
0xE000.1FFF
Data Watchpoint and Trace (DWT)
0xE000.2000
0xE000.2FFF
Flash Patch and Breakpoint (FPB)
0xE000.3000
0xE000.DFFF
Reserved
ARM®
Cortex™-M3
Technical
Reference
Manual
0xE000.E000
0xE000.EFFF
Nested Vectored Interrupt Controller (NVIC)
0xE000.F000
0xE003.FFFF
Reserved
0xE004.0000
0xE004.0FFF
Trace Port Interface Unit (TPIU)
0xE004.1000
0xE004.1FFF
Reserved
-
0xE004.2000
0xE00F.FFFF
Reserved
-
0xE010.0000
0xFFFF.FFFF
Reserved for vendor peripherals
-
a. All reserved space returns a bus fault when read or written.
b. The unavailable flash will bus fault throughout this range.
c. The unavailable SRAM will bus fault throughout this range.
October 01, 2007
41
Preliminary
Interrupts
4
Interrupts
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and
handle all exceptions. All exceptions are handled in Handler Mode. The processor state is
automatically stored to the stack on an exception, and automatically restored from the stack at the
end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which
enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back
interrupts to be performed without the overhead of state saving and restoration.
Table 4-1 on page 42 lists all the exceptions. Software can set eight priority levels on seven of these
exceptions (system handlers) as well as on 25 interrupts (listed in Table 4-2 on page 43).
Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts
are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt
Priority registers. You can also group priorities by splitting priority levels into pre-emption priorities
and subpriorities. All the interrupt registers are described in Chapter 8, “Nested Vectored Interrupt
Controller” in the ARM® Cortex™-M3 Technical Reference Manual.
Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and
a Hard Fault. Note that 0 is the default priority for all the settable priorities.
If you assign the same priority level to two or more interrupts, their hardware priority (the lower the
position number) determines the order in which the processor activates them. For example, if both
GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.
See Chapter 5, “Exceptions” and Chapter 8, “Nested Vectored Interrupt Controller” in the ARM®
Cortex™-M3 Technical Reference Manual for more information on exceptions and interrupts.
Note:
In Table 4-2 on page 43 interrupts not listed are reserved.
Table 4-1. Exception Types
Exception Type
Position
-
0
Reset
1
Non-Maskable
Interrupt (NMI)
2
a
Priority
Description
-
Stack top is loaded from first entry of vector table on reset.
-3 (highest) Invoked on power up and warm reset. On first instruction, drops to lowest
priority (and then is called the base level of activation). This is
asynchronous.
-2
Cannot be stopped or preempted by any exception but reset. This is
asynchronous.
An NMI is only producible by software, using the NVIC Interrupt Control
State register.
Hard Fault
3
-1
All classes of Fault, when the fault cannot activate due to priority or the
configurable fault handler has been disabled. This is synchronous.
Memory Management
4
settable
Bus Fault
5
settable
MPU mismatch, including access violation and no match. This is
synchronous.
The priority of this exception can be changed.
Pre-fetch fault, memory access fault, and other address/memory related
faults. This is synchronous when precise and asynchronous when
imprecise.
You can enable or disable this fault.
Usage Fault
SVCall
6
settable
7-10
-
11
settable
Usage fault, such as undefined instruction executed or illegal state
transition attempt. This is synchronous.
Reserved.
System service call with SVC instruction. This is synchronous.
42
October 01, 2007
Preliminary
LM3S601 Microcontroller
Exception Type
Position
a
Priority
Description
Debug Monitor
12
settable
-
13
-
PendSV
14
settable
Pendable request for system service. This is asynchronous and only
pended by software.
15
settable
System tick timer has fired. This is asynchronous.
16 and
above
settable
Asserted from outside the ARM Cortex-M3 core and fed through the NVIC
(prioritized). These are all asynchronous. Table 4-2 on page 43 lists the
interrupts on the LM3S601 controller.
SysTick
Interrupts
Debug monitor (when not halting). This is synchronous, but only active
when enabled. It does not activate if lower priority than the current
activation.
Reserved.
a. 0 is the default priority for all the settable priorities.
Table 4-2. Interrupts
Interrupt (Bit in Interrupt Registers) Description
0
GPIO Port A
1
GPIO Port B
2
GPIO Port C
3
GPIO Port D
4
GPIO Port E
5
UART0
6
UART1
7
SSI0
8
I2C0
10
PWM Generator 0
11
PWM Generator 1
12
PWM Generator 2
13
QEI0
18
Watchdog timer
19
Timer0 A
20
Timer0 B
21
Timer1 A
22
Timer1 B
23
Timer2 A
24
Timer2 B
25
Analog Comparator 0
26
Analog Comparator 1
27
Analog Comparator 2
28
System Control
29
Flash Control
30-31
Reserved
October 01, 2007
43
Preliminary
JTAG Interface
5
JTAG Interface
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing
information on the components. The JTAG Port also provides a means of accessing and controlling
design-for-test features such as I/O pin observation and control, scan testing, and debugging.
The JTAG port is comprised of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is
transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of
this data is dependent on the current state of the TAP controller. For detailed information on the
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test
Access Port and Boundary-Scan Architecture.
The Luminary Micro JTAG controller works with the ARM JTAG controller built into the Cortex-M3
core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG
instructions select the ARM TDO output while Luminary Micro JTAG instructions select the Luminary
Micro TDO outputs. The multiplexer is controlled by the Luminary Micro JTAG controller, which has
comprehensive programming for the ARM, Luminary Micro, and unimplemented JTAG instructions.
The JTAG module has the following features:
■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
■ Four-bit Instruction Register (IR) chain for storing JTAG instructions
■ IEEE standard instructions:
– BYPASS instruction
– IDCODE instruction
– SAMPLE/PRELOAD instruction
– EXTEST instruction
– INTEST instruction
■ ARM additional instructions:
– APACC instruction
– DPACC instruction
– ABORT instruction
■ Integrated ARM Serial Wire Debug (SWD)
See the ARM® Cortex™-M3 Technical Reference Manual for more information on the ARM JTAG
controller.
44
October 01, 2007
Preliminary
LM3S601 Microcontroller
5.1
Block Diagram
Figure 5-1. JTAG Module Block Diagram
TRST
TCK
TMS
TDI
TAP Controller
Instruction Register (IR)
BYPASS Data Register
TDO
Boundary Scan Data Register
IDCODE Data Register
ABORT Data Register
DPACC Data Register
APACC Data Register
Cortex-M3
Debug
Port
5.2
Functional Description
A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 45. The JTAG
module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel
update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and
TMS inputs. The current state of the TAP controller depends on the current value of TRST and the
sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when
the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel
load registers. The current state of the TAP controller also determines whether the Instruction
Register (IR) chain or one of the Data Register (DR) chains is being accessed.
The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR)
chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load
register determines which DR chain is captured, shifted, or updated during the sequencing of the
TAP controller.
Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not
capture, shift, or update any of the chains. Instructions that are not implemented decode to the
BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see
Table 5-2 on page 50 for a list of implemented instructions).
See “JTAG and Boundary Scan” on page 418 for JTAG timing diagrams.
October 01, 2007
45
Preliminary
JTAG Interface
5.2.1
JTAG Interface Pins
The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and
their associated reset state are given in Table 5-1 on page 46. Detailed information on each pin
follows.
Table 5-1. JTAG Port Pins Reset State
5.2.1.1
Pin Name
Data Direction
Internal Pull-Up
Internal Pull-Down
Drive Strength
Drive Value
TRST
Input
Enabled
Disabled
N/A
N/A
TCK
Input
Enabled
Disabled
N/A
N/A
TMS
Input
Enabled
Disabled
N/A
N/A
TDI
Input
Enabled
Disabled
N/A
N/A
TDO
Output
Enabled
Disabled
2-mA driver
High-Z
Test Reset Input (TRST)
The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP
controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the
Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters
the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction,
IDCODE.
By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled
on PB7/TRST; otherwise JTAG communication could be lost.
5.2.1.2
Test Clock Input (TCK)
The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate
independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers
that are daisy-chained together can synchronously communicate serial test data between
components. During normal operation, TCK is driven by a free-running clock with a nominal 50%
duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK
is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction
and Data Registers is not lost.
By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no
clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down
resistors can be turned off to save internal power as long as the TCK pin is constantly being driven
by an external source.
5.2.1.3
Test Mode Select (TMS)
The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered.
Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the
value on TMS to change on the falling edge of TCK.
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG
Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can
be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine
can be seen in its entirety in Figure 5-2 on page 48.
46
October 01, 2007
Preliminary
LM3S601 Microcontroller
By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC1/TMS; otherwise JTAG communication could be lost.
5.2.1.4
Test Data Input (TDI)
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is
sampled on the rising edge of TCK and, depending on the current TAP state and the current
instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on
the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling
edge of TCK.
By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled
on PC2/TDI; otherwise JTAG communication could be lost.
5.2.1.5
Test Data Output (TDO)
The TDO pin provides an output stream of serial information from the IR chain or the DR chains.
The value of TDO depends on the current TAP state, the current instruction, and the data in the
chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin
is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected
to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects
the value on TDO to change on the falling edge of TCK.
By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the
pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and
pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable
during certain TAP controller states.
5.2.2
JTAG TAP Controller
The JTAG TAP controller state machine is shown in Figure 5-2 on page 48. The TAP controller
state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR)
or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module
to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed
information on the function of the TAP controller and the operations that occur in each state, please
refer to IEEE Standard 1149.1.
October 01, 2007
47
Preliminary
JTAG Interface
Figure 5-2. Test Access Port State Machine
Test Logic Reset
1
0
Run Test Idle
0
Select DR Scan
1
Select IR Scan
1
0
1
0
Capture DR
1
Capture IR
0
0
Shift DR
Shift IR
0
1
Exit 1 DR
Exit 1 IR
1
Pause IR
0
1
Exit 2 DR
0
1
0
Exit 2 IR
1
1
Update DR
5.2.3
1
0
Pause DR
1
0
1
0
0
1
0
Update IR
1
0
Shift Registers
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift
register chain samples specific information during the TAP controller’s CAPTURE states and allows
this information to be shifted out of TDO during the TAP controller’s SHIFT states. While the sampled
data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register
on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE
states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 50.
5.2.4
Operational Considerations
There are certain operational considerations when using the JTAG module. Because the JTAG pins
can be programmed to be GPIOs, board configuration and reset conditions on these pins must be
considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the
method for switching between these two operational modes is described below.
48
October 01, 2007
Preliminary
LM3S601 Microcontroller
5.2.4.1
GPIO Functionality
When the controller is reset with either a POR or RST, the JTAG port pins default to their JTAG
configurations. The default configuration includes enabling the pull-up resistors (setting GPIOPUR
to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting GPIOAFSEL to
1 for PB7 and PC[3:0]) on the JTAG pins.
It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and
PC[3:0] in the GPIOAFSEL register. If the user does not require the JTAG port for debugging or
board-level testing, this provides five more GPIOs for use in the design.
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,
and apply RST or power-cycle the part.
In addition, it is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This
can be avoided with a software routine that restores JTAG functionality based on an external or software
trigger.
5.2.4.2
ARM Serial Wire Debug (SWD)
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any
knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the
SWD session begins.
The preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller
in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the
following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test
Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR, Select IR,
and Test-Logic-Reset states.
Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine
twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface.
For more information on this operation and the SWD interface, see the ARM® Cortex™-M3 Technical
Reference Manual and the ARM® CoreSight Technical Reference Manual.
Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG
TAP controller is not fully compliant to the IEEE Standard 1149.1. This is the only instance where
the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low
probability of this sequence occurring during normal operation of the TAP controller, it should not
affect normal performance of the JTAG interface.
5.3
Initialization and Configuration
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for
JTAG communication. No user-defined initialization or configuration is needed. However, if the user
application changes these pins to their GPIO function, they must be configured back to their JTAG
functionality before JTAG communication can be restored. This is done by enabling the five JTAG
pins (PB7 and PC[3:0]) for their alternate function using the GPIOAFSEL register.
October 01, 2007
49
Preliminary
JTAG Interface
5.4
Register Descriptions
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The
registers within the JTAG controller are all accessed serially through the TAP Controller. The registers
can be broken down into two main categories: Instruction Registers and Data Registers.
5.4.1
Instruction Register (IR)
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain with a parallel load register
connected between the JTAG TDI and TDO pins. When the TAP Controller is placed in the correct
states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the
chain and updated, they are interpreted as the current instruction. The decode of the Instruction
Register bits is shown in Table 5-2 on page 50. A detailed explanation of each instruction, along
with its associated Data Register, follows.
Table 5-2. JTAG Instruction Register Commands
IR[3:0]
Instruction
0000
EXTEST
Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction onto the pads.
0001
INTEST
Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD
instruction into the controller.
0010
5.4.1.1
Description
SAMPLE / PRELOAD Captures the current I/O values and shifts the sampled values out of the Boundary Scan
Chain while new preload data is shifted in.
1000
ABORT
Shifts data into the ARM Debug Port Abort Register.
1010
DPACC
Shifts data into and out of the ARM DP Access Register.
1011
APACC
Shifts data into and out of the ARM AC Access Register.
1110
IDCODE
Loads manufacturing information defined by the IEEE Standard 1149.1 into the IDCODE
chain and shifts it out.
1111
BYPASS
Connects TDI to TDO through a single Shift Register chain.
All Others
Reserved
Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO.
EXTEST Instruction
The EXTEST instruction does not have an associated Data Register chain. The EXTEST instruction
uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the outputs and output
enables are used to drive the GPIO pads rather than the signals coming from the core. This allows
tests to be developed that drive known values out of the controller, which can be used to verify
connectivity.
5.4.1.2
INTEST Instruction
The INTEST instruction does not have an associated Data Register chain. The INTEST instruction
uses the data that has been preloaded into the Boundary Scan Data Register using the
SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register,
the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive
the signals going into the core rather than the signals coming from the GPIO pads. This allows tests
to be developed that drive known values into the controller, which can be used for testing. It is
important to note that although the RST input pin is on the Boundary Scan Data Register chain, it
is only observable.
50
October 01, 2007
Preliminary
LM3S601 Microcontroller
5.4.1.3
SAMPLE/PRELOAD Instruction
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between
TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads
new test data. Each GPIO pad has an associated input, output, and output enable signal. When the
TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable
signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while
the TAP controller is in the Shift DR state and can be used for observation or comparison in various
tests.
While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary
Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI.
Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the
parallel load registers when the TAP controller enters the Update DR state. This update of the
parallel load register preloads data into the Boundary Scan Data Register that is associated with
each input, output, and output enable. This preloaded data can be used with the EXTEST and
INTEST instructions to drive data into or out of the controller. Please see “Boundary Scan Data
Register” on page 52 for more information.
5.4.1.4
ABORT Instruction
The ABORT instruction connects the associated ABORT Data Register chain between TDI and
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates
a DAP abort of a previous request. Please see the “ABORT Data Register” on page 53 for more
information.
5.4.1.5
DPACC Instruction
The DPACC instruction connects the associated DPACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to the ARM debug and status registers. Please see “DPACC
Data Register” on page 53 for more information.
5.4.1.6
APACC Instruction
The APACC instruction connects the associated APACC Data Register chain between TDI and
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug
Access Port (DAP). Shifting the proper data into this register and reading the data output from this
register allows read and write access to internal components and buses through the Debug Port.
Please see “APACC Data Register” on page 53 for more information.
5.4.1.7
IDCODE Instruction
The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and
TDO. This instruction provides information on the manufacturer, part number, and version of the
ARM core. This information can be used by testing equipment and debuggers to automatically
configure their input and output data streams. IDCODE is the default instruction that is loaded into
the JTAG Instruction Register when a power-on-reset (POR) is asserted, TRST is asserted, or the
Test-Logic-Reset state is entered. Please see “IDCODE Data Register” on page 52 for more
information.
October 01, 2007
51
Preliminary
JTAG Interface
5.4.1.8
BYPASS Instruction
The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and
TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports.
The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by
allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain
by loading them with the BYPASS instruction. Please see “BYPASS Data Register” on page 52 for
more information.
5.4.2
Data Registers
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan,
APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed
in the following sections.
5.4.2.1
IDCODE Data Register
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-3 on page 52. The standard requires that every JTAG-compliant device implement either
the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB
of 0. This allows auto configuration test tools to determine which instruction is the default instruction.
The major uses of the JTAG port are for manufacturer testing of component assembly, and program
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE
instruction outputs a value of 0x1BA00477. This value indicates an ARM Cortex-M3, Version 1
processor. This allows the debuggers to automatically configure themselves to work correctly with
the Cortex-M3 during debug.
Figure 5-3. IDCODE Register Format
5.4.2.2
BYPASS Data Register
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in
Figure 5-4 on page 52. The standard requires that every JTAG-compliant device implement either
the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB
of 1. This allows auto configuration test tools to determine which instruction is the default instruction.
Figure 5-4. BYPASS Register Format
5.4.2.3
Boundary Scan Data Register
The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 53. Each GPIO
pin, in a counter-clockwise direction from the JTAG port pins, is included in the Boundary Scan Data
Register. Each GPIO pin has three associated digital signals that are included in the chain. These
52
October 01, 2007
Preliminary
LM3S601 Microcontroller
signals are input, output, and output enable, and are arranged in that order as can be seen in the
figure. In addition to the GPIO pins, the controller reset pin, RST, is included in the chain. Because
the reset pin is always an input, only the input signal is included in the Data Register chain.
When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the
input, output, and output enable from each digital pad are sampled and then shifted out of the chain
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with
the EXTEST and INTEST instructions. These instructions either force data out of the controller, with
the EXTEST instruction, or into the controller, with the INTEST instruction.
Figure 5-5. Boundary Scan Register Format
TDI
I
N
O
U
T
O
E
...
GPIO PB6
I
N
O
U
T
GPIO m
O
E
I
N
RST
I
N
O
U
T
GPIO m+1
O
E
...
I
N
O
U
T
O TDO
E
GPIO n
For detailed information on the order of the input, output, and output enable bits for each of the
®
GPIO ports, please refer to the Stellaris Family Boundary Scan Description Language (BSDL) files,
downloadable from www.luminarymicro.com.
5.4.2.4
APACC Data Register
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.
5.4.2.5
DPACC Data Register
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.
5.4.2.6
ABORT Data Register
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM®
Cortex™-M3 Technical Reference Manual.
October 01, 2007
53
Preliminary
System Control
6
System Control
System control determines the overall operation of the device. It provides information about the
device, controls the clocking to the core and individual peripherals, and handles reset detection and
reporting.
6.1
Functional Description
The System Control module provides the following capabilities:
■ Device identification, see “Device Identification” on page 54
■ Local control, such as reset (see “Reset Control” on page 54), power (see “Power
Control” on page 57) and clock control (see “Clock Control” on page 57)
■ System control (Run, Sleep, and Deep-Sleep modes), see “System Control” on page 60
6.1.1
Device Identification
Seven read-only registers provide software with information on the microcontroller, such as version,
part number, SRAM size, flash size, and other features. See the DID0, DID1, and DC0-DC4 registers.
6.1.2
Reset Control
This section discusses aspects of hardware functions during reset as well as system software
requirements following the reset sequence.
6.1.2.1
Reset Sources
The controller has six sources of reset:
1. External reset input pin (RST) assertion, see “RST Pin Assertion” on page 54.
2. Power-on reset (POR), see “Power-On Reset (POR)” on page 55.
3. Internal brown-out (BOR) detector, see “Brown-Out Reset (BOR)” on page 55.
4. Software-initiated reset (with the software reset registers), see “Software Reset” on page 56.
5. A watchdog timer reset condition violation, see “Watchdog Timer Reset” on page 57.
6. Internal low drop-out (LDO) regulator output
After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register
are sticky and maintain their state across multiple reset sequences,except when an external reset
is the cause, and then all the other bits in the RESC register are cleared.
Note:
6.1.2.2
The main oscillator is used for external resets and power-on resets; the internal oscillator
is used during the internal process by internal reset and clock verification circuitry.
RST Pin Assertion
The external reset pin (RST) resets the controller. This resets the core and all the peripherals except
the JTAG TAP controller (see “JTAG Interface” on page 44). The external reset sequence is as
follows:
54
October 01, 2007
Preliminary
LM3S601 Microcontroller
1. The external reset pin (RST) is asserted and then de-asserted.
2. After RST is de-asserted, the main crystal oscillator is allowed to settle and there is an internal
main oscillator counter that takes from 15-30 ms to account for this. During this time, internal
reset to the rest of the controller is held active.
3. The internal reset is released and the core fetches and loads the initial stack pointer, the initial
program counter, the first instruction designated by the program counter, and begins execution.
The external reset timing is shown in Figure 20-9 on page 421.
6.1.2.3
Power-On Reset (POR)
The Power-On Reset (POR) circuitry detects a rise in power-supply voltage (VDD) and generates
an on-chip reset pulse. To use the on-chip circuitry, the RST input needs to be connected to the
power supply (VDD) through a pull-up resistor (1K to 10K Ω).
The device must be operating within the specified operating parameters at the point when the on-chip
power-on reset pulse is complete. The specified operating parameters include supply voltage,
frequency, temperature, and so on. If the operating conditions are not met at the point of POR end,
®
the Stellaris controller does not operate correctly. In this case, the reset must be extended using
external circuitry. The RST input may be used with the circuit as shown in Figure 6-1 on page 55.
Figure 6-1. External Circuitry to Extend Reset
Stellaris
D1
R1
RST
C1
R2
The R1 and C1 components define the power-on delay. The R2 resistor mitigates any leakage from
the RST input. The diode (D1) discharges C1 rapidly when the power supply is turned off.
The Power-On Reset sequence is as follows:
1. The controller waits for the later of external reset (RST) or internal POR to go inactive.
2. After the resets are inactive, the main crystal oscillator is allowed to settle and there is an internal
main oscillator counter that takes from 15-30 ms to account for this. During this time, internal
reset to the rest of the controller is held active.
3. The internal reset is released and the core fetches and loads the initial stack pointer, the initial
program counter, the first instruction designated by the program counter, and begins execution.
The internal POR is only active on the initial power-up of the controller. The Power-On Reset timing
is shown in Figure 20-10 on page 421.
Note:
6.1.2.4
The power-on reset also resets the JTAG controller. An external reset does not.
Brown-Out Reset (BOR)
A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used
to reset the controller. This is initially disabled and may be enabled by software.
October 01, 2007
55
Preliminary
System Control
The system provides a brown-out detection circuit that triggers if the power supply (VDD) drops
below a brown-out threshold voltage (VBTH). The circuit is provided to guard against improper
operation of logic and peripherals that operate off the power supply voltage (VDD) and not the LDO
voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a
system reset. The BOR circuit has a digital filter that protects against noise-related detection for the
interrupt condition. This feature may be optionally enabled.
Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL)
register. The BORIOR bit in the PBORCTL register must be set for a brown-out condition to trigger
a reset.
The brown-out reset sequence is as follows:
1. When VDD drops below VBTH, an internal BOR condition is set.
2. If the BORWT bit in the PBORCTL register is set and BORIOR is not set, the BOR condition is
resampled again, after a delay specified by BORTIM, to determine if the original condition was
caused by noise. If the BOR condition is not met the second time, then no further action is taken.
3. If the BOR condition exists, an internal reset is asserted.
4. The internal reset is released and the controller fetches and loads the initial stack pointer, the
initial program counter, the first instruction designated by the program counter, and begins
execution.
5. The internal BOR condition is reset after 500 µs to prevent another BOR condition from being
set before software has a chance to investigate the original cause.
The internal Brown-Out Reset timing is shown in Figure 20-11 on page 422.
6.1.2.5
Software Reset
Software can reset a specific peripheral or generate a reset to the entire system .
Peripherals can be individually reset by software via three registers that control reset signals to each
peripheral (see the SRCRn registers). If the bit position corresponding to a peripheral is set and
subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with
the encoding of the clock gating control for peripherals and on-chip functions (see “System
Control” on page 60). Note that all reset signals for all clocks of the specified unit are asserted as
a result of a software-initiated reset.
The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3
Application Interrupt and Reset Control register resets the entire system including the core. The
software-initiated system reset sequence is as follows:
1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3
Application Interrupt and Reset Control register.
2. An internal reset is asserted.
3. The internal reset is deasserted and the controller loads from memory the initial stack pointer,
the initial program counter, and the first instruction designated by the program counter, and
then begins execution.
The software-initiated system reset timing is shown in Figure 20-12 on page 422.
56
October 01, 2007
Preliminary
LM3S601 Microcontroller
6.1.2.6
Watchdog Timer Reset
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be
configured to generate an interrupt to the controller on its first time-out, and to generate a reset
signal on its second time-out.
After the first time-out event, the 32-bit counter is reloaded with the value of the Watchdog Timer
Load (WDTLOAD) register, and the timer resumes counting down from that value. If the timer counts
down to its zero state again before the first time-out interrupt is cleared, and the reset signal has
been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset
sequence is as follows:
1. The watchdog timer times out for the second time without being serviced.
2. An internal reset is asserted.
3. The internal reset is released and the controller loads from memory the initial stack pointer, the
initial program counter, the first instruction designated by the program counter, and begins
execution.
The watchdog reset timing is shown in Figure 20-13 on page 422.
6.1.2.7
Low Drop-Out
A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated.
This is initially disabled and may be enabled by software. LDO is controlled with the LDO Power
Control (LDOPCTL) register. The LDO reset sequence is as follows:
1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.
2. An internal reset is asserted.
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the
initial program counter, the first instruction designated by the program counter, and begins
execution.
The LDO reset timing is shown in Figure 20-14 on page 422.
6.1.3
Power Control
®
The Stellaris microcontroller provides an integrated LDO regulator that is used to provide power
to the majority of the controller's internal logic. The LDO regulator provides software a mechanism
to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V
(inclusive)—or 2.5 V ± 10%. The adjustment is made by changing the value of the VADJ field in the
LDO Power Control (LDOPCTL) register.
6.1.4
Clock Control
System control determines the control of clocks in this part.
6.1.4.1
Fundamental Clock Sources
There are two clock sources for use in the device:
■ Internal Oscillator (IOSC): The internal oscillator is an on-chip clock source. It does not require
the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.
October 01, 2007
57
Preliminary
System Control
Applications that do not depend on accurate clock sources may use this clock source to reduce
system cost.
■ Main Oscillator: The main oscillator provides a frequency-accurate clock source by one of two
means: an external single-ended clock source is connected to the OSC0 input pin, or an external
crystal is connected across the OSC0 input and OSC1 output pins. The crystal value allowed
depends on whether the main oscillator is used as the clock reference source to the PLL. If so,
the crystal must be one of the supported frequencies between 3.579545 MHz through 8.192
MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported
frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC
through the specified speed of the device. The supported crystals are listed in the XTAL bit in
the RCC register (see page 72).
The internal system clock (sysclk), is derived from any of the two sources plus two others: the output
of the internal PLL, and the internal oscillator divided by four (3 MHz ± 30%). The frequency of the
PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).
Nearly all of the control for the clocks is provided by the Run-Mode Clock Configuration (RCC)
register.
Figure 6-2 on page 58 shows the logic for the main clock tree. The peripheral blocks are driven by
the system clock signal and can be programmatically enabled/disabled. The PWM clock signal is
a synchronous divide by of the system clock to provide the PWM circuit with more range.
Figure 6-2. Main Clock Tree
USESYSDIVa
OSC1
OSC2
Main
Osc
1-8 MHz
System Clock
SYSDIVa
Internal
Osc
12 MHz
PLL
(200 MHz
output)
÷4
OSCSRCa
OENa
BYPASSa
a
XTAL
PWM Clock
PWMDIVa
PWRDNa
USEPWMDIVa
a. These are bit fields within the Run-Mode Clock Configuration (RCC) register.
6.1.4.2
Crystal Configuration for the Main Oscillator (MOSC)
The main oscillator supports the use of a select number of crystals. If the main oscillator is used by
the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise,
the range of supported crystals is 1 to 8.192 MHz.
The XTAL bit in the RCC register (see page 72) describes the available crystal choices and default
programming values.
Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the
design, the XTAL field value is internally translated to the PLL settings.
58
October 01, 2007
Preliminary
LM3S601 Microcontroller
6.1.4.3
PLL Frequency Configuration
The PLL is disabled by default during power-on reset and is enabled later by software if required.
Software configures the PLL input reference clock source, specifies the output divisor to set the
system clock frequency, and enables the PLL to drive the output.
If the main oscillator provides the clock reference to the PLL, the translation provided by hardware
and used to program the PLL is available for software in the XTAL to PLL Translation (PLLCFG)
register (see page 77). The internal translation provides a translation within ± 1% of the targeted
PLL VCO frequency.
The XTAL bit in the RCC register (see page 72) describes the available crystal choices and default
programming of the PLLCFG register. The crystal number is written into the XTAL field of the
Run-Mode Clock Configuration (RCC) register. Any time the XTAL field changes, the new settings
are translated and the internal PLL settings are updated.
6.1.4.4
PLL Modes
The PLL has two modes of operation: Normal and Power-Down
■ Normal: The PLL multiplies the input clock reference and drives the output.
■ Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.
The modes are programmed using the RCC register fields (see page 72).
6.1.4.5
PLL Operation
If the PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks)
to the new setting. The time between the configuration change and relock is TREADY (see Table
20-6 on page 415). During this time, the PLL is not usable as a clock reference.
The PLL is changed by one of the following:
■ Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
■ Change in the PLL from Power-Down to Normal mode.
A counter is defined to measure the TREADY requirement. The counter is clocked by the main
oscillator. The range of the main oscillator has been taken into account and the down counter is set
to 0x1200 (that is, ~600 μs at an 8.192 MHz external oscillator clock). Hardware is provided to keep
the PLL from being used as a system clock until the TREADY condition is met after one of the two
changes above. It is the user's responsibility to have a stable clock source (like the main oscillator)
before the RCC register is switched to use the PLL.
6.1.4.6
Clock Verification Timers
There are three identical clock verification circuits that can be enabled though software. The circuit
checks the faster clock by a slower clock using timers:
■ The main oscillator checks the PLL.
■ The main oscillator checks the internal oscillator.
■ The internal oscillator divided by 64 checks the main oscillator.
If the verification timer function is enabled and a failure is detected, the main clock tree is immediately
switched to a working clock and an interrupt is generated to the controller. Software can then
October 01, 2007
59
Preliminary
System Control
determine the course of action to take. The actual failure indication and clock switching does not
clear without a write to the CLKVCLR register, an external reset, or a POR reset. The clock
verification timers are controlled by the PLLVER , IOSCVER , and MOSCVER bits in the RCC register.
6.1.5
System Control
For power-savings purposes, the RCGCn , SCGCn , and DCGCn registers control the clock gating
logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep
mode, respectively. The DC1 , DC2 and DC4 registers act as a write mask for the RCGCn , SCGCn,
and DCGCn registers.
In Run mode, the controller is actively executing code. In Sleep mode, the clocking of the device is
unchanged but the controller no longer executes code (and is no longer clocked). In Deep-Sleep
mode, the clocking of the device may change (depending on the Run mode clock configuration)
and the controller no longer executes code (and is no longer clocked). An interrupt returns the device
to Run mode from one of the sleep modes. Each mode is described in more detail in this section.
There are four levels of operation for the device defined as:
■ Run Mode. Run mode provides normal operation of the processor and all of the peripherals that
are currently enabled by the RCGCn registers. The system clock can be any of the available
clock sources including the PLL.
■ Sleep Mode. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for
Interrupt) instruction. Any properly configured interrupt event in the system will bring the
processor back into Run mode. See the system control NVIC section of the ARM® Cortex™-M3
Technical Reference Manual for more details.
In Sleep mode, the Cortex-M3 processor core and the memory subsystem are not clocked.
Peripherals are clocked that are enabled in the SCGCn register when auto-clock gating is enabled
(see the RCC register) or the RCGCn register when the auto-clock gating is disabled. The system
clock has the same source and frequency as that during Run mode.
■ Deep-Sleep Mode. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in
the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any
properly configured interrupt event in the system will bring the processor back into Run mode.
See the system control NVIC section of the ARM® Cortex™-M3 Technical Reference Manual
for more details.
The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are
clocked that are enabled in the DCGCn register when auto-clock gating is enabled (see the RCC
register) or the RCGCn register when auto-clock gating is disabled. The system clock source is
the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if
one is enabled. When the DSLPCLKCFG register is used, the internal oscillator is powered up,
if necessary, and the main oscillator is powered down. If the PLL is running at the time of the
WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active
RCC register to be /16 or /64, respectively. When the Deep-Sleep exit event occurs, hardware
brings the system clock back to the source and frequency it had at the onset of Deep-Sleep
mode before enabling the clocks that had been stopped during the Deep-Sleep duration.
6.2
Initialization and Configuration
The PLL is configured using direct register writes to the RCC register. The steps required to
successfully change the PLL-based system clock are:
60
October 01, 2007
Preliminary
LM3S601 Microcontroller
1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS
bit in the RCC register. This configures the system to run off a “raw” clock source (using the
main oscillator or internal oscillator) and allows for the new PLL configuration to be validated
before switching the system clock to the PLL.
2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OEN
bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the
appropriate crystal, and clearing the PWRDN and OEN bits powers and enables the PLL and its
output.
3. Select the desired system divider (SYSDIV) in RCC and set the USESYS bit in RCC. The SYSDIV
field determines the system frequency for the microcontroller.
4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
5. Enable use of the PLL by clearing the BYPASS bit in RCC.
Note:
6.3
If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.
Register Map
Table 6-1 on page 61 lists the System Control registers, grouped by function. The offset listed is a
hexadecimal increment to the register’s address, relative to the System Control base address of
0x400F.E000.
Note:
Spaces in the System Control register space that are not used are reserved for future or
internal use by Luminary Micro, Inc. Software should not modify any reserved memory
address.
Table 6-1. System Control Register Map
Description
See
page
Offset
Name
Type
Reset
0x000
DID0
RO
-
Device Identification 0
63
0x004
DID1
RO
-
Device Identification 1
81
0x008
DC0
RO
0x001F.000F
Device Capabilities 0
83
0x010
DC1
RO
0x0010.309F
Device Capabilities 1
84
0x014
DC2
RO
0x0707.1113
Device Capabilities 2
86
0x018
DC3
RO
0x3F00.37FF
Device Capabilities 3
88
0x01C
DC4
RO
0x0000.001F
Device Capabilities 4
90
0x030
PBORCTL
R/W
0x0000.7FFD
Power-On and Brown-Out Reset Control
65
0x034
LDOPCTL
R/W
0x0000.0000
LDO Power Control
66
0x040
SRCR0
R/W
0x00000000
Software Reset Control 0
109
0x044
SRCR1
R/W
0x00000000
Software Reset Control 1
110
0x048
SRCR2
R/W
0x00000000
Software Reset Control 2
112
0x050
RIS
RO
0x0000.0000
Raw Interrupt Status
67
0x054
IMC
R/W
0x0000.0000
Interrupt Mask Control
68
October 01, 2007
61
Preliminary
System Control
Offset
Name
Type
Reset
0x058
MISC
R/W1C
0x0000.0000
0x05C
RESC
R/W
-
0x060
RCC
R/W
0x07AE.3AD1
0x064
PLLCFG
RO
-
0x100
RCGC0
R/W
0x104
RCGC1
0x108
See
page
Description
Masked Interrupt Status and Clear
70
Reset Cause
71
Run-Mode Clock Configuration
72
XTAL to PLL Translation
77
0x00000040
Run Mode Clock Gating Control Register 0
91
R/W
0x00000000
Run Mode Clock Gating Control Register 1
94
RCGC2
R/W
0x00000000
Run Mode Clock Gating Control Register 2
103
0x110
SCGC0
R/W
0x00000040
Sleep Mode Clock Gating Control Register 0
92
0x114
SCGC1
R/W
0x00000000
Sleep Mode Clock Gating Control Register 1
97
0x118
SCGC2
R/W
0x00000000
Sleep Mode Clock Gating Control Register 2
105
0x120
DCGC0
R/W
0x00000040
Deep Sleep Mode Clock Gating Control Register 0
93
0x124
DCGC1
R/W
0x00000000
Deep Sleep Mode Clock Gating Control Register 1
100
0x128
DCGC2
R/W
0x00000000
Deep Sleep Mode Clock Gating Control Register 2
107
0x144
DSLPCLKCFG
R/W
0x0780.0000
Deep Sleep Clock Configuration
78
0x150
CLKVCLR
R/W
0x0000.0000
Clock Verification Clear
79
0x160
LDOARST
R/W
0x0000.0000
Allow Unregulated LDO to Reset the Part
80
6.4
Register Descriptions
All addresses given are relative to the System Control base address of 0x400F.E000.
62
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: Device Identification 0 (DID0), offset 0x000
This register identifies the version of the device.
Device Identification 0 (DID0)
Base 0x400F.E000
Offset 0x000
Type RO, reset 31
30
reserved
Type
Reset
29
28
27
26
25
24
23
22
VER
21
19
18
17
16
reserved
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
MAJOR
Type
Reset
20
MINOR
Bit/Field
Name
Type
Reset
31
reserved
RO
0
30:28
VER
RO
0x0
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
DID0 Version
This field defines the DID0 register format version. The version number
is numeric. The value of the VER field is encoded as follows:
Value Description
0x0
27:16
reserved
RO
0x0
15:8
MAJOR
RO
-
Initial DID0 register format definition for Stellaris®
Sandstorm-class devices.
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
Major Revision
This field specifies the major revision number of the device. The major
revision reflects changes to base layers of the design. The major revision
number is indicated in the part number as a letter (A for first revision, B
for second, and so on). This field is encoded as follows:
Value Description
0x0
Revision A (initial device)
0x1
Revision B (first base layer revision)
0x2
Revision C (second base layer revision)
and so on.
October 01, 2007
63
Preliminary
System Control
Bit/Field
Name
Type
Reset
7:0
MINOR
RO
-
Description
Minor Revision
This field specifies the minor revision number of the device. The minor
revision reflects changes to the metal layers of the design. The MINOR
field value is reset when the MAJOR field is changed. This field is numeric
and is encoded as follows:
Value Description
0x0
Initial device, or a major revision update.
0x1
First metal layer change.
0x2
Second metal layer change.
and so on.
64
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030
This register is responsible for controlling reset conditions after initial power-on reset.
Power-On and Brown-Out Reset Control (PBORCTL)
Base 0x400F.E000
Offset 0x030
Type R/W, reset 0x0000.7FFD
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
BORTIM
Type
Reset
Bit/Field
Name
Type
Reset
31:16
reserved
RO
0x0
15:2
BORTIM
R/W
0x1FFF
BORIOR BORWT
R/W
0
R/W
1
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
BOR Time Delay
This field specifies the number of internal oscillator clocks delayed before
the BOR output is resampled if the BORWT bit is set.
The width of this field is derived by the t BOR width of 500 μs and the
internal oscillator (IOSC) frequency of 12 MHz ± 30%. At +30%, the
counter value has to exceed 7,800.
1
BORIOR
R/W
0
BOR Interrupt or Reset
This bit controls how a BOR event is signaled to the controller. If set, a
reset is signaled. Otherwise, an interrupt is signaled.
0
BORWT
R/W
1
BOR Wait and Check for Noise
This bit specifies the response to a brown-out signal assertion if BORIOR
is not set.
If BORWT is set to 1 and BORIOR is cleared to 0, the controller waits
BORTIM IOSC periods and resamples the BOR output. If still asserted,
a BOR interrupt is signalled. If no longer asserted, the initial assertion
is suppressed (attributable to noise).
If BORWT is 0, BOR assertions do not resample the output and any
condition is reported immediately if enabled.
October 01, 2007
65
Preliminary
System Control
Register 3: LDO Power Control (LDOPCTL), offset 0x034
The VADJ field in this register adjusts the on-chip output voltage (VOUT).
LDO Power Control (LDOPCTL)
Base 0x400F.E000
Offset 0x034
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
VADJ
RO
0
Bit/Field
Name
Type
Reset
31:6
reserved
RO
0
5:0
VADJ
R/W
0x0
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
LDO Output Voltage
This field sets the on-chip output voltage. The programming values for
the VADJ field are provided below.
Value
VOUT (V)
0x00
2.50
0x01
2.45
0x02
2.40
0x03
2.35
0x04
2.30
0x05
2.25
0x06-0x3F Reserved
0x1B
2.75
0x1C
2.70
0x1D
2.65
0x1E
2.60
0x1F
2.55
66
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4: Raw Interrupt Status (RIS), offset 0x050
Central location for system control raw interrupts. These are set and cleared by hardware.
Raw Interrupt Status (RIS)
Base 0x400F.E000
Offset 0x050
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
PLLLRIS
CLRIS
IOFRIS
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
MOFRIS LDORIS BORRIS PLLFRIS
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:7
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6
PLLLRIS
RO
0
PLL Lock Raw Interrupt Status
This bit is set when the PLL TREADY Timer asserts.
5
CLRIS
RO
0
Current Limit Raw Interrupt Status
This bit is set if the LDO’s CLE output asserts.
4
IOFRIS
RO
0
Internal Oscillator Fault Raw Interrupt Status
This bit is set if an internal oscillator fault is detected.
3
MOFRIS
RO
0
Main Oscillator Fault Raw Interrupt Status
This bit is set if a main oscillator fault is detected.
2
LDORIS
RO
0
LDO Power Unregulated Raw Interrupt Status
This bit is set if a LDO voltage is unregulated.
1
BORRIS
RO
0
Brown-Out Reset Raw Interrupt Status
This bit is the raw interrupt status for any brown-out conditions. If set,
a brown-out condition is currently active. This is an unregistered signal
from the brown-out detection circuit. An interrupt is reported if the BORIM
bit in the IMC register is set and the BORIOR bit in the PBORCTL register
is cleared.
0
PLLFRIS
RO
0
PLL Fault Raw Interrupt Status
This bit is set if a PLL fault is detected (stops oscillating).
October 01, 2007
67
Preliminary
System Control
Register 5: Interrupt Mask Control (IMC), offset 0x054
Central location for system control interrupt masks.
Interrupt Mask Control (IMC)
Base 0x400F.E000
Offset 0x054
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
PLLLIM
CLIM
IOFIM
MOFIM
LDOIM
BORIM
PLLFIM
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:7
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6
PLLLIM
R/W
0
PLL Lock Interrupt Mask
This bit specifies whether a current limit detection is promoted to a
controller interrupt. If set, an interrupt is generated if PLLLRIS in RIS
is set; otherwise, an interrupt is not generated.
5
CLIM
R/W
0
Current Limit Interrupt Mask
This bit specifies whether a current limit detection is promoted to a
controller interrupt. If set, an interrupt is generated if CLRIS is set;
otherwise, an interrupt is not generated.
4
IOFIM
R/W
0
Internal Oscillator Fault Interrupt Mask
This bit specifies whether an internal oscillator fault detection is promoted
to a controller interrupt. If set, an interrupt is generated if IOFRIS is set;
otherwise, an interrupt is not generated.
3
MOFIM
R/W
0
Main Oscillator Fault Interrupt Mask
This bit specifies whether a main oscillator fault detection is promoted
to a controller interrupt. If set, an interrupt is generated if MOFRIS is set;
otherwise, an interrupt is not generated.
2
LDOIM
R/W
0
LDO Power Unregulated Interrupt Mask
This bit specifies whether an LDO unregulated power situation is
promoted to a controller interrupt. If set, an interrupt is generated if
LDORIS is set; otherwise, an interrupt is not generated.
1
BORIM
R/W
0
Brown-Out Reset Interrupt Mask
This bit specifies whether a brown-out condition is promoted to a
controller interrupt. If set, an interrupt is generated if BORRIS is set;
otherwise, an interrupt is not generated.
68
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
0
PLLFIM
R/W
0
Description
PLL Fault Interrupt Mask
This bit specifies whether a PLL fault detection is promoted to a controller
interrupt. If set, an interrupt is generated if PLLFRIS is set; otherwise,
an interrupt is not generated.
October 01, 2007
69
Preliminary
System Control
Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058
Central location for system control result of RIS AND IMC to generate an interrupt to the controller.
All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS
register (see page 67).
Masked Interrupt Status and Clear (MISC)
Base 0x400F.E000
Offset 0x058
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
PLLLMIS
CLMIS
IOFMIS
RO
0
RO
0
R/W1C
0
R/W1C
0
R/W1C
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
MOFMIS LDOMIS BORMIS reserved
R/W1C
0
R/W1C
0
R/W1C
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:7
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6
PLLLMIS
R/W1C
0
PLL Lock Masked Interrupt Status
This bit is set when the PLL TREADY timer asserts. The interrupt is cleared
by writing a 1 to this bit.
5
CLMIS
R/W1C
0
Current Limit Masked Interrupt Status
This bit is set if the LDO’s CLE output asserts. The interrupt is cleared
by writing a 1 to this bit.
4
IOFMIS
R/W1C
0
Internal Oscillator Fault Masked Interrupt Status
This bit is set if an internal oscillator fault is detected. The interrupt is
cleared by writing a 1 to this bit.
3
MOFMIS
R/W1C
0
Main Oscillator Fault Masked Interrupt Status
This bit is set if a main oscillator fault is detected. The interrupt is cleared
by writing a 1 to this bit.
2
LDOMIS
R/W1C
0
LDO Power Unregulated Masked Interrupt Status
This bit is set if LDO power is unregulated. The interrupt is cleared by
writing a 1 to this bit.
1
BORMIS
R/W1C
0
BOR Masked Interrupt Status
This bit is the masked interrupt status for any brown-out conditions. If
set, a brown-out condition was detected. An interrupt is reported if the
BORIM bit in the IMC register is set and the BORIOR bit in the PBORCTL
register is cleared. The interrupt is cleared by writing a 1 to this bit.
0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
70
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: Reset Cause (RESC), offset 0x05C
This field specifies the cause of the reset event to software. The reset value is determined by the
cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared.
However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to
see all causes.
Reset Cause (RESC)
Base 0x400F.E000
Offset 0x05C
Type R/W, reset 31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
LDO
SW
WDT
BOR
POR
EXT
RO
0
RO
0
RO
0
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
LDO
R/W
-
LDO Reset
When set, indicates the LDO circuit has lost regulation and has
generated a reset event.
4
SW
R/W
-
Software Reset
When set, indicates a software reset is the cause of the reset event.
3
WDT
R/W
-
Watchdog Timer Reset
When set, indicates a watchdog reset is the cause of the reset event.
2
BOR
R/W
-
Brown-Out Reset
When set, indicates a brown-out reset is the cause of the reset event.
1
POR
R/W
-
Power-On Reset
When set, indicates a power-on reset is the cause of the reset event.
0
EXT
R/W
-
External Reset
When set, indicates an external reset (RST assertion) is the cause of
the reset event.
October 01, 2007
71
Preliminary
System Control
Register 8: Run-Mode Clock Configuration (RCC), offset 0x060
This register is defined to provide source control and frequency speed.
Run-Mode Clock Configuration (RCC)
Base 0x400F.E000
Offset 0x060
Type R/W, reset 0x07AE.3AD1
31
30
29
28
RO
0
RO
0
RO
0
RO
0
15
14
13
12
PWRDN
OEN
R/W
1
R/W
1
reserved
Type
Reset
reserved
Type
Reset
RO
0
RO
0
27
26
25
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
RO
0
R/W
0
R/W
1
R/W
1
R/W
1
RO
0
11
10
9
8
7
6
5
4
3
2
1
0
R/W
1
R/W
0
R/W
1
R/W
1
R/W
0
ACG
24
SYSDIV
R/W
0
22
USESYSDIV
BYPASS PLLVER
R/W
1
23
XTAL
Bit/Field
Name
Type
Reset
31:28
reserved
RO
0x0
27
ACG
R/W
0
21
20
19
reserved USEPWMDIV
OSCSRC
R/W
0
18
17
PWMDIV
16
reserved
IOSCVER MOSCVER IOSCDIS MOSCDIS
R/W
0
R/W
0
R/W
0
R/W
1
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
Auto Clock Gating
This bit specifies whether the system uses the Sleep-Mode Clock
Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock
Gating Control (DCGCn) registers if the controller enters a Sleep or
Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers
are used to control the clocks distributed to the peripherals when the
controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating
Control (RCGCn) registers are used when the controller enters a sleep
mode.
The RCGCn registers are always used to control the clocks in Run
mode.
This allows peripherals to consume less power when the controller is
in a sleep mode and the peripheral is unused.
72
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
26:23
SYSDIV
R/W
0xF
Description
System Clock Divisor
Specifies which divisor is used to generate the system clock from the
PLL output.
The PLL VCO frequency is 200 MHz.
Value Divisor (BYPASS=1) Frequency (BYPASS=0)
0x0
reserved
reserved
0x1
/2
reserved
0x2
/3
reserved
0x3
/4
50 MHz
0x4
/5
40 MHz
0x5
/6
33.33 MHz
0x6
/7
28.57 MHz
0x7
/8
25 MHz
0x8
/9
22.22 MHz
0x9
/10
20 MHz
0xA
/11
18.18 MHz
0xB
/12
16.67 MHz
0xC
/13
15.38 MHz
0xD
/14
14.29 MHz
0xE
/15
13.33 MHz
0xF
/16
12.5 MHz (default)
When reading the Run-Mode Clock Configuration (RCC) register (see
page 72), the SYSDIV value is MINSYSDIV if a lower divider was
requested and the PLL is being used. This lower value is allowed to
divide a non-PLL source.
22
USESYSDIV
R/W
0
Enable System Clock Divider
Use the system clock divider as the source for the system clock. The
system clock divider is forced to be used when the PLL is selected as
the source.
21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
USEPWMDIV
R/W
0
Enable PWM Clock Divisor
Use the PWM clock divider as the source for the PWM clock.
October 01, 2007
73
Preliminary
System Control
Bit/Field
Name
Type
Reset
19:17
PWMDIV
R/W
0x7
Description
PWM Unit Clock Divisor
This field specifies the binary divisor used to predivide the system clock
down for use as the timing reference for the PWM module. This clock
is only power 2 divide and rising edge is synchronous without phase
shift from the system clock.
Value Divisor
0x0
/2
0x1
/4
0x2
/8
0x3
/16
0x4
/32
0x5
/64
0x6
/64
0x7
/64 (default)
16:14
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
13
PWRDN
R/W
1
PLL Power Down
This bit connects to the PLL PWRDN input. The reset value of 1 powers
down the PLL. See Table 6-2 on page 76 for PLL mode control.
12
OEN
R/W
1
PLL Output Enable
This bit specifies whether the PLL output driver is enabled. If cleared,
the driver transmits the PLL clock to the output. Otherwise, the PLL
clock does not oscillate outside the PLL module.
Note:
11
BYPASS
R/W
1
Both PWRDN and OEN must be cleared to run the PLL.
PLL Bypass
Chooses whether the system clock is derived from the PLL output or
the OSC source. If set, the clock that drives the system is the OSC
source. Otherwise, the clock that drives the system is the PLL output
clock divided by the system divider.
10
PLLVER
R/W
0
PLL Verification
This bit controls the PLL verification timer function. If set, the verification
timer is enabled and an interrupt is generated if the PLL becomes
inoperative. Otherwise, the verification timer is not enabled.
74
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
9:6
XTAL
R/W
0xB
Description
Crystal Value
This field specifies the crystal value attached to the main oscillator. The
encoding for this field is provided below.
Value
5:4
OSCSRC
R/W
0x0
Crystal Frequency (MHz)
Not Using the PLL
Crystal Frequency (MHz)
Using the PLL
0x0
1.000
reserved
0x1
1.8432
reserved
0x2
2.000
reserved
0x3
2.4576
reserved
0x4
3.579545 MHz
0x5
3.6864 MHz
0x6
4 MHz
0x7
4.096 MHz
0x8
4.9152 MHz
0x9
5 MHz
0xA
5.12 MHz
0xB
6 MHz (reset value)
0xC
6.144 MHz
0xD
7.3728 MHz
0xE
8 MHz
0xF
8.192 MHz
Oscillator Source
Picks among the four input sources for the OSC. The values are:
Value Input Source
3
IOSCVER
R/W
0
0x0
Main oscillator (default)
0x1
Internal oscillator (default)
0x2
Internal oscillator / 4 (this is necessary if used as input to PLL)
0x3
reserved
Internal Oscillator Verification Timer
This bit controls the internal oscillator verification timer function. If set,
the verification timer is enabled and an interrupt is generated if the timer
becomes inoperative. Otherwise, the verification timer is not enabled.
2
MOSCVER
R/W
0
Main Oscillator Verification Timer
This bit controls the main oscillator verification timer function. If set, the
verification timer is enabled and an interrupt is generated if the timer
becomes inoperative. Otherwise, the verification timer is not enabled.
1
IOSCDIS
R/W
0
Internal Oscillator Disable
0: Internal oscillator (IOSC) is enabled.
1: Internal oscillator is disabled.
October 01, 2007
75
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
MOSCDIS
R/W
1
Description
Main Oscillator Disable
0: Main oscillator is enabled.
1: Main oscillator is disabled (default).
Table 6-2. PLL Mode Control
PWRDN OEN Mode
1
X
Power down
0
0
Normal
76
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064
This register provides a means of translating external crystal frequencies into the appropriate PLL
settings. This register is initialized during the reset sequence and updated anytime that the XTAL
field changes in the Run-Mode Clock Configuration (RCC) register (see page 72).
The PLL frequency is calculated using the PLLCFG field values, as follows:
PLLFreq = OSCFreq * (F + 2) / (R + 2)
XTAL to PLL Translation (PLLCFG)
Base 0x400F.E000
Offset 0x064
Type RO, reset 31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
RO
-
reserved
Type
Reset
OD
Type
Reset
RO
-
F
Bit/Field
Name
Type
Reset
31:16
reserved
RO
0x0
15:14
OD
RO
-
R
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
PLL OD Value
This field specifies the value supplied to the PLL’s OD input.
Value Description
13:5
F
RO
-
0x0
Divide by 1
0x1
Divide by 2
0x2
Divide by 4
0x3
Reserved
PLL F Value
This field specifies the value supplied to the PLL’s F input.
4:0
R
RO
-
PLL R Value
This field specifies the value supplied to the PLL’s R input.
October 01, 2007
77
Preliminary
System Control
Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144
This register is used to automatically switch from the main oscillator to the internal oscillator when
entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this
register is set, the internal oscillator is powered up and the main oscillator is powered down. When
the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency
it had at the onset of Deep-Sleep mode.
Deep Sleep Clock Configuration (DSLPCLKCFG)
Base 0x400F.E000
Offset 0x144
Type R/W, reset 0x0780.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
31:1
reserved
RO
0x0
0
IOSC
R/W
0
RO
0
IOSC
R/W
0
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
IOSC Clock Source
When set, forces IOSC to be clock source during Deep-Sleep (overrides
DSOSCSRC field if set)
78
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 11: Clock Verification Clear (CLKVCLR), offset 0x150
This register is provided as a means of clearing the clock verification circuits by software. Since the
clock verification circuits force a known good clock to control the process, the controller is allowed
the opportunity to solve the problem and clear the verification fault. This register clears all clock
verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared
by software. This bit is not self-clearing.
Clock Verification Clear (CLKVCLR)
Base 0x400F.E000
Offset 0x150
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
VERCLR
R/W
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
VERCLR
R/W
0
Clock Verification Clear
Clears clock verification faults.
October 01, 2007
79
Preliminary
System Control
Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset
0x160
This register is provided as a means of allowing the LDO to reset the part if the voltage goes
unregulated. Use this register to choose whether to automatically reset the part if the LDO goes
unregulated, based on the design tolerance for LDO fluctuation.
Allow Unregulated LDO to Reset the Part (LDOARST)
Base 0x400F.E000
Offset 0x160
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
Reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
Reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
0
LDOARST
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:1
Reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
LDOARST
R/W
0
LDO Reset
When set, allows unregulated LDO output to reset the part.
80
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: Device Identification 1 (DID1), offset 0x004
This register identifies the device family, part number, temperature range, and package type.
Device Identification 1 (DID1)
Base 0x400F.E000
Offset 0x004
Type RO, reset 31
30
29
28
27
26
RO
0
25
24
23
22
21
20
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
VER
Type
Reset
FAM
TEMP
RO
0
18
17
16
RO
0
RO
0
RO
0
RO
1
3
2
1
0
PARTNO
reserved
Type
Reset
19
Bit/Field
Name
Type
Reset
31:28
VER
RO
0x0
RO
0
PKG
ROHS
RO
1
RO
1
QUAL
RO
-
RO
-
Description
DID1 Version
This field defines the DID1 register format version. The version number
is numeric. The value of the VER field is encoded as follows (all other
encodings are reserved):
Value Description
0x0
27:24
FAM
RO
0x0
Initial DID1 register format definition, indicating a Stellaris
LM3Snnn device.
Family
This field provides the family identification of the device within the
Luminary Micro product portfolio. The value is encoded as follows (all
other encodings are reserved):
Value Description
0x0
23:16
PARTNO
RO
0x21
Stellaris family of microcontollers, that is, all devices with
external part numbers starting with LM3S.
Part Number
This field provides the part number of the device within the family. The
value is encoded as follows (all other encodings are reserved):
Value Description
0x21 LM3S601
15:8
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
81
Preliminary
System Control
Bit/Field
Name
Type
Reset
7:5
TEMP
RO
0x1
Description
Temperature Range
This field specifies the temperature rating of the device. The value is
encoded as follows (all other encodings are reserved):
Value Description
0x1
4:3
PKG
RO
0x1
Industrial temperature range (-40°C to 85°C)
Package Type
This field specifies the package type. The value is encoded as follows
(all other encodings are reserved):
Value Description
0x1
2
ROHS
RO
1
48-pin LQFP package
RoHS-Compliance
This bit specifies whether the device is RoHS-compliant. A 1 indicates
the part is RoHS-compliant.
1:0
QUAL
RO
-
Qualification Status
This field specifies the qualification status of the device. The value is
encoded as follows (all other encodings are reserved):
Value Description
0x0
Engineering Sample (unqualified)
0x1
Pilot Production (unqualified)
0x2
Fully Qualified
82
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 14: Device Capabilities 0 (DC0), offset 0x008
This register is predefined by the part and can be used to verify features.
Device Capabilities 0 (DC0)
Base 0x400F.E000
Offset 0x008
Type RO, reset 0x001F.000F
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
1
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
SRAMSZ
Type
Reset
FLASHSZ
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:16
SRAMSZ
RO
0x001F
SRAM Size
Indicates the size of the on-chip SRAM memory.
Value
Description
0x001F 8 KB of SRAM
15:0
FLASHSZ
RO
0x000F
Flash Size
Indicates the size of the on-chip flash memory.
Value
Description
0x000F 32 KB of Flash
October 01, 2007
83
Preliminary
System Control
Register 15: Device Capabilities 1 (DC1), offset 0x010
This register provides a list of features available in the system. The Stellaris family uses this register
format to indicate the availability of the following family features in the specific device: PWM, ADC,
Watchdog timer, and debug capabilities. This register also indicates the maximum clock frequency
and maximum ADC sample rate. The format of this register is consistent with the RCGC0, SCGC0,
and DCGC0 clock control registers and the SRCR0 software reset control register.
Device Capabilities 1 (DC1)
Base 0x400F.E000
Offset 0x010
Type RO, reset 0x0010.309F
31
30
29
28
27
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
RO
0
RO
0
RO
1
26
25
24
23
22
21
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
11
10
9
8
7
6
5
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
MINSYSDIV
Type
Reset
RO
1
20
19
18
RO
1
RO
0
RO
0
RO
0
RO
0
4
3
2
1
0
PLL
WDT
SWO
SWD
JTAG
RO
1
RO
1
RO
1
RO
1
RO
1
PWM
reserved
MPU
RO
1
reserved
RO
0
RO
0
17
16
reserved
Bit/Field
Name
Type
Reset
Description
31:21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
PWM
RO
1
PWM Module Present
When set, indicates that the PWM module is present.
19:16
reserved
RO
0
15:12
MINSYSDIV
RO
0x3
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
System Clock Divider
Minimum 4-bit divider value for system clock. The reset value is
hardware-dependent. See the RCC register for how to change the
system clock divisor using the SYSDIV bit.
Value Description
0x3
Specifies a 50-MHz CPU clock with a PLL divider of 4.
11:8
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7
MPU
RO
1
MPU Present
When set, indicates that the Cortex-M3 Memory Protection Unit (MPU)
module is present. See the ARM Cortex-M3 Technical Reference Manual
for details on the MPU.
6:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
84
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
Description
4
PLL
RO
1
PLL Present
When set, indicates that the on-chip Phase Locked Loop (PLL) is
present.
3
WDT
RO
1
Watchdog Timer Present
When set, indicates that a watchdog timer is present.
2
SWO
RO
1
SWO Trace Port Present
When set, indicates that the Serial Wire Output (SWO) trace port is
present.
1
SWD
RO
1
SWD Present
When set, indicates that the Serial Wire Debugger (SWD) is present.
0
JTAG
RO
1
JTAG Present
When set, indicates that the JTAG debugger interface is present.
October 01, 2007
85
Preliminary
System Control
Register 16: Device Capabilities 2 (DC2), offset 0x014
This register provides a list of features available in the system. The Stellaris family uses this register
format to indicate the availability of the following family features in the specific device: Analog
Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register
is consistent with the RCGC1, SCGC1, and DCGC1 clock control registers and the SRCR1 software
reset control register.
Device Capabilities 2 (DC2)
Base 0x400F.E000
Offset 0x014
Type RO, reset 0x0707.1113
31
30
RO
0
RO
0
15
14
29
28
27
RO
0
RO
0
RO
0
13
12
11
reserved
Type
Reset
reserved
Type
Reset
RO
0
RO
0
I2C0
RO
0
RO
1
26
25
24
COMP2
COMP1
COMP0
RO
1
RO
1
10
9
reserved
RO
0
23
22
RO
1
RO
0
RO
0
8
7
6
RO
0
RO
1
20
19
RO
0
RO
0
RO
0
5
4
3
reserved
QEI0
RO
0
21
reserved
RO
0
RO
0
SSI0
RO
0
RO
1
18
17
16
TIMER2
TIMER1
TIMER0
RO
1
RO
1
RO
1
2
1
0
UART1
UART0
RO
1
RO
1
reserved
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:27
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
26
COMP2
RO
1
Analog Comparator 2 Present
When set, indicates that analog comparator 2 is present.
25
COMP1
RO
1
Analog Comparator 1 Present
When set, indicates that analog comparator 1 is present.
24
COMP0
RO
1
Analog Comparator 0 Present
When set, indicates that analog comparator 0 is present.
23:19
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
18
TIMER2
RO
1
Timer 2 Present
When set, indicates that General-Purpose Timer module 2 is present.
17
TIMER1
RO
1
Timer 1 Present
When set, indicates that General-Purpose Timer module 1 is present.
16
TIMER0
RO
1
Timer 0 Present
When set, indicates that General-Purpose Timer module 0 is present.
15:13
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
I2C0
RO
1
I2C Module 0 Present
When set, indicates that I2C module 0 is present.
86
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
Description
11:9
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
8
QEI0
RO
1
QEI0 Present
When set, indicates that QEI module 0 is present.
7:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
SSI0
RO
1
SSI0 Present
When set, indicates that SSI module 0 is present.
3:2
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
UART1
RO
1
UART1 Present
When set, indicates that UART module 1 is present.
0
UART0
RO
1
UART0 Present
When set, indicates that UART module 0 is present.
October 01, 2007
87
Preliminary
System Control
Register 17: Device Capabilities 3 (DC3), offset 0x018
This register provides a list of features available in the system. The Stellaris family uses this register
format to indicate the availability of the following family features in the specific device: Analog
Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.
Device Capabilities 3 (DC3)
Base 0x400F.E000
Offset 0x018
Type RO, reset 0x3F00.37FF
31
30
reserved
Type
Reset
28
27
26
25
24
23
22
21
20
19
18
17
16
CCP5
CCP4
CCP3
CCP2
CCP1
CCP0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PWM5
PWM4
PWM3
PWM2
PWM1
PWM0
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
reserved
Type
Reset
29
RO
0
RO
0
C2PLUS C2MINUS reserved C1PLUS C1MINUS
RO
1
RO
1
RO
0
RO
1
RO
1
C0O
RO
1
reserved
C0PLUS C0MINUS
RO
1
RO
1
Bit/Field
Name
Type
Reset
Description
31:30
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
29
CCP5
RO
1
CCP5 Pin Present
When set, indicates that Capture/Compare/PWM pin 5 is present.
28
CCP4
RO
1
CCP4 Pin Present
When set, indicates that Capture/Compare/PWM pin 4 is present.
27
CCP3
RO
1
CCP3 Pin Present
When set, indicates that Capture/Compare/PWM pin 3 is present.
26
CCP2
RO
1
CCP2 Pin Present
When set, indicates that Capture/Compare/PWM pin 2 is present.
25
CCP1
RO
1
CCP1 Pin Present
When set, indicates that Capture/Compare/PWM pin 1 is present.
24
CCP0
RO
1
CCP0 Pin Present
When set, indicates that Capture/Compare/PWM pin 0 is present.
23:14
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
13
C2PLUS
RO
1
C2+ Pin Present
When set, indicates that the analog comparator 2 (+) input pin is present.
12
C2MINUS
RO
1
C2- Pin Present
When set, indicates that the analog comparator 2 (-) input pin is present.
88
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
Description
11
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
C1PLUS
RO
1
C1+ Pin Present
When set, indicates that the analog comparator 1 (+) input pin is present.
9
C1MINUS
RO
1
C1- Pin Present
When set, indicates that the analog comparator 1 (-) input pin is present.
8
C0O
RO
1
C0o Pin Present
When set, indicates that the analog comparator 0 output pin is present.
7
C0PLUS
RO
1
C0+ Pin Present
When set, indicates that the analog comparator 0 (+) input pin is present.
6
C0MINUS
RO
1
C0- Pin Present
When set, indicates that the analog comparator 0 (-) input pin is present.
5
PWM5
RO
1
PWM5 Pin Present
When set, indicates that the PWM pin 5 is present.
4
PWM4
RO
1
PWM4 Pin Present
When set, indicates that the PWM pin 4 is present.
3
PWM3
RO
1
PWM3 Pin Present
When set, indicates that the PWM pin 3 is present.
2
PWM2
RO
1
PWM2 Pin Present
When set, indicates that the PWM pin 2 is present.
1
PWM1
RO
1
PWM1 Pin Present
When set, indicates that the PWM pin 1 is present.
0
PWM0
RO
1
PWM0 Pin Present
When set, indicates that the PWM pin 0 is present.
October 01, 2007
89
Preliminary
System Control
Register 18: Device Capabilities 4 (DC4), offset 0x01C
This register provides a list of features available in the system. The Stellaris family uses this register
format to indicate the availability of GPIOs in the specific device. The format of this register is
consistent with the RCGC2, SCGC2, and DCGC2 clock control registers and the SRCR2 software
reset control register.
Device Capabilities 4 (DC4)
Base 0x400F.E000
Offset 0x01C
Type RO, reset 0x0000.001F
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
1
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
GPIOE
RO
1
GPIO Port E Present
When set, indicates that GPIO Port E is present.
3
GPIOD
RO
1
GPIO Port D Present
When set, indicates that GPIO Port D is present.
2
GPIOC
RO
1
GPIO Port C Present
When set, indicates that GPIO Port C is present.
1
GPIOB
RO
1
GPIO Port B Present
When set, indicates that GPIO Port B is present.
0
GPIOA
RO
1
GPIO Port A Present
When set, indicates that GPIO Port A is present.
90
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Run Mode Clock Gating Control Register 0 (RCGC0)
Base 0x400F.E000
Offset 0x100
Type R/W, reset 0x00000040
31
30
29
28
27
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
RO
0
RO
0
RO
0
RO
0
26
25
24
23
22
21
19
18
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
RO
0
RO
0
RO
0
RO
0
11
10
9
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
20
PWM
reserved
Type
Reset
17
16
reserved
WDT
R/W
0
reserved
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
PWM
R/W
0
PWM Clock Gating Control
This bit controls the clock gating for the PWM module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
19:4
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
WDT
R/W
0
WDT Clock Gating Control
This bit controls the clock gating for the WDT module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
2:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
91
Preliminary
System Control
Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset
0x110
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Sleep Mode Clock Gating Control Register 0 (SCGC0)
Base 0x400F.E000
Offset 0x110
Type R/W, reset 0x00000040
31
30
29
28
27
26
25
24
23
22
21
reserved
Type
Reset
20
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
19
18
PWM
RO
0
RO
0
RO
0
3
2
WDT
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
17
16
reserved
R/W
0
RO
0
RO
0
1
0
reserved
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
PWM
R/W
0
PWM Clock Gating Control
This bit controls the clock gating for the PWM module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
19:4
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
WDT
R/W
0
WDT Clock Gating Control
This bit controls the clock gating for the WDT module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
2:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
92
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0),
offset 0x120
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)
Base 0x400F.E000
Offset 0x120
Type R/W, reset 0x00000040
31
30
29
28
27
26
25
24
23
22
21
reserved
Type
Reset
20
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
19
18
PWM
RO
0
RO
0
RO
0
3
2
WDT
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
17
16
reserved
R/W
0
RO
0
RO
0
1
0
reserved
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
PWM
R/W
0
PWM Clock Gating Control
This bit controls the clock gating for the PWM module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
19:4
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
WDT
R/W
0
WDT Clock Gating Control
This bit controls the clock gating for the WDT module. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, a read or write to the unit generates
a bus fault.
2:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
93
Preliminary
System Control
Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Run Mode Clock Gating Control Register 1 (RCGC1)
Base 0x400F.E000
Offset 0x104
Type R/W, reset 0x00000000
31
30
RO
0
RO
0
15
14
29
28
27
RO
0
RO
0
RO
0
13
12
11
reserved
Type
Reset
reserved
Type
Reset
RO
0
RO
0
I2C0
RO
0
R/W
0
26
25
24
COMP2
COMP1
COMP0
R/W
0
R/W
0
10
9
reserved
RO
0
23
22
R/W
0
RO
0
RO
0
8
7
6
RO
0
R/W
0
20
19
RO
0
RO
0
RO
0
5
4
3
reserved
QEI0
RO
0
21
reserved
RO
0
RO
0
SSI0
RO
0
R/W
0
18
17
16
TIMER2
TIMER1
TIMER0
R/W
0
R/W
0
R/W
0
2
1
0
UART1
UART0
R/W
0
R/W
0
reserved
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:27
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
26
COMP2
R/W
0
Analog Comparator 2 Clock Gating
This bit controls the clock gating for analog comparator 2. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
25
COMP1
R/W
0
Analog Comparator 1 Clock Gating
This bit controls the clock gating for analog comparator 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
24
COMP0
R/W
0
Analog Comparator 0 Clock Gating
This bit controls the clock gating for analog comparator 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
23:19
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
94
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
18
TIMER2
R/W
0
Description
Timer 2 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 2.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
17
TIMER1
R/W
0
Timer 1 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 1.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
16
TIMER0
R/W
0
Timer 0 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 0.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
15:13
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
I2C0
R/W
0
I2C0 Clock Gating Control
This bit controls the clock gating for I2C module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
8
QEI0
R/W
0
QEI0 Clock Gating Control
This bit controls the clock gating for QEI module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
7:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
SSI0
R/W
0
SSI0 Clock Gating Control
This bit controls the clock gating for SSI module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
UART1
R/W
0
UART1 Clock Gating Control
This bit controls the clock gating for UART module 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
October 01, 2007
95
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
UART0
R/W
0
Description
UART0 Clock Gating Control
This bit controls the clock gating for UART module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
96
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset
0x114
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Sleep Mode Clock Gating Control Register 1 (SCGC1)
Base 0x400F.E000
Offset 0x114
Type R/W, reset 0x00000000
31
30
29
28
27
reserved
Type
Reset
RO
0
15
RO
0
RO
0
14
13
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
12
11
I2C0
RO
0
R/W
0
26
25
24
COMP2
COMP1
COMP0
R/W
0
R/W
0
R/W
0
RO
0
10
9
8
7
reserved
RO
0
23
RO
0
R/W
0
21
20
19
reserved
QEI0
RO
0
22
RO
0
RO
0
6
5
reserved
RO
0
RO
0
17
16
TIMER1
TIMER0
R/W
0
R/W
0
RO
0
RO
0
R/W
0
4
3
2
SSI0
RO
0
18
TIMER2
R/W
0
reserved
RO
0
RO
0
1
0
UART1
UART0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:27
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
26
COMP2
R/W
0
Analog Comparator 2 Clock Gating
This bit controls the clock gating for analog comparator 2. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
25
COMP1
R/W
0
Analog Comparator 1 Clock Gating
This bit controls the clock gating for analog comparator 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
24
COMP0
R/W
0
Analog Comparator 0 Clock Gating
This bit controls the clock gating for analog comparator 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
23:19
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
97
Preliminary
System Control
Bit/Field
Name
Type
Reset
18
TIMER2
R/W
0
Description
Timer 2 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 2.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
17
TIMER1
R/W
0
Timer 1 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 1.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
16
TIMER0
R/W
0
Timer 0 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 0.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
15:13
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
I2C0
R/W
0
I2C0 Clock Gating Control
This bit controls the clock gating for I2C module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
8
QEI0
R/W
0
QEI0 Clock Gating Control
This bit controls the clock gating for QEI module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
7:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
SSI0
R/W
0
SSI0 Clock Gating Control
This bit controls the clock gating for SSI module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
UART1
R/W
0
UART1 Clock Gating Control
This bit controls the clock gating for UART module 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
98
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
0
UART0
R/W
0
Description
UART0 Clock Gating Control
This bit controls the clock gating for UART module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
October 01, 2007
99
Preliminary
System Control
Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1),
offset 0x124
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)
Base 0x400F.E000
Offset 0x124
Type R/W, reset 0x00000000
31
30
29
28
27
reserved
Type
Reset
RO
0
15
RO
0
RO
0
14
13
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
12
11
I2C0
RO
0
R/W
0
26
25
24
COMP2
COMP1
COMP0
R/W
0
R/W
0
R/W
0
RO
0
10
9
8
7
reserved
RO
0
23
RO
0
R/W
0
21
20
19
reserved
QEI0
RO
0
22
RO
0
RO
0
6
5
reserved
RO
0
RO
0
17
16
TIMER1
TIMER0
R/W
0
R/W
0
RO
0
RO
0
R/W
0
4
3
2
SSI0
RO
0
18
TIMER2
R/W
0
reserved
RO
0
RO
0
1
0
UART1
UART0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:27
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
26
COMP2
R/W
0
Analog Comparator 2 Clock Gating
This bit controls the clock gating for analog comparator 2. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
25
COMP1
R/W
0
Analog Comparator 1 Clock Gating
This bit controls the clock gating for analog comparator 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
24
COMP0
R/W
0
Analog Comparator 0 Clock Gating
This bit controls the clock gating for analog comparator 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
23:19
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
100
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
18
TIMER2
R/W
0
Description
Timer 2 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 2.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
17
TIMER1
R/W
0
Timer 1 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 1.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
16
TIMER0
R/W
0
Timer 0 Clock Gating Control
This bit controls the clock gating for General-Purpose Timer module 0.
If set, the unit receives a clock and functions. Otherwise, the unit is
unclocked and disabled. If the unit is unclocked, reads or writes to the
unit will generate a bus fault.
15:13
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
I2C0
R/W
0
I2C0 Clock Gating Control
This bit controls the clock gating for I2C module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
11:9
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
8
QEI0
R/W
0
QEI0 Clock Gating Control
This bit controls the clock gating for QEI module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
7:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
SSI0
R/W
0
SSI0 Clock Gating Control
This bit controls the clock gating for SSI module 0. If set, the unit receives
a clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:2
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
UART1
R/W
0
UART1 Clock Gating Control
This bit controls the clock gating for UART module 1. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
October 01, 2007
101
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
UART0
R/W
0
Description
UART0 Clock Gating Control
This bit controls the clock gating for UART module 0. If set, the unit
receives a clock and functions. Otherwise, the unit is unclocked and
disabled. If the unit is unclocked, reads or writes to the unit will generate
a bus fault.
102
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Run Mode Clock Gating Control Register 2 (RCGC2)
Base 0x400F.E000
Offset 0x108
Type R/W, reset 0x00000000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
GPIOE
R/W
0
Port E Clock Gating Control
This bit controls the clock gating for Port E. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3
GPIOD
R/W
0
Port D Clock Gating Control
This bit controls the clock gating for Port D. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
2
GPIOC
R/W
0
Port C Clock Gating Control
This bit controls the clock gating for Port C. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
1
GPIOB
R/W
0
Port B Clock Gating Control
This bit controls the clock gating for Port B. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
October 01, 2007
103
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
GPIOA
R/W
0
Description
Port A Clock Gating Control
This bit controls the clock gating for Port A. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
104
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset
0x118
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Sleep Mode Clock Gating Control Register 2 (SCGC2)
Base 0x400F.E000
Offset 0x118
Type R/W, reset 0x00000000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
10
9
8
7
6
5
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
4
3
2
1
0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
GPIOE
R/W
0
Port E Clock Gating Control
This bit controls the clock gating for Port E. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3
GPIOD
R/W
0
Port D Clock Gating Control
This bit controls the clock gating for Port D. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
2
GPIOC
R/W
0
Port C Clock Gating Control
This bit controls the clock gating for Port C. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
1
GPIOB
R/W
0
Port B Clock Gating Control
This bit controls the clock gating for Port B. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
October 01, 2007
105
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
GPIOA
R/W
0
Description
Port A Clock Gating Control
This bit controls the clock gating for Port A. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
106
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2),
offset 0x128
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are
disabled. It is the responsibility of software to enable the ports necessary for the application. Note
that these registers may contain more bits than there are interfaces, functions, or units to control.
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register
specifies that the system uses sleep modes.
Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)
Base 0x400F.E000
Offset 0x128
Type R/W, reset 0x00000000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
10
9
8
7
6
5
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
4
3
2
1
0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
GPIOE
R/W
0
Port E Clock Gating Control
This bit controls the clock gating for Port E. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
3
GPIOD
R/W
0
Port D Clock Gating Control
This bit controls the clock gating for Port D. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
2
GPIOC
R/W
0
Port C Clock Gating Control
This bit controls the clock gating for Port C. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
1
GPIOB
R/W
0
Port B Clock Gating Control
This bit controls the clock gating for Port B. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
October 01, 2007
107
Preliminary
System Control
Bit/Field
Name
Type
Reset
0
GPIOA
R/W
0
Description
Port A Clock Gating Control
This bit controls the clock gating for Port A. If set, the unit receives a
clock and functions. Otherwise, the unit is unclocked and disabled. If
the unit is unclocked, reads or writes to the unit will generate a bus fault.
108
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 28: Software Reset Control 0 (SRCR0), offset 0x040
Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register.
Software Reset Control 0 (SRCR0)
Base 0x400F.E000
Offset 0x040
Type R/W, reset 0x00000000
31
30
29
28
27
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
RO
0
RO
0
RO
0
RO
0
26
25
24
23
22
21
19
18
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
RO
0
RO
0
RO
0
RO
0
11
10
9
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
20
PWM
reserved
Type
Reset
17
16
reserved
WDT
R/W
0
reserved
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:21
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
20
PWM
R/W
0
PWM Reset Control
Reset control for PWM module.
19:4
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
WDT
R/W
0
WDT Reset Control
Reset control for Watchdog unit.
2:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
109
Preliminary
System Control
Register 29: Software Reset Control 1 (SRCR1), offset 0x044
Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.
Software Reset Control 1 (SRCR1)
Base 0x400F.E000
Offset 0x044
Type R/W, reset 0x00000000
31
30
RO
0
RO
0
15
14
29
28
27
RO
0
RO
0
RO
0
13
12
11
reserved
Type
Reset
reserved
Type
Reset
RO
0
RO
0
I2C0
RO
0
R/W
0
26
25
24
COMP2
COMP1
COMP0
R/W
0
R/W
0
10
9
reserved
RO
0
23
22
R/W
0
RO
0
RO
0
8
7
6
RO
0
R/W
0
20
19
RO
0
RO
0
RO
0
5
4
3
reserved
QEI0
RO
0
21
reserved
RO
0
RO
0
SSI0
RO
0
R/W
0
18
17
16
TIMER2
TIMER1
TIMER0
R/W
0
R/W
0
R/W
0
2
1
0
UART1
UART0
R/W
0
R/W
0
reserved
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:27
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
26
COMP2
R/W
0
Analog Comp 2 Reset Control
Reset control for analog comparator 2.
25
COMP1
R/W
0
Analog Comp 1 Reset Control
Reset control for analog comparator 1.
24
COMP0
R/W
0
Analog Comp 0 Reset Control
Reset control for analog comparator 0.
23:19
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
18
TIMER2
R/W
0
Timer 2 Reset Control
Reset control for General-Purpose Timer module 2.
17
TIMER1
R/W
0
Timer 1 Reset Control
Reset control for General-Purpose Timer module 1.
16
TIMER0
R/W
0
Timer 0 Reset Control
Reset control for General-Purpose Timer module 0.
15:13
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
I2C0
R/W
0
I2C0 Reset Control
Reset control for I2C unit 0.
11:9
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
110
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
8
QEI0
R/W
0
Description
QEI0 Reset Control
Reset control for QEI unit 0.
7:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
SSI0
R/W
0
SSI0 Reset Control
Reset control for SSI unit 0.
3:2
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
UART1
R/W
0
UART1 Reset Control
Reset control for UART unit 1.
0
UART0
R/W
0
UART0 Reset Control
Reset control for UART unit 0.
October 01, 2007
111
Preliminary
System Control
Register 30: Software Reset Control 2 (SRCR2), offset 0x048
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.
Software Reset Control 2 (SRCR2)
Base 0x400F.E000
Offset 0x048
Type R/W, reset 0x00000000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
GPIOE
R/W
0
Port E Reset Control
Reset control for GPIO Port E.
3
GPIOD
R/W
0
Port D Reset Control
Reset control for GPIO Port D.
2
GPIOC
R/W
0
Port C Reset Control
Reset control for GPIO Port C.
1
GPIOB
R/W
0
Port B Reset Control
Reset control for GPIO Port B.
0
GPIOA
R/W
0
Port A Reset Control
Reset control for GPIO Port A.
112
October 01, 2007
Preliminary
LM3S601 Microcontroller
7
Internal Memory
The LM3S601 microcontroller comes with 8 KB of bit-banded SRAM and 32 KB of flash memory.
The flash controller provides a user-friendly interface, making flash programming a simple task.
Flash protection can be applied to the flash memory on a 2-KB block basis.
7.1
Block Diagram
Figure 7-1. Flash Block Diagram
Flash Timing
USECRL
Flash Control
ICode
Cortex-M3
DCode
FMA
FMD
Flash Array
FMC
System Bus
FCRIS
FCIM
FCMISC
Bridge
APB
Flash Protection
FMPRE
SRAM Array
7.2
FMPPE
Functional Description
This section describes the functionality of both the flash and SRAM memories.
7.2.1
SRAM Memory
®
The internal SRAM of the Stellaris devices is located at address 0x2000.0000 of the device memory
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has
introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor,
certain regions in the memory map (SRAM and peripheral space) can use address aliases to access
individual bits in a single, atomic operation.
The bit-band alias is calculated by using the formula:
October 01, 2007
113
Preliminary
Internal Memory
bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)
For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:
0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C
With the alias address calculated, an instruction performing a read/write to address 0x2202.000C
allows direct access to only bit 3 of the byte at address 0x2000.1000.
For details about bit-banding, please refer to Chapter 4, “Memory Map” in the ARM® Cortex™-M3
Technical Reference Manual.
7.2.2
Flash Memory
The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block
causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be
programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB
blocks that can be individually protected. The protection allows blocks to be marked as read-only
or execute-only, providing different levels of code protection. Read-only blocks cannot be erased
or programmed, protecting the contents of those blocks from being modified. Execute-only blocks
cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism,
protecting the contents of those blocks from being read by either the controller or by a debugger.
See also “Serial Flash Loader” on page 425 for a preprogrammed flash-resident utility used to
download code to the flash memory of a device without the use of a debug interface.
7.2.2.1
Flash Memory Timing
The timing for the flash is automatically handled by the flash controller. However, in order to do so,
it must know the clock rate of the system in order to time its internal signals properly. The number
of clock cycles per microsecond must be provided to the flash controller for it to accomplish this
timing. It is software's responsibility to keep the flash controller updated with this information via the
USec Reload (USECRL) register.
On reset, the USECRL register is loaded with a value that configures the flash timing so that it works
with the maximum clock rate of the part. If software changes the system operating frequency, the
new operating frequency minus 1 (in MHz) must be loaded into USECRL before any flash
modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value
of 0x13 (20-1) must be written to the USECRL register.
7.2.2.2
Flash Memory Protection
The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide
registers.The protection policy for each form is controlled by individual bits (per policy per block) in
the FMPPEn and FMPREn registers.
■ Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed
(written) or erased. If cleared, the block may not be changed.
■ Flash Memory Protection Read Enable (FMPREn): If set, the block may be executed or read
by software or debuggers. If cleared, the block may only be executed. The contents of the memory
block are prohibited from being accessed as data and traversing the DCode bus.
The policies may be combined as shown in Table 7-1 on page 115.
114
October 01, 2007
Preliminary
LM3S601 Microcontroller
Table 7-1. Flash Protection Policy Combinations
FMPPEn FMPREn Protection
0
0
Execute-only protection. The block may only be executed and may not be written or erased. This mode
is used to protect code.
1
0
The block may be written, erased or executed, but not read. This combination is unlikely to be used.
0
1
Read-only protection. The block may be read or executed but may not be written or erased. This mode
is used to lock the block from further modification while allowing any read or execute access.
1
1
No protection. The block may be written, erased, executed or read.
An access that attempts to program or erase a PE-protected block is prohibited. A controller interrupt
may be optionally generated (by setting the AMASK bit in the FIM register) to alert software developers
of poorly behaving software during the development and debug phases.
An access that attempts to read an RE-protected block is prohibited. Such accesses return data
filled with all 0s. A controller interrupt may be optionally generated to alert software developers of
poorly behaving software during the development and debug phases.
The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented
banks. This implements a policy of open access and programmability. The register bits may be
changed by writing the specific register bit. The changes are not permanent until the register is
committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0
and not committed, it may be restored by executing a power-on reset sequence.
7.2.2.3
Flash Protection by Disabling Debug Access
Flash memory may also be protected by permanently disabling access to the Debug Access Port
(DAP) through the JTAG and SWD interfaces. This is accomplished by clearing the DBG field of
the FMPRE register.
Flash Memory Protection Read Enable (DBG field): If set to 0x2, access to the DAP is enabled
through the JTAG and SWD interfaces. If clear, access to the DAP is disabled. The DBG field
programming becomes permanent, and irreversible, after a commit sequence is performed.
In the initial state, provided from the factory, access is enabled in order to facilitate code development
and debug. Access to the DAP may be disabled at the end of the manufacturing flow, once all tests
have passed and software loaded. This change will not take effect until the next power-up of the
device. Note that it is recommended that disabling access to the DAP be combined with a mechanism
for providing end-user installable updates (if necessary) such as the Stellaris boot loader.
Important: Once the DBG field is cleared and committed, this field can never be restored to the
factory-programmed value—which means JTAG/SWD interface to the debug module
can never be re-enabled. This sequence does NOT disable the JTAG controller, it only
disables the access of the DAP through the JTAG or SWD interfaces. The JTAG interface
remains functional and access to the Test Access Port remains enabled, allowing the
user to execute the IEEE JTAG-defined instructions (for example, to perform boundary
scan operations).
If the user will also be using the FMPRE bits to protect flash memory from being read as data (to
mark sets of 2 KB blocks of flash memory as execute-only), these one-time-programmable bits
should be written at the same time that the debug disable bits are programmed. Mechanisms to
execute the one-time code sequence to disable all debug access include:
■ Selecting the debug disable option in the Stellaris boot loader
October 01, 2007
115
Preliminary
Internal Memory
■ Loading the debug disable sequence into SRAM and running it once from SRAM after
programming the final end application code into flash
7.3
Flash Memory Initialization and Configuration
This section shows examples for using the flash controller to perform various operations on the
contents of the flash memory.
7.3.1
Changing Flash Protection Bits
As discussed in “Flash Memory Protection” on page 114, changes to the protection bits must be
committed before they take effect. The sequence below is used change and commit a block protection
bit in the FMPRE or FMPPE registers. The sequence to change and commit a bit in software is as
follows:
1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program
Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes
can be tested by software while in this state.
2. The Flash Memory Address (FMA) register (see page 119) bit 0 is set to 1 if the FMPPE register
is to be committed; otherwise, a 0 commits the FMPRE register.
3. The Flash Memory Control (FMC) register (see page 121) is written with the COMT bit set. This
initiates a write sequence and commits the changes.
There is a special sequence to change and commit the DBG bits in the Flash Memory Protection
Read Enable (FMPRE) register. This sequence also sets and commits any changes from 1 to 0 in
the block protection bits (for execute-only) in the FMPRE register.
1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the intended
bit(s). The action of these changes can be tested by software while in this state.
2. The Flash Memory Address (FMA) register (see ppage 119) is written with a value of 0x900.
3. The Flash Memory Control (FMC) register (see page 121) is written with the COMT bit set. This
initiates a write sequence and commits the changes.
Below is an example code sequence to permanently disable the JTAG and SWD interface to the
debug module using Luminary Micro's DriverLib peripheral driver library:
#include "hw_types.h"
#include "hw_flash.h"
void
permanently_disable_jtag_swd(void)
{
//
// Clear the DBG field of the FMPRE register. Note that the value
// used in this instance does not affect the state of the BlockN
// bits, but were the value different, all bits in the FMPRE are
// affected by this function!
//
HWREG(FLASH_FMPRE) &= 0x3fffffff;
//
// The following sequence activates the one-time
116
October 01, 2007
Preliminary
LM3S601 Microcontroller
// programming of the FMPRE register.
//
HWREG(FLASH_FMA) = 0x900;
HWREG(FLASH_FMC) = (FLASH_FMC_WRKEY | FLASH_FMC_COMT);
//
// Wait until the operation is complete.
//
while (HWREG(FLASH_FMC) & FLASH_FMC_COMT)
{
}
}
7.3.2
Flash Programming
®
The Stellaris devices provide a user-friendly interface for flash programming. All erase/program
operations are handled via three registers: FMA, FMD, and FMC.
7.3.2.1
To program a 32-bit word
1. Write source data to the FMD register.
2. Write the target address to the FMA register.
3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
4. Poll the FMC register until the WRITE bit is cleared.
7.3.2.2
To perform an erase of a 1-KB page
1. Write the page address to the FMA register.
2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.
3. Poll the FMC register until the ERASE bit is cleared.
7.3.2.3
To perform a mass erase of the flash
1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.
2. Poll the FMC register until the MERASE bit is cleared.
7.4
Register Map
Table 7-2 on page 118 lists the Flash memory and control registers. The offset listed is a hexadecimal
increment to the register's address. The FMA, FMD, FMC, FCRIS, FCIM, and FCMISC registers
are relative to the Flash control base address of 0x400F.D000. The FMPREn, FMPPEn, USECRL,
USER_DBG, and USER_REGn registers are relative to the System Control base address of
0x400F.E000.
October 01, 2007
117
Preliminary
Internal Memory
Table 7-2. Flash Register Map
Offset
Name
Type
Reset
See
page
Description
Flash Control Offset
0x000
FMA
R/W
0x0000.0000
Flash Memory Address
119
0x004
FMD
R/W
0x0000.0000
Flash Memory Data
120
0x008
FMC
R/W
0x0000.0000
Flash Memory Control
121
0x00C
FCRIS
RO
0x0000.0000
Flash Controller Raw Interrupt Status
123
0x010
FCIM
R/W
0x0000.0000
Flash Controller Interrupt Mask
124
0x014
FCMISC
R/W1C
0x0000.0000
Flash Controller Masked Interrupt Status and Clear
125
System Control Offset
0x130
FMPRE
R/W
0x8000.FFFF
Flash Memory Protection Read Enable
127
0x134
FMPPE
R/W
0x0000.FFFF
Flash Memory Protection Program Enable
128
0x140
USECRL
R/W
0x31
USec Reload
126
7.5
Flash Register Descriptions (Flash Control Offset)
The remainder of this section lists and describes the Flash Memory registers, in numerical order by
address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.
118
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: Flash Memory Address (FMA), offset 0x000
During a write operation, this register contains a 4-byte-aligned address and specifies where the
data is written. During erase operations, this register contains a 1 KB-aligned address and specifies
which page is erased. Note that the alignment requirements must be met by software or the results
of the operation are unpredictable.
Flash Memory Address (FMA)
Base 0x400F.D000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
OFFSET
R/W
0
Bit/Field
Name
Type
Reset
Description
31:15
reserved
RO
0x0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
14:0
OFFSET
R/W
0x0
Address Offset
Address offset in flash where operation is performed.
October 01, 2007
119
Preliminary
Internal Memory
Register 2: Flash Memory Data (FMD), offset 0x004
This register contains the data to be written during the programming cycle or read during the read
cycle. Note that the contents of this register are undefined for a read access of an execute-only
block. This register is not used during the erase cycles.
Flash Memory Data (FMD)
Base 0x400F.D000
Offset 0x004
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
DATA
Type
Reset
DATA
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
DATA
R/W
0x0
Data Value
Data value for write operation.
120
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: Flash Memory Control (FMC), offset 0x008
When this register is written, the flash controller initiates the appropriate access cycle for the location
specified by the Flash Memory Address (FMA) register (see page 119). If the access is a write
access, the data contained in the Flash Memory Data (FMD) register (see page 120) is written.
This is the final register written and initiates the memory operation. There are four control bits in the
lower byte of this register that, when set, initiate the memory operation. The most used of these
register bits are the ERASE and WRITE bits.
It is a programming error to write multiple control bits and the results of such an operation are
unpredictable.
Flash Memory Control (FMC)
Base 0x400F.D000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
WRKEY
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
31:16
WRKEY
WO
0x0
COMT
R/W
0
MERASE ERASE
R/W
0
R/W
0
WRITE
R/W
0
Description
Flash Write Key
This field contains a write key, which is used to minimize the incidence
of accidental flash writes. The value 0xA442 must be written into this
field for a write to occur. Writes to the FMC register without this WRKEY
value are ignored. A read of this field returns the value 0.
15:4
reserved
RO
0x0
3
COMT
R/W
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
Commit Register Value
Commit (write) of register value to nonvolatile storage. A write of 0 has
no effect on the state of this bit.
If read, the state of the previous commit access is provided. If the
previous commit access is complete, a 0 is returned; otherwise, if the
commit access is not complete, a 1 is returned.
This can take up to 50 μs.
2
MERASE
R/W
0
Mass Erase Flash Memory
If this bit is set, the flash main memory of the device is all erased. A
write of 0 has no effect on the state of this bit.
If read, the state of the previous mass erase access is provided. If the
previous mass erase access is complete, a 0 is returned; otherwise, if
the previous mass erase access is not complete, a 1 is returned.
This can take up to 250 ms.
October 01, 2007
121
Preliminary
Internal Memory
Bit/Field
Name
Type
Reset
1
ERASE
R/W
0
Description
Erase a Page of Flash Memory
If this bit is set, the page of flash main memory as specified by the
contents of FMA is erased. A write of 0 has no effect on the state of this
bit.
If read, the state of the previous erase access is provided. If the previous
erase access is complete, a 0 is returned; otherwise, if the previous
erase access is not complete, a 1 is returned.
This can take up to 25 ms.
0
WRITE
R/W
0
Write a Word into Flash Memory
If this bit is set, the data stored in FMD is written into the location as
specified by the contents of FMA. A write of 0 has no effect on the state
of this bit.
If read, the state of the previous write update is provided. If the previous
write access is complete, a 0 is returned; otherwise, if the write access
is not complete, a 1 is returned.
This can take up to 50 µs.
122
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C
This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled
if the corresponding FCIM register bit is set.
Flash Controller Raw Interrupt Status (FCRIS)
Base 0x400F.D000
Offset 0x00C
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
PRIS
ARIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
PRIS
RO
0
Programming Raw Interrupt Status
This bit indicates the current state of the programming cycle. If set, the
programming cycle completed; if cleared, the programming cycle has
not completed. Programming cycles are either write or erase actions
generated through the Flash Memory Control (FMC) register bits (see
page 121).
0
ARIS
RO
0
Access Raw Interrupt Status
This bit indicates if the flash was improperly accessed. If set, the program
tried to access the flash counter to the policy as set in the Flash Memory
Protection Read Enable (FMPREn) and Flash Memory Protection
Program Enable (FMPPEn) registers. Otherwise, no access has tried
to improperly access the flash.
October 01, 2007
123
Preliminary
Internal Memory
Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010
This register controls whether the flash controller generates interrupts to the controller.
Flash Controller Interrupt Mask (FCIM)
Base 0x400F.D000
Offset 0x010
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
PMASK
AMASK
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
PMASK
R/W
0
Programming Interrupt Mask
This bit controls the reporting of the programming raw interrupt status
to the controller. If set, a programming-generated interrupt is promoted
to the controller. Otherwise, interrupts are recorded but suppressed from
the controller.
0
AMASK
R/W
0
Access Interrupt Mask
This bit controls the reporting of the access raw interrupt status to the
controller. If set, an access-generated interrupt is promoted to the
controller. Otherwise, interrupts are recorded but suppressed from the
controller.
124
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC),
offset 0x014
This register provides two functions. First, it reports the cause of an interrupt by indicating which
interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the
interrupt reporting.
Flash Controller Masked Interrupt Status and Clear (FCMISC)
Base 0x400F.D000
Offset 0x014
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
1
0
PMISC
AMISC
R/W1C
0
R/W1C
0
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
PMISC
R/W1C
0
Programming Masked Interrupt Status and Clear
This bit indicates whether an interrupt was signaled because a
programming cycle completed and was not masked. This bit is cleared
by writing a 1. The PRIS bit in the FCRIS register (see page 123) is also
cleared when the PMISC bit is cleared.
0
AMISC
R/W1C
0
Access Masked Interrupt Status and Clear
This bit indicates whether an interrupt was signaled because an improper
access was attempted and was not masked. This bit is cleared by writing
a 1. The ARIS bit in the FCRIS register is also cleared when the AMISC
bit is cleared.
7.6
Flash Register Descriptions (System Control Offset)
The remainder of this section lists and describes the Flash Memory registers, in numerical order by
address offset. Registers in this section are relative to the System Control base address of
0x400F.E000.
October 01, 2007
125
Preliminary
Internal Memory
Register 7: USec Reload (USECRL), offset 0x140
Note:
Offset is relative to System Control base address of 0x400F.E000
This register is provided as a means of creating a 1-μs tick divider reload value for the flash controller.
The internal flash has specific minimum and maximum requirements on the length of time the high
voltage write pulse can be applied. It is required that this register contain the operating frequency
(in MHz -1) whenever the flash is being erased or programmed. The user is required to change this
value if the clocking conditions are changed for a flash erase/program operation.
USec Reload (USECRL)
Base 0x400F.E000
Offset 0x140
Type R/W, reset 0x31
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
USEC
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
1
R/W
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
USEC
R/W
0x31
Microsecond Reload Value
MHz -1 of the controller clock when the flash is being erased or
programmed.
USEC should be set to 0x31 (50 MHz) whenever the flash is being erased
or programmed.
126
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 8: Flash Memory Protection Read Enable (FMPRE), offset 0x130
Note:
Offset is relative to System Control base address of 0x400FE000.
This register stores the read-only protection bits for each 2-KB flash block (see the FMPPE registers
for the execute-only protection bits). This register is loaded during the power-on reset sequence.
The factory settingsare a value of 1 for all implemented banks. This implements a policy of open
access and programmability. The register bits may be changed by writing the specific register bit.
However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may
NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at
which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it
may be restored by executing a power-on reset sequence. For additional information, see the “Flash
Memory Protection” section.
Flash Memory Protection Read Enable (FMPRE)
Base 0x400F.E000
Offset 0x130
Type R/W, reset 0x8000.FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
READ_ENABLE
Type
Reset
R/W
1
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
8
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
READ_ENABLE
Type
Reset
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
Bit/Field
Name
Type
31:0
READ_ENABLE
R/W
R/W
1
R/W
1
Reset
R/W
1
R/W
1
Description
0x8000FFFF Flash Read Enable
Each bit position maps 2 Kbytes of Flash to be read-enabled.
Value
Description
0x8000FFFF Enables 32 KB of flash.
October 01, 2007
127
Preliminary
Internal Memory
Register 9: Flash Memory Protection Program Enable (FMPPE), offset 0x134
Note:
Offset is relative to System Control base address of 0x400FE000.
This register stores the execute-only protection bits for each 2-KB flash block (see the FMPRE
registers for the read-only protection bits). This register is loaded during the power-on reset sequence.
The factory settings are a value of 1 for all implemented banks. This implements a policy of open
access and programmability. The register bits may be changed by writing the specific register bit.
However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may
NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at
which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it
may be restored by executing a power-on reset sequence. For additional information, see the “Flash
Memory Protection” section.
Flash Memory Protection Program Enable (FMPPE)
Base 0x400F.E000
Offset 0x134
Type R/W, reset 0x0000.FFFF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
PROG_ENABLE
Type
Reset
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
8
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
PROG_ENABLE
Type
Reset
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
Bit/Field
Name
Type
31:0
PROG_ENABLE
R/W
R/W
1
R/W
1
Reset
R/W
1
R/W
1
Description
0x0000FFFF Flash Programming Enable
Each bit position maps 2 Kbytes of Flash to be write-enabled.
Value
Description
0x0000FFFF Enables 32 KB of flash.
128
October 01, 2007
Preliminary
LM3S601 Microcontroller
8
General-Purpose Input/Outputs (GPIOs)
The GPIO module is composed of five physical GPIO blocks, each corresponding to an individual
GPIO port (Port A, Port B, Port C, Port D, and Port E, ). The GPIO module is FiRM-compliant and
supports 0-36 programmable input/output pins, depending on the peripherals being used.
The GPIO module has the following features:
■ Programmable control for GPIO interrupts
– Interrupt generation masking
– Edge-triggered on rising, falling, or both
– Level-sensitive on High or Low values
■ 5-V-tolerant input/outputs
■ Bit masking in both read and write operations through address lines
■ Programmable control for GPIO pad configuration
– Weak pull-up or pull-down resistors
– 2-mA, 4-mA, and 8-mA pad drive
– Slew rate control for the 8-mA drive
– Open drain enables
– Digital input enables
October 01, 2007
129
Preliminary
General-Purpose Input/Outputs (GPIOs)
8.1
Block Diagram
Figure 8-1. GPIO Module Block Diagram
PA2
PA3
PA4
SSIFss
PWM2
PB1
PWM3
PB2
I2CSCL
PB5
PB6
GPIO Port B
PB0
C1C0+
CCP5
Timer2
CCP4
CCP2
Timer1
CCP3
PE1
PE2
PE3
PE4
PE5
Fault
PWM1
PWM0
UART1
I2C
I2CSDA
C0-
PE0
PWM4
PWM5
SSI
SSIRx
SSITx
PB4
PWM2
SSIClk
PA5
PB3
UART0
GPIO Port E
U0Tx
CCP1
C2Analog
C2+
Comparators
C0o/C1+
Timer0
PWM0
PWM1
PD0
U1Rx
U1Tx
PD2
CCP0
PD1
GPIO Port D
U0Rx
PA1
GPIO Port A
PA0
PD3
PD4
PD5
PD6
PhB
PhA
QEI
IDX
PD7
TRST
PB7
TDO/SWO
TDI
TMS/SWDIO
TCK/SWCLK
JTAG
8.2
PC7
PC6
PC5
PC4
PC3
PC2
PC1
PC0
GPIO Port C
Functional Description
Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception
of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG
functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset
(RST) puts both groups of pins back to their default state.
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure
8-2 on page 131). The LM3S601 microcontroller contains five ports and thus five of these physical
GPIO blocks.
130
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 8-2. GPIO Port Block Diagram
Mode
Control
GPIOAFSEL
DEMUX
Alternate Input
Alternate Output
Pad Input
Alternate Output Enable
Pad Output
MUX
Pad Output Enable
Digital
I/O Pad
Package I/O Pin
GPIO Output
GPIODATA
GPIODIR
Interrupt
MUX
GPIO Input
Data
Control
GPIO Output Enable
Interrupt
Control
Pad
Control
GPIOIS
GPIOIBE
GPIOIEV
GPIOIM
GPIORIS
GPIOMIS
GPIOICR
GPIODR2R
GPIODR4R
GPIODR8R
GPIOSLR
GPIOPUR
GPIOPDR
GPIOODR
GPIODEN
Identification Registers
GPIOPeriphID0
GPIOPeriphID1
GPIOPeriphID2
GPIOPeriphID3
8.2.1
GPIOPeriphID4
GPIOPeriphID5
GPIOPeriphID6
GPIOPeriphID7
GPIOPCellID0
GPIOPCellID1
GPIOPCellID2
GPIOPCellID3
Data Control
The data control registers allow software to configure the operational modes of the GPIOs. The data
direction register configures the GPIO as an input or an output while the data register either captures
incoming data or drives it out to the pads.
8.2.1.1
Data Direction Operation
The GPIO Direction (GPIODIR) register (see page 138) is used to configure each individual pin as
an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and
the corresponding data register bit will capture and store the value on the GPIO port. When the data
direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit
will be driven out on the GPIO port.
8.2.1.2
Data Register Operation
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the
GPIO Data (GPIODATA) register (see page 137) by using bits [9:2] of the address bus as a mask.
This allows software drivers to modify individual GPIO pins in a single instruction, without affecting
the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write
operation to set or clear an individual GPIO pin. To accommodate this feature, the GPIODATA
register covers 256 locations in the memory map.
During a write, if the address bit associated with that data bit is set to 1, the value of the GPIODATA
register is altered. If it is cleared to 0, it is left unchanged.
October 01, 2007
131
Preliminary
General-Purpose Input/Outputs (GPIOs)
For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in
Figure 8-3 on page 132, where u is data unchanged by the write.
Figure 8-3. GPIODATA Write Example
ADDR[9:2]
0x098
9
8
7
6
5
4
3
2
1
0
0
0
1
0
0
1
1
0
1
0
0xEB
1
1
1
0
1
0
1
1
GPIODATA
u
u
1
u
u
0
1
u
7
6
5
4
3
2
1
0
During a read, if the address bit associated with the data bit is set to 1, the value is read. If the
address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value.
For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-4 on page 132.
Figure 8-4. GPIODATA Read Example
8.2.2
ADDR[9:2]
0x0C4
9
8
7
6
5
4
3
2
1
0
0
0
1
1
0
0
0
1
0
0
GPIODATA
1
0
1
1
1
1
1
0
Returned Value
0
0
1
1
0
0
0
0
7
6
5
4
3
2
1
0
Interrupt Control
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these
registers, it is possible to select the source of the interrupt, its polarity, and the edge properties.
When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt
controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt
to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source
holds the level constant for the interrupt to be recognized by the controller.
Three registers are required to define the edge or sense that causes interrupts:
■ GPIO Interrupt Sense (GPIOIS) register (see page 139)
■ GPIO Interrupt Both Edges (GPIOIBE) register (see page 140)
■ GPIO Interrupt Event (GPIOIEV) register (see page 141)
Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 142).
When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:
the GPIO Raw Interrupt Status (GPIORIS) and GPIO Masked Interrupt Status (GPIOMIS) registers
(see page 143 and page 144). As the name implies, the GPIOMIS register only shows interrupt
conditions that are allowed to be passed to the controller. The GPIORIS register indicates that a
GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.
Interrupts are cleared by writing a 1 to the GPIO Interrupt Clear (GPIOICR) register (see page 145).
132
October 01, 2007
Preliminary
LM3S601 Microcontroller
When programming the following interrupt control registers, the interrupts should be masked (GPIOIM
set to 0). Writing any value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can
generate a spurious interrupt if the corresponding bits are enabled.
8.2.3
Mode Control
The GPIO pins can be controlled by either hardware or software. When hardware control is enabled
via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 146), the pin state is
controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO
mode, where the GPIODATA register is used to read/write the corresponding pins.
8.2.4
Pad Control
The pad control registers allow for GPIO pad configuration by software based on the application
requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR,
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers.
8.2.5
Identification
The identification registers configured at reset allow software to detect and identify the module as
a GPIO block. The identification registers include the GPIOPeriphID0-GPIOPeriphID7 registers as
well as the GPIOPCellID0-GPIOPCellID3 registers.
8.3
Initialization and Configuration
To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit
field (GPIOn) in the RCGC2 register.
On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose inut mode
(GPIODIR=0 and GPIOAFSEL=0). Table 8-1 on page 133 shows all possible configurations of the
GPIO pads and the control register settings required to achieve them. Table 8-2 on page 134 shows
how a rising edge interrupt would be configured for pin 2 of a GPIO port.
Table 8-1. GPIO Pad Configuration Examples
Configuration
a
GPIO Register Bit Value
AFSEL
DIR
ODR
DEN
PUR
PDR
DR2R
DR4R
DR8R
SLR
Digital Input (GPIO)
0
0
0
1
?
?
X
X
X
X
Digital Output (GPIO)
0
1
0
1
?
?
?
?
?
?
Open Drain Input
(GPIO)
0
0
1
1
X
X
X
X
X
X
Open Drain Output
(GPIO)
0
1
1
1
X
X
?
?
?
?
Open Drain
Input/Output (I2C)
1
X
1
1
X
X
?
?
?
?
Digital Input (Timer
CCP)
1
X
0
1
?
?
X
X
X
X
Digital Input (QEI)
1
X
0
1
?
?
X
X
X
X
Digital Output (PWM)
1
X
0
1
?
?
?
?
?
?
Digital Output (Timer
PWM)
1
X
0
1
?
?
?
?
?
?
Digital Input/Output
(SSI)
1
X
0
1
?
?
?
?
?
?
October 01, 2007
133
Preliminary
General-Purpose Input/Outputs (GPIOs)
a
Configuration
GPIO Register Bit Value
DR2R
DR4R
DR8R
Digital Input/Output
(UART)
AFSEL
1
DIR
X
ODR
0
DEN
1
PUR
?
PDR
?
?
?
?
SLR
?
Analog Input
(Comparator)
0
0
0
0
0
0
X
X
X
X
Digital Output
(Comparator)
1
X
0
1
?
?
?
?
?
?
a. X=Ignored (don’t care bit)
?=Can be either 0 or 1, depending on the configuration
Table 8-2. GPIO Interrupt Configuration Example
Register
Desired
Interrupt
Event
Trigger
GPIOIS
0=edge
GPIOIBE
0=single
edge
a
Pin 2 Bit Value
7
6
5
4
3
2
1
0
X
X
X
X
X
0
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
1
X
X
0
0
0
0
0
1
0
0
1=level
1=both
edges
GPIOIEV
0=Low level,
or negative
edge
1=High level,
or positive
edge
GPIOIM
0=masked
1=not
masked
a. X=Ignored (don’t care bit)
8.4
Register Map
Table 8-3 on page 135 lists the GPIO registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that GPIO port’s base address:
■ GPIO Port A: 0x4000.4000
■ GPIO Port B: 0x4000.5000
■ GPIO Port C: 0x4000.6000
■ GPIO Port D: 0x4000.7000
■ GPIO Port E: 0x4002.4000
Important: The GPIO registers in this chapter are duplicated in each GPIO block, however,
depending on the block, all eight bits may not be connected to a GPIO pad. In those
134
October 01, 2007
Preliminary
LM3S601 Microcontroller
cases, writing to those unconnected bits has no effect and reading those unconnected
bits returns no meaningful data.
Note:
The default reset value for the GPIOAFSEL register is 0x0000.0000 for all GPIO pins, with
the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG
functionality. Because of this, the default reset value of GPIOAFSEL for GPIO Port B is
0x0000.0080 while the default reset value for Port C is 0x0000.000F.
Table 8-3. GPIO Register Map
Description
See
page
Offset
Name
Type
Reset
0x000
GPIODATA
R/W
0x0000.0000
GPIO Data
137
0x400
GPIODIR
R/W
0x0000.0000
GPIO Direction
138
0x404
GPIOIS
R/W
0x0000.0000
GPIO Interrupt Sense
139
0x408
GPIOIBE
R/W
0x0000.0000
GPIO Interrupt Both Edges
140
0x40C
GPIOIEV
R/W
0x0000.0000
GPIO Interrupt Event
141
0x410
GPIOIM
R/W
0x0000.0000
GPIO Interrupt Mask
142
0x414
GPIORIS
RO
0x0000.0000
GPIO Raw Interrupt Status
143
0x418
GPIOMIS
RO
0x0000.0000
GPIO Masked Interrupt Status
144
0x41C
GPIOICR
W1C
0x0000.0000
GPIO Interrupt Clear
145
0x420
GPIOAFSEL
R/W
-
GPIO Alternate Function Select
146
0x500
GPIODR2R
R/W
0x0000.00FF
GPIO 2-mA Drive Select
148
0x504
GPIODR4R
R/W
0x0000.0000
GPIO 4-mA Drive Select
149
0x508
GPIODR8R
R/W
0x0000.0000
GPIO 8-mA Drive Select
150
0x50C
GPIOODR
R/W
0x0000.0000
GPIO Open Drain Select
151
0x510
GPIOPUR
R/W
0x0000.00FF
GPIO Pull-Up Select
152
0x514
GPIOPDR
R/W
0x0000.0000
GPIO Pull-Down Select
153
0x518
GPIOSLR
R/W
0x0000.0000
GPIO Slew Rate Control Select
154
0x51C
GPIODEN
R/W
0x0000.00FF
GPIO Digital Enable
155
0xFD0
GPIOPeriphID4
RO
0x0000.0000
GPIO Peripheral Identification 4
156
0xFD4
GPIOPeriphID5
RO
0x0000.0000
GPIO Peripheral Identification 5
157
0xFD8
GPIOPeriphID6
RO
0x0000.0000
GPIO Peripheral Identification 6
158
0xFDC
GPIOPeriphID7
RO
0x0000.0000
GPIO Peripheral Identification 7
159
0xFE0
GPIOPeriphID0
RO
0x0000.0061
GPIO Peripheral Identification 0
160
0xFE4
GPIOPeriphID1
RO
0x0000.0000
GPIO Peripheral Identification 1
161
0xFE8
GPIOPeriphID2
RO
0x0000.0018
GPIO Peripheral Identification 2
162
0xFEC
GPIOPeriphID3
RO
0x0000.0001
GPIO Peripheral Identification 3
163
0xFF0
GPIOPCellID0
RO
0x0000.000D
GPIO PrimeCell Identification 0
164
October 01, 2007
135
Preliminary
General-Purpose Input/Outputs (GPIOs)
Offset
Name
0xFF4
Reset
GPIOPCellID1
RO
0x0000.00F0
GPIO PrimeCell Identification 1
165
0xFF8
GPIOPCellID2
RO
0x0000.0005
GPIO PrimeCell Identification 2
166
0xFFC
GPIOPCellID3
RO
0x0000.00B1
GPIO PrimeCell Identification 3
167
8.5
Description
See
page
Type
Register Descriptions
The remainder of this section lists and describes the GPIO registers, in numerical order by address
offset.
136
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: GPIO Data (GPIODATA), offset 0x000
The GPIODATA register is the data register. In software control mode, values written in the
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been
configured as outputs through the GPIO Direction (GPIODIR) register (see page 138).
In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus
bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.
Similarly, the values read from this register are determined for each bit by the mask bit derived from
the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause
the corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the
corresponding bits in GPIODATA to be read as 0, regardless of their value.
A read from GPIODATA returns the last bit value written if the respective pins are configured as
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.
All bits are cleared by a reset.
GPIO Data (GPIODATA)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
DATA
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DATA
R/W
0x00
GPIO Data
This register is virtually mapped to 256 locations in the address space.
To facilitate the reading and writing of data to these registers by
independent drivers, the data read from and the data written to the
registers are masked by the eight address lines ipaddr[9:2]. Reads
from this register return its current state. Writes to this register only affect
bits that are not masked by ipaddr[9:2] and are configured as
outputs. See “Data Register Operation” on page 131 for examples of
reads and writes.
October 01, 2007
137
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 2: GPIO Direction (GPIODIR), offset 0x400
The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure
the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are
cleared by a reset, meaning all GPIO pins are inputs by default.
GPIO Direction (GPIODIR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x400
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
DIR
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DIR
R/W
0x00
GPIO Data Direction
The DIR values are defined as follows:
Value Description
0
Pins are inputs.
1
Pins are outputs.
138
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404
The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the
corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits
are cleared by a reset.
GPIO Interrupt Sense (GPIOIS)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x404
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
IS
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
IS
R/W
0x00
GPIO Interrupt Sense
The IS values are defined as follows:
Value Description
0
Edge on corresponding pin is detected (edge-sensitive).
1
Level on corresponding pin is detected (level-sensitive).
October 01, 2007
139
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408
The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO
Interrupt Sense (GPIOIS) register (see page 139) is set to detect edges, bits set to High in GPIOIBE
configure the corresponding pin to detect both rising and falling edges, regardless of the
corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 141). Clearing a bit
configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.
GPIO Interrupt Both Edges (GPIOIBE)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x408
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
IBE
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
IBE
R/W
0x00
GPIO Interrupt Both Edges
The IBE values are defined as follows:
Value Description
0
Interrupt generation is controlled by the GPIO Interrupt Event
(GPIOIEV) register (see page 141).
1
Both edges on the corresponding pin trigger an interrupt.
Note:
140
Single edge is determined by the corresponding bit
in GPIOIEV.
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the
corresponding pin to detect rising edges or high levels, depending on the corresponding bit value
in the GPIO Interrupt Sense (GPIOIS) register (see page 139). Clearing a bit configures the pin to
detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are
cleared by a reset.
GPIO Interrupt Event (GPIOIEV)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x40C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
IEV
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
IEV
R/W
0x00
GPIO Interrupt Event
The IEV values are defined as follows:
Value Description
0
Falling edge or Low levels on corresponding pins trigger
interrupts.
1
Rising edge or High levels on corresponding pins trigger
interrupts.
October 01, 2007
141
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410
The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the corresponding
pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables
interrupt triggering on that pin. All bits are cleared by a reset.
GPIO Interrupt Mask (GPIOIM)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x410
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
IME
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
IME
R/W
0x00
GPIO Interrupt Mask Enable
The IME values are defined as follows:
Value Description
0
Corresponding pin interrupt is masked.
1
Corresponding pin interrupt is not masked.
142
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414
The GPIORIS register is the raw interrupt status register. Bits read High in GPIORIS reflect the
status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the
requirements have been met, before they are finally allowed to trigger by the GPIO Interrupt Mask
(GPIOIM) register (see page 142). Bits read as zero indicate that corresponding input pins have not
initiated an interrupt. All bits are cleared by a reset.
GPIO Raw Interrupt Status (GPIORIS)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x414
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
RIS
RO
0x00
GPIO Interrupt Raw Status
Reflects the status of interrupt trigger condition detection on pins (raw,
prior to masking).
The RIS values are defined as follows:
Value Description
0
Corresponding pin interrupt requirements not met.
1
Corresponding pin interrupt has met requirements.
October 01, 2007
143
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418
The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect
the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has
been generated, or the interrupt is masked.
GPIOMIS is the state of the interrupt after masking.
GPIO Masked Interrupt Status (GPIOMIS)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x418
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
MIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
MIS
RO
0x00
GPIO Masked Interrupt Status
Masked value of interrupt due to corresponding pin.
The MIS values are defined as follows:
Value Description
0
Corresponding GPIO line interrupt not active.
1
Corresponding GPIO line asserting interrupt.
144
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the
corresponding interrupt edge detection logic register. Writing a 0 has no effect.
GPIO Interrupt Clear (GPIOICR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x41C
Type W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
W1C
0
W1C
0
W1C
0
W1C
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
IC
RO
0
RO
0
RO
0
RO
0
W1C
0
W1C
0
W1C
0
W1C
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
IC
W1C
0x00
GPIO Interrupt Clear
The IC values are defined as follows:
Value Description
0
Corresponding interrupt is unaffected.
1
Corresponding interrupt is cleared.
October 01, 2007
145
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420
The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register
selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore
no GPIO line is set to hardware control by default.
Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception
of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG
functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset
(RST) puts both groups of pins back to their default state.
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,
and apply RST or power-cycle the part.
In addition, it is possible to create a software sequence that prevents the debugger from connecting to
the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG
pins to their GPIO functionality, the debugger may not have enough time to connect and halt the
controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This
can be avoided with a software routine that restores JTAG functionality based on an external or software
trigger.
GPIO Alternate Function Select (GPIOAFSEL)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x420
Type R/W, reset 31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
R/W
-
reserved
Type
Reset
reserved
Type
Reset
AFSEL
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
146
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
7:0
AFSEL
R/W
-
Description
GPIO Alternate Function Select
The AFSEL values are defined as follows:
Value Description
0
Software control of corresponding GPIO line (GPIO mode).
1
Hardware control of corresponding GPIO line (alternate
hardware function).
Note:
October 01, 2007
The default reset value for the GPIOAFSEL register
is 0x0000.0000 for all GPIO pins, with the exception
of the five JTAG pins (PB7 and PC[3:0]). These five
pins default to JTAG functionality. Because of this,
the default reset value of GPIOAFSEL for GPIO Port
B is 0x0000.0080 while the default reset value for
Port C is 0x0000.000F.
147
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500
The GPIODR2R register is the 2-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO
signal, the corresponding DRV4 bit in the GPIODR4R register and the DRV8 bit in the GPIODR8R
register are automatically cleared by hardware.
GPIO 2-mA Drive Select (GPIODR2R)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x500
Type R/W, reset 0x0000.00FF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
DRV2
RO
0
RO
0
RO
0
RO
0
R/W
1
R/W
1
R/W
1
R/W
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DRV2
R/W
0xFF
Output Pad 2-mA Drive Enable
A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the
corresponding 2-mA enable bit. The change is effective on the second
clock cycle after the write.
148
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504
The GPIODR4R register is the 4-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV8 bit in the GPIODR8R
register are automatically cleared by hardware.
GPIO 4-mA Drive Select (GPIODR4R)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x504
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
DRV4
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DRV4
R/W
0x00
Output Pad 4-mA Drive Enable
A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the
corresponding 4-mA enable bit. The change is effective on the second
clock cycle after the write.
October 01, 2007
149
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508
The GPIODR8R register is the 8-mA drive control register. It allows for each GPIO signal in the port
to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV4 bit in the GPIODR4R
register are automatically cleared by hardware.
GPIO 8-mA Drive Select (GPIODR8R)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x508
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
DRV8
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DRV8
R/W
0x00
Output Pad 8-mA Drive Enable
A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the
corresponding 8-mA enable bit. The change is effective on the second
clock cycle after the write.
150
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C
The GPIOODR register is the open drain control register. Setting a bit in this register enables the
open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the
corresponding bit should also be set in the GPIO Digital Input Enable (GPIODEN) register (see
page 155). Corresponding bits in the drive strength registers (GPIODR2R, GPIODR4R, GPIODR8R,
and GPIOSLR ) can be set to achieve the desired rise and fall times. The GPIO acts as an open
drain input if the corresponding bit in the GPIODIR register is set to 0; and as an open drain output
when set to 1.
When using the I2C module, the GPIO Alternate Function Select (GPIOAFSEL) register bit for
PB2 and PB3 should be set to 1 (see examples in “Initialization and Configuration” on page 133).
GPIO Open Drain Select (GPIOODR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x50C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
ODE
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
ODE
R/W
0x00
Output Pad Open Drain Enable
The ODE values are defined as follows:
Value Description
0
Open drain configuration is disabled.
1
Open drain configuration is enabled.
October 01, 2007
151
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510
The GPIOPUR register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up
resistor on the corresponding GPIO signal. Setting a bit in GPIOPUR automatically clears the
corresponding bit in the GPIO Pull-Down Select (GPIOPDR) register (see page 153).
GPIO Pull-Up Select (GPIOPUR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x510
Type R/W, reset 0x0000.00FF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PUE
RO
0
RO
0
RO
0
RO
0
R/W
1
R/W
1
R/W
1
R/W
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PUE
R/W
0xFF
Pad Weak Pull-Up Enable
A write of 1 to GPIOPDR[n] clears the corresponding GPIOPUR[n]
enables. The change is effective on the second clock cycle after the
write.
152
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak
pull-down resistor on the corresponding GPIO signal. Setting a bit in GPIOPDR automatically clears
the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 152).
GPIO Pull-Down Select (GPIOPDR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x514
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PDE
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PDE
R/W
0x00
Pad Weak Pull-Down Enable
A write of 1 to GPIOPUR[n] clears the corresponding GPIOPDR[n]
enables. The change is effective on the second clock cycle after the
write.
October 01, 2007
153
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518
The GPIOSLR register is the slew rate control register. Slew rate control is only available when
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see
page 150).
GPIO Slew Rate Control Select (GPIOSLR)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x518
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
SRL
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
SRL
R/W
0x00
Slew Rate Limit Enable (8-mA drive only)
The SRL values are defined as follows:
Value Description
0
Slew rate control disabled.
1
Slew rate control enabled.
154
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C
The GPIODEN register is the digital input enable register. By default, all GPIO signals are configured
as digital inputs at reset. If a pin is being used as a GPIO or its Alternate Hardware Function, it
should be configured as a digital input. The only time that a pin should not be configured as a digital
input is when the GPIO pin is configured to be one of the analog input signals for the analog
comparators.
GPIO Digital Enable (GPIODEN)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0x51C
Type R/W, reset 0x0000.00FF
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
DEN
RO
0
RO
0
RO
0
RO
0
R/W
1
R/W
1
R/W
1
R/W
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DEN
R/W
0xFF
Digital Enable
The DEN values are defined as follows:
Value Description
0
Digital functions disabled.
1
Digital functions enabled.
October 01, 2007
155
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 4 (GPIOPeriphID4)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFD0
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID4
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID4
RO
0x00
GPIO Peripheral ID Register[7:0]
156
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 5 (GPIOPeriphID5)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFD4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID5
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID5
RO
0x00
GPIO Peripheral ID Register[15:8]
October 01, 2007
157
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 6 (GPIOPeriphID6)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFD8
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID6
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID6
RO
0x00
GPIO Peripheral ID Register[23:16]
158
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 7 (GPIOPeriphID7)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFDC
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID7
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID7
RO
0x00
GPIO Peripheral ID Register[31:24]
October 01, 2007
159
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 0 (GPIOPeriphID0)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFE0
Type RO, reset 0x0000.0061
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID0
RO
0x61
GPIO Peripheral ID Register[7:0]
Can be used by software to identify the presence of this peripheral.
160
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 1 (GPIOPeriphID1)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFE4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID1
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID1
RO
0x00
GPIO Peripheral ID Register[15:8]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
161
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 2 (GPIOPeriphID2)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFE8
Type RO, reset 0x0000.0018
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID2
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID2
RO
0x18
GPIO Peripheral ID Register[23:16]
Can be used by software to identify the presence of this peripheral.
162
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,
used by software to identify the peripheral.
GPIO Peripheral Identification 3 (GPIOPeriphID3)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFEC
Type RO, reset 0x0000.0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID3
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID3
RO
0x01
GPIO Peripheral ID Register[31:24]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
163
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.
GPIO PrimeCell Identification 0 (GPIOPCellID0)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFF0
Type RO, reset 0x0000.000D
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
1
RO
1
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
CID0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID0
RO
0x0D
GPIO PrimeCell ID Register[7:0]
Provides software a standard cross-peripheral identification system.
164
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.
GPIO PrimeCell Identification 1 (GPIOPCellID1)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFF4
Type RO, reset 0x0000.00F0
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
CID1
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID1
RO
0xF0
GPIO PrimeCell ID Register[15:8]
Provides software a standard cross-peripheral identification system.
October 01, 2007
165
Preliminary
General-Purpose Input/Outputs (GPIOs)
Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.
GPIO PrimeCell Identification 2 (GPIOPCellID2)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFF8
Type RO, reset 0x0000.0005
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
1
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
CID2
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID2
RO
0x05
GPIO PrimeCell ID Register[23:16]
Provides software a standard cross-peripheral identification system.
166
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard
cross-peripheral identification system.
GPIO PrimeCell Identification 3 (GPIOPCellID3)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
Offset 0xFFC
Type RO, reset 0x0000.00B1
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
CID3
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
1
RO
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID3
RO
0xB1
GPIO PrimeCell ID Register[31:24]
Provides software a standard cross-peripheral identification system.
October 01, 2007
167
Preliminary
General-Purpose Timers
9
General-Purpose Timers
Programmable timers can be used to count or time external events that drive the Timer input pins.
®
The Stellaris General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1,
and Timer 2). Each GPTM block provides two 16-bit timer/counters (referred to as TimerA and
TimerB) that can be configured to operate independently as timers or event counters, or configured
to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).
Note:
Timer2 is an internal timer and can only be used to generate internal interrupts.
®
The General-Purpose Timer Module is one timing resource available on the Stellaris microcontrollers.
Other timer resources include the System Timer (SysTick) (see “System Timer (SysTick)” on page 37)
and the PWM timer in the PWM module (see “PWM Timer” on page 350).
The following modes are supported:
■ 32-bit Timer modes
– Programmable one-shot timer
– Programmable periodic timer
– Real-Time Clock using 32.768-KHz input clock
– Software-controlled event stalling (excluding RTC mode)
■ 16-bit Timer modes
– General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
– Programmable one-shot timer
– Programmable periodic timer
– Software-controlled event stalling
■ 16-bit Input Capture modes
– Input edge count capture
– Input edge time capture
■ 16-bit PWM mode
– Simple PWM mode with software-programmable output inversion of the PWM signal
168
October 01, 2007
Preliminary
LM3S601 Microcontroller
9.1
Block Diagram
Figure 9-1. GPTM Module Block Diagram
0x0000 (Down Counter Modes)
TimerA Control
GPTMTAPMR
TA Comparator
GPTMTAPR
Clock / Edge
Detect
GPTMTAMATCHR
Interrupt / Config
TimerA
Interrupt
GPTMCFG
GPTMTAILR
GPTMAR
En
GPTMCTL
GPTMIMR
TimerB
Interrupt
CCP (even)
GPTMTAMR
RTC Divider
GPTMRIS
GPTMMIS
TimerB Control
GPTMICR
GPTMTBPMR
GPTMTBR En
Clock / Edge
Detect
GPTMTBPR
GPTMTBMATCHR
GPTMTBILR
CCP (odd)
TB Comparator
GPTMTBMR
0x0000 (Down Counter Modes)
System
Clock
9.2
Functional Description
The main components of each GPTM block are two free-running 16-bit up/down counters (referred
to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit
load/initialization registers and their associated control functions. The exact functionality of each
GPTM is controlled by software and configured through the register interface.
Software configures the GPTM using the GPTM Configuration (GPTMCFG) register (see page 180),
the GPTM TimerA Mode (GPTMTAMR) register (see page 181), and the GPTM TimerB Mode
(GPTMTBMR) register (see page 183). When in one of the 32-bit modes, the timer can only act as
a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers
configured in any combination of the 16-bit modes.
9.2.1
GPTM Reset Conditions
After reset has been applied to the GPTM module, the module is in an inactive state, and all control
registers are cleared and in their default states. Counters TimerA and TimerB are initialized to
0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load
(GPTMTAILR) register (see page 194) and the GPTM TimerB Interval Load (GPTMTBILR) register
(see page 195). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale
(GPTMTAPR) register (see page 198) and the GPTM TimerB Prescale (GPTMTBPR) register (see
page 199).
9.2.2
32-Bit Timer Operating Modes
Note:
Both the odd- and even-numbered CCP pins are used for 16-bit mode. Only the
even-numbered CCP pins are used for 32-bit mode.
October 01, 2007
169
Preliminary
General-Purpose Timers
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their
configuration.
The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1
(RTC mode) to the GPTM Configuration (GPTMCFG) register. In both configurations, certain GPTM
registers are concatenated to form pseudo 32-bit registers. These registers include:
■ GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 194
■ GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 195
■ GPTM TimerA (GPTMTAR) register [15:0], see page 202
■ GPTM TimerB (GPTMTBR) register [15:0], see page 203
In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:
GPTMTBILR[15:0]:GPTMTAILR[15:0]
Likewise, a read access to GPTMTAR returns the value:
GPTMTBR[15:0]:GPTMTAR[15:0]
9.2.2.1
32-Bit One-Shot/Periodic Timer Mode
In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB
registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is
determined by the value written to the TAMR field of the GPTM TimerA Mode (GPTMTAMR) register
(see page 181), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR) register.
When software writes the TAEN bit in the GPTM Control (GPTMCTL) register (see page 185), the
timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the
timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If configured to
be a one-shot timer, the timer stops counting and clears the TAEN bit in the GPTMCTL register. If
configured as a periodic timer, it continues counting.
In addition to reloading the count value, the GPTM generates interrupts and output triggers when
it reaches the 0x0000000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status
(GPTMRIS) register (see page 190), and holds it until it is cleared by writing the GPTM Interrupt
Clear (GPTMICR) register (see page 192). If the time-out interrupt is enabled in the GPTM Interrupt
Mask (GPTIMR) register (see page 188), the GPTM also sets the TATOMIS bit in the GPTM Masked
Interrupt Status (GPTMMIS) register (see page 191).
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000.0000
state, and deasserted on the following clock cycle. It is enabled by setting the TAOTE bit in GPTMCTL.
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.
If the TASTALL bit in the GPTMCTL register is asserted, the timer freezes counting until the signal
is deasserted.
9.2.2.2
32-Bit Real-Time Clock Timer Mode
In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is
170
October 01, 2007
Preliminary
LM3S601 Microcontroller
loaded with a value of 0x0000.0001. All subsequent load values must be written to the GPTM TimerA
Match (GPTMTAMATCHR) register (see page 196) by the controller.
The input clock on the CCP0, CCP2, or CCP4 pins is required to be 32.768 KHz in RTC mode. The
clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.
When software writes the TAEN bit inthe GPTMCTL register, the counter starts counting up from its
preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the
GPTMTAMATCHR register, it rolls over to a value of 0x0000.0000 and continues counting until
either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs,
the GPTM asserts the RTCRIS bit in GPTMRIS. If the RTC interrupt is enabled in GPTIMR, the
GPTM also sets the RTCMIS bit in GPTMISR and generates a controller interrupt. The status flags
are cleared by writing the RTCCINT bit in GPTMICR.
If the TASTALL and/or TBSTALL bits in the GPTMCTL register are set, the timer does not freeze if
the RTCEN bit is set in GPTMCTL.
9.2.3
16-Bit Timer Operating Modes
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration
(GPTMCFG) register (see page 180). This section describes each of the GPTM 16-bit modes of
operation. TimerA and TimerB have identical modes, so a single description is given using an n to
reference both.
9.2.3.1
16-Bit One-Shot/Periodic Timer Mode
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with
an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The
selection of one-shot or periodic mode is determined by the value written to the TnMR field of the
GPTMTnMR register. The optional prescaler is loaded into the GPTM Timern Prescale (GPTMTnPR)
register.
When software writes the TnEN bit in the GPTMCTL register, the timer begins counting down from
its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from
GPTMTnILR and GPTMTnPR on the next cycle. If configured to be a one-shot timer, the timer stops
counting and clears the TnEN bit in the GPTMCTL register. If configured as a periodic timer, it
continues counting.
In addition to reloading the count value, the timer generates interrupts and output triggers when it
reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it
until it is cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTIMR,
the GPTM also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt.
The output trigger is a one-clock-cycle pulse that is asserted when the counter hits the 0x0000 state,
and deasserted on the following clock cycle. It is enabled by setting the TnOTE bit in the GPTMCTL
register, and can trigger SoC-level events.
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new
value on the next clock cycle and continues counting from the new value.
If the TnSTALL bit in the GPTMCTL register is enabled, the timer freezes counting until the signal
is deasserted.
The following example shows a variety of configurations for a 16-bit free running timer while using
the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).
October 01, 2007
171
Preliminary
General-Purpose Timers
Table 9-1. 16-Bit Timer With Prescaler Configurations
a
Prescale #Clock (T c) Max Time Units
00000000
1
1.3107
mS
00000001
2
2.6214
mS
00000010
3
3.9321
mS
------------
--
--
--
11111100
254
332.9229
mS
11111110
255
334.2336
mS
11111111
256
335.5443
mS
a. Tc is the clock period.
9.2.3.2
16-Bit Input Edge Count Mode
In Edge Count mode, the timer is configured as a down-counter capable of capturing three types
of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit
of the GPTMTnMR register must be set to 0. The type of edge that the timer counts is determined
by the TnEVENT fields of the GPTMCTL register. During initialization, the GPTM Timern Match
(GPTMTnMATCHR) register is configured so that the difference between the value in the
GPTMTnILR register and the GPTMTnMATCHR register equals the number of edge events that
must be counted.
When software writes the TnEN bit in the GPTM Control (GPTMCTL) register, the timer is enabled
for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count
matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRIS bit in the
GPTMRIS register (and the CnMMIS bit, if the interrupt is not masked). The counter is then reloaded
using the value in GPTMTnILR, and stopped since the GPTM automatically clears the TnEN bit in
the GPTMCTL register. Once the event count has been reached, all further events are ignored until
TnEN is re-enabled by software.
Figure 9-2 on page 173 shows how input edge count mode works. In this case, the timer start value
is set to GPTMnILR =0x000A and the match value is set to GPTMnMATCHR =0x0006 so that four
edge events are counted. The counter is configured to detect both edges of the input signal.
Note that the last two edges are not counted since the timer automatically clears the TnEN bit after
the current count matches the value in the GPTMnMR register.
172
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 9-2. 16-Bit Input Edge Count Mode Example
Timer reload
on next cycle
Count
Ignored
Ignored
0x000A
0x0009
0x0008
0x0007
0x0006
Timer stops,
flags
asserted
Input Signal
9.2.3.3
16-Bit Input Edge Time Mode
Note:
The prescaler is not available in 16-Bit Input Edge Time mode.
In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value
loaded in the GPTMTnILR register (or 0xFFFF at reset). This mode allows for event capture of both
rising and falling edges. The timer is placed into Edge Time mode by setting the TnCMR bit in the
GPTMTnMR register, and the type of event that the timer captures is determined by the TnEVENT
fields of the GPTMCnTL register.
When software writes the TnEN bit in the GPTMCTL register, the timer is enabled for event capture.
When the selected input event is detected, the current Tn counter value is captured in the GPTMTnR
register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and
the CnEMIS bit, if the interrupt is not masked).
After an event has been captured, the timer does not stop counting. It continues to count until the
TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the
GPTMnILR register.
Figure 9-3 on page 174 shows how input edge timing mode works. In the diagram, it is assumed that
the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture
rising edge events.
Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR
register, and is held there until another rising edge is detected (at which point the new count value
is loaded into GPTMTnR).
October 01, 2007
173
Preliminary
General-Purpose Timers
Figure 9-3. 16-Bit Input Edge Time Mode Example
Count
0xFFFF
GPTMTnR=X
GPTMTnR=Y
GPTMTnR=Z
Z
X
Y
Time
Input Signal
9.2.3.4
16-Bit PWM Mode
The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a
down-counter with a start value (and thus period) defined by GPTMTnILR. PWM mode is enabled
with the GPTMTnMR register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR
field to 0x2.
When software writes the TnEN bit in the GPTMCTL register, the counter begins counting down
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from
GPTMTnILR (and GPTMTnPR if using a prescaler) and continues counting until disabled by software
clearing the TnEN bit in the GPTMCTL register. No interrupts or status bits are asserted in PWM
mode.
The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its
start state), and is deasserted when the counter value equals the value in the GPTM Timern Match
Register (GPTMnMATCHR). Software has the capability of inverting the output PWM signal by
setting the TnPWML bit in the GPTMCTL register.
Figure 9-4 on page 175 shows how to generate an output PWM with a 1-ms period and a 66% duty
cycle assuming a 50-MHz input clock and TnPWML =0 (duty cycle would be 33% for the TnPWML
=1 configuration). For this example, the start value is GPTMnIRL=0xC350 and the match value is
GPTMnMR=0x411A.
174
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 9-4. 16-Bit PWM Mode Example
Count
GPTMTnR=GPTMnMR
GPTMTnR=GPTMnMR
0xC350
0x411A
Time
TnEN set
TnPWML = 0
Output
Signal
TnPWML = 1
9.3
Initialization and Configuration
To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMER0,
TIMER1, and TIMER2 bits in the RCGC1 register.
This section shows module initialization and configuration examples for each of the supported timer
modes.
9.3.1
32-Bit One-Shot/Periodic Timer Mode
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:
1. Ensure the timer is disabled (the TAEN bit in the GPTMCTL register is cleared) before making
any changes.
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
a. Write a value of 0x1 for One-Shot mode.
b. Write a value of 0x2 for Periodic mode.
4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.
October 01, 2007
175
Preliminary
General-Purpose Timers
7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM
Interrupt Clear Register (GPTMICR).
In One-Shot mode, the timer stops counting after step 7 on page 176. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.
9.3.2
32-Bit Real-Time Clock (RTC) Mode
To use the RTC mode, the timer must have a 32.768-KHz input signal on its CCP0, CCP2, or CCP4
pins. To enable the RTC feature, follow these steps:
1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.
When the timer count equals the value in the GPTMTAMATCHR register, the counter is re-loaded
with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.
9.3.3
16-Bit One-Shot/Periodic Timer Mode
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
a. Write a value of 0x1 for One-Shot mode.
b. Write a value of 0x2 for Periodic mode.
4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register
(GPTMTnPR).
5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
7. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start
counting.
8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM
Interrupt Clear Register (GPTMICR).
176
October 01, 2007
Preliminary
LM3S601 Microcontroller
In One-Shot mode, the timer stops counting after step 8 on page 176. To re-enable the timer, repeat
the sequence. A timer configured in Periodic mode does not stop counting after it times out.
9.3.4
16-Bit Input Edge Count Mode
A timer is configured to Input Edge Count mode by the following sequence:
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR
field to 0x3.
4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
8. Set the TnEN bit in the GPTMCTL register to enable the timer and begin waiting for edge events.
9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM
Interrupt Clear (GPTMICR) register.
In Input Edge Count Mode, the timer stops after the desired number of edge events has been
detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step
4 on page 177-step 9 on page 177.
9.3.5
16-Bit Input Edge Timing Mode
A timer is configured to Input Edge Timing mode by the following sequence:
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR
field to 0x3.
4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM
Control (GPTMCTL) register.
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).
In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM
October 01, 2007
177
Preliminary
General-Purpose Timers
Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained
by reading the GPTM Timern (GPTMTnR) register.
In Input Edge Timing mode, the timer continues running after an edge event has been detected,
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change
takes effect at the next cycle after the write.
9.3.6
16-Bit PWM Mode
A timer is configured to PWM mode using the following sequence:
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to
0x0, and the TnMR field to 0x2.
4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnEVENT field
of the GPTM Control (GPTMCTL) register.
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
7. If a prescaler is going to be used, configure the GPTM Timern Prescale (GPTMTnPR) register
and the GPTM Timern Prescale Match (GPTMTnPMR) register.
8. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin
generation of the output PWM signal.
In PWM Timing mode, the timer continues running after the PWM signal has been generated. The
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change takes
effect at the next cycle after the write.
9.4
Register Map
Table 9-2 on page 178 lists the GPTM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that timer’s base address:
■ Timer0: 0x4003.0000
■ Timer1: 0x4003.1000
■ Timer2: 0x4003.2000
Table 9-2. Timers Register Map
Description
See
page
Offset
Name
Type
Reset
0x000
GPTMCFG
R/W
0x0000.0000
GPTM Configuration
180
0x004
GPTMTAMR
R/W
0x0000.0000
GPTM TimerA Mode
181
0x008
GPTMTBMR
R/W
0x0000.0000
GPTM TimerB Mode
183
178
October 01, 2007
Preliminary
LM3S601 Microcontroller
Description
See
page
Offset
Name
Type
Reset
0x00C
GPTMCTL
R/W
0x0000.0000
GPTM Control
185
0x018
GPTMIMR
R/W
0x0000.0000
GPTM Interrupt Mask
188
0x01C
GPTMRIS
RO
0x0000.0000
GPTM Raw Interrupt Status
190
0x020
GPTMMIS
RO
0x0000.0000
GPTM Masked Interrupt Status
191
0x024
GPTMICR
W1C
0x0000.0000
GPTM Interrupt Clear
192
GPTM TimerA Interval Load
194
0x028
GPTMTAILR
R/W
0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)
0x02C
GPTMTBILR
R/W
0x0000.FFFF
GPTM TimerB Interval Load
195
0x030
GPTMTAMATCHR
R/W
0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)
GPTM TimerA Match
196
0x034
GPTMTBMATCHR
R/W
0x0000.FFFF
GPTM TimerB Match
197
0x038
GPTMTAPR
R/W
0x0000.0000
GPTM TimerA Prescale
198
0x03C
GPTMTBPR
R/W
0x0000.0000
GPTM TimerB Prescale
199
0x040
GPTMTAPMR
R/W
0x0000.0000
GPTM TimerA Prescale Match
200
0x044
GPTMTBPMR
R/W
0x0000.0000
GPTM TimerB Prescale Match
201
GPTM TimerA
202
GPTM TimerB
203
0x048
GPTMTAR
RO
0x0000.FFFF
(16-bit mode)
0xFFFF.FFFF
(32-bit mode)
0x04C
GPTMTBR
RO
0x0000.FFFF
9.5
Register Descriptions
The remainder of this section lists and describes the GPTM registers, in numerical order by address
offset.
October 01, 2007
179
Preliminary
General-Purpose Timers
Register 1: GPTM Configuration (GPTMCFG), offset 0x000
This register configures the global operation of the GPTM module. The value written to this register
determines whether the GPTM is in 32- or 16-bit mode.
GPTM Configuration (GPTMCFG)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
GPTMCFG
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2:0
GPTMCFG
R/W
0x0
GPTM Configuration
The GPTMCFG values are defined as follows:
Value
Description
0x0
32-bit timer configuration.
0x1
32-bit real-time clock (RTC) counter configuration.
0x2
Reserved.
0x3
Reserved.
0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of
GPTMTAMR and GPTMTBMR.
180
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to
0x2.
GPTM TimerA Mode (GPTMTAMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x004
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
TAAMS
TACMR
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TAMR
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
TAAMS
R/W
0
GPTM TimerA Alternate Mode Select
The TAAMS values are defined as follows:
Value Description
0
Capture mode is enabled.
1
PWM mode is enabled.
Note:
2
TACMR
R/W
0
To enable PWM mode, you must also clear the TACMR
bit and set the TAMR field to 0x2.
GPTM TimerA Capture Mode
The TACMR values are defined as follows:
Value Description
0
Edge-Count mode.
1
Edge-Time mode.
October 01, 2007
181
Preliminary
General-Purpose Timers
Bit/Field
Name
Type
Reset
1:0
TAMR
R/W
0x0
Description
GPTM TimerA Mode
The TAMR values are defined as follows:
Value Description
0x0 Reserved.
0x1 One-Shot Timer mode.
0x2 Periodic Timer mode.
0x3 Capture mode.
The Timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register (16-or 32-bit).
In 16-bit timer configuration, TAMR controls the 16-bit timer modes for
TimerA.
In 32-bit timer configuration, this register controls the mode and the
contents of GPTMTBMR are ignored.
182
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008
This register configures the GPTM based on the configuration selected in the GPTMCFG register.
When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to
0x2.
GPTM TimerB Mode (GPTMTBMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
TBAMS
TBCMR
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TBMR
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
TBAMS
R/W
0
GPTM TimerB Alternate Mode Select
The TBAMS values are defined as follows:
Value Description
0
Capture mode is enabled.
1
PWM mode is enabled.
Note:
2
TBCMR
R/W
0
To enable PWM mode, you must also clear the TBCMR
bit and set the TBMR field to 0x2.
GPTM TimerB Capture Mode
The TBCMR values are defined as follows:
Value Description
0
Edge-Count mode.
1
Edge-Time mode.
October 01, 2007
183
Preliminary
General-Purpose Timers
Bit/Field
Name
Type
Reset
1:0
TBMR
R/W
0x0
Description
GPTM TimerB Mode
The TBMR values are defined as follows:
Value Description
0x0 Reserved.
0x1 One-Shot Timer mode.
0x2 Periodic Timer mode.
0x3 Capture mode.
The timer mode is based on the timer configuration defined by bits 2:0
in the GPTMCFG register.
In 16-bit timer configuration, these bits control the 16-bit timer modes
for TimerB.
In 32-bit timer configuration, this register’s contents are ignored and
GPTMTAMR is used.
184
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4: GPTM Control (GPTMCTL), offset 0x00C
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer
configuration, and to enable other features such as timer stall and the output trigger.
GPTM Control (GPTMCTL)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x00C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
TBSTALL
TBEN
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
TAOTE
RTCEN
TASTALL
TAEN
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved TBPWML TBOTE
Type
Reset
RO
0
R/W
0
reserved
R/W
0
RO
0
TBEVENT
R/W
0
R/W
0
reserved TAPWML
RO
0
R/W
0
TAEVENT
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:15
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
14
TBPWML
R/W
0
GPTM TimerB PWM Output Level
The TBPWML values are defined as follows:
Value Description
13
TBOTE
R/W
0
0
Output is unaffected.
1
Output is inverted.
GPTM TimerB Output Trigger Enable
The TBOTE values are defined as follows:
Value Description
12
reserved
RO
0
11:10
TBEVENT
R/W
0x0
0
The output TimerB trigger is disabled.
1
The output TimerB trigger is enabled.
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
GPTM TimerB Event Mode
The TBEVENT values are defined as follows:
Value Description
0x0 Positive edge.
0x1 Negative edge.
0x2 Reserved
0x3 Both edges.
October 01, 2007
185
Preliminary
General-Purpose Timers
Bit/Field
Name
Type
Reset
9
TBSTALL
R/W
0
Description
GPTM TimerB Stall Enable
The TBSTALL values are defined as follows:
Value Description
8
TBEN
R/W
0
0
TimerB stalling is disabled.
1
TimerB stalling is enabled.
GPTM TimerB Enable
The TBEN values are defined as follows:
Value Description
0
TimerB is disabled.
1
TimerB is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.
7
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6
TAPWML
R/W
0
GPTM TimerA PWM Output Level
The TAPWML values are defined as follows:
Value Description
5
TAOTE
R/W
0
0
Output is unaffected.
1
Output is inverted.
GPTM TimerA Output Trigger Enable
The TAOTE values are defined as follows:
Value Description
4
RTCEN
R/W
0
0
The output TimerA trigger is disabled.
1
The output TimerA trigger is enabled.
GPTM RTC Enable
The RTCEN values are defined as follows:
Value Description
0
RTC counting is disabled.
1
RTC counting is enabled.
186
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
3:2
TAEVENT
R/W
0x0
Description
GPTM TimerA Event Mode
The TAEVENT values are defined as follows:
Value Description
0x0 Positive edge.
0x1 Negative edge.
0x2 Reserved
0x3 Both edges.
1
TASTALL
R/W
0
GPTM TimerA Stall Enable
The TASTALL values are defined as follows:
Value Description
0
TAEN
R/W
0
0
TimerA stalling is disabled.
1
TimerA stalling is enabled.
GPTM TimerA Enable
The TAEN values are defined as follows:
Value Description
0
TimerA is disabled.
1
TimerA is enabled and begins counting or the capture logic is
enabled based on the GPTMCFG register.
October 01, 2007
187
Preliminary
General-Purpose Timers
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables
the interrupt, while writing a 0 disables it.
GPTM Interrupt Mask (GPTMIMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x018
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
CBEIM
CBMIM
TBTOIM
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RTCIM
CAEIM
CAMIM
TATOIM
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
CBEIM
R/W
0
GPTM CaptureB Event Interrupt Mask
The CBEIM values are defined as follows:
Value Description
9
CBMIM
R/W
0
0
Interrupt is disabled.
1
Interrupt is enabled.
GPTM CaptureB Match Interrupt Mask
The CBMIM values are defined as follows:
Value Description
8
TBTOIM
R/W
0
0
Interrupt is disabled.
1
Interrupt is enabled.
GPTM TimerB Time-Out Interrupt Mask
The TBTOIM values are defined as follows:
Value Description
7:4
reserved
RO
0
0
Interrupt is disabled.
1
Interrupt is enabled.
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
188
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
3
RTCIM
R/W
0
Description
GPTM RTC Interrupt Mask
The RTCIM values are defined as follows:
Value Description
2
CAEIM
R/W
0
0
Interrupt is disabled.
1
Interrupt is enabled.
GPTM CaptureA Event Interrupt Mask
The CAEIM values are defined as follows:
Value Description
1
CAMIM
R/W
0
0
Interrupt is disabled.
1
Interrupt is enabled.
GPTM CaptureA Match Interrupt Mask
The CAMIM values are defined as follows:
Value Description
0
TATOIM
R/W
0
0
Interrupt is disabled.
1
Interrupt is enabled.
GPTM TimerA Time-Out Interrupt Mask
The TATOIM values are defined as follows:
Value Description
0
Interrupt is disabled.
1
Interrupt is enabled.
October 01, 2007
189
Preliminary
General-Purpose Timers
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its
corresponding bit in GPTMICR.
GPTM Raw Interrupt Status (GPTMRIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
CBERIS CBMRIS TBTORIS
RO
0
RO
0
RO
0
reserved
RTCRIS
RO
0
CAERIS CAMRIS TATORIS
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
CBERIS
RO
0
GPTM CaptureB Event Raw Interrupt
This is the CaptureB Event interrupt status prior to masking.
9
CBMRIS
RO
0
GPTM CaptureB Match Raw Interrupt
This is the CaptureB Match interrupt status prior to masking.
8
TBTORIS
RO
0
GPTM TimerB Time-Out Raw Interrupt
This is the TimerB time-out interrupt status prior to masking.
7:4
reserved
RO
0x0
3
RTCRIS
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
GPTM RTC Raw Interrupt
This is the RTC Event interrupt status prior to masking.
2
CAERIS
RO
0
GPTM CaptureA Event Raw Interrupt
This is the CaptureA Event interrupt status prior to masking.
1
CAMRIS
RO
0
GPTM CaptureA Match Raw Interrupt
This is the CaptureA Match interrupt status prior to masking.
0
TATORIS
RO
0
GPTM TimerA Time-Out Raw Interrupt
This the TimerA time-out interrupt status prior to masking.
190
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.
GPTM Masked Interrupt Status (GPTMMIS)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x020
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
CBEMIS CBMMIS TBTOMIS
RO
0
RO
0
RO
0
reserved
RTCMIS CAEMIS CAMMIS TATOMIS
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
CBEMIS
RO
0
GPTM CaptureB Event Masked Interrupt
This is the CaptureB event interrupt status after masking.
9
CBMMIS
RO
0
GPTM CaptureB Match Masked Interrupt
This is the CaptureB match interrupt status after masking.
8
TBTOMIS
RO
0
GPTM TimerB Time-Out Masked Interrupt
This is the TimerB time-out interrupt status after masking.
7:4
reserved
RO
0x0
3
RTCMIS
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
GPTM RTC Masked Interrupt
This is the RTC event interrupt status after masking.
2
CAEMIS
RO
0
GPTM CaptureA Event Masked Interrupt
This is the CaptureA event interrupt status after masking.
1
CAMMIS
RO
0
GPTM CaptureA Match Masked Interrupt
This is the CaptureA match interrupt status after masking.
0
TATOMIS
RO
0
GPTM TimerA Time-Out Masked Interrupt
This is the TimerA time-out interrupt status after masking.
October 01, 2007
191
Preliminary
General-Purpose Timers
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.
GPTM Interrupt Clear (GPTMICR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x024
Type W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
CBECINT CBMCINT TBTOCINT
W1C
0
W1C
0
W1C
0
reserved
RTCCINT CAECINT CAMCINT TATOCINT
W1C
0
W1C
0
W1C
0
W1C
0
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
CBECINT
W1C
0
GPTM CaptureB Event Interrupt Clear
The CBECINT values are defined as follows:
Value Description
9
CBMCINT
W1C
0
0
The interrupt is unaffected.
1
The interrupt is cleared.
GPTM CaptureB Match Interrupt Clear
The CBMCINT values are defined as follows:
Value Description
8
TBTOCINT
W1C
0
0
The interrupt is unaffected.
1
The interrupt is cleared.
GPTM TimerB Time-Out Interrupt Clear
The TBTOCINT values are defined as follows:
Value Description
7:4
reserved
RO
0x0
0
The interrupt is unaffected.
1
The interrupt is cleared.
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
192
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
3
RTCCINT
W1C
0
Description
GPTM RTC Interrupt Clear
The RTCCINT values are defined as follows:
Value Description
2
CAECINT
W1C
0
0
The interrupt is unaffected.
1
The interrupt is cleared.
GPTM CaptureA Event Interrupt Clear
The CAECINT values are defined as follows:
Value Description
1
CAMCINT
W1C
0
0
The interrupt is unaffected.
1
The interrupt is cleared.
GPTM CaptureA Match Raw Interrupt
This is the CaptureA match interrupt status after masking.
0
TATOCINT
W1C
0
GPTM TimerA Time-Out Raw Interrupt
The TATOCINT values are defined as follows:
Value Description
0
The interrupt is unaffected.
1
The interrupt is cleared.
October 01, 2007
193
Preliminary
General-Purpose Timers
Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028
This register is used to load the starting count value into the timer. When GPTM is configured to
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond
to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.
GPTM TimerA Interval Load (GPTMTAILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x028
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
1
R/W
1
R/W
0
R/W
1
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
TAILRH
Type
Reset
TAILRL
Type
Reset
Bit/Field
Name
Type
31:16
TAILRH
R/W
Reset
Description
0xFFFF
GPTM TimerA Interval Load Register High
(32-bit mode)
0x0000 (16-bit When configured for 32-bit mode via the GPTMCFG register, the GPTM
TimerB Interval Load (GPTMTBILR) register loads this value on a
mode)
write. A read returns the current value of GPTMTBILR.
In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBILR.
15:0
TAILRL
R/W
0xFFFF
GPTM TimerA Interval Load Register Low
For both 16- and 32-bit modes, writing this field loads the counter for
TimerA. A read returns the current value of GPTMTAILR.
194
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C
This register is used to load the starting count value into TimerB. When the GPTM is configured to
a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.
GPTM TimerB Interval Load (GPTMTBILR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x02C
Type R/W, reset 0x0000.FFFF
31
30
29
28
27
26
25
24
23
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
TBILRL
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
TBILRL
R/W
0xFFFF
GPTM TimerB Interval Load Register
When the GPTM is not configured as a 32-bit timer, a write to this field
updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads
return the current value of GPTMTBILR.
October 01, 2007
195
Preliminary
General-Purpose Timers
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.
GPTM TimerA Match (GPTMTAMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x030
Type R/W, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
1
R/W
1
R/W
0
R/W
1
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
TAMRH
Type
Reset
TAMRL
Type
Reset
Bit/Field
Name
Type
31:16
TAMRH
R/W
Reset
Description
0xFFFF
GPTM TimerA Match Register High
(32-bit mode)
0x0000 (16-bit When configured for 32-bit Real-Time Clock (RTC) mode via the
GPTMCFG register, this value is compared to the upper half of
mode)
GPTMTAR, to determine match events.
In 16-bit mode, this field reads as 0 and does not have an effect on the
state of GPTMTBMATCHR.
15:0
TAMRL
R/W
0xFFFF
GPTM TimerA Match Register Low
When configured for 32-bit Real-Time Clock (RTC) mode via the
GPTMCFG register, this value is compared to the lower half of
GPTMTAR, to determine match events.
When configured for PWM mode, this value along with GPTMTAILR,
determines the duty cycle of the output PWM signal.
When configured for Edge Count mode, this value along with
GPTMTAILR, determines how many edge events are counted. The total
number of edge events counted is equal to the value in GPTMTAILR
minus this value.
196
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.
GPTM TimerB Match (GPTMTBMATCHR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x034
Type R/W, reset 0x0000.FFFF
31
30
29
28
27
26
25
24
23
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
reserved
Type
Reset
TBMRL
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
TBMRL
R/W
0xFFFF
GPTM TimerB Match Register Low
When configured for PWM mode, this value along with GPTMTBILR,
determines the duty cycle of the output PWM signal.
When configured for Edge Count mode, this value along with
GPTMTBILR, determines how many edge events are counted. The total
number of edge events counted is equal to the value in GPTMTBILR
minus this value.
October 01, 2007
197
Preliminary
General-Purpose Timers
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038
This register allows software to extend the range of the 16-bit timers when operating in one-shot or
periodic mode.
GPTM TimerA Prescale (GPTMTAPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x038
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TAPSR
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
TAPSR
R/W
0x00
GPTM TimerA Prescale
The register loads this value on a write. A read returns the current value
of the register.
Refer to Table 9-1 on page 172 for more details and an example.
198
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C
This register allows software to extend the range of the 16-bit timers when operating in one-shot or
periodic mode.
GPTM TimerB Prescale (GPTMTBPR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x03C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TBPSR
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
TBPSR
R/W
0x00
GPTM TimerB Prescale
The register loads this value on a write. A read returns the current value
of this register.
Refer to Table 9-1 on page 172 for more details and an example.
October 01, 2007
199
Preliminary
General-Purpose Timers
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040
This register effectively extends the range of GPTMTAMATCHR to 24 bits when operating in 16-bit
one-shot or periodic mode.
GPTM TimerA Prescale Match (GPTMTAPMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x040
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TAPSMR
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
TAPSMR
R/W
0x00
GPTM TimerA Prescale Match
This value is used alongside GPTMTAMATCHR to detect timer match
events while using a prescaler.
200
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044
This register effectively extends the range of GPTMTBMATCHR to 24 bits when operating in 16-bit
one-shot or periodic mode.
GPTM TimerB Prescale Match (GPTMTBPMR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x044
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
TBPSMR
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
TBPSMR
R/W
0x00
GPTM TimerB Prescale Match
This value is used alongside GPTMTBMATCHR to detect timer match
events while using a prescaler.
October 01, 2007
201
Preliminary
General-Purpose Timers
Register 17: GPTM TimerA (GPTMTAR), offset 0x048
This register shows the current value of the TimerA counter in all cases except for Input Edge Count
mode. When in this mode, this register contains the time at which the last edge event took place.
GPTM TimerA (GPTMTAR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x048
Type RO, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
1
RO
1
RO
0
RO
1
RO
0
RO
1
RO
1
RO
1
RO
1
RO
0
RO
1
RO
1
RO
1
RO
1
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
TARH
Type
Reset
TARL
Type
Reset
Bit/Field
Name
Type
31:16
TARH
RO
15:0
TARL
RO
Reset
Description
0xFFFF
GPTM TimerA Register High
(32-bit mode)
0x0000 (16-bit If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the
GPTMCFG is in a 16-bit mode, this is read as zero.
mode)
0xFFFF
GPTM TimerA Register Low
A read returns the current value of the GPTM TimerA Count Register,
except in Input Edge Count mode, when it returns the timestamp from
the last edge event.
202
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C
This register shows the current value of the TimerB counter in all cases except for Input Edge Count
mode. When in this mode, this register contains the time at which the last edge event took place.
GPTM TimerB (GPTMTBR)
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x04C
Type RO, reset 0x0000.FFFF
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
reserved
Type
Reset
TBRL
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
TBRL
RO
0xFFFF
GPTM TimerB
A read returns the current value of the GPTM TimerB Count Register,
except in Input Edge Count mode, when it returns the timestamp from
the last edge event.
October 01, 2007
203
Preliminary
Watchdog Timer
10
Watchdog Timer
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is
reached. The watchdog timer is used to regain control when a system has failed due to a software
error or due to the failure of an external device to respond in the expected way.
®
The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load
register, interrupt generation logic, a locking register, and user-enabled stalling.
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,
the lock register can be written to prevent the timer configuration from being inadvertently altered.
10.1
Block Diagram
Figure 10-1. WDT Module Block Diagram
WDTLOAD
Control / Clock /
Interrupt
Generation
WDTCTL
WDTICR
Interrupt
WDTRIS
32-Bit Down
Counter
WDTMIS
0x00000000
WDTLOCK
System Clock
WDTTEST
Comparator
WDTVALUE
Identification Registers
10.2
WDTPCellID0
WDTPeriphID0
WDTPeriphID4
WDTPCellID1
WDTPeriphID1
WDTPeriphID5
WDTPCellID2
WDTPeriphID2
WDTPeriphID6
WDTPCellID3
WDTPeriphID3
WDTPeriphID7
Functional Description
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.
After the first time-out event, the 32-bit counter is re-loaded with the value of the Watchdog Timer
Load (WDTLOAD) register, and the timer resumes counting down from that value. Once the
204
October 01, 2007
Preliminary
LM3S601 Microcontroller
Watchdog Timer has been configured, the Watchdog Timer Lock (WDTLOCK) register is written,
which prevents the timer configuration from being inadvertently altered by software.
If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the
reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its
second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting
resumes from that value.
If WDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the
counter is loaded with the new value and continues counting.
Writing to WDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared
by writing to the Watchdog Interrupt Clear (WDTICR) register.
The Watchdog module interrupt and reset generation can be enabled or disabled as required. When
the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its
last state.
10.3
Initialization and Configuration
To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the RCGC0 register.
The Watchdog Timer is configured using the following sequence:
1. Load the WDTLOAD register with the desired timer load value.
2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can
be fully locked by writing any value to the WDTLOCK register. To unlock the Watchdog Timer, write
a value of 0x1ACC.E551.
10.4
Register Map
Table 10-1 on page 205 lists the Watchdog registers. The offset listed is a hexadecimal increment
to the register’s address, relative to the Watchdog Timer base address of 0x4000.0000.
Table 10-1. Watchdog Timer Register Map
Description
See
page
Offset
Name
Type
Reset
0x000
WDTLOAD
R/W
0xFFFF.FFFF
Watchdog Load
207
0x004
WDTVALUE
RO
0xFFFF.FFFF
Watchdog Value
208
0x008
WDTCTL
R/W
0x0000.0000
Watchdog Control
209
0x00C
WDTICR
WO
-
Watchdog Interrupt Clear
210
0x010
WDTRIS
RO
0x0000.0000
Watchdog Raw Interrupt Status
211
0x014
WDTMIS
RO
0x0000.0000
Watchdog Masked Interrupt Status
212
0x418
WDTTEST
R/W
0x0000.0000
Watchdog Test
213
0xC00
WDTLOCK
R/W
0x0000.0000
Watchdog Lock
214
October 01, 2007
205
Preliminary
Watchdog Timer
Offset
Name
0xFD0
Reset
WDTPeriphID4
RO
0x0000.0000
Watchdog Peripheral Identification 4
215
0xFD4
WDTPeriphID5
RO
0x0000.0000
Watchdog Peripheral Identification 5
216
0xFD8
WDTPeriphID6
RO
0x0000.0000
Watchdog Peripheral Identification 6
217
0xFDC
WDTPeriphID7
RO
0x0000.0000
Watchdog Peripheral Identification 7
218
0xFE0
WDTPeriphID0
RO
0x0000.0005
Watchdog Peripheral Identification 0
219
0xFE4
WDTPeriphID1
RO
0x0000.0018
Watchdog Peripheral Identification 1
220
0xFE8
WDTPeriphID2
RO
0x0000.0018
Watchdog Peripheral Identification 2
221
0xFEC
WDTPeriphID3
RO
0x0000.0001
Watchdog Peripheral Identification 3
222
0xFF0
WDTPCellID0
RO
0x0000.000D
Watchdog PrimeCell Identification 0
223
0xFF4
WDTPCellID1
RO
0x0000.00F0
Watchdog PrimeCell Identification 1
224
0xFF8
WDTPCellID2
RO
0x0000.0005
Watchdog PrimeCell Identification 2
225
0xFFC
WDTPCellID3
RO
0x0000.00B1
Watchdog PrimeCell Identification 3
226
10.5
Description
See
page
Type
Register Descriptions
The remainder of this section lists and describes the WDT registers, in numerical order by address
offset.
206
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: Watchdog Load (WDTLOAD), offset 0x000
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the
value is immediately loaded and the counter restarts counting down from the new value. If the
WDTLOAD register is loaded with 0x0000.0000, an interrupt is immediately generated.
Watchdog Load (WDTLOAD)
Base 0x4000.0000
Offset 0x000
Type R/W, reset 0xFFFF.FFFF
31
30
29
28
27
26
25
24
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
15
14
13
12
11
10
9
8
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
23
22
21
20
19
18
17
16
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
7
6
5
4
3
2
1
0
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
R/W
1
WDTLoad
Type
Reset
WDTLoad
Type
Reset
Bit/Field
Name
Type
31:0
WDTLoad
R/W
Reset
R/W
1
Description
0xFFFF.FFFF Watchdog Load Value
October 01, 2007
207
Preliminary
Watchdog Timer
Register 2: Watchdog Value (WDTVALUE), offset 0x004
This register contains the current count value of the timer.
Watchdog Value (WDTVALUE)
Base 0x4000.0000
Offset 0x004
Type RO, reset 0xFFFF.FFFF
31
30
29
28
27
26
25
24
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
15
14
13
12
11
10
9
8
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
23
22
21
20
19
18
17
16
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
7
6
5
4
3
2
1
0
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
RO
1
WDTValue
Type
Reset
WDTValue
Type
Reset
Bit/Field
Name
Type
31:0
WDTValue
RO
Reset
RO
1
Description
0xFFFF.FFFF Watchdog Value
Current value of the 32-bit down counter.
208
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: Watchdog Control (WDTCTL), offset 0x008
This register is the watchdog control register. The watchdog timer can be configured to generate a
reset signal (on second time-out) or an interrupt on time-out.
When the watchdog interrupt has been enabled, all subsequent writes to the control register are
ignored. The only mechanism that can re-enable writes is a hardware reset.
Watchdog Control (WDTCTL)
Base 0x4000.0000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
1
0
RESEN
INTEN
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
RESEN
R/W
0
Watchdog Reset Enable
The RESEN values are defined as follows:
Value Description
0
INTEN
R/W
0
0
Disabled.
1
Enable the Watchdog module reset output.
Watchdog Interrupt Enable
The INTEN values are defined as follows:
Value Description
0
Interrupt event disabled (once this bit is set, it can only be
cleared by a hardware reset).
1
Interrupt event enabled. Once enabled, all writes are ignored.
October 01, 2007
209
Preliminary
Watchdog Timer
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C
This register is the interrupt clear register. A write of any value to this register clears the Watchdog
interrupt and reloads the 32-bit counter from the WDTLOAD register. Value for a read or reset is
indeterminate.
Watchdog Interrupt Clear (WDTICR)
Base 0x4000.0000
Offset 0x00C
Type WO, reset 31
30
29
28
27
26
25
24
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
15
14
13
12
11
10
9
8
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
23
22
21
20
19
18
17
16
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
7
6
5
4
3
2
1
0
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WO
-
WDTIntClr
Type
Reset
WDTIntClr
Type
Reset
Bit/Field
Name
Type
Reset
31:0
WDTIntClr
WO
-
WO
-
Description
Watchdog Interrupt Clear
210
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via
this register if the controller interrupt is masked.
Watchdog Raw Interrupt Status (WDTRIS)
Base 0x4000.0000
Offset 0x010
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
WDTRIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
WDTRIS
RO
0
Watchdog Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of WDTINTR.
October 01, 2007
211
Preliminary
Watchdog Timer
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014
This register is the masked interrupt status register. The value of this register is the logical AND of
the raw interrupt bit and the Watchdog interrupt enable bit.
Watchdog Masked Interrupt Status (WDTMIS)
Base 0x4000.0000
Offset 0x014
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
WDTMIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
WDTMIS
RO
0
Watchdog Masked Interrupt Status
Gives the masked interrupt state (after masking) of the WDTINTR
interrupt.
212
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: Watchdog Test (WDTTEST), offset 0x418
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag
during debug.
Watchdog Test (WDTTEST)
Base 0x4000.0000
Offset 0x418
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
STALL
R/W
0
reserved
Bit/Field
Name
Type
Reset
Description
31:9
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
8
STALL
R/W
0
Watchdog Stall Enable
®
When set to 1, if the Stellaris microcontroller is stopped with a
debugger, the watchdog timer stops counting. Once the microcontroller
is restarted, the watchdog timer resumes counting.
7:0
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
213
Preliminary
Watchdog Timer
Register 8: Watchdog Lock (WDTLOCK), offset 0xC00
Writing 0x1ACC.E551 to the WDTLOCK register enables write access to all other registers. Writing
any other value to the WDTLOCK register re-enables the locked state for register writes to all the
other registers. Reading the WDTLOCK register returns the lock status rather than the 32-bit value
written. Therefore, when write accesses are disabled, reading the WDTLOCK register returns
0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).
Watchdog Lock (WDTLOCK)
Base 0x4000.0000
Offset 0xC00
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
WDTLock
Type
Reset
WDTLock
Type
Reset
Bit/Field
Name
Type
Reset
31:0
WDTLock
R/W
0x0000
R/W
0
Description
Watchdog Lock
A write of the value 0x1ACC.E551 unlocks the watchdog registers for
write access. A write of any other value reapplies the lock, preventing
any register updates.
A read of this register returns the following values:
Value
Description
0x0000.0001 Locked
0x0000.0000 Unlocked
214
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 4 (WDTPeriphID4)
Base 0x4000.0000
Offset 0xFD0
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID4
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID4
RO
0x00
WDT Peripheral ID Register[7:0]
October 01, 2007
215
Preliminary
Watchdog Timer
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset
0xFD4
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 5 (WDTPeriphID5)
Base 0x4000.0000
Offset 0xFD4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID5
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID5
RO
0x00
WDT Peripheral ID Register[15:8]
216
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset
0xFD8
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 6 (WDTPeriphID6)
Base 0x4000.0000
Offset 0xFD8
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID6
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID6
RO
0x00
WDT Peripheral ID Register[23:16]
October 01, 2007
217
Preliminary
Watchdog Timer
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset
0xFDC
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 7 (WDTPeriphID7)
Base 0x4000.0000
Offset 0xFDC
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID7
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID7
RO
0x00
WDT Peripheral ID Register[31:24]
218
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset
0xFE0
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 0 (WDTPeriphID0)
Base 0x4000.0000
Offset 0xFE0
Type RO, reset 0x0000.0005
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
1
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID0
RO
0x05
Watchdog Peripheral ID Register[7:0]
October 01, 2007
219
Preliminary
Watchdog Timer
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset
0xFE4
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 1 (WDTPeriphID1)
Base 0x4000.0000
Offset 0xFE4
Type RO, reset 0x0000.0018
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID1
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID1
RO
0x18
Watchdog Peripheral ID Register[15:8]
220
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset
0xFE8
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 2 (WDTPeriphID2)
Base 0x4000.0000
Offset 0xFE8
Type RO, reset 0x0000.0018
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID2
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID2
RO
0x18
Watchdog Peripheral ID Register[23:16]
October 01, 2007
221
Preliminary
Watchdog Timer
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset
0xFEC
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog Peripheral Identification 3 (WDTPeriphID3)
Base 0x4000.0000
Offset 0xFEC
Type RO, reset 0x0000.0001
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
PID3
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID3
RO
0x01
Watchdog Peripheral ID Register[31:24]
222
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog PrimeCell Identification 0 (WDTPCellID0)
Base 0x4000.0000
Offset 0xFF0
Type RO, reset 0x0000.000D
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID0
RO
0x0D
Watchdog PrimeCell ID Register[7:0]
October 01, 2007
223
Preliminary
Watchdog Timer
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog PrimeCell Identification 1 (WDTPCellID1)
Base 0x4000.0000
Offset 0xFF4
Type RO, reset 0x0000.00F0
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
CID1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID1
RO
0xF0
Watchdog PrimeCell ID Register[15:8]
224
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog PrimeCell Identification 2 (WDTPCellID2)
Base 0x4000.0000
Offset 0xFF8
Type RO, reset 0x0000.0005
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID2
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID2
RO
0x05
Watchdog PrimeCell ID Register[23:16]
October 01, 2007
225
Preliminary
Watchdog Timer
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
Watchdog PrimeCell Identification 3 (WDTPCellID3)
Base 0x4000.0000
Offset 0xFFC
Type RO, reset 0x0000.00B1
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
0
RO
1
RO
1
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID3
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID3
RO
0xB1
Watchdog PrimeCell ID Register[31:24]
226
October 01, 2007
Preliminary
LM3S601 Microcontroller
11
Universal Asynchronous Receivers/Transmitters
(UARTs)
®
The Stellaris Universal Asynchronous Receiver/Transmitter (UART) provides fully programmable,
16C550-type serial interface characteristics. The LM3S601 controller is equipped with two UART
modules.
Each UART has the following features:
■ Separate transmit and receive FIFOs
■ Programmable FIFO length, including 1-byte deep operation providing conventional
double-buffered interface
■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
■ Programmable baud-rate generator allowing rates up to 3.125 Mbps
■ Standard asynchronous communication bits for start, stop, and parity
■ False start bit detection
■ Line-break generation and detection
■ Fully programmable serial interface characteristics:
– 5, 6, 7, or 8 data bits
– Even, odd, stick, or no-parity bit generation/detection
– 1 or 2 stop bit generation
October 01, 2007
227
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
11.1
Block Diagram
Figure 11-1. UART Module Block Diagram
System Clock
Interrupt Control
Interrupt
TXFIFO
16x8
UARTIFLS
.
.
.
UARTIM
UARTMIS
UARTRIS
Identification
Registers
UARTICR
Transmitter
UnTx
Receiver
UnRx
UARTPCellID0
UARTPCellID1
Baud Rate
Generator
UARTDR
UARTPCellID2
UARTIBRD
UARTPCellID3
UARTFBRD
UARTPeriphID0
UARTPeriphID1
UARTPeriphID2
UARTPeriphID3
Control / Status
UART PeriphID4
UARTRSR/ECR
UARTPeriphID5
RXFIFO
16x8
UARTFR
UARTPeriphID6
UARTLCRH
UARTPeriphID7
UARTCTL
UARTILPR
11.2
.
.
.
Functional Description
®
Each Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions.
It is similar in functionality to a 16C550 UART, but is not register compatible.
The UART is configured for transmit and/or receive via the TXE and RXE bits of the UART Control
(UARTCTL) register (see page 244). Transmit and receive are both enabled out of reset. Before any
control registers are programmed, the UART must be disabled by clearing the UARTEN bit in
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed
prior to the UART stopping.
11.2.1
Transmit/Receive Logic
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data
bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control
registers. See Figure 11-2 on page 229 for details.
228
October 01, 2007
Preliminary
LM3S601 Microcontroller
The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also
performed, and their status accompanies the data that is written to the receive FIFO.
Figure 11-2. UART Character Frame
UnTX
LSB
1
5-8 data bits
0
n
Start
11.2.2
1-2
stop bits
MSB
Parity bit
if enabled
Baud-Rate Generation
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.
The number formed by these two values is used by the baud-rate generator to determine the bit
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud
rates.
The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register
(see page 240) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor
(UARTFBRD) register (see page 241). The baud-rate divisor (BRD) has the following relationship
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,
separated by a decimal place.):
BRD = BRDI + BRDF = SysClk / (16 * Baud Rate)
The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the UARTFBRD register)
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and
adding 0.5 to account for rounding errors:
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as
Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error
detection during receive operations.
Along with the UART Line Control, High Byte (UARTLCRH) register (see page 242), the UARTIBRD
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated
when a write operation to UARTLCRH is performed, so any changes to the baud-rate divisor must
be followed by a write to the UARTLCRH register for the changes to take effect.
To update the baud-rate registers, there are four possible sequences:
■ UARTIBRD write, UARTFBRD write, and UARTLCRH write
■ UARTFBRD write, UARTIBRD write, and UARTLCRH write
■ UARTIBRD write and UARTLCRH write
■ UARTFBRD write and UARTLCRH write
October 01, 2007
229
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
11.2.3
Data Transmission
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra
four bits per character for status information. For transmission, data is written into the transmit FIFO.
If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated
in the UARTLCRH register. Data continues to be transmitted until there is no data left in the transmit
FIFO. The BUSY bit in the UART Flag (UARTFR) register (see page 238) is asserted as soon as
data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while
data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the
last character has been transmitted from the shift register, including the stop bits. The UART can
indicate that it is busy even though the UART may no longer be enabled.
When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has
been received), the receive counter begins running and data is sampled on the eighth cycle of
Baud16 (described in “Transmit/Receive Logic” on page 228).
The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is
detected and it is ignored. Start bit errors can be viewed in the UART Receive Status (UARTRSR)
register (see page 236). If the start bit was valid, successive data bits are sampled on every 16th
cycle of Baud16 (that is, one bit period later) according to the programmed length of the data
characters. The parity bit is then checked if parity mode was enabled. Data length and parity are
defined in the UARTLCRH register.
Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When
a full word is received, the data is stored in the receive FIFO, with any error bits associated with
that word.
11.2.4
FIFO Operation
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed
via the UART Data (UARTDR) register (see page 234). Read operations of the UARTDR register
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data
in the transmit FIFO.
Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are
enabled by setting the FEN bit in UARTLCRH (page 242).
FIFO status can be monitored via the UART Flag (UARTFR) register (see page 238) and the UART
Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun conditions. The
UARTFR register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the
UARTRSR register shows overrun status via the OE bit.
The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt FIFO
Level Select (UARTIFLS) register (see page 245). Both FIFOs can be individually configured to
trigger interrupts at different levels. Available configurations include 1/8, ¼, ½, ¾, and 7/8. For
example, if the ¼ option is selected for the receive FIFO, the UART generates a receive interrupt
after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the
½ mark.
11.2.5
Interrupts
The UART can generate interrupts when the following conditions are observed:
■ Overrun Error
■ Break Error
230
October 01, 2007
Preliminary
LM3S601 Microcontroller
■ Parity Error
■ Framing Error
■ Receive Timeout
■ Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
■ Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)
All of the interrupt events are ORed together before being sent to the interrupt controller, so the
UART can only generate a single interrupt request to the controller at any given time. Software can
service multiple interrupt events in a single interrupt service routine by reading the UART Masked
Interrupt Status (UARTMIS) register (see page 250).
The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt
Mask (UARTIM ) register (see page 247) by setting the corresponding IM bit to 1. If interrupts are
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)
register (see page 249).
Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 251).
The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data
is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO
becomes empty through reading all the data (or by reading the holding register), or when a 1 is
written to the corresponding bit in the UARTICR register.
11.2.6
Loopback Operation
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is
accomplished by setting the LBE bit in the UARTCTL register (see page 244). In loopback mode,
data transmitted on UnTx is received on the UnRx input.
11.3
Initialization and Configuration
To use the UARTs, the peripheral clock must be enabled by setting the UART0 or UART1 bits in the
RCGC1 register.
This section discusses the steps that are required for using a UART module. For this example, the
system clock is assumed to be 20 MHz and the desired UART configuration is:
■ 115200 baud rate
■ Data length of 8 bits
■ One stop bit
■ No parity
■ FIFOs disabled
■ No interrupts
The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the
equation described in “Baud-Rate Generation” on page 229, the BRD can be calculated:
October 01, 2007
231
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
BRD = 20,000,000 / (16 * 115,200) = 10.8507
which means that the DIVINT field of the UARTIBRD register (see page 240) should be set to 10.
The value to be loaded into the UARTFBRD register (see page 241) is calculated by the equation:
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54
With the BRD values in hand, the UART configuration is written to the module in the following order:
1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
2. Write the integer portion of the BRD to the UARTIBRD register.
3. Write the fractional portion of the BRD to the UARTFBRD register.
4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of
0x0000.0060).
5. Enable the UART by setting the UARTEN bit in the UARTCTL register.
11.4
Register Map
Table 11-1 on page 232 lists the UART registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that UART’s base address:
■ UART0: 0x4000.C000
■ UART1: 0x4000.D000
Note:
The UART must be disabled (see the UARTEN bit in the UARTCTL register on page 244)
before any of the control registers are reprogrammed. When the UART is disabled during
a TX or RX operation, the current transaction is completed prior to the UART stopping.
Table 11-1. UART Register Map
Offset
Name
Type
Reset
Description
See
page
0x000
UARTDR
R/W
0x0000.0000
UART Data
234
0x004
UARTRSR/UARTECR
R/W
0x0000.0000
UART Receive Status/Error Clear
236
0x018
UARTFR
RO
0x0000.0090
UART Flag
238
0x024
UARTIBRD
R/W
0x0000.0000
UART Integer Baud-Rate Divisor
240
0x028
UARTFBRD
R/W
0x0000.0000
UART Fractional Baud-Rate Divisor
241
0x02C
UARTLCRH
R/W
0x0000.0000
UART Line Control
242
0x030
UARTCTL
R/W
0x0000.0300
UART Control
244
0x034
UARTIFLS
R/W
0x0000.0012
UART Interrupt FIFO Level Select
245
0x038
UARTIM
R/W
0x0000.0000
UART Interrupt Mask
247
0x03C
UARTRIS
RO
0x0000.000F
UART Raw Interrupt Status
249
0x040
UARTMIS
RO
0x0000.0000
UART Masked Interrupt Status
250
232
October 01, 2007
Preliminary
LM3S601 Microcontroller
Name
Type
Reset
0x044
UARTICR
W1C
0x0000.0000
UART Interrupt Clear
251
0xFD0
UARTPeriphID4
RO
0x0000.0000
UART Peripheral Identification 4
253
0xFD4
UARTPeriphID5
RO
0x0000.0000
UART Peripheral Identification 5
254
0xFD8
UARTPeriphID6
RO
0x0000.0000
UART Peripheral Identification 6
255
0xFDC
UARTPeriphID7
RO
0x0000.0000
UART Peripheral Identification 7
256
0xFE0
UARTPeriphID0
RO
0x0000.0011
UART Peripheral Identification 0
257
0xFE4
UARTPeriphID1
RO
0x0000.0000
UART Peripheral Identification 1
258
0xFE8
UARTPeriphID2
RO
0x0000.0018
UART Peripheral Identification 2
259
0xFEC
UARTPeriphID3
RO
0x0000.0001
UART Peripheral Identification 3
260
0xFF0
UARTPCellID0
RO
0x0000.000D
UART PrimeCell Identification 0
261
0xFF4
UARTPCellID1
RO
0x0000.00F0
UART PrimeCell Identification 1
262
0xFF8
UARTPCellID2
RO
0x0000.0005
UART PrimeCell Identification 2
263
0xFFC
UARTPCellID3
RO
0x0000.00B1
UART PrimeCell Identification 3
264
11.5
Description
See
page
Offset
Register Descriptions
The remainder of this section lists and describes the UART registers, in numerical order by address
offset.
October 01, 2007
233
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 1: UART Data (UARTDR), offset 0x000
This register is the data register (the interface to the FIFOs).
When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).
A write to this register initiates a transmission from the UART.
For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity,
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and
status are stored in the receiving holding register (the bottom word of the receive FIFO). The received
data can be retrieved by reading this register.
UART Data (UARTDR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
OE
BE
PE
FE
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
DATA
Bit/Field
Name
Type
Reset
Description
31:12
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
11
OE
RO
0
UART Overrun Error
The OE values are defined as follows:
Value Description
10
BE
RO
0
0
There has been no data loss due to a FIFO overrun.
1
New data was received when the FIFO was full, resulting in
data loss.
UART Break Error
This bit is set to 1 when a break condition is detected, indicating that
the receive data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).
In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the received data input
goes to a 1 (marking state) and the next valid start bit is received.
234
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
9
PE
RO
0
Description
UART Parity Error
This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.
In FIFO mode, this error is associated with the character at the top of
the FIFO.
8
FE
RO
0
UART Framing Error
This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).
7:0
DATA
R/W
0
Data Transmitted or Received
When written, the data that is to be transmitted via the UART. When
read, the data that was received by the UART.
October 01, 2007
235
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset
0x004
The UARTRSR/UARTECR register is the receive status register/error clear register.
In addition to the UARTDR register, receive status can also be read from the UARTRSR register.
If the status is read from this register, then the status information corresponds to the entry read from
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when
an overrun condition occurs.
A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.
All the bits are cleared to 0 on reset.
Read-Only Receive Status (UARTRSR) Register
UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x004
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
OE
BE
PE
FE
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
31:4
reserved
RO
0
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
The UARTRSR register cannot be written.
3
OE
RO
0
UART Overrun Error
When this bit is set to 1, data is received and the FIFO is already full.
This bit is cleared to 0 by a write to UARTECR.
The FIFO contents remain valid since no further data is written when
the FIFO is full, only the contents of the shift register are overwritten.
The CPU must now read the data in order to empty the FIFO.
2
BE
RO
0
UART Break Error
This bit is set to 1 when a break condition is detected, indicating that
the received data input was held Low for longer than a full-word
transmission time (defined as start, data, parity, and stop bits).
This bit is cleared to 0 by a write to UARTECR.
In FIFO mode, this error is associated with the character at the top of
the FIFO. When a break occurs, only one 0 character is loaded into the
FIFO. The next character is only enabled after the receive data input
goes to a 1 (marking state) and the next valid start bit is received.
236
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
1
PE
RO
0
Description
UART Parity Error
This bit is set to 1 when the parity of the received data character does
not match the parity defined by bits 2 and 7 of the UARTLCRH register.
This bit is cleared to 0 by a write to UARTECR.
0
FE
RO
0
UART Framing Error
This bit is set to 1 when the received character does not have a valid
stop bit (a valid stop bit is 1).
This bit is cleared to 0 by a write to UARTECR.
In FIFO mode, this error is associated with the character at the top of
the FIFO.
Write-Only Error Clear (UARTECR) Register
UART Receive Status/Error Clear (UARTRSR/UARTECR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x004
Type WO, reset 0x0000.0000
31
30
29
28
27
26
25
24
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
15
14
13
12
11
10
9
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
23
22
21
20
19
18
17
16
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
8
7
6
5
4
3
2
1
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
reserved
Type
Reset
reserved
Type
Reset
DATA
WO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
WO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DATA
WO
0
Error Clear
A write to this register of any data clears the framing, parity, break, and
overrun flags.
October 01, 2007
237
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 3: UART Flag (UARTFR), offset 0x018
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and
TXFE and RXFE bits are 1.
UART Flag (UARTFR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x018
Type RO, reset 0x0000.0090
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
TXFE
RXFF
TXFF
RXFE
BUSY
RO
1
RO
0
RO
0
RO
1
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7
TXFE
RO
1
UART Transmit FIFO Empty
The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.
If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding
register is empty.
If the FIFO is enabled (FEN is 1), this bit is set when the transmit FIFO
is empty.
6
RXFF
RO
0
UART Receive FIFO Full
The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.
If the FIFO is disabled, this bit is set when the receive holding register
is full.
If the FIFO is enabled, this bit is set when the receive FIFO is full.
5
TXFF
RO
0
UART Transmit FIFO Full
The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.
If the FIFO is disabled, this bit is set when the transmit holding register
is full.
If the FIFO is enabled, this bit is set when the transmit FIFO is full.
238
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
4
RXFE
RO
1
Description
UART Receive FIFO Empty
The meaning of this bit depends on the state of the FEN bit in the
UARTLCRH register.
If the FIFO is disabled, this bit is set when the receive holding register
is empty.
If the FIFO is enabled, this bit is set when the receive FIFO is empty.
3
BUSY
RO
0
UART Busy
When this bit is 1, the UART is busy transmitting data. This bit remains
set until the complete byte, including all stop bits, has been sent from
the shift register.
This bit is set as soon as the transmit FIFO becomes non-empty
(regardless of whether UART is enabled).
2:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
239
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared
on reset. The minimum possible divide ratio is 1 (when UARTIBRD=0), in which case the UARTFBRD
register is ignored. When changing the UARTIBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 229
for configuration details.
UART Integer Baud-Rate Divisor (UARTIBRD)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x024
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
DIVINT
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0
15:0
DIVINT
R/W
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
Integer Baud-Rate Divisor
240
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are cleared
on reset. When changing the UARTFBRD register, the new value does not take effect until
transmission/reception of the current character is complete. Any changes to the baud-rate divisor
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 229
for configuration details.
UART Fractional Baud-Rate Divisor (UARTFBRD)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x028
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
DIVFRAC
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5:0
DIVFRAC
R/W
0x000
Fractional Baud-Rate Divisor
October 01, 2007
241
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 6: UART Line Control (UARTLCRH), offset 0x02C
The UARTLCRH register is the line control register. Serial parameters such as data length, parity,
and stop bit selection are implemented in this register.
When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH
register.
UART Line Control (UARTLCRH)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x02C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
SPS
RO
0
RO
0
RO
0
RO
0
R/W
0
5
WLEN
R/W
0
R/W
0
4
3
2
1
0
FEN
STP2
EPS
PEN
BRK
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7
SPS
R/W
0
UART Stick Parity Select
When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transmitted
and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the
parity bit is transmitted and checked as a 1.
When this bit is cleared, stick parity is disabled.
6:5
WLEN
R/W
0
UART Word Length
The bits indicate the number of data bits transmitted or received in a
frame as follows:
Value Description
0x3 8 bits
0x2 7 bits
0x1 6 bits
0x0 5 bits (default)
4
FEN
R/W
0
UART Enable FIFOs
If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO
mode).
When cleared to 0, FIFOs are disabled (Character mode). The FIFOs
become 1-byte-deep holding registers.
242
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
3
STP2
R/W
0
Description
UART Two Stop Bits Select
If this bit is set to 1, two stop bits are transmitted at the end of a frame.
The receive logic does not check for two stop bits being received.
2
EPS
R/W
0
UART Even Parity Select
If this bit is set to 1, even parity generation and checking is performed
during transmission and reception, which checks for an even number
of 1s in data and parity bits.
When cleared to 0, then odd parity is performed, which checks for an
odd number of 1s.
This bit has no effect when parity is disabled by the PEN bit.
1
PEN
R/W
0
UART Parity Enable
If this bit is set to 1, parity checking and generation is enabled; otherwise,
parity is disabled and no parity bit is added to the data frame.
0
BRK
R/W
0
UART Send Break
If this bit is set to 1, a Low level is continually output on the UnTX output,
after completing transmission of the current character. For the proper
execution of the break command, the software must set this bit for at
least two frames (character periods). For normal use, this bit must be
cleared to 0.
October 01, 2007
243
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 7: UART Control (UARTCTL), offset 0x030
The UARTCTL register is the control register. All the bits are cleared on reset except for the
Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.
To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration
change in the module, the UARTEN bit must be cleared before the configuration changes are written.
If the UART is disabled during a transmit or receive operation, the current transaction is completed
prior to the UART stopping.
UART Control (UARTCTL)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x030
Type R/W, reset 0x0000.0300
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
6
5
4
3
2
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
9
8
7
RXE
TXE
LBE
R/W
1
R/W
1
R/W
0
reserved
RO
0
RO
0
RO
0
RO
0
0
UARTEN
RO
0
RO
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:10
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
9
RXE
R/W
1
UART Receive Enable
If this bit is set to 1, the receive section of the UART is enabled. When
the UART is disabled in the middle of a receive, it completes the current
character before stopping.
Note:
8
TXE
R/W
1
To enable reception, the UARTEN bit must also be set.
UART Transmit Enable
If this bit is set to 1, the transmit section of the UART is enabled. When
the UART is disabled in the middle of a transmission, it completes the
current character before stopping.
Note:
7
LBE
R/W
0
To enable transmission, the UARTEN bit must also be set.
UART Loop Back Enable
If this bit is set to 1, the UnTX path is fed through the UnRX path.
6:1
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
UARTEN
R/W
0
UART Enable
If this bit is set to 1, the UART is enabled. When the UART is disabled
in the middle of transmission or reception, it completes the current
character before stopping.
244
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define
the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.
The interrupts are generated based on a transition through a level rather than being based on the
level. That is, the interrupts are generated when the fill level progresses through the trigger level.
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the
module is receiving the 9th character.
Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt
at the half-way mark.
UART Interrupt FIFO Level Select (UARTIFLS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x034
Type R/W, reset 0x0000.0012
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
RXIFLSEL
R/W
1
TXIFLSEL
R/W
1
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5:3
RXIFLSEL
R/W
0x2
UART Receive Interrupt FIFO Level Select
The trigger points for the receive interrupt are as follows:
Value
Description
0x0
RX FIFO ≥ 1/8 full
0x1
RX FIFO ≥ ¼ full
0x2
RX FIFO ≥ ½ full (default)
0x3
RX FIFO ≥ ¾ full
0x4
RX FIFO ≥ 7/8 full
0x5-0x7 Reserved
October 01, 2007
245
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Bit/Field
Name
Type
Reset
2:0
TXIFLSEL
R/W
0x2
Description
UART Transmit Interrupt FIFO Level Select
The trigger points for the transmit interrupt are as follows:
Value
Description
0x0
TX FIFO ≤ 1/8 full
0x1
TX FIFO ≤ ¼ full
0x2
TX FIFO ≤ ½ full (default)
0x3
TX FIFO ≤ ¾ full
0x4
TX FIFO ≤ 7/8 full
0x5-0x7 Reserved
246
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: UART Interrupt Mask (UARTIM), offset 0x038
The UARTIM register is the interrupt mask set/clear register.
On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a
0 prevents the raw interrupt signal from being sent to the interrupt controller.
UART Interrupt Mask (UARTIM)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x038
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
3
2
1
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
15
14
RO
0
RO
0
RO
0
13
12
11
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
10
9
8
7
6
5
4
OEIM
BEIM
PEIM
FEIM
RTIM
TXIM
RXIM
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
OEIM
R/W
0
UART Overrun Error Interrupt Mask
On a read, the current mask for the OEIM interrupt is returned.
Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller.
9
BEIM
R/W
0
UART Break Error Interrupt Mask
On a read, the current mask for the BEIM interrupt is returned.
Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller.
8
PEIM
R/W
0
UART Parity Error Interrupt Mask
On a read, the current mask for the PEIM interrupt is returned.
Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.
7
FEIM
R/W
0
UART Framing Error Interrupt Mask
On a read, the current mask for the FEIM interrupt is returned.
Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller.
6
RTIM
R/W
0
UART Receive Time-Out Interrupt Mask
On a read, the current mask for the RTIM interrupt is returned.
Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller.
5
TXIM
R/W
0
UART Transmit Interrupt Mask
On a read, the current mask for the TXIM interrupt is returned.
Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.
October 01, 2007
247
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Bit/Field
Name
Type
Reset
4
RXIM
R/W
0
Description
UART Receive Interrupt Mask
On a read, the current mask for the RXIM interrupt is returned.
Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.
3:0
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
248
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt. A write has no effect.
UART Raw Interrupt Status (UARTRIS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x03C
Type RO, reset 0x0000.000F
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
OERIS
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
BERIS
PERIS
FERIS
RTRIS
TXRIS
RXRIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
1
RO
1
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
OERIS
RO
0
UART Overrun Error Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
9
BERIS
RO
0
UART Break Error Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
8
PERIS
RO
0
UART Parity Error Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
7
FERIS
RO
0
UART Framing Error Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
6
RTRIS
RO
0
UART Receive Time-Out Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
5
TXRIS
RO
0
UART Transmit Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
4
RXRIS
RO
0
UART Receive Raw Interrupt Status
Gives the raw interrupt state (prior to masking) of this interrupt.
3:0
reserved
RO
0xF
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
249
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040
The UARTMIS register is the masked interrupt status register. On a read, this register gives the
current masked status value of the corresponding interrupt. A write has no effect.
UART Masked Interrupt Status (UARTMIS)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x040
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
OEMIS
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
BEMIS
PEMIS
FEMIS
RTMIS
TXMIS
RXMIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
OEMIS
RO
0
UART Overrun Error Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
9
BEMIS
RO
0
UART Break Error Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
8
PEMIS
RO
0
UART Parity Error Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
7
FEMIS
RO
0
UART Framing Error Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
6
RTMIS
RO
0
UART Receive Time-Out Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
5
TXMIS
RO
0
UART Transmit Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
4
RXMIS
RO
0
UART Receive Masked Interrupt Status
Gives the masked interrupt state of this interrupt.
3:0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
250
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 12: UART Interrupt Clear (UARTICR), offset 0x044
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.
UART Interrupt Clear (UARTICR)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0x044
Type W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
OEIC
RO
0
RO
0
RO
0
RO
0
W1C
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
BEIC
PEIC
FEIC
RTIC
TXIC
RXIC
W1C
0
W1C
0
W1C
0
W1C
0
W1C
0
W1C
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10
OEIC
W1C
0
Overrun Error Interrupt Clear
The OEIC values are defined as follows:
Value Description
9
BEIC
W1C
0
0
No effect on the interrupt.
1
Clears interrupt.
Break Error Interrupt Clear
The BEIC values are defined as follows:
Value Description
8
PEIC
W1C
0
0
No effect on the interrupt.
1
Clears interrupt.
Parity Error Interrupt Clear
The PEIC values are defined as follows:
Value Description
0
No effect on the interrupt.
1
Clears interrupt.
October 01, 2007
251
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Bit/Field
Name
Type
Reset
7
FEIC
W1C
0
Description
Framing Error Interrupt Clear
The FEIC values are defined as follows:
Value Description
6
RTIC
W1C
0
0
No effect on the interrupt.
1
Clears interrupt.
Receive Time-Out Interrupt Clear
The RTIC values are defined as follows:
Value Description
5
TXIC
W1C
0
0
No effect on the interrupt.
1
Clears interrupt.
Transmit Interrupt Clear
The TXIC values are defined as follows:
Value Description
4
RXIC
W1C
0
0
No effect on the interrupt.
1
Clears interrupt.
Receive Interrupt Clear
The RXIC values are defined as follows:
Value Description
3:0
reserved
RO
0x00
0
No effect on the interrupt.
1
Clears interrupt.
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
252
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 4 (UARTPeriphID4)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFD0
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID4
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID4
RO
0x0000
UART Peripheral ID Register[7:0]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
253
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 5 (UARTPeriphID5)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFD4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID5
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID5
RO
0x0000
UART Peripheral ID Register[15:8]
Can be used by software to identify the presence of this peripheral.
254
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 6 (UARTPeriphID6)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFD8
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID6
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID6
RO
0x0000
UART Peripheral ID Register[23:16]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
255
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 7 (UARTPeriphID7)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFDC
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID7
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0
7:0
PID7
RO
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
UART Peripheral ID Register[31:24]
Can be used by software to identify the presence of this peripheral.
256
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 0 (UARTPeriphID0)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFE0
Type RO, reset 0x0000.0011
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
PID0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID0
RO
0x11
UART Peripheral ID Register[7:0]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
257
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 1 (UARTPeriphID1)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFE4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID1
RO
0x00
UART Peripheral ID Register[15:8]
Can be used by software to identify the presence of this peripheral.
258
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 2 (UARTPeriphID2)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFE8
Type RO, reset 0x0000.0018
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID2
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID2
RO
0x18
UART Peripheral ID Register[23:16]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
259
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the
reset values.
UART Peripheral Identification 3 (UARTPeriphID3)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFEC
Type RO, reset 0x0000.0001
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
PID3
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID3
RO
0x01
UART Peripheral ID Register[31:24]
Can be used by software to identify the presence of this peripheral.
260
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.
UART PrimeCell Identification 0 (UARTPCellID0)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFF0
Type RO, reset 0x0000.000D
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID0
RO
0x0D
UART PrimeCell ID Register[7:0]
Provides software a standard cross-peripheral identification system.
October 01, 2007
261
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.
UART PrimeCell Identification 1 (UARTPCellID1)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFF4
Type RO, reset 0x0000.00F0
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
CID1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID1
RO
0xF0
UART PrimeCell ID Register[15:8]
Provides software a standard cross-peripheral identification system.
262
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.
UART PrimeCell Identification 2 (UARTPCellID2)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFF8
Type RO, reset 0x0000.0005
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID2
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID2
RO
0x05
UART PrimeCell ID Register[23:16]
Provides software a standard cross-peripheral identification system.
October 01, 2007
263
Preliminary
Universal Asynchronous Receivers/Transmitters (UARTs)
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset
values.
UART PrimeCell Identification 3 (UARTPCellID3)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
Offset 0xFFC
Type RO, reset 0x0000.00B1
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
0
RO
1
RO
1
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID3
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID3
RO
0xB1
UART PrimeCell ID Register[31:24]
Provides software a standard cross-peripheral identification system.
264
October 01, 2007
Preliminary
LM3S601 Microcontroller
12
Synchronous Serial Interface (SSI)
®
The Stellaris Synchronous Serial Interface (SSI) is a master or slave interface for synchronous
serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas
Instruments synchronous serial interfaces.
®
The Stellaris SSI module has the following features:
■ Master or slave operation
■ Programmable clock bit rate and prescale
■ Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments
synchronous serial interfaces
■ Programmable data frame size from 4 to 16 bits
■ Internal loopback test mode for diagnostic/debug testing
12.1
Block Diagram
Figure 12-1. SSI Module Block Diagram
Interrupt
Interrupt Control
SSIIM
SSIMIS
Control / Status
SSIRIS
SSIICR
SSICR0
SSICR1
TxFIFO
8 x 16
.
.
.
SSITx
SSISR
SSIDR
RxFIFO
8 x 16
SSIRx
Transmit/
Receive
Logic
SSIClk
SSIFss
System Clock
Clock
Prescaler
Identification Registers
12.2
SSIPCellID0
SSIPeriphID0
SSIPeriphID4
SSIPCellID1
SSIPeriphID1
SSIPeriphID5
SSIPCellID2
SSIPeriphID2
SSIPeriphID6
SSIPCellID3
SSIPeriphID3
SSIPeriphID7
.
.
.
SSICPSR
Functional Description
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU
accesses data, control, and status information. The transmit and receive paths are buffered with
October 01, 2007
265
Preliminary
Synchronous Serial Interface (SSI)
internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit
and receive modes.
12.2.1
Bit Rate Generation
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output
clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by
peripheral devices.
The serial bit rate is derived by dividing down the 50-MHz input clock. The clock is first divided by
an even prescale value CPSDVSR from 2 to 254, which is programmed in the SSI Clock Prescale
(SSICPSR) register (see page 284). The clock is further divided by a value from 1 to 256, which is
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see page 277).
The frequency of the output clock SSIClk is defined by:
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
Note that although the SSIClk transmit clock can theoretically be 25 MHz, the module may not be
able to operate at that speed. For master mode, the system clock must be at least two times faster
than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.
See “Synchronous Serial Interface (SSI)” on page 417 to view SSI timing parameters.
12.2.2
FIFO Operation
12.2.2.1 Transmit FIFO
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 281), and data is
stored in the FIFO until it is read out by the transmission logic.
When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial
conversion and transmission to the attached slave or master, respectively, through the SSITx pin.
12.2.2.2 Receive FIFO
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.
Received data from the serial interface is stored in the buffer until read out by the CPU, which
accesses the read FIFO by reading the SSIDR register.
When configured as a master or slave, serial data received through the SSIRx pin is registered
prior to parallel loading into the attached slave or master receive FIFO, respectively.
12.2.3
Interrupts
The SSI can generate interrupts when the following conditions are observed:
■ Transmit FIFO service
■ Receive FIFO service
■ Receive FIFO time-out
■ Receive FIFO overrun
All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI
can only generate a single interrupt request to the controller at any given time. You can mask each
266
October 01, 2007
Preliminary
LM3S601 Microcontroller
of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt Mask
(SSIIM) register (see page 285). Setting the appropriate mask bit to 1 enables the interrupt.
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and
receive dynamic dataflow interrupts have been separated from the status interrupts so that data
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt Status
(SSIMIS) registers (see page 287 and page 288, respectively).
12.2.4
Frame Formats
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is
transmitted starting with the MSB. There are three basic frame types that can be selected:
■ Texas Instruments synchronous serial
■ Freescale SPI
■ MICROWIRE
For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk
transitions at the programmed frequency only during active transmission or reception of data. The
idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive
FIFO still contains data after a timeout period.
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFss ) pin is active Low,
and is asserted (pulled down) during the entire transmission of the frame.
For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial
clock period starting at its rising edge, prior to the transmission of each frame. For this frame format,
both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and
latch data from the other device on the falling edge.
Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a
special master-slave messaging technique, which operates at half-duplex. In this mode, when a
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total
frame length anywhere from 13 to 25 bits.
12.2.4.1 Texas Instruments Synchronous Serial Frame Format
Figure 12-2 on page 267 shows the Texas Instruments synchronous serial frame format for a single
transmitted frame.
Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)
SSIClk
SSIFss
SSITx/SSIRx
MSB
LSB
4 to 16 bits
October 01, 2007
267
Preliminary
Synchronous Serial Interface (SSI)
In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is
pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit
FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB
of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data
is shifted onto the SSIRx pin by the off-chip serial slave device.
Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on
the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive
FIFO on the first rising edge of SSIClk after the LSB has been latched.
Figure 12-3 on page 268 shows the Texas Instruments synchronous serial frame format when
back-to-back frames are transmitted.
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)
SSIClk
SSIFss
SSITx/SSIRx
MSB
LSB
4 to 16 bits
12.2.4.2 Freescale SPI Frame Format
The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave
select. The main feature of the Freescale SPI format is that the inactive state and phase of the
SSIClk signal are programmable through the SPO and SPH bits within the SSISCR0 control register.
SPO Clock Polarity Bit
When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk
pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not
being transferred.
SPH Phase Control Bit
The SPH phase control bit selects the clock edge that captures data and allows it to change state.
It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition
before the first data capture edge. When the SPH phase control bit is Low, data is captured on the
first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.
12.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and
SPH=0 are shown in Figure 12-4 on page 269 and Figure 12-5 on page 269.
268
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0
SSIClk
SSIFss
SSIRx
MSB
LSB
Q
4 to 16 bits
MSB
SSITx
Note:
LSB
Q is undefined.
Figure 12-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0
SSIClk
SSIFss
SSIRx LSB
MSB
LSB
MSB
4 to 16 bits
SSITx LSB
MSB
LSB
MSB
In this configuration, during idle periods:
■ SSIClk is forced Low
■ SSIFss is forced High
■ The transmit data line SSITx is arbitrarily forced Low
■ When the SSI is configured as a master, it enables the SSIClk pad
■ When the SSI is configured as a slave, it disables the SSIClk pad
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto
the SSIRx input line of the master. The master SSITx output pad is enabled.
One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the
master and slave data have been set, the SSIClk master clock pin goes High after one further half
SSIClk period.
The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.
In the case of a single word transmission, after all bits of the data word have been transferred, the
SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.
October 01, 2007
269
Preliminary
Synchronous Serial Interface (SSI)
12.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure
12-6 on page 270, which covers both single and continuous transfers.
Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1
SSIClk
SSIFss
SSIRx
Q
LSB
MSB
Q
4 to 16 bits
SSITx
Note:
MSB
LSB
Q is undefined.
In this configuration, during idle periods:
■ SSIClk is forced Low
■ SSIFss is forced High
■ The transmit data line SSITx is arbitrarily forced Low
■ When the SSI is configured as a master, it enables the SSIClk pad
■ When the SSI is configured as a slave, it disables the SSIClk pad
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After
a further one half SSIClk period, both master and slave valid data is enabled onto their respective
transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.
Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.
In the case of a single word transfer, after all bits have been transferred, the SSIFss line is returned
to its idle High state one SSIClk period after the last bit has been captured.
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.
12.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and
SPH=0 are shown in Figure 12-7 on page 271 and Figure 12-8 on page 271.
270
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0
SSIClk
SSIFss
SSIRx
MSB
LSB
Q
4 to 16 bits
SSITx
MSB
Note:
Q is undefined.
LSB
Figure 12-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0
SSIClk
SSIFss
SSITx/SSIRxLSB
MSB
LSB
MSB
4 to 16 bits
In this configuration, during idle periods:
■ SSIClk is forced High
■ SSIFss is forced High
■ The transmit data line SSITx is arbitrarily forced Low
■ When the SSI is configured as a master, it enables the SSIClk pad
■ When the SSI is configured as a slave, it disables the SSIClk pad
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low, which causes slave data to be immediately
transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.
One half period later, valid master data is transferred to the SSITx line. Now that both the master
and slave data have been set, the SSIClk master clock pin becomes Low after one further half
SSIClk period. This means that data is captured on the falling edges and propagated on the rising
edges of the SSIClk signal.
In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss
line is returned to its idle High state one SSIClk period after the last bit has been captured.
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed
High between each data word transfer. This is because the slave select pin freezes the data in its
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,
the master device must raise the SSIFss pin of the slave device between each data transfer to
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin
is returned to its idle state one SSIClk period after the last bit has been captured.
October 01, 2007
271
Preliminary
Synchronous Serial Interface (SSI)
12.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure
12-9 on page 272, which covers both single and continuous transfers.
Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1
SSIClk
SSIFss
SSIRx
Q
LSB
MSB
Q
4 to 16 bits
SSITx
MSB
Note:
Q is undefined.
LSB
In this configuration, during idle periods:
■ SSIClk is forced High
■ SSIFss is forced High
■ The transmit data line SSITx is arbitrarily forced Low
■ When the SSI is configured as a master, it enables the SSIClk pad
■ When the SSI is configured as a slave, it disables the SSIClk pad
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is
signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled.
After a further one-half SSIClk period, both master and slave data are enabled onto their respective
transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then
captured on the rising edges and propagated on the falling edges of the SSIClk signal.
After all bits have been transferred, in the case of a single word transmission, the SSIFss line is
returned to its idle high state one SSIClk period after the last bit has been captured.
For continuous back-to-back transmissions, the SSIFss pin remains in its active Low state, until
the final bit of the last word has been captured, and then returns to its idle state as described above.
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words
and termination is the same as that of the single word transfer.
12.2.4.7 MICROWIRE Frame Format
Figure 12-10 on page 273 shows the MICROWIRE frame format, again for a single frame. Figure
12-11 on page 274 shows the same format when back-to-back frames are transmitted.
272
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 12-10. MICROWIRE Frame Format (Single Frame)
SSIClk
SSIFss
SSITx
MSB
LSB
8-bit control
SSIRx
0
MSB
LSB
4 to 16 bits
output data
MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of
full-duplex, using a master-slave message passing technique. Each serial transmission begins with
an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this
transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip
slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has
been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the
total frame length anywhere from 13 to 25 bits.
In this configuration, during idle periods:
■ SSIClk is forced Low
■ SSIFss is forced High
■ The transmit data line SSITx is arbitrarily forced Low
A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss
causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial
shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the
SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains
tristated during this transmission.
The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of
each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven
onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising
edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one
clock period after the last bit has been latched in the receive serial shifter, which causes the data
to be transferred to the receive FIFO.
Note:
The off-chip slave device can tristate the receive line either on the falling edge of SSIClk
after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.
For continuous transfers, data transmission begins and ends in the same manner as a single transfer.
However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs
back-to-back. The control byte of the next frame follows directly after the LSB of the received data
from the current frame. Each of the received values is transferred from the receive shifter on the
falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.
October 01, 2007
273
Preliminary
Synchronous Serial Interface (SSI)
Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)
SSIClk
SSIFss
SSITx
LSB
MSB
LSB
8-bit control
SSIRx
0
MSB
LSB
MSB
4 to 16 bits
output data
In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of
SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that
the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.
Figure 12-12 on page 274 illustrates these setup and hold time requirements. With respect to the
SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss
must have a setup of at least two times the period of SSIClk on which the SSI operates. With
respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one
SSIClk period.
Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements
tSetup=(2*tSSIClk)
tHold=tSSIClk
SSIClk
SSIFss
SSIRx
First RX data to be
sampled by SSI slave
12.3
Initialization and Configuration
To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.
For each of the frame formats, the SSI is configured using the following steps:
1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration
changes.
2. Select whether the SSI is a master or slave:
a. For master operations, set the SSICR1 register to 0x0000.0000.
b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.
c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
3. Configure the clock prescale divisor by writing the SSICPSR register.
274
October 01, 2007
Preliminary
LM3S601 Microcontroller
4. Write the SSICR0 register with the following configuration:
■ Serial clock rate (SCR)
■ Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
■ The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
■ The data size (DSS)
5. Enable the SSI by setting the SSE bit in the SSICR1 register.
As an example, assume the SSI must be configured to operate with the following parameters:
■ Master operation
■ Freescale SPI mode (SPO=1, SPH=1)
■ 1 Mbps bit rate
■ 8 data bits
Assuming the system clock is 20 MHz, the bit rate calculation would be:
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
In this case, if CPSDVSR=2, SCR must be 9.
The configuration sequence would be as follows:
1. Ensure that the SSE bit in the SSICR1 register is disabled.
2. Write the SSICR1 register with a value of 0x0000.0000.
3. Write the SSICPSR register with a value of 0x0000.0002.
4. Write the SSICR0 register with a value of 0x0000.09C7.
5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.
12.4
Register Map
Table 12-1 on page 275 lists the SSI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to that SSI module’s base address:
■ SSI0: 0x4000.8000
Note:
The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control
registers are reprogrammed.
Table 12-1. SSI Register Map
Offset
Name
Type
Reset
Description
See
page
0x000
SSICR0
R/W
0x0000.0000
SSI Control 0
277
October 01, 2007
275
Preliminary
Synchronous Serial Interface (SSI)
Offset
Name
Type
Reset
Description
See
page
0x004
SSICR1
R/W
0x0000.0000
SSI Control 1
279
0x008
SSIDR
R/W
0x0000.0000
SSI Data
281
0x00C
SSISR
RO
0x0000.0003
SSI Status
282
0x010
SSICPSR
R/W
0x0000.0000
SSI Clock Prescale
284
0x014
SSIIM
R/W
0x0000.0000
SSI Interrupt Mask
285
0x018
SSIRIS
RO
0x0000.0008
SSI Raw Interrupt Status
287
0x01C
SSIMIS
RO
0x0000.0000
SSI Masked Interrupt Status
288
0x020
SSIICR
W1C
0x0000.0000
SSI Interrupt Clear
289
0xFD0
SSIPeriphID4
RO
0x0000.0000
SSI Peripheral Identification 4
290
0xFD4
SSIPeriphID5
RO
0x0000.0000
SSI Peripheral Identification 5
291
0xFD8
SSIPeriphID6
RO
0x0000.0000
SSI Peripheral Identification 6
292
0xFDC
SSIPeriphID7
RO
0x0000.0000
SSI Peripheral Identification 7
293
0xFE0
SSIPeriphID0
RO
0x0000.0022
SSI Peripheral Identification 0
294
0xFE4
SSIPeriphID1
RO
0x0000.0000
SSI Peripheral Identification 1
295
0xFE8
SSIPeriphID2
RO
0x0000.0018
SSI Peripheral Identification 2
296
0xFEC
SSIPeriphID3
RO
0x0000.0001
SSI Peripheral Identification 3
297
0xFF0
SSIPCellID0
RO
0x0000.000D
SSI PrimeCell Identification 0
298
0xFF4
SSIPCellID1
RO
0x0000.00F0
SSI PrimeCell Identification 1
299
0xFF8
SSIPCellID2
RO
0x0000.0005
SSI PrimeCell Identification 2
300
0xFFC
SSIPCellID3
RO
0x0000.00B1
SSI PrimeCell Identification 3
301
12.5
Register Descriptions
The remainder of this section lists and describes the SSI registers, in numerical order by address
offset.
276
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: SSI Control 0 (SSICR0), offset 0x000
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI
module. Functionality such as protocol mode, clock rate, and data size are configured in this register.
SSI Control 0 (SSICR0)
SSI0 base: 0x4000.8000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
SPH
SPO
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
SCR
Type
Reset
FRF
R/W
0
DSS
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:8
SCR
R/W
0x0000
SSI Serial Clock Rate
The value SCR is used to generate the transmit and receive bit rate of
the SSI. The bit rate is:
BR=FSSIClk/(CPSDVSR * (1 + SCR))
where CPSDVSR is an even value from 2-254 programmed in the
SSICPSR register, and SCR is a value from 0-255.
7
SPH
R/W
0
SSI Serial Clock Phase
This bit is only applicable to the Freescale SPI Format.
The SPH control bit selects the clock edge that captures data and allows
it to change state. It has the most impact on the first bit transmitted by
either allowing or not allowing a clock transition before the first data
capture edge.
When the SPH bit is 0, data is captured on the first clock edge transition.
If SPH is 1, data is captured on the second clock edge transition.
6
SPO
R/W
0
SSI Serial Clock Polarity
This bit is only applicable to the Freescale SPI Format.
When the SPO bit is 0, it produces a steady state Low value on the
SSIClk pin. If SPO is 1, a steady state High value is placed on the
SSIClk pin when data is not being transferred.
October 01, 2007
277
Preliminary
Synchronous Serial Interface (SSI)
Bit/Field
Name
Type
Reset
5:4
FRF
R/W
0x0
Description
SSI Frame Format Select
The FRF values are defined as follows:
Value Frame Format
0x0 Freescale SPI Frame Format
0x1 Texas Intruments Synchronous Serial Frame Format
0x2 MICROWIRE Frame Format
0x3 Reserved
3:0
DSS
R/W
0x00
SSI Data Size Select
The DSS values are defined as follows:
Value
Data Size
0x0-0x2 Reserved
0x3
4-bit data
0x4
5-bit data
0x5
6-bit data
0x6
7-bit data
0x7
8-bit data
0x8
9-bit data
0x9
10-bit data
0xA
11-bit data
0xB
12-bit data
0xC
13-bit data
0xD
14-bit data
0xE
15-bit data
0xF
16-bit data
278
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: SSI Control 1 (SSICR1), offset 0x004
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI
module. Master and slave mode functionality is controlled by this register.
SSI Control 1 (SSICR1)
SSI0 base: 0x4000.8000
Offset 0x004
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
SOD
MS
SSE
LBM
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
SOD
R/W
0
SSI Slave Mode Output Disable
This bit is relevant only in the Slave mode (MS=1). In multiple-slave
systems, it is possible for the SSI master to broadcast a message to all
slaves in the system while ensuring that only one slave drives data onto
the serial output line. In such systems, the TXD lines from multiple slaves
could be tied together. To operate in such a system, the SOD bit can be
configured so that the SSI slave does not drive the SSITx pin.
The SOD values are defined as follows:
Value Description
2
MS
R/W
0
0
SSI can drive SSITx output in Slave Output mode.
1
SSI must not drive the SSITx output in Slave mode.
SSI Master/Slave Select
This bit selects Master or Slave mode and can be modified only when
SSI is disabled (SSE=0).
The MS values are defined as follows:
Value Description
0
Device configured as a master.
1
Device configured as a slave.
October 01, 2007
279
Preliminary
Synchronous Serial Interface (SSI)
Bit/Field
Name
Type
Reset
1
SSE
R/W
0
Description
SSI Synchronous Serial Port Enable
Setting this bit enables SSI operation.
The SSE values are defined as follows:
Value Description
0
SSI operation disabled.
1
SSI operation enabled.
Note:
0
LBM
R/W
0
This bit must be set to 0 before any control registers
are reprogrammed.
SSI Loopback Mode
Setting this bit enables Loopback Test mode.
The LBM values are defined as follows:
Value Description
0
Normal serial port operation enabled.
1
Output of the transmit serial shift register is connected internally
to the input of the receive serial shift register.
280
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: SSI Data (SSIDR), offset 0x008
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed
to by the current FIFO write pointer).
When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed
bit rate.
When a data size of less than 16 bits is selected, the user must right-justify data written to the
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is
automatically right-justified in the receive buffer.
When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is
eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer.
The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the SSICR1
register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.
SSI Data (SSIDR)
SSI0 base: 0x4000.8000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
DATA
Type
Reset
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x0000
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
DATA
R/W
0x0000
SSI Receive/Transmit Data
A read operation reads the receive FIFO. A write operation writes the
transmit FIFO.
Software must right-justify data when the SSI is programmed for a data
size that is less than 16 bits. Unused bits at the top are ignored by the
transmit logic. The receive logic automatically right-justifies the data.
October 01, 2007
281
Preliminary
Synchronous Serial Interface (SSI)
Register 4: SSI Status (SSISR), offset 0x00C
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.
SSI Status (SSISR)
SSI0 base: 0x4000.8000
Offset 0x00C
Type RO, reset 0x0000.0003
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
BSY
RFF
RNE
TNF
TFE
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
R0
1
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:5
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
BSY
RO
0
SSI Busy Bit
The BSY values are defined as follows:
Value Description
3
RFF
RO
0
0
SSI is idle.
1
SSI is currently transmitting and/or receiving a frame, or the
transmit FIFO is not empty.
SSI Receive FIFO Full
The RFF values are defined as follows:
Value Description
2
RNE
RO
0
0
Receive FIFO is not full.
1
Receive FIFO is full.
SSI Receive FIFO Not Empty
The RNE values are defined as follows:
Value Description
1
TNF
RO
1
0
Receive FIFO is empty.
1
Receive FIFO is not empty.
SSI Transmit FIFO Not Full
The TNF values are defined as follows:
Value Description
0
Transmit FIFO is full.
1
Transmit FIFO is not full.
282
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
0
TFE
R0
1
Description
SSI Transmit FIFO Empty
The TFE values are defined as follows:
Value Description
0
Transmit FIFO is not empty.
1
Transmit FIFO is empty.
October 01, 2007
283
Preliminary
Synchronous Serial Interface (SSI)
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010
SSICPSR is the clock prescale register and specifies the division factor by which the system clock
must be internally divided before further use.
The value programmed into this register must be an even number between 2 and 254. The
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written
to this register, data read back from this register has the least-significant bit as zero.
SSI Clock Prescale (SSICPSR)
SSI0 base: 0x4000.8000
Offset 0x010
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
CPSDVSR
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CPSDVSR
R/W
0x00
SSI Clock Prescale Divisor
This value must be an even number from 2 to 254, depending on the
frequency of SSIClk. The LSB always returns 0 on reads.
284
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits
are cleared to 0 on reset.
On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding
mask.
SSI Interrupt Mask (SSIIM)
SSI0 base: 0x4000.8000
Offset 0x014
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
3
2
1
0
TXIM
RXIM
RTIM
RORIM
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
TXIM
R/W
0
SSI Transmit FIFO Interrupt Mask
The TXIM values are defined as follows:
Value Description
2
RXIM
R/W
0
0
TX FIFO half-full or less condition interrupt is masked.
1
TX FIFO half-full or less condition interrupt is not masked.
SSI Receive FIFO Interrupt Mask
The TFE values are defined as follows:
Value Description
1
RTIM
R/W
0
0
RX FIFO half-full or more condition interrupt is masked.
1
RX FIFO half-full or more condition interrupt is not masked.
SSI Receive Time-Out Interrupt Mask
The RTIM values are defined as follows:
Value Description
0
RX FIFO time-out interrupt is masked.
1
RX FIFO time-out interrupt is not masked.
October 01, 2007
285
Preliminary
Synchronous Serial Interface (SSI)
Bit/Field
Name
Type
Reset
0
RORIM
R/W
0
Description
SSI Receive Overrun Interrupt Mask
The RORIM values are defined as follows:
Value Description
0
RX FIFO overrun interrupt is masked.
1
RX FIFO overrun interrupt is not masked.
286
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current
raw status value of the corresponding interrupt prior to masking. A write has no effect.
SSI Raw Interrupt Status (SSIRIS)
SSI0 base: 0x4000.8000
Offset 0x018
Type RO, reset 0x0000.0008
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
TXRIS
RXRIS
RTRIS
RORRIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
TXRIS
RO
1
SSI Transmit FIFO Raw Interrupt Status
Indicates that the transmit FIFO is half full or less, when set.
2
RXRIS
RO
0
SSI Receive FIFO Raw Interrupt Status
Indicates that the receive FIFO is half full or more, when set.
1
RTRIS
RO
0
SSI Receive Time-Out Raw Interrupt Status
Indicates that the receive time-out has occurred, when set.
0
RORRIS
RO
0
SSI Receive Overrun Raw Interrupt Status
Indicates that the receive FIFO has overflowed, when set.
October 01, 2007
287
Preliminary
Synchronous Serial Interface (SSI)
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C
The SSIMIS register is the masked interrupt status register. On a read, this register gives the current
masked status value of the corresponding interrupt. A write has no effect.
SSI Masked Interrupt Status (SSIMIS)
SSI0 base: 0x4000.8000
Offset 0x01C
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
TXMIS
RXMIS
RTMIS
RORMIS
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
TXMIS
RO
0
SSI Transmit FIFO Masked Interrupt Status
Indicates that the transmit FIFO is half full or less, when set.
2
RXMIS
RO
0
SSI Receive FIFO Masked Interrupt Status
Indicates that the receive FIFO is half full or more, when set.
1
RTMIS
RO
0
SSI Receive Time-Out Masked Interrupt Status
Indicates that the receive time-out has occurred, when set.
0
RORMIS
RO
0
SSI Receive Overrun Masked Interrupt Status
Indicates that the receive FIFO has overflowed, when set.
288
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is
cleared. A write of 0 has no effect.
SSI Interrupt Clear (SSIICR)
SSI0 base: 0x4000.8000
Offset 0x020
Type W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RTIC
RORIC
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
W1C
0
W1C
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
RTIC
W1C
0
SSI Receive Time-Out Interrupt Clear
The RTIC values are defined as follows:
Value Description
0
RORIC
W1C
0
0
No effect on interrupt.
1
Clears interrupt.
SSI Receive Overrun Interrupt Clear
The RORIC values are defined as follows:
Value Description
0
No effect on interrupt.
1
Clears interrupt.
October 01, 2007
289
Preliminary
Synchronous Serial Interface (SSI)
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 4 (SSIPeriphID4)
SSI0 base: 0x4000.8000
Offset 0xFD0
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID4
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID4
RO
0x00
SSI Peripheral ID Register[7:0]
Can be used by software to identify the presence of this peripheral.
290
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 5 (SSIPeriphID5)
SSI0 base: 0x4000.8000
Offset 0xFD4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID5
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID5
RO
0x00
SSI Peripheral ID Register[15:8]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
291
Preliminary
Synchronous Serial Interface (SSI)
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 6 (SSIPeriphID6)
SSI0 base: 0x4000.8000
Offset 0xFD8
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID6
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID6
RO
0x00
SSI Peripheral ID Register[23:16]
Can be used by software to identify the presence of this peripheral.
292
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 7 (SSIPeriphID7)
SSI0 base: 0x4000.8000
Offset 0xFDC
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID7
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID7
RO
0x00
SSI Peripheral ID Register[31:24]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
293
Preliminary
Synchronous Serial Interface (SSI)
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 0 (SSIPeriphID0)
SSI0 base: 0x4000.8000
Offset 0xFE0
Type RO, reset 0x0000.0022
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
0
RO
0
RO
1
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID0
RO
0
Bit/Field
Name
Type
Reset
31:8
reserved
RO
0
7:0
PID0
RO
0x22
Description
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
SSI Peripheral ID Register[7:0]
Can be used by software to identify the presence of this peripheral.
294
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 1 (SSIPeriphID1)
SSI0 base: 0x4000.8000
Offset 0xFE4
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID1
RO
0x00
SSI Peripheral ID Register [15:8]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
295
Preliminary
Synchronous Serial Interface (SSI)
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 2 (SSIPeriphID2)
SSI0 base: 0x4000.8000
Offset 0xFE8
Type RO, reset 0x0000.0018
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PID2
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID2
RO
0x18
SSI Peripheral ID Register [23:16]
Can be used by software to identify the presence of this peripheral.
296
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI Peripheral Identification 3 (SSIPeriphID3)
SSI0 base: 0x4000.8000
Offset 0xFEC
Type RO, reset 0x0000.0001
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
PID3
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
PID3
RO
0x01
SSI Peripheral ID Register [31:24]
Can be used by software to identify the presence of this peripheral.
October 01, 2007
297
Preliminary
Synchronous Serial Interface (SSI)
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI PrimeCell Identification 0 (SSIPCellID0)
SSI0 base: 0x4000.8000
Offset 0xFF0
Type RO, reset 0x0000.000D
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID0
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID0
RO
0x0D
SSI PrimeCell ID Register [7:0]
Provides software a standard cross-peripheral identification system.
298
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI PrimeCell Identification 1 (SSIPCellID1)
SSI0 base: 0x4000.8000
Offset 0xFF4
Type RO, reset 0x0000.00F0
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
1
RO
1
RO
1
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
CID1
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID1
RO
0xF0
SSI PrimeCell ID Register [15:8]
Provides software a standard cross-peripheral identification system.
October 01, 2007
299
Preliminary
Synchronous Serial Interface (SSI)
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI PrimeCell Identification 2 (SSIPCellID2)
SSI0 base: 0x4000.8000
Offset 0xFF8
Type RO, reset 0x0000.0005
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
1
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID2
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID2
RO
0x05
SSI PrimeCell ID Register [23:16]
Provides software a standard cross-peripheral identification system.
300
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC
The SSIPCellIDn registers are hard-coded and the fields within the register determine the reset
value.
SSI PrimeCell Identification 3 (SSIPCellID3)
SSI0 base: 0x4000.8000
Offset 0xFFC
Type RO, reset 0x0000.00B1
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
1
RO
0
RO
1
RO
1
RO
0
RO
0
RO
0
RO
1
reserved
Type
Reset
reserved
Type
Reset
CID3
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
CID3
RO
0xB1
SSI PrimeCell ID Register [31:24]
Provides software a standard cross-peripheral identification system.
October 01, 2007
301
Preliminary
Inter-Integrated Circuit (I2C) Interface
13
Inter-Integrated Circuit (I2C) Interface
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design
(a serial data line SDA and a serial clock line SCL), and interfaces to external I2C devices such as
serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C
bus may also be used for system testing and diagnostic purposes in product development and
manufacture. The LM3S601 microcontroller includes one I2C module, providing the ability to interact
(both send and receive) with other I2C devices on the bus.
®
Devices on the I2C bus can be designated as either a master or a slave. The Stellaris I2C module
supports both sending and receiving data as either a master or a slave, and also supports the
simultaneous operation as both a master and a slave. There are a total of four I2C modes: Master
®
Transmit, Master Receive, Slave Transmit, and Slave Receive. The Stellaris I2C module can
operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).
Both the I2C master and slave can generate interrupts; the I2C master generates interrupts when
a transmit or receive operation completes (or aborts due to an error) and the I2C slave generates
interrupts when data has been sent or requested by a master.
13.1
Block Diagram
Figure 13-1. I2C Block Diagram
I2CSCL
I2C Control
Interrupt
I2CMSA
I2CSOAR
I2CMCS
I2CSCSR
I2CMDR
I2CSDR
I2CMTPR
I2CSIM
I2CMIMR
I2CSRIS
I2CMRIS
I2CSMIS
I2CMMIS
I2CSICR
2
I C Master Core
I2CSCL
2
I C I/O Select
I2CSDA
I2CSCL
I2C Slave Core
I2CMICR
I2CSDA
I2CMCR
13.2
I2CSDA
Functional Description
I2C module is comprised of both master and slave functions which are implemented as separate
peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional
open-drain pads. A typical I2C bus configuration is shown in Figure 13-2 on page 303.
See “I2C” on page 416 for I2C timing diagrams.
302
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 13-2. I2C Bus Configuration
RPUP
SCL
SDA
I2C Bus
I2CSCL
I2CSDA
StellarisTM
13.2.1
RPUP
SCL
SDA
3rd Party Device
with I2C Interface
SCL
SDA
3rd Party Device
with I2C Interface
I2C Bus Functional Overview
®
The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris
microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock
line. The bus is considered idle when both lines are high.
Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single
acknowledge bit. The number of bytes per transfer (defined as the time between a valid START
and STOP condition, described in “START and STOP Conditions” on page 303) is unrestricted, but
each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When
a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the
transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.
13.2.1.1 START and STOP Conditions
The protocol of the I2C bus defines two states to begin and end a transaction: START and STOP.
A high-to-low transition on the SDA line while the SCL is high is defined as a START condition, and
a low-to-high transition on the SDA line while SCL is high is defined as a STOP condition. The bus
is considered busy after a START condition and free after a STOP condition. See Figure
13-3 on page 303.
Figure 13-3. START and STOP Conditions
SDA
SDA
SCL
SCL
START
condition
STOP
condition
13.2.1.2 Data Format with 7-Bit Address
Data transfers follow the format shown in Figure 13-4 on page 304. After the START condition, a
slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction
bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates
a request for data (receive). A data transfer is always terminated by a STOP condition generated
by the master, however, a master can initiate communications with another device on the bus by
generating a repeated START condition and addressing another slave without first generating a
STOP condition. Various combinations of receive/send formats are then possible within a single
transfer.
October 01, 2007
303
Preliminary
Inter-Integrated Circuit (I2C) Interface
Figure 13-4. Complete Data Transfer with a 7-Bit Address
SDA
MSB
SCL
1
2
LSB
R/S
ACK
7
8
9
Slave address
MSB
1
2
7
LSB
ACK
8
9
Data
The first seven bits of the first byte make up the slave address (see Figure 13-5 on page 304). The
eighth bit determines the direction of the message. A zero in the R/S position of the first byte means
that the master will write (send) data to the selected slave, and a one in this position means that
the master will receive data from the slave.
Figure 13-5. R/S Bit in First Byte
MSB
LSB
R/S
Slave address
13.2.1.3 Data Validity
The data on the SDA line must be stable during the high period of the clock, and the data line can
only change when SCL is low (see Figure 13-6 on page 304).
Figure 13-6. Data Validity During Bit Transfer on the I2C Bus
SDA
SCL
Data line Change
stable
of data
allowed
13.2.1.4 Acknowledge
All bus transactions have a required acknowledge clock cycle that is generated by the master. During
the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line.
To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock
cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data
validity requirements described in “Data Validity” on page 304.
When a slave receiver does not acknowledge the slave address, SDA must be left high by the slave
so that the master can generate a STOP condition and abort the current transfer. If the master
device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer
made by the slave. Since the master controls the number of bytes in the transfer, it signals the end
of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave
transmitter must then release SDA to allow the master to generate the STOP or a repeated START
condition.
304
October 01, 2007
Preliminary
LM3S601 Microcontroller
13.2.1.5 Arbitration
A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate
a START condition within minimum hold time of the START condition. In these situations, an
arbitration scheme takes place on the SDA line, while SCL is high. During arbitration, the first of the
competing master devices to place a '1' (high) on SDA while another master transmits a '0' (low)
will switch off its data output stage and retire until the bus is idle again.
Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if
both masters are trying to address the same device, arbitration continues on to the comparison of
data bits.
13.2.2
Available Speed Modes
The I2C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.
where:
CLK_PRD is the system clock period
SCL_LP is the low phase of SCL (fixed at 6)
SCL_HP is the high phase of SCL (fixed at 4)
TIMER_PRD is the programmed value in the I2C Master Timer Period (I2CMTPR) register (see
page 322).
The I2C clock period is calculated as follows:
SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD
For example:
CLK_PRD = 50 ns
TIMER_PRD = 2
SCL_LP=6
SCL_HP=4
yields a SCL frequency of:
1/T = 333 Khz
Table 13-1 on page 305 gives examples of timer period, system clock, and speed mode (Standard
or Fast).
Table 13-1. Examples of I2C Master Timer Period versus Speed Mode
System Clock Timer Period Standard Mode Timer Period Fast Mode
4 Mhz
0x01
100 Kbps
-
-
6 Mhz
0x02
100 Kbps
-
-
12.5 Mhz
0x06
89 Kbps
0x01
312 Kbps
16.7 Mhz
0x08
93 Kbps
0x02
278 Kbps
20 Mhz
0x09
100 Kbps
0x02
333 Kbps
25 Mhz
0x0C
96.2 Kbps
0x03
312 Kbps
33Mhz
0x10
97.1 Kbps
0x04
330 Kbps
40Mhz
0x13
100 Kbps
0x04
400 Kbps
October 01, 2007
305
Preliminary
Inter-Integrated Circuit (I2C) Interface
System Clock Timer Period Standard Mode Timer Period Fast Mode
50Mhz
13.2.3
0x18
100 Kbps
0x06
357 Kbps
Interrupts
The I2C can generate interrupts when the following conditions are observed:
■ Master transaction completed
■ Master transaction error
■ Slave transaction received
■ Slave transaction requested
There is a separate interrupt signal for the I2C master and I2C modules. While both modules can
generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt
controller.
13.2.3.1 I2C Master Interrupts
The I2C master module generates an interrupt when a transaction completes (either transmit or
receive), or when an error occurs during a transaction. To enable the I2C master interrupt, software
must write a '1' to the I2C Master Interrupt Mask (I2CMIMR) register. When an interrupt condition
is met, software must check the ERROR bit in the I2C Master Control/Status (I2CMCS) register to
verify that an error didn't occur during the last transaction. An error condition is asserted if the last
transaction wasn't acknowledge by the slave or if the master was forced to give up ownership of
the bus due to a lost arbitration round with another master. If an error is not detected, the application
can proceed with the transfer. The interrupt is cleared by writing a '1' to the I2C Master Interrupt
Clear (I2CMICR) register.
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Master Raw Interrupt Status (I2CMRIS) register.
13.2.3.2 I2C Slave Interrupts
The slave module generates interrupts as it receives requests from an I2C master. To enable the
I2C slave interrupt, write a '1' to the I2C Slave Interrupt Mask (I2CSIMR) register. Software
determines whether the module should write (transmit) or read (receive) data from the I2C Slave
Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I2C Slave Control/Status
(I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received,
the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a '1' to the I2C Slave
Interrupt Clear (I2CSICR) register.
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via
the I2C Slave Raw Interrupt Status (I2CSRIS) register.
13.2.4
Loopback Operation
The I2C modules can be placed into an internal loopback mode for diagnostic or debug work. This
is accomplished by setting the LPBK bit in the I2C Master Configuration (I2CMCR) register. In
loopback mode, the SDA and SCL signals from the master and slave modules are tied together.
306
October 01, 2007
Preliminary
LM3S601 Microcontroller
13.2.5
Command Sequence Flow Charts
This section details the steps required to perform the various I2C transfer types in both master and
slave mode.
13.2.5.1 I2C Master Command Sequences
The figures that follow show the command sequences available for the I2C master.
Figure 13-7. Master Single SEND
Idle
Write Slave
Address to
I2CMSA
Sequence
may be
omitted in a
Single Master
system
Write data to
I2CMDR
Read I2CMCS
NO
BUSBSY bit=0?
YES
Write ---0-111 to
I2CMCS
Read I2CMCS
NO
BUSY bit=0?
YES
Error Service
NO
ERROR bit=0?
YES
Idle
October 01, 2007
307
Preliminary
Inter-Integrated Circuit (I2C) Interface
Figure 13-8. Master Single RECEIVE
Idle
Write Slave
Address to
I2CMSA
Sequence may be
omitted in a Single
Master system
Read I2CMCS
NO
BUSBSY bit=0?
YES
Write ---00111 to
I2CMCS
Read I2CMCS
NO
BUSY bit=0?
YES
Error Service
NO
ERROR bit=0?
YES
Read data from
I2CMDR
Idle
308
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 13-9. Master Burst SEND
Idle
Write Slave
Address to
I2CMSA
Sequence
may be
omitted in a
Single Master
system
Read I2CMCS
Write data to
I2CMDR
BUSY bit=0?
YES
Read I2CMCS
ERROR bit=0?
NO
NO
NO
BUSBSY bit=0?
YES
Write data to
I2CMDR
YES
Write ---0-011 to
I2CMCS
NO
ARBLST bit=1?
YES
Write ---0-001 to
I2CMCS
NO
Index=n?
YES
Write ---0-101 to
I2CMCS
Write ---0-100 to
I2CMCS
Error Service
Idle
Read I2CMCS
NO
BUSY bit=0?
YES
Error Service
NO
ERROR bit=0?
YES
Idle
October 01, 2007
309
Preliminary
Inter-Integrated Circuit (I2C) Interface
Figure 13-10. Master Burst RECEIVE
Idle
Write Slave
Address to
I2CMSA
Sequence
may be
omitted in a
Single Master
system
Read I2CMCS
BUSY bit=0?
Read I2CMCS
NO
YES
NO
BUSBSY bit=0?
ERROR bit=0?
NO
YES
Write ---01011 to
I2CMCS
NO
Read data from
I2CMDR
ARBLST bit=1?
YES
Write ---01001 to
I2CMCS
NO
Write ---0-100 to
I2CMCS
Index=m-1?
Error Service
YES
Write ---00101 to
I2CMCS
Idle
Read I2CMCS
BUSY bit=0?
NO
YES
NO
ERROR bit=0?
YES
Error Service
Read data from
I2CMDR
Idle
310
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 13-11. Master Burst RECEIVE after Burst SEND
Idle
Master operates in
Master Transmit mode
STOP condition is not
generated
Write Slave
Address to
I2CMSA
Write ---01011 to
I2CMCS
Repeated START
condition is generated
with changing data
direction
Master operates in
Master Receive mode
Idle
October 01, 2007
311
Preliminary
Inter-Integrated Circuit (I2C) Interface
Figure 13-12. Master Burst SEND after Burst RECEIVE
Idle
Master operates in
Master Receive mode
STOP condition is not
generated
Write Slave
Address to
I2CMSA
Write ---0-011 to
I2CMCS
Repeated START
condition is generated
with changing data
direction
Master operates in
Master Transmit mode
Idle
13.2.5.2 I2C Slave Command Sequences
Figure 13-13 on page 313 presents the command sequence available for the I2C slave.
312
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 13-13. Slave Command Sequence
Idle
Write OWN Slave
Address to
I2CSOAR
Write -------1 to
I2CSCSR
Read I2CSCSR
NO
TREQ bit=1?
YES
Write data to
I2CSDR
13.3
NO
RREQ bit=1?
FBR is
also valid
YES
Read data from
I2CSDR
Initialization and Configuration
The following example shows how to configure the I2C module to send a single byte as a master.
This assumes the system clock is 20 MHz.
1. Enable the I2C clock by writing a value of 0x0000.1000 to the RCGC1 register in the System
Control module.
2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control
module.
3. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.
4. Initialize the I2C Master by writing the I2CMCR register with a value of 0x0000.0020.
5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct
value. The value written to the I2CMTPR register represents the number of system clock periods
in one SCL clock period. The TPR value is determined by the following equation:
October 01, 2007
313
Preliminary
Inter-Integrated Circuit (I2C) Interface
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;
TPR = 9
Write the I2CMTPR register with the value of 0x0000.0009.
6. Specify the slave address of the master and that the next operation will be a Send by writing
the I2CMSA register with a value of 0x0000.0076. This sets the slave address to 0x3B.
7. Place data (byte) to be sent in the data register by writing the I2CMDR register with the desired
data.
8. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with
a value of 0x0000.0007 (STOP, START, RUN).
9. Wait until the transmission completes by polling the I2CMCS register’s BUSBSY bit until it has
been cleared.
13.4
I2C Register Map
Table 13-2 on page 314 lists the I2C registers. All addresses given are relative to the I2C base
addresses for the master and slave:
■ I2C Master 0: 0x4002.0000
■ I2C Slave 0: 0x4002.0800
Table 13-2. Inter-Integrated Circuit (I2C) Interface Register Map
Offset
Description
See
page
Name
Type
Reset
0x000
I2CMSA
R/W
0x0000.0000
I2C Master Slave Address
316
0x004
I2CMCS
R/W
0x0000.0000
I2C Master Control/Status
317
0x008
I2CMDR
R/W
0x0000.0000
I2C Master Data
321
0x00C
I2CMTPR
R/W
0x0000.0001
I2C Master Timer Period
322
0x010
I2CMIMR
R/W
0x0000.0000
I2C Master Interrupt Mask
323
0x014
I2CMRIS
RO
0x0000.0000
I2C Master Raw Interrupt Status
324
0x018
I2CMMIS
RO
0x0000.0000
I2C Master Masked Interrupt Status
325
0x01C
I2CMICR
WO
0x0000.0000
I2C Master Interrupt Clear
326
0x020
I2CMCR
R/W
0x0000.0000
I2C Master Configuration
327
0x000
I2CSOAR
R/W
0x0000.0000
I2C Slave Own Address
329
0x004
I2CSCSR
RO
0x0000.0000
I2C Slave Control/Status
330
0x008
I2CSDR
R/W
0x0000.0000
I2C Slave Data
332
0x00C
I2CSIMR
R/W
0x0000.0000
I2C Slave Interrupt Mask
333
I2C Master
I2C Slave
314
October 01, 2007
Preliminary
LM3S601 Microcontroller
Offset
Name
0x010
Reset
I2CSRIS
RO
0x0000.0000
I2C Slave Raw Interrupt Status
334
0x014
I2CSMIS
RO
0x0000.0000
I2C Slave Masked Interrupt Status
335
0x018
I2CSICR
WO
0x0000.0000
I2C Slave Interrupt Clear
336
13.5
Description
See
page
Type
Register Descriptions (I2C Master)
The remainder of this section lists and describes the I2C master registers, in numerical order by
address offset. See also “Register Descriptions (I2C Slave)” on page 328.
October 01, 2007
315
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 1: I2C Master Slave Address (I2CMSA), offset 0x000
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which
determines if the next operation is a Receive (High), or Send (Low).
I2C Master Slave Address (I2CMSA)
I2C Master 0 base: 0x4002.0000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
SA
RO
0
R/S
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:1
SA
R/W
0
I2C Slave Address
This field specifies bits A6 through A0 of the slave address.
0
R/S
R/W
0
Receive/Send
The R/S bit specifies if the next operation is a Receive (High) or Send
(Low).
0: Send
1: Receive
316
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: I2C Master Control/Status (I2CMCS), offset 0x004
This register accesses four control bits when written, and accesses seven status bits when read.
The status register consists of seven bits, which when read determine the state of the I2C bus
controller.
The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes
the generation of the START, or REPEATED START condition.
The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst.
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with
the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1),
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed
(or aborted due an error), the interrupt pin becomes active and the data may be read from the
I2CMDR register. When the I2C module operates in Master receiver mode, the ACK bit must be set
normally to logic 1. This causes the I2C bus controller to send an acknowledge automatically after
each byte. This bit must be reset when the I2C bus controller requires no further data to be sent
from the slave transmitter.
Read-Only Status Register
I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
Offset 0x004
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
BUSBSY
IDLE
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
ARBLST DATACK ADRACK ERROR
RO
0
RO
0
RO
0
RO
0
BUSY
RO
0
Bit/Field
Name
Type
Reset
Description
31:7
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6
BUSBSY
RO
0
Bus Busy
This bit specifies the state of the I2C bus. If set, the bus is busy;
otherwise, the bus is idle. The bit changes based on the START and
STOP conditions.
5
IDLE
RO
0
I2C Idle
This bit specifies the I2C controller state. If set, the controller is idle;
otherwise the controller is not idle.
4
ARBLST
RO
0
Arbitration Lost
This bit specifies the result of bus arbitration. If set, the controller lost
arbitration; otherwise, the controller won arbitration.
October 01, 2007
317
Preliminary
Inter-Integrated Circuit (I2C) Interface
Bit/Field
Name
Type
Reset
3
DATACK
RO
0
Description
Acknowledge Data
This bit specifies the result of the last data operation. If set, the
transmitted data was not acknowledged; otherwise, the data was
acknowledged.
2
ADRACK
RO
0
Acknowledge Address
This bit specifies the result of the last address operation. If set, the
transmitted address was not acknowledged; otherwise, the address was
acknowledged.
1
ERROR
RO
0
Error
This bit specifies the result of the last bus operation. If set, an error
occurred on the last operation; otherwise, no error was detected. The
error can be from the slave address not being acknowledged, the
transmit data not being acknowledged, or because the controller lost
arbitration.
0
BUSY
RO
I2C Busy
0
This bit specifies the state of the controller. If set, the controller is busy;
otherwise, the controller is idle. When the BUSY bit is set, the other status
bits are not valid.
Write-Only Control Register
I2C Master Control/Status (I2CMCS)
I2C Master 0 base: 0x4002.0000
Offset 0x004
Type WO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
WO
0
WO
0
WO
0
WO
0
reserved
Type
Reset
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
15
14
13
12
11
10
9
8
7
6
5
4
reserved
Type
Reset
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
WO
0
3
2
1
0
ACK
STOP
START
RUN
WO
0
WO
0
WO
0
WO
0
Bit/Field
Name
Type
Reset
Description
31:4
reserved
WO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
ACK
WO
0
Data Acknowledge Enable
When set, causes received data byte to be acknowledged automatically
by the master. See field decoding in Table 13-3 on page 319.
2
STOP
WO
0
Generate STOP
When set, causes the generation of the STOP condition. See field
decoding in Table 13-3 on page 319.
318
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
1
START
WO
0
Description
Generate START
When set, causes the generation of a START or repeated START
condition. See field decoding in Table 13-3 on page 319.
0
RUN
WO
I2C Master Enable
0
When set, allows the master to send or receive data. See field decoding
in Table 13-3 on page 319.
Table 13-3. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)
Current I2CMSA[0]
State
R/S
Idle
I2CMCS[3:0]
ACK
Description
STOP
START
RUN
0
X
a
0
1
1
0
X
1
1
1
START condition followed by a SEND and STOP
condition (master remains in Idle state).
1
0
0
1
1
START condition followed by RECEIVE operation with
negative ACK (master goes to the Master Receive state).
1
0
1
1
1
START condition followed by RECEIVE and STOP
condition (master remains in Idle state).
1
1
0
1
1
START condition followed by RECEIVE (master goes to
the Master Receive state).
1
1
1
1
1
Illegal.
START condition followed by SEND (master goes to the
Master Transmit state).
All other combinations not listed are non-operations. NOP.
Master
Transmit
X
X
0
0
1
SEND operation (master remains in Master Transmit
state).
X
X
1
0
0
STOP condition (master goes to Idle state).
X
X
1
0
1
SEND followed by STOP condition (master goes to Idle
state).
0
X
0
1
1
Repeated START condition followed by a SEND (master
remains in Master Transmit state).
0
X
1
1
1
Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).
1
0
0
1
1
Repeated START condition followed by a RECEIVE
operation with a negative ACK (master goes to Master
Receive state).
1
0
1
1
1
Repeated START condition followed by a SEND and
STOP condition (master goes to Idle state).
1
1
0
1
1
Repeated START condition followed by RECEIVE (master
goes to Master Receive state).
1
1
1
1
1
Illegal.
All other combinations not listed are non-operations. NOP.
October 01, 2007
319
Preliminary
Inter-Integrated Circuit (I2C) Interface
Current I2CMSA[0]
State
R/S
Master
Receive
I2CMCS[3:0]
Description
ACK
STOP
START
RUN
X
0
0
0
1
RECEIVE operation with negative ACK (master remains
in Master Receive state).
X
X
1
0
0
STOP condition (master goes to Idle state).
X
0
1
0
1
RECEIVE followed by STOP condition (master goes to
Idle state).
X
1
0
0
1
RECEIVE operation (master remains in Master Receive
state).
X
1
1
0
1
Illegal.
1
0
0
1
1
Repeated START condition followed by RECEIVE
operation with a negative ACK (master remains in Master
Receive state).
1
0
1
1
1
Repeated START condition followed by RECEIVE and
STOP condition (master goes to Idle state).
1
1
0
1
1
Repeated START condition followed by RECEIVE (master
remains in Master Receive state).
0
X
0
1
1
Repeated START condition followed by SEND (master
goes to Master Transmit state).
0
X
1
1
1
Repeated START condition followed by SEND and STOP
condition (master goes to Idle state).
b
All other combinations not listed are non-operations. NOP.
a. An X in a table cell indicates the bit can be 0 or 1.
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by
the master or an Address Negative Acknowledge executed by the slave.
320
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: I2C Master Data (I2CMDR), offset 0x008
This register contains the data to be transmitted when in the Master Transmit state, and the data
received when in the Master Receive state.
I2C Master Data (I2CMDR)
I2C Master 0 base: 0x4002.0000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
DATA
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DATA
R/W
0x00
Data Transferred
Data transferred during transaction.
October 01, 2007
321
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C
This register specifies the period of the SCL clock.
I2C Master Timer Period (I2CMTPR)
I2C Master 0 base: 0x4002.0000
Offset 0x00C
Type R/W, reset 0x0000.0001
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
1
reserved
Type
Reset
reserved
Type
Reset
TPR
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
TPR
R/W
0x1
SCL Clock Period
This field specifies the period of the SCL clock.
SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD
where:
SCL_PRD is the SCL line period (I2C clock).
TPR is the Timer Period register value (range of 1 to 255).
SCL_LP is the SCL Low period (fixed at 6).
SCL_HP is the SCL High period (fixed at 4).
322
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010
This register controls whether a raw interrupt is promoted to a controller interrupt.
I2C Master Interrupt Mask (I2CMIMR)
I2C Master 0 base: 0x4002.0000
Offset 0x010
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
IM
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
IM
R/W
0
Interrupt Mask
This bit controls whether a raw interrupt is promoted to a controller
interrupt. If set, the interrupt is not masked and the interrupt is promoted;
otherwise, the interrupt is masked.
October 01, 2007
323
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014
This register specifies whether an interrupt is pending.
I2C Master Raw Interrupt Status (I2CMRIS)
I2C Master 0 base: 0x4002.0000
Offset 0x014
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
RIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
RIS
RO
0
Raw Interrupt Status
This bit specifies the raw interrupt state (prior to masking) of the I2C
master block. If set, an interrupt is pending; otherwise, an interrupt is
not pending.
324
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018
This register specifies whether an interrupt was signaled.
I2C Master Masked Interrupt Status (I2CMMIS)
I2C Master 0 base: 0x4002.0000
Offset 0x018
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
MIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
MIS
RO
0
Masked Interrupt Status
This bit specifies the raw interrupt state (after masking) of the I2C master
block. If set, an interrupt was signaled; otherwise, an interrupt has not
been generated since the bit was last cleared.
October 01, 2007
325
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C
This register clears the raw interrupt.
I2C Master Interrupt Clear (I2CMICR)
I2C Master 0 base: 0x4002.0000
Offset 0x01C
Type WO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
WO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
IC
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
IC
WO
0
Interrupt Clear
This bit controls the clearing of the raw interrupt. A write of 1 clears the
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A
read of this register returns no meaningful data.
326
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 9: I2C Master Configuration (I2CMCR), offset 0x020
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.
I2C Master Configuration (I2CMCR)
I2C Master 0 base: 0x4002.0000
Offset 0x020
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
SFE
MFE
RO
0
RO
0
RO
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
reserved
RO
0
RO
0
LPBK
RO
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
SFE
R/W
0
I2C Slave Function Enable
This bit specifies whether the interface may operate in Slave mode. If
set, Slave mode is enabled; otherwise, Slave mode is disabled.
4
MFE
R/W
0
I2C Master Function Enable
This bit specifies whether the interface may operate in Master mode. If
set, Master mode is enabled; otherwise, Master mode is disabled and
the interface clock is disabled.
3:1
reserved
RO
0x00
0
LPBK
R/W
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
I2C Loopback
This bit specifies whether the interface is operating normally or in
Loopback mode. If set, the device is put in a test mode loopback
configuration; otherwise, the device operates normally.
October 01, 2007
327
Preliminary
Inter-Integrated Circuit (I2C) Interface
13.6
Register Descriptions (I2C Slave)
The remainder of this section lists and describes the I2C slave registers, in numerical order by
address offset. See also “Register Descriptions (I2C Master)” on page 315.
328
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x000
®
This register consists of seven address bits that identify the Stellaris I2C device on the I2C bus.
I2C Slave Own Address (I2CSOAR)
I2C Slave 0 base: 0x4002.0800
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
3
2
1
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
15
14
13
12
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
11
10
9
8
7
6
5
4
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
OAR
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:7
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
6:0
OAR
R/W
0x00
I2C Slave Own Address
This field specifies bits A6 through A0 of the slave address.
October 01, 2007
329
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x004
This register accesses one control bit when written, and three status bits when read.
The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First
®
Byte Received (FBR) bit is set only after the Stellaris device detects its own slave address
and receives the first data byte from the I2C master. The Receive Request (RREQ) bit indicates
®
that the Stellaris I2C device has received a data byte from an I2C master. Read one data byte from
the I2C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit
®
indicates that the Stellaris I2C device is addressed as a Slave Transmitter. Write one data byte
2
into the I C Slave Data (I2CSDR) register to clear the TREQ bit.
The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the
®
Stellaris I2C slave operation.
Read-Only Status Register
I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
Offset 0x004
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
FBR
TREQ
RREQ
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
FBR
RO
0
First Byte Received
Indicates that the first byte following the slave’s own address is received.
This bit is only valid when the RREQ bit is set, and is automatically cleared
when data has been read from the I2CSDR register.
Note:
1
TREQ
RO
0
This bit is not used for slave transmit operations.
Transmit Request
This bit specifies the state of the I2C slave with regards to outstanding
transmit requests. If set, the I2C unit has been addressed as a slave
transmitter and uses clock stretching to delay the master until data has
been written to the I2CSDR register. Otherwise, there is no outstanding
transmit request.
0
RREQ
RO
0
Receive Request
This bit specifies the status of the I2C slave with regards to outstanding
receive requests. If set, the I2C unit has outstanding receive data from
the I2C master and uses clock stretching to delay the master until the
data has been read from the I2CSDR register. Otherwise, no receive
data is outstanding.
330
October 01, 2007
Preliminary
LM3S601 Microcontroller
Write-Only Control Register
I2C Slave Control/Status (I2CSCSR)
I2C Slave 0 base: 0x4002.0800
Offset 0x004
Type WO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
WO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
DA
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
DA
WO
0
Device Active
1=Enables the I2C slave operation.
0=Disables the I2C slave operation.
October 01, 2007
331
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 12: I2C Slave Data (I2CSDR), offset 0x008
This register contains the data to be transmitted when in the Slave Transmit state, and the data
received when in the Slave Receive state.
I2C Slave Data (I2CSDR)
I2C Slave 0 base: 0x4002.0800
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
DATA
RO
0
Bit/Field
Name
Type
Reset
Description
31:8
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
7:0
DATA
R/W
0x0
Data for Transfer
This field contains the data for transfer during a slave receive or transmit
operation.
332
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x00C
This register controls whether a raw interrupt is promoted to a controller interrupt.
I2C Slave Interrupt Mask (I2CSIMR)
I2C Slave 0 base: 0x4002.0800
Offset 0x00C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
IM
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
IM
R/W
0
Interrupt Mask
This bit controls whether a raw interrupt is promoted to a controller
interrupt. If set, the interrupt is not masked and the interrupt is promoted;
otherwise, the interrupt is masked.
October 01, 2007
333
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x010
This register specifies whether an interrupt is pending.
I2C Slave Raw Interrupt Status (I2CSRIS)
I2C Slave 0 base: 0x4002.0800
Offset 0x010
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
RIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
RIS
RO
0
Raw Interrupt Status
This bit specifies the raw interrupt state (prior to masking) of the I2C
slave block. If set, an interrupt is pending; otherwise, an interrupt is not
pending.
334
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x014
This register specifies whether an interrupt was signaled.
I2C Slave Masked Interrupt Status (I2CSMIS)
I2C Slave 0 base: 0x4002.0800
Offset 0x014
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
MIS
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
MIS
RO
0
Masked Interrupt Status
This bit specifies the raw interrupt state (after masking) of the I2C slave
block. If set, an interrupt was signaled; otherwise, an interrupt has not
been generated since the bit was last cleared.
October 01, 2007
335
Preliminary
Inter-Integrated Circuit (I2C) Interface
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x018
This register clears the raw interrupt.
I2C Slave Interrupt Clear (I2CSICR)
I2C Slave 0 base: 0x4002.0800
Offset 0x018
Type WO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
WO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
IC
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
IC
WO
0
Clear Interrupt
This bit controls the clearing of the raw interrupt. A write of 1 clears the
interrupt; otherwise a write of 0 has no affect on the interrupt state. A
read of this register returns no meaningful data.
336
October 01, 2007
Preliminary
LM3S601 Microcontroller
14
Analog Comparators
An analog comparator is a peripheral that compares two analog voltages, and provides a logical
output that signals the comparison result.
The LM3S601 controller provides three independent integrated analog comparators that can be
configured to drive an output or generate an interrupt.
Note:
Not all comparators have the option to drive an output pin. See the Comparator Operating
Mode tables for more information.
A comparator can compare a test voltage against any one of these voltages:
■ An individual external reference voltage
■ A shared single external reference voltage
■ A shared internal reference voltage
The comparator can provide its output to a device pin, acting as a replacement for an analog
comparator on the board, or it can be used to signal the application via interrupts to cause it to start
capturing a sample sequence.
October 01, 2007
337
Preliminary
Analog Comparators
14.1
Block Diagram
Figure 14-1. Analog Comparator Module Block Diagram
C2-
-ve input
C2+
+ve input
Comparator 2
output
<none>
+ve input (alternate)
ACCTL2
ACSTAT2
interrupt
reference input
C1-
-ve input
C1+
+ve input
interrupt
Comparator 1
output
<none>
+ve input (alternate)
ACCTL1
ACSTAT1
interrupt
reference input
C0-
-ve input
C0+
+ve input
interrupt
Comparator 0
output
C0o
+ve input (alternate)
ACCTL0
ACSTAT0
interrupt
reference input
interrupt
Voltage
Ref
internal
bus
14.2
ACREFCTL
Functional Description
Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module)
for the analog input pin be disabled to prevent excessive current draw from the I/O
pads.
The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.
VIN- < VIN+, VOUT = 1
VIN- > VIN+, VOUT = 0
As shown in Figure 14-2 on page 339, the input source for VIN- is an external input. In addition to
an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.
338
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 14-2. Structure of Comparator Unit
-ve input
output
0
+ve input
+ve input (alternate)
1
reference input
2
CINV
IntGen
ACCTL
interrupt
internal
bus
ACSTAT
A comparator is configured through two status/control registers (ACCTL and ACSTAT ). The internal
reference is configured through one control register (ACREFCTL). Interrupt status and control is
configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the
comparators are shown in the Comparator Operating Mode tables.
Typically, the comparator output is used internally to generate controller interrupts. It may also be
used to drive an external pin.
Important: Certain register bit values must be set before using the analog comparators. The proper
pad configuration for the comparator input and output pins are described in the
Comparator Operating Mode tables.
Table 14-1. Comparator 0 Operating Modes
ACCNTL0 Comparator 0
ASRCP
VIN- VIN+
Output
00
C0-
C0+
C0o/C1+
Interrupt
yes
01
C0-
C0+
C0o/C1+
yes
10
C0-
Vref
C0o/C1+
yes
11
C0- reserved C0o/C1+
yes
Table 14-2. Comparator 1 Operating Modes
ACCNTL1 Comparator 1
ASRCP
VIN- VIN+
Output Interrupt
a
00
C1- C0o/C1+
n/a
yes
01
C1-
C0+
n/a
yes
10
C1-
Vref
n/a
yes
11
C1- reserved
n/a
yes
a. C0o and C1+ signals share a single pin and may only be used as one or the other.
October 01, 2007
339
Preliminary
Analog Comparators
Table 14-3. Comparator 2 Operating Modes
ACCNTL2 Comparator 2
14.2.1
ASRCP
VIN- VIN+
00
C2-
C2+
Output Interrupt
n/a
yes
01
C2-
C0+
n/a
yes
10
C2-
Vref
n/a
yes
11
C2- reserved
n/a
yes
Internal Reference Programming
The structure of the internal reference is shown in Figure 14-3 on page 340. This is controlled by a
single configuration register (ACREFCTL). Table 14-4 on page 340 shows the programming options
to develop specific internal reference values, to compare an external voltage against a particular
voltage generated internally.
Figure 14-3. Comparator Internal Reference Structure
8R
AVDD
8R
R
R
R
R
•••
EN
15
14
•••
1
0
Decoder
VREF
internal
reference
RNG
Table 14-4. Internal Reference Voltage and ACREFCTL Field Values
ACREFCTL Register
Output Reference Voltage Based on VREF Field Value
EN Bit Value RNG Bit Value
EN=0
RNG=X
0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0
for the least noisy ground reference.
340
October 01, 2007
Preliminary
LM3S601 Microcontroller
ACREFCTL Register
Output Reference Voltage Based on VREF Field Value
EN Bit Value RNG Bit Value
EN=1
RNG=0
Total resistance in ladder is 32 R.
V
V
V
RE F
= AV
RE F
R EF
= AV
DD
DD
R
-------F
× ------V----RE
R
T
( VREF + 8 )
× -----------------------------32
= 0.825 + 0.103 VR EF
The range of internal reference in this mode is 0.825-2.37 V.
RNG=1
Total resistance in ladder is 24 R.
V
V
RE F
RE F
= AV
= AV
DD
DD
R
-------F
× ------V----RE
R
T
( VREF )
× --------------------24
VREF = 0.1375 x VREF
The range of internal reference for this mode is 0.0-2.0625 V.
14.3
Initialization and Configuration
The following example shows how to configure an analog comparator to read back its output value
from an internal register.
1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the RCGC1 register
in the System Control module.
2. In the GPIO module, enable the GPIO port/pin associated with C0- as a GPIO input.
3. Configure the internal voltage reference to 1.65 V by writing the ACREFCTL register with the
value 0x0000.030C.
4. Configure comparator 0 to use the internal voltage reference and to not invert the output on the
C0o pin by writing the ACCTL0 register with the value of 0x0000.040C.
5. Delay for some time.
6. Read the comparator output value by reading the ACSTAT0 register’s OVAL value.
Change the level of the signal input on C0- to see the OVAL value change.
14.4
Register Map
Table 14-5 on page 342 lists the comparator registers. The offset listed is a hexadecimal increment
to the register’s address, relative to the Analog Comparator base address of 0x4003.C000.
October 01, 2007
341
Preliminary
Analog Comparators
Table 14-5. Analog Comparators Register Map
See
page
Offset
Name
Type
Reset
0x00
ACMIS
R/W1C
0x0000.0000
Analog Comparator Masked Interrupt Status
343
0x04
ACRIS
RO
0x0000.0000
Analog Comparator Raw Interrupt Status
344
0x08
ACINTEN
R/W
0x0000.0000
Analog Comparator Interrupt Enable
345
0x10
ACREFCTL
R/W
0x0000.0000
Analog Comparator Reference Voltage Control
346
0x20
ACSTAT0
RO
0x0000.0000
Analog Comparator Status 0
347
0x24
ACCTL0
R/W
0x0000.0000
Analog Comparator Control 0
348
0x40
ACSTAT1
RO
0x0000.0000
Analog Comparator Status 1
347
0x44
ACCTL1
R/W
0x0000.0000
Analog Comparator Control 1
348
0x60
ACSTAT2
RO
0x0000.0000
Analog Comparator Status 2
347
0x64
ACCTL2
R/W
0x0000.0000
Analog Comparator Control 2
348
14.5
Description
Register Descriptions
The remainder of this section lists and describes the Analog Comparator registers, in numerical
order by address offset.
342
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x00
This register provides a summary of the interrupt status (masked) of the comparator.
Analog Comparator Masked Interrupt Status (ACMIS)
Base 0x4003.C000
Offset 0x00
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IN2
IN1
IN0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W1C
0
R/W1C
0
R/W1C
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
IN2
R/W1C
0
Comparator 2 Masked Interrupt Status
Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.
1
IN1
R/W1C
0
Comparator 1 Masked Interrupt Status
Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.
0
IN0
R/W1C
0
Comparator 0 Masked Interrupt Status
Gives the masked interrupt state of this interrupt. Write 1 to this bit to
clear the pending interrupt.
October 01, 2007
343
Preliminary
Analog Comparators
Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x04
This register provides a summary of the interrupt status (raw) of the comparator.
Analog Comparator Raw Interrupt Status (ACRIS)
Base 0x4003.C000
Offset 0x04
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IN2
IN1
IN0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
IN2
RO
0
Comparator 2 Interrupt Status
When set, indicates that an interrupt has been generated by comparator
2.
1
IN1
RO
0
Comparator 1 Interrupt Status
When set, indicates that an interrupt has been generated by comparator
1.
0
IN0
RO
0
Comparator 0 Interrupt Status
When set, indicates that an interrupt has been generated by comparator
0.
344
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x08
This register provides the interrupt enable for the comparator.
Analog Comparator Interrupt Enable (ACINTEN)
Base 0x4003.C000
Offset 0x08
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IN2
IN1
IN0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
IN2
R/W
0
Comparator 2 Interrupt Enable
When set, enables the controller interrupt from the comparator 2 output
1
IN1
R/W
0
Comparator 1 Interrupt Enable
When set, enables the controller interrupt from the comparator 1 output.
0
IN0
R/W
0
Comparator 0 Interrupt Enable
When set, enables the controller interrupt from the comparator 0 output.
October 01, 2007
345
Preliminary
Analog Comparators
Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset
0x10
This register specifies whether the resistor ladder is powered on as well as the range and tap.
Analog Comparator Reference Voltage Control (ACREFCTL)
Base 0x4003.C000
Offset 0x10
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
1
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
9
8
EN
RNG
R/W
0
R/W
0
reserved
Type
Reset
RO
0
reserved
RO
0
RO
0
RO
0
VREF
RO
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:10
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
9
EN
R/W
0
Resistor Ladder Enable
The EN bit specifies whether the resistor ladder is powered on. If 0, the
resistor ladder is unpowered. If 1, the resistor ladder is connected to
the analog VDD.
This bit is reset to 0 so that the internal reference consumes the least
amount of power if not used and programmed.
8
RNG
R/W
0
Resistor Ladder Range
The RNG bit specifies the range of the resistor ladder. If 0, the resistor
ladder has a total resistance of 32 R. If 1, the resistor ladder has a total
resistance of 24 R.
7:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3:0
VREF
R/W
0x00
Resistor Ladder Voltage Ref
The VREF bit field specifies the resistor ladder tap that is passed through
an analog multiplexer. The voltage corresponding to the tap position is
the internal reference voltage available for comparison. See Table
14-4 on page 340 for some output reference voltage examples.
346
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x20
Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x40
Register 7: Analog Comparator Status 2 (ACSTAT2), offset 0x60
These registers specify the current output value of the comparator.
Analog Comparator Status 0 (ACSTAT0)
Base 0x4003.C000
Offset 0x20
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
OVAL
reserved
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
OVAL
RO
0
Comparator Output Value
The OVAL bit specifies the current output value of the comparator.
0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
347
Preliminary
Analog Comparators
Register 8: Analog Comparator Control 0 (ACCTL0), offset 0x24
Register 9: Analog Comparator Control 1 (ACCTL1), offset 0x44
Register 10: Analog Comparator Control 2 (ACCTL2), offset 0x64
These registers configure the comparator’s input and output.
Analog Comparator Control 0 (ACCTL0)
Base 0x4003.C000
Offset 0x24
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
CINV
reserved
RO
0
RO
0
RO
0
RO
0
R/W
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
ASRCP
reserved
ISLVAL
R/W
0
ISEN
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:11
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
10:9
ASRCP
R/W
0x00
Analog Source Positive
The ASRCP field specifies the source of input voltage to the VIN+ terminal
of the comparator. The encodings for this field are as follows:
Value Function
0x0
Pin value
0x1
Pin value of C0+
0x2
Internal voltage reference
0x3
Reserved
8:5
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
4
ISLVAL
R/W
0
Interrupt Sense Level Value
The ISLVAL bit specifies the sense value of the input that generates
an interrupt if in Level Sense mode. If 0, an interrupt is generated if the
comparator output is Low. Otherwise, an interrupt is generated if the
comparator output is High.
348
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
3:2
ISEN
R/W
0x0
Description
Interrupt Sense
The ISEN field specifies the sense of the comparator output that
generates an interrupt. The sense conditioning is as follows:
Value Function
1
CINV
R/W
0
0x0
Level sense, see ISLVAL
0x1
Falling edge
0x2
Rising edge
0x3
Either edge
Comparator Output Invert
The CINV bit conditionally inverts the output of the comparator. If 0, the
output of the comparator is unchanged. If 1, the output of the comparator
is inverted prior to being processed by hardware.
0
reserved
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
October 01, 2007
349
Preliminary
Pulse Width Modulator (PWM)
15
Pulse Width Modulator (PWM)
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.
High-resolution counters are used to generate a square wave, and the duty cycle of the square
wave is modulated to encode an analog signal. Typical applications include switching power supplies
and motor control.
®
The Stellaris PWM module consists of three PWM generator blocks and a control block. Each
PWM generator block contains one timer (16-bit down or up/down counter), two PWM comparators,
a PWM signal generator, a dead-band generator, and an interrupt selector. The control block
determines the polarity of the PWM signals, and which signals are passed through to the pins.
Each PWM generator block produces two PWM signals that can either be independent signals
(other than being based on the same timer and therefore having the same frequency) or a single
pair of complementary signals with dead-band delays inserted. The output of the PWM generation
blocks are managed by the output control block before being passed to the device pins.
®
The Stellaris PWM module provides a great deal of flexibility. It can generate simple PWM signals,
such as those required by a simple charge pump. It can also generate paired PWM signals with
dead-band delays, such as those required by a half-H bridge driver. The three generator blocks can
also generate the full six channels of gate controls required by a 3-phase inverter bridge.
15.1
Block Diagram
®
Figure 15-1 on page 350 provides a block diagram of a Stellaris PWM module. The LM3S601
controller contains three generator blocks (PWM0, PWM1, and PWM2) and generates six independent
PWM signals or three paired PWM signals with dead-band delays inserted.
Figure 15-1. PWM Module Block Diagram
PWMnLOAD
PWM Clock
PWM Generator Block
zero
PWMnGENA
PWMnGENB
load
Timer
PWMnCOUNT
Fault
dir
16
PWMnCMPA
cmpA
PWM
Generator
Comparator A
pwma
pwmb
PWMnCMPB
PWMnDBCTL
PWMnDBRISE
PWMnDBFALL
Dead-Band
Generator
cmpB
Comparator B
PWMENABLE
PWMINVERT
PWMFAULT
PWM Output
Control
PWMnINTEN
Interrupt and
Trigger Generate
Interrupt
PWMnRIS
PWMnISC
15.2
Functional Description
15.2.1
PWM Timer
The timer in each PWM generator runs in one of two modes: Count-Down mode or Count-Up/Down
mode. In Count-Down mode, the timer counts from the load value to zero, goes back to the load
value, and continues counting down. In Count-Up/Down mode, the timer counts from zero up to the
350
October 01, 2007
Preliminary
LM3S601 Microcontroller
load value, back down to zero, back up to the load value, and so on. Generally, Count-Down mode
is used for generating left- or right-aligned PWM signals, while the Count-Up/Down mode is used
for generating center-aligned PWM signals.
The timers output three signals that are used in the PWM generation process: the direction signal
(this is always Low in Count-Down mode, but alternates between Low and High in Count-Up/Down
mode), a single-clock-cycle-width High pulse when the counter is zero, and a single-clock-cycle-width
High pulse when the counter is equal to the load value. Note that in Count-Down mode, the zero
pulse is immediately followed by the load pulse.
15.2.2
PWM Comparators
There are two comparators in each PWM generator that monitor the value of the counter; when
either match the counter, they output a single-clock-cycle-width High pulse. When in Count-Up/Down
mode, these comparators match both when counting up and when counting down; they are therefore
qualified by the counter direction signal. These qualified pulses are used in the PWM generation
process. If either comparator match value is greater than the counter load value, then that comparator
never outputs a High pulse.
Figure 15-2 on page 351 shows the behavior of the counter and the relationship of these pulses
when the counter is in Count-Down mode. Figure 15-3 on page 352 shows the behavior of the counter
and the relationship of these pulses when the counter is in Count-Up/Down mode.
Figure 15-2. PWM Count-Down Mode
Load
CompA
CompB
Zero
Load
Zero
A
B
Dir
BDown
ADown
October 01, 2007
351
Preliminary
Pulse Width Modulator (PWM)
Figure 15-3. PWM Count-Up/Down Mode
Load
CompA
CompB
Zero
Load
Zero
A
B
Dir
BUp
AUp
15.2.3
BDown
ADown
PWM Signal Generator
The PWM generator takes these pulses (qualified by the direction signal), and generates two PWM
signals. In Count-Down mode, there are four events that can affect the PWM signal: zero, load,
match A down, and match B down. In Count-Up/Down mode, there are six events that can affect
the PWM signal: zero, load, match A down, match A up, match B down, and match B up. The match
A or match B events are ignored when they coincide with the zero or load events. If the match A
and match B events coincide, the first signal, PWMA, is generated based only on the match A event,
and the second signal, PWMB, is generated based only on the match B event.
For each event, the effect on each output PWM signal is programmable: it can be left alone (ignoring
the event), it can be toggled, it can be driven Low, or it can be driven High. These actions can be
used to generate a pair of PWM signals of various positions and duty cycles, which do or do not
overlap. Figure 15-4 on page 352 shows the use of Count-Up/Down mode to generate a pair of
center-aligned, overlapped PWM signals that have different duty cycles.
Figure 15-4. PWM Generation Example In Count-Up/Down Mode
Load
CompA
CompB
Zero
PWMA
PWMB
In this example, the first generator is set to drive High on match A up, drive Low on match A down,
and ignore the other four events. The second generator is set to drive High on match B up, drive
Low on match B down, and ignore the other four events. Changing the value of comparator A
352
October 01, 2007
Preliminary
LM3S601 Microcontroller
changes the duty cycle of the PWMA signal, and changing the value of comparator B changes the
duty cycle of the PWMB signal.
15.2.4
Dead-Band Generator
The two PWM signals produced by the PWM generator are passed to the dead-band generator. If
disabled, the PWM signals simply pass through unmodified. If enabled, the second PWM signal is
lost and two PWM signals are generated based on the first PWM signal. The first output PWM signal
is the input signal with the rising edge delayed by a programmable amount. The second output
PWM signal is the inversion of the input signal with a programmable delay added between the falling
edge of the input signal and the rising edge of this new signal.
This is therefore a pair of active High signals where one is always High, except for a programmable
amount of time at transitions where both are Low. These signals are therefore suitable for driving
a half-H bridge, with the dead-band delays preventing shoot-through current from damaging the
power electronics. Figure 15-5 on page 353 shows the effect of the dead-band generator on an input
PWM signal.
Figure 15-5. PWM Dead-Band Generator
Input
PWMA
PWMB
Rising Edge
Delay
15.2.5
Falling Edge
Delay
Interrupt Selector
The PWM generator also takes the same four (or six) counter events and uses them to generate
an interrupt. Any of these events or a set of these events can be selected as a source for an interrupt;
when any of the selected events occur, an interrupt is generated. The selection of events allows
the interrupt to occur at a specific position within the PWM signal. Note that interrupts are based on
the raw events; delays in the PWM signal edges caused by the dead-band generator are not taken
into account.
15.2.6
Synchronization Methods
There is a global reset capability that can synchronously reset any or all of the counters in the PWM
generators. If multiple PWM generators are configured with the same counter load value, this can
be used to guarantee that they also have the same count value (this does imply that the PWM
generators must be configured before they are synchronized). With this, more than two PWM signals
can be produced with a known relationship between the edges of those signals since the counters
always have the same values.
The counter load values and comparator match values of the PWM generator can be updated in
two ways. The first is immediate update mode, where a new value is used as soon as the counter
reaches zero. By waiting for the counter to reach zero, a guaranteed behavior is defined, and overly
short or overly long output PWM pulses are prevented.
The other update method is synchronous, where the new value is not used until a global synchronized
update signal is asserted, at which point the new value is used as soon as the counter reaches
zero. This second mode allows multiple items in multiple PWM generators to be updated
simultaneously without odd effects during the update; everything runs from the old values until a
point at which they all run from the new values. The Update mode of the load and comparator match
October 01, 2007
353
Preliminary
Pulse Width Modulator (PWM)
values can be individually configured in each PWM generator block. It typically makes sense to use
the synchronous update mechanism across PWM generator blocks when the timers in those blocks
are synchronized, though this is not required in order for this mechanism to function properly.
15.2.7
Fault Conditions
There are two external conditions that affect the PWM block; the signal input on the Fault pin and
the stalling of the controller by a debugger. There are two mechanisms available to handle such
conditions: the output signals can be forced into an inactive state and/or the PWM timers can be
stopped.
Each output signal has a fault bit. If set, a fault input signal causes the corresponding output signal
to go into the inactive state. If the inactive state is a safe condition for the signal to be in for an
extended period of time, this keeps the output signal from driving the outside world in a dangerous
manner during the fault condition. A fault condition can also generate a controller interrupt.
Each PWM generator can also be configured to stop counting during a stall condition. The user can
select for the counters to run until they reach zero then stop, or to continue counting and reloading.
A stall condition does not generate a controller interrupt.
15.2.8
Output Control Block
With each PWM generator block producing two raw PWM signals, the output control block takes
care of the final conditioning of the PWM signals before they go to the pins. Via a single register,
the set of PWM signals that are actually enabled to the pins can be modified; this can be used, for
example, to perform commutation of a brushless DC motor with a single register write (and without
modifying the individual PWM generators, which are modified by the feedback control loop). Similarly,
fault control can disable any of the PWM signals as well. A final inversion can be applied to any of
the PWM signals, making them active Low instead of the default active High.
15.3
Initialization and Configuration
The following example shows how to initialize the PWM Generator 0 with a 25-KHz frequency, and
with a 25% duty cycle on the PWM0 pin and a 75% duty cycle on the PWM1 pin. This example assumes
the system clock is 20 MHz.
1. Enable the PWM clock by writing a value of 0x0010.0000 to the RCGC0 register in the System
Control module.
2. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register.
3. Configure the Run-Mode Clock Configuration (RCC) register in the System Control module
to use the PWM divide (USEPWMDIV) and set the divider (PWMDIV) to divide by 2 (000).
4. Configure the PWM generator for countdown mode with immediate updates to the parameters.
■ Write the PWM0CTL register with a value of 0x0000.0000.
■ Write the PWM0GENA register with a value of 0x0000.008C.
■ Write the PWM0GENB register with a value of 0x0000.080C.
5. Set the period. For a 25-KHz frequency, the period = 1/25,000, or 40 microseconds. The PWM
clock source is 10 MHz; the system clock divided by 2. This translates to 400 clock ticks per
354
October 01, 2007
Preliminary
LM3S601 Microcontroller
period. Use this value to set the PWM0LOAD register. In Count-Down mode, set the Load field
in the PWM0LOAD register to the requested period minus one.
■ Write the PWM0LOAD register with a value of 0x0000.018F.
6. Set the pulse width of the PWM0 pin for a 25% duty cycle.
■ Write the PWM0CMPA register with a value of 0x0000.012B.
7. Set the pulse width of the PWM1 pin for a 75% duty cycle.
■ Write the PWM0CMPB register with a value of 0x0000.0063.
8. Start the timers in PWM generator 0.
■ Write the PWM0CTL register with a value of 0x0000.0001.
9. Enable PWM outputs.
■ Write the PWMENABLE register with a value of 0x0000.0003.
15.4
Register Map
Table 15-1 on page 355 lists the PWM registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the PWM base address of 0x4002.8000.
Table 15-1. PWM Register Map
Description
See
page
Offset
Name
Type
Reset
0x000
PWMCTL
R/W
0x0000.0000
PWM Master Control
358
0x004
PWMSYNC
R/W
0x0000.0000
PWM Time Base Sync
359
0x008
PWMENABLE
R/W
0x0000.0000
PWM Output Enable
360
0x00C
PWMINVERT
R/W
0x0000.0000
PWM Output Inversion
361
0x010
PWMFAULT
R/W
0x0000.0000
PWM Output Fault
362
0x014
PWMINTEN
R/W
0x0000.0000
PWM Interrupt Enable
363
0x018
PWMRIS
RO
0x0000.0000
PWM Raw Interrupt Status
364
0x01C
PWMISC
R/W1C
0x0000.0000
PWM Interrupt Status and Clear
365
0x020
PWMSTATUS
RO
0x0000.0000
PWM Status
366
0x040
PWM0CTL
R/W
0x0000.0000
PWM0 Control
367
0x044
PWM0INTEN
R/W
0x0000.0000
PWM0 Interrupt Enable
369
0x048
PWM0RIS
RO
0x0000.0000
PWM0 Raw Interrupt Status
371
0x04C
PWM0ISC
R/W1C
0x0000.0000
PWM0 Interrupt Status and Clear
372
0x050
PWM0LOAD
R/W
0x0000.0000
PWM0 Load
373
0x054
PWM0COUNT
RO
0x0000.0000
PWM0 Counter
374
0x058
PWM0CMPA
R/W
0x0000.0000
PWM0 Compare A
375
October 01, 2007
355
Preliminary
Pulse Width Modulator (PWM)
Description
See
page
Offset
Name
Type
Reset
0x05C
PWM0CMPB
R/W
0x0000.0000
PWM0 Compare B
376
0x060
PWM0GENA
R/W
0x0000.0000
PWM0 Generator A Control
377
0x064
PWM0GENB
R/W
0x0000.0000
PWM0 Generator B Control
380
0x068
PWM0DBCTL
R/W
0x0000.0000
PWM0 Dead-Band Control
383
0x06C
PWM0DBRISE
R/W
0x0000.0000
PWM0 Dead-Band Rising-Edge Delay
384
0x070
PWM0DBFALL
R/W
0x0000.0000
PWM0 Dead-Band Falling-Edge-Delay
385
0x080
PWM1CTL
R/W
0x0000.0000
PWM1 Control
367
0x084
PWM1INTEN
R/W
0x0000.0000
PWM1 Interrupt Enable
369
0x088
PWM1RIS
RO
0x0000.0000
PWM1 Raw Interrupt Status
371
0x08C
PWM1ISC
R/W1C
0x0000.0000
PWM1 Interrupt Status and Clear
372
0x090
PWM1LOAD
R/W
0x0000.0000
PWM1 Load
373
0x094
PWM1COUNT
RO
0x0000.0000
PWM1 Counter
374
0x098
PWM1CMPA
R/W
0x0000.0000
PWM1 Compare A
375
0x09C
PWM1CMPB
R/W
0x0000.0000
PWM1 Compare B
376
0x0A0
PWM1GENA
R/W
0x0000.0000
PWM1 Generator A Control
377
0x0A4
PWM1GENB
R/W
0x0000.0000
PWM1 Generator B Control
380
0x0A8
PWM1DBCTL
R/W
0x0000.0000
PWM1 Dead-Band Control
383
0x0AC
PWM1DBRISE
R/W
0x0000.0000
PWM1 Dead-Band Rising-Edge Delay
384
0x0B0
PWM1DBFALL
R/W
0x0000.0000
PWM1 Dead-Band Falling-Edge-Delay
385
0x0C0
PWM2CTL
R/W
0x0000.0000
PWM2 Control
367
0x0C4
PWM2INTEN
R/W
0x0000.0000
PWM2 InterruptEnable
369
0x0C8
PWM2RIS
RO
0x0000.0000
PWM2 Raw Interrupt Status
371
0x0CC
PWM2ISC
R/W1C
0x0000.0000
PWM2 Interrupt Status and Clear
372
0x0D0
PWM2LOAD
R/W
0x0000.0000
PWM2 Load
373
0x0D4
PWM2COUNT
RO
0x0000.0000
PWM2 Counter
374
0x0D8
PWM2CMPA
R/W
0x0000.0000
PWM2 Compare A
375
0x0DC
PWM2CMPB
R/W
0x0000.0000
PWM2 Compare B
376
0x0E0
PWM2GENA
R/W
0x0000.0000
PWM2 Generator A Control
377
0x0E4
PWM2GENB
R/W
0x0000.0000
PWM2 Generator B Control
380
0x0E8
PWM2DBCTL
R/W
0x0000.0000
PWM2 Dead-Band Control
383
0x0EC
PWM2DBRISE
R/W
0x0000.0000
PWM2 Dead-Band Rising-Edge Delay
384
0x0F0
PWM2DBFALL
R/W
0x0000.0000
PWM2 Dead-Band Falling-Edge-Delay
385
356
October 01, 2007
Preliminary
LM3S601 Microcontroller
15.5
Register Descriptions
The remainder of this section lists and describes the PWM registers, in numerical order by address
offset.
October 01, 2007
357
Preliminary
Pulse Width Modulator (PWM)
Register 1: PWM Master Control (PWMCTL), offset 0x000
This register provides master control over the PWM generation blocks.
PWM Master Control (PWMCTL)
Base 0x4002.8000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
GlobalSync2 GlobalSync1 GlobalSync0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
GlobalSync2
R/W
0
Update PWM Generator 2
Same as GlobalSync0 but for PWM generator 2.
1
GlobalSync1
R/W
0
Update PWM Generator 1
Same as GlobalSync0 but for PWM generator 1.
0
GlobalSync0
R/W
0
Update PWM Generator 0
Setting this bit causes any queued update to a load or comparator
register in PWM generator 0 to be applied the next time the
corresponding counter becomes zero. This bit automatically clears when
the updates have completed; it cannot be cleared by software.
358
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: PWM Time Base Sync (PWMSYNC), offset 0x004
This register provides a method to perform synchronization of the counters in the PWM generation
blocks. Writing a bit in this register to 1 causes the specified counter to reset back to 0; writing
multiple bits resets multiple counters simultaneously. The bits auto-clear after the reset has occurred;
reading them back as zero indicates that the synchronization has completed.
PWM Time Base Sync (PWMSYNC)
Base 0x4002.8000
Offset 0x004
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
Sync2
Sync1
Sync0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Bit/Field
Name
Type
Reset
Description
31:3
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
2
Sync2
R/W
0
Reset Generator 2 Counter
Performs a reset of the PWM generator 2 counter.
1
Sync1
R/W
0
Reset Generator 1 Counter
Performs a reset of the PWM generator 1 counter.
0
Sync0
R/W
0
Reset Generator 0 Counter
Performs a reset of the PWM generator 0 counter.
October 01, 2007
359
Preliminary
Pulse Width Modulator (PWM)
Register 3: PWM Output Enable (PWMENABLE), offset 0x008
This register provides a master control of which generated PWM signals are output to device pins.
By disabling a PWM output, the generation process can continue (for example, when the time bases
are synchronized) without driving PWM signals to the pins. When bits in this register are set, the
corresponding PWM signal is passed through to the output stage, which is controlled by the
PWMINVERT register. When bits are not set, the PWM signal is replaced by a zero value which is
also passed to the output stage.
PWM Output Enable (PWMENABLE)
Base 0x4002.8000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PWM5En PWM4En PWM3En PWM2En PWM1En PWM0En
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
PWM5En
R/W
0
PWM5 Output Enable
When set, allows the generated PWM5 signal to be passed to the device
pin.
4
PWM4En
R/W
0
PWM4 Output Enable
When set, allows the generated PWM4 signal to be passed to the device
pin.
3
PWM3En
R/W
0
PWM3 Output Enable
When set, allows the generated PWM3 signal to be passed to the device
pin.
2
PWM2En
R/W
0
PWM2 Output Enable
When set, allows the generated PWM2 signal to be passed to the device
pin.
1
PWM1En
R/W
0
PWM1 Output Enable
When set, allows the generated PWM1 signal to be passed to the device
pin.
0
PWM0En
R/W
0
PWM0 Output Enable
When set, allows the generated PWM0 signal to be passed to the device
pin.
360
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4: PWM Output Inversion (PWMINVERT), offset 0x00C
This register provides a master control of the polarity of the PWM signals on the device pins. The
PWM signals generated by the PWM generator are active High; they can optionally be made active
Low via this register. Disabled PWM channels are also passed through the output inverter (if so
configured) so that inactive channels maintain the correct polarity.
PWM Output Inversion (PWMINVERT)
Base 0x4002.8000
Offset 0x00C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
PWM5Inv PWM4Inv PWM3Inv PWM2Inv PWM1Inv PWM0Inv
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
PWM5Inv
R/W
0
Invert PWM5 Signal
When set, the generated PWM5 signal is inverted.
4
PWM4Inv
R/W
0
Invert PWM4 Signal
When set, the generated PWM4 signal is inverted.
3
PWM3Inv
R/W
0
Invert PWM3 Signal
When set, the generated PWM3 signal is inverted.
2
PWM2Inv
R/W
0
Invert PWM2 Signal
When set, the generated PWM2 signal is inverted.
1
PWM1Inv
R/W
0
Invert PWM1 Signal
When set, the generated PWM1 signal is inverted.
0
PWM0Inv
R/W
0
Invert PWM0 Signal
When set, the generated PWM0 signal is inverted.
October 01, 2007
361
Preliminary
Pulse Width Modulator (PWM)
Register 5: PWM Output Fault (PWMFAULT), offset 0x010
This register controls the behavior of the PWM outputs in the presence of fault conditions. Both the
fault input and debug events are considered fault conditions. On a fault condition, each PWM signal
can either be passed through unmodified or driven Low. For outputs that are configured for
pass-through, the debug event handling on the corresponding PWM generator also determines if
the PWM signal continues to be generated.
Fault condition control happens before the output inverter, so PWM signals driven Low on fault are
inverted if the channel is configured for inversion (therefore, the pin is driven High on a fault condition).
PWM Output Fault (PWMFAULT)
Base 0x4002.8000
Offset 0x010
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
5
4
3
2
1
0
Fault5
Fault4
Fault3
Fault2
Fault1
Fault0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
Fault5
R/W
0
PWM5 Driven Low on Fault
When set, the PWM5 output signal is driven Low on a fault condition.
4
Fault4
R/W
0
PWM4 Driven Low on Fault
When set, the PWM4 output signal is driven Low on a fault condition.
3
Fault3
R/W
0
PWM3 Driven Low on Fault
When set, the PWM3 output signal is driven Low on a fault condition.
2
Fault2
R/W
0
PWM2 Driven Low on Fault
When set, the PWM2 output signal is driven Low on a fault condition.
1
Fault1
R/W
0
PWM1 Driven Low on Fault
When set, the PWM1 output signal is driven Low on a fault condition.
0
Fault0
R/W
0
PWM0 Driven Low on Fault
When set, the PWM0 output signal is driven Low on a fault condition.
362
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 6: PWM Interrupt Enable (PWMINTEN), offset 0x014
This register controls the global interrupt generation capabilities of the PWM module. The events
that can cause an interrupt are the fault input and the individual interrupts from the PWM generators.
PWM Interrupt Enable (PWMINTEN)
Base 0x4002.8000
Offset 0x014
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
IntFault
reserved
Type
Reset
RO
0
16
IntPWM2 IntPWM1 IntPWM0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:17
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
16
IntFault
R/W
0
Fault Interrupt Enable
When 1, an interrupt occurs when the fault input is asserted.
15:3
reserved
RO
0x00
2
IntPWM2
R/W
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
PWM2 Interrupt Enable
When 1, an interrupt occurs when the PWM generator 2 block asserts
an interrupt.
1
IntPWM1
R/W
0
PWM1 Interrupt Enable
When 1, an interrupt occurs when the PWM generator 1 block asserts
an interrupt.
0
IntPWM0
R/W
0
PWM0 Interrupt Enable
When 1, an interrupt occurs when the PWM generator 0 block asserts
an interrupt.
October 01, 2007
363
Preliminary
Pulse Width Modulator (PWM)
Register 7: PWM Raw Interrupt Status (PWMRIS), offset 0x018
This register provides the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller. The fault interrupt is latched on detection;
it must be cleared through the PWM Interrupt Status and Clear (PWMISC) register (see page 365).
The PWM generator interrupts simply reflect the status of the PWM generators; they are cleared
via the interrupt status register in the PWM generator blocks. Bits set to 1 indicate the events that
are active; a zero bit indicates that the event in question is not active.
PWM Raw Interrupt Status (PWMRIS)
Base 0x4002.8000
Offset 0x018
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
IntFault
reserved
Type
Reset
RO
0
16
IntPWM2 IntPWM1 IntPWM0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:17
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
16
IntFault
RO
0
Fault Interrupt Asserted
Indicates that the fault input has been asserted.
15:3
reserved
RO
0x00
2
IntPWM2
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
PWM2 Interrupt Asserted
Indicates that the PWM generator 2 block is asserting its interrupt.
1
IntPWM1
RO
0
PWM1 Interrupt Asserted
Indicates that the PWM generator 1 block is asserting its interrupt.
0
IntPWM0
RO
0
PWM0 Interrupt Asserted
Indicates that the PWM generator 0 block is asserting its interrupt.
364
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 8: PWM Interrupt Status and Clear (PWMISC), offset 0x01C
This register provides a summary of the interrupt status of the individual PWM generator blocks. A
bit set to 1 indicates that the corresponding generator block is asserting an interrupt. The individual
interrupt status registers in each block must be consulted to determine the reason for the interrupt,
and used to clear the interrupt. For the fault interrupt, a write of 1 to that bit position clears the latched
interrupt status.
PWM Interrupt Status and Clear (PWMISC)
Base 0x4002.8000
Offset 0x01C
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W1C
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
IntFault
reserved
Type
Reset
RO
0
16
IntPWM2 IntPWM1 IntPWM0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:17
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
16
IntFault
R/W1C
0
Fault Interrupt Asserted
Indicates if the fault input is asserting an interrupt.
15:3
reserved
RO
0x00
2
IntPWM2
RO
0
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
PWM2 Interrupt Status
Indicates if the PWM generator 2 block is asserting an interrupt.
1
IntPWM1
RO
0
PWM1 Interrupt Status
Indicates if the PWM generator 1 block is asserting an interrupt.
0
IntPWM0
RO
0
PWM0 Interrupt Status
Indicates if the PWM generator 0 block is asserting an interrupt.
October 01, 2007
365
Preliminary
Pulse Width Modulator (PWM)
Register 9: PWM Status (PWMSTATUS), offset 0x020
This register provides the status of the Fault input signal.
PWM Status (PWMSTATUS)
Base 0x4002.8000
Offset 0x020
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
Fault
RO
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
Fault
RO
0
Fault Interrupt Status
When set to 1, indicates the fault input is asserted.
366
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 10: PWM0 Control (PWM0CTL), offset 0x040
Register 11: PWM1 Control (PWM1CTL), offset 0x080
Register 12: PWM2 Control (PWM2CTL), offset 0x0C0
These registers configure the PWM signal generation blocks (PWM0CTL controls the PWM generator
0 block, and so on). The Register Update mode, Debug mode, Counting mode, and Block Enable
mode are all controlled via these registers. The blocks produce the PWM signals, which can be
either two independent PWM signals (from the same counter), or a paired set of PWM signals with
dead-band delays added.
The PWM0 block produces the PWM0 and PWM1 outputs, the PWM1 block produces the PWM2
and PWM3 outputs, and the PWM2 block produces the PWM4 and PWM5 outputs.
PWM0 Control (PWM0CTL)
Base 0x4002.8000
Offset 0x040
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
5
4
3
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
CmpBUpd CmpAUpd LoadUpd
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
2
1
0
Debug
Mode
Enable
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
CmpBUpd
R/W
0
Comparator B Update Mode
Same as CmpAUpd but for the comparator B register.
4
CmpAUpd
R/W
0
Comparator A Update Mode
The Update mode for the comparator A register. If 0, updates to the
register are reflected to the comparator the next time the counter is 0.
If 1, updates to the register are delayed until the next time the counter
is 0 after a synchronous update has been requested through the PWM
Master Control (PWMCTL) register (see page 358).
3
LoadUpd
R/W
0
Load Register Update Mode
The Update mode for the load register. If 0, updates to the register are
reflected to the counter the next time the counter is 0. If 1, updates to
the register are delayed until the next time the counter is 0 after a
synchronous update has been requested through the PWM Master
Control (PWMCTL) register.
2
Debug
R/W
0
Debug Mode
The behavior of the counter in Debug mode. If 0, the counter stops
running when it next reaches 0, and continues running again when no
longer in Debug mode. If 1, the counter always runs.
October 01, 2007
367
Preliminary
Pulse Width Modulator (PWM)
Bit/Field
Name
Type
Reset
1
Mode
R/W
0
Description
Counter Mode
The mode for the counter. If 0, the counter counts down from the load
value to 0 and then wraps back to the load value (Count-Down mode).
If 1, the counter counts up from 0 to the load value, back down to 0, and
then repeats (Count-Up/Down mode).
0
Enable
R/W
0
PWM Block Enable
Master enable for the PWM generation block. If 0, the entire block is
disabled and not clocked. If 1, the block is enabled and produces PWM
signals.
368
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 13: PWM0 Interrupt Enable (PWM0INTEN), offset 0x044
Register 14: PWM1 Interrupt Enable (PWM1INTEN), offset 0x084
Register 15: PWM2 InterruptEnable (PWM2INTEN), offset 0x0C4
These registers control the interrupt generation capabilities of the PWM generators (PWM0INTEN
controls the PWM generator 0 block, and so on). The events that can cause an interrupt are:
■ The counter being equal to the load register
■ The counter being equal to zero
■ The counter being equal to the comparator A register while counting up
■ The counter being equal to the comparator A register while counting down
■ The counter being equal to the comparator B register while counting up
■ The counter being equal to the comparator B register while counting down
Any combination of these events can generate either an interrupt.
PWM0 Interrupt Enable (PWM0INTEN)
Base 0x4002.8000
Offset 0x044
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
5
4
3
2
1
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
IntCmpBD
R/W
0
Interrupt for Counter=Comparator B Down
When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting down.
4
IntCmpBU
R/W
0
Interrupt for Counter=Comparator B Up
When 1, an interrupt occurs when the counter matches the comparator B
value and the counter is counting up.
3
IntCmpAD
R/W
0
Interrupt for Counter=Comparator A Down
When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting down.
October 01, 2007
369
Preliminary
Pulse Width Modulator (PWM)
Bit/Field
Name
Type
Reset
2
IntCmpAU
R/W
0
Description
Interrupt for Counter=Comparator A Up
When 1, an interrupt occurs when the counter matches the comparator A
value and the counter is counting up.
1
IntCntLoad
R/W
0
Interrupt for Counter=Load
When 1, an interrupt occurs when the counter matches the PWMnLOAD
register.
0
IntCntZero
R/W
0
Interrupt for Counter=0
When 1, an interrupt occurs when the counter is 0.
370
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 16: PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048
Register 17: PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088
Register 18: PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8
These registers provide the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller (PWM0RIS controls the PWM generator 0
block, and so on). Bits set to 1 indicate the latched events that have occurred; a 0 bit indicates that
the event in question has not occurred.
PWM0 Raw Interrupt Status (PWM0RIS)
Base 0x4002.8000
Offset 0x048
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
IntCmpBD
RO
0
Comparator B Down Interrupt Status
Indicates that the counter has matched the comparator B value while
counting down.
4
IntCmpBU
RO
0
Comparator B Up Interrupt Status
Indicates that the counter has matched the comparator B value while
counting up.
3
IntCmpAD
RO
0
Comparator A Down Interrupt Status
Indicates that the counter has matched the comparator A value while
counting down.
2
IntCmpAU
RO
0
Comparator A Up Interrupt Status
Indicates that the counter has matched the comparator A value while
counting up.
1
IntCntLoad
RO
0
Counter=Load Interrupt Status
Indicates that the counter has matched the PWMnLOAD register.
0
IntCntZero
RO
0
Counter=0 Interrupt Status
Indicates that the counter has matched 0.
October 01, 2007
371
Preliminary
Pulse Width Modulator (PWM)
Register 19: PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C
Register 20: PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C
Register 21: PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC
These registers provide the current set of interrupt sources that are asserted to the controller
(PWM0ISC controls the PWM generator 0 block, and so on). Bits set to 1 indicate the latched events
that have occurred; a 0 bit indicates that the event in question has not occurred. These are R/W1C
registers; writing a 1 to a bit position clears the corresponding interrupt reason.
PWM0 Interrupt Status and Clear (PWM0ISC)
Base 0x4002.8000
Offset 0x04C
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad IntCntZero
RO
0
R/W1C
0
R/W1C
0
R/W1C
0
R/W1C
0
R/W1C
0
R/W1C
0
Bit/Field
Name
Type
Reset
Description
31:6
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
5
IntCmpBD
R/W1C
0
Comparator B Down Interrupt
Indicates that the counter has matched the comparator B value while
counting down.
4
IntCmpBU
R/W1C
0
Comparator B Up Interrupt
Indicates that the counter has matched the comparator B value while
counting up.
3
IntCmpAD
R/W1C
0
Comparator A Down Interrupt
Indicates that the counter has matched the comparator A value while
counting down.
2
IntCmpAU
R/W1C
0
Comparator A Up Interrupt
Indicates that the counter has matched the comparator A value while
counting up.
1
IntCntLoad
R/W1C
0
Counter=Load Interrupt
Indicates that the counter has matched the PWMnLOAD register.
0
IntCntZero
R/W1C
0
Counter=0 Interrupt
Indicates that the counter has matched 0.
372
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 22: PWM0 Load (PWM0LOAD), offset 0x050
Register 23: PWM1 Load (PWM1LOAD), offset 0x090
Register 24: PWM2 Load (PWM2LOAD), offset 0x0D0
These registers contain the load value for the PWM counter (PWM0LOAD controls the PWM
generator 0 block, and so on). Based on the counter mode, either this value is loaded into the counter
after it reaches zero, or it is the limit of up-counting after which the counter decrements back to zero.
If the Load Value Update mode is immediate, this value is used the next time the counter reaches
zero; if the mode is synchronous, it is used the next time the counter reaches zero after a synchronous
update has been requested through the PWM Master Control (PWMCTL) register (see page 358).
If this register is re-written before the actual update occurs, the previous value is never used and is
lost.
PWM0 Load (PWM0LOAD)
Base 0x4002.8000
Offset 0x050
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
Load
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
Load
R/W
0
Counter Load Value
The counter load value.
October 01, 2007
373
Preliminary
Pulse Width Modulator (PWM)
Register 25: PWM0 Counter (PWM0COUNT), offset 0x054
Register 26: PWM1 Counter (PWM1COUNT), offset 0x094
Register 27: PWM2 Counter (PWM2COUNT), offset 0x0D4
These registers contain the current value of the PWM counter (PWM0COUNT is the value of the
PWM generator 0 block, and so on). When this value matches the load register, a pulse is output;
this can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers, see
page 377 and page 380) or drive an interrupt (via the PWMnINTEN register, see page 369). A pulse
with the same capabilities is generated when this value is zero.
PWM0 Counter (PWM0COUNT)
Base 0x4002.8000
Offset 0x054
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
Count
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
Count
RO
0x00
Counter Value
The current value of the counter.
374
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 28: PWM0 Compare A (PWM0CMPA), offset 0x058
Register 29: PWM1 Compare A (PWM1CMPA), offset 0x098
Register 30: PWM2 Compare A (PWM2CMPA), offset 0x0D8
These registers contain a value to be compared against the counter (PWM0CMPA controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt (via the PWMnINTEN register). If the value of this register is greater than the PWMnLOAD
register (see page 373), then no pulse is ever output.
If the comparator A update mode is immediate (based on the CmpAUpd bit in the PWMnCTL register),
then this 16-bit CompA value is used the next time the counter reaches zero. If the update mode is
synchronous, it is used the next time the counter reaches zero after a synchronous update has been
requested through the PWM Master Control (PWMCTL) register (see page 358). If this register is
rewritten before the actual update occurs, the previous value is never used and is lost.
PWM0 Compare A (PWM0CMPA)
Base 0x4002.8000
Offset 0x058
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
CompA
Type
Reset
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
CompA
R/W
0x00
Comparator A Value
The value to be compared against the counter.
October 01, 2007
375
Preliminary
Pulse Width Modulator (PWM)
Register 31: PWM0 Compare B (PWM0CMPB), offset 0x05C
Register 32: PWM1 Compare B (PWM1CMPB), offset 0x09C
Register 33: PWM2 Compare B (PWM2CMPB), offset 0x0DC
These registers contain a value to be compared against the counter (PWM0CMPB controls the
PWM generator 0 block, and so on). When this value matches the counter, a pulse is output; this
can drive the generation of a PWM signal (via the PWMnGENA/PWMnGENB registers) or drive an
interrupt (via the PWMnINTEN register). If the value of this register is greater than the PWMnLOAD
register, then no pulse is ever output.
IF the comparator B update mode is immediate (based on the CmpBUpd bit in the PWMnCTL
register), then this 16-bit CompB value is used the next time the counter reaches zero. If the update
mode is synchronous, it is used the next time the counter reaches zero after a synchronous update
has been requested through the PWM Master Control (PWMCTL) register (see page 358). If this
register is rewritten before the actual update occurs, the previous value is never used and is lost.
PWM0 Compare B (PWM0CMPB)
Base 0x4002.8000
Offset 0x05C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
CompB
Type
Reset
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:16
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
15:0
CompB
R/W
0x00
Comparator B Value
The value to be compared against the counter.
376
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 34: PWM0 Generator A Control (PWM0GENA), offset 0x060
Register 35: PWM1 Generator A Control (PWM1GENA), offset 0x0A0
Register 36: PWM2 Generator A Control (PWM2GENA), offset 0x0E0
These registers control the generation of the PWMnA signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENA controls the PWM generator 0 block, and so on). When the counter is running in
Count-Down mode, only four of these events occur; when running in Count-Up/Down mode, all six
occur. These events provide great flexibility in the positioning and duty cycle of the PWM signal that
is produced.
The PWM0GENA register controls generation of the PWM0A signal; PWM1GENA, the PWM1A signal;
and PWM2GENA, the PWM2A signal.
If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare A action is taken and the compare B action is ignored.
PWM0 Generator A Control (PWM0GENA)
Base 0x4002.8000
Offset 0x060
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
ActCmpBD
R/W
0
ActCmpBU
R/W
0
R/W
0
ActCmpAD
R/W
0
R/W
0
ActCmpAU
R/W
0
R/W
0
ActLoad
R/W
0
ActZero
R/W
0
Bit/Field
Name
Type
Reset
Description
31:12
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
11:10
ActCmpBD
R/W
0x0
Action for Comparator B Down
The action to be taken when the counter matches comparator B while
counting down.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
October 01, 2007
377
Preliminary
Pulse Width Modulator (PWM)
Bit/Field
Name
Type
Reset
9:8
ActCmpBU
R/W
0x0
Description
Action for Comparator B Up
The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
(see page 367) is set to 1.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
7:6
ActCmpAD
R/W
0x0
Action for Comparator A Down
The action to be taken when the counter matches comparator A while
counting down.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
5:4
ActCmpAU
R/W
0x0
Action for Comparator A Up
The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
3:2
ActLoad
R/W
0x0
Action for Counter=Load
The action to be taken when the counter matches the load value.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
378
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
1:0
ActZero
R/W
0x0
Description
Action for Counter=0
The action to be taken when the counter is zero.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
October 01, 2007
379
Preliminary
Pulse Width Modulator (PWM)
Register 37: PWM0 Generator B Control (PWM0GENB), offset 0x064
Register 38: PWM1 Generator B Control (PWM1GENB), offset 0x0A4
Register 39: PWM2 Generator B Control (PWM2GENB), offset 0x0E4
These registers control the generation of the PWMnB signal based on the load and zero output pulses
from the counter, as well as the compare A and compare B pulses from the comparators
(PWM0GENB controls the PWM generator 0 block, and so on). When the counter is running in
Down mode, only four of these events occur; when running in Up/Down mode, all six occur. These
events provide great flexibility in the positioning and duty cycle of the PWM signal that is produced.
The PWM0GENB register controls generation of the PWM0B signal; PWM1GENB, the PWM1B signal;
and PWM2GENB, the PWM2B signal.
If a zero or load event coincides with a compare A or compare B event, the zero or load action is
taken and the compare A or compare B action is ignored. If a compare A event coincides with a
compare B event, the compare B action is taken and the compare A action is ignored.
PWM0 Generator B Control (PWM0GENB)
Base 0x4002.8000
Offset 0x064
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
RO
0
RO
0
RO
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
ActCmpBD
R/W
0
ActCmpBU
R/W
0
R/W
0
ActCmpAD
R/W
0
R/W
0
ActCmpAU
R/W
0
R/W
0
ActLoad
R/W
0
ActZero
R/W
0
Bit/Field
Name
Type
Reset
Description
31:12
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
11:10
ActCmpBD
R/W
0x0
Action for Comparator B Down
The action to be taken when the counter matches comparator B while
counting down.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
380
October 01, 2007
Preliminary
LM3S601 Microcontroller
Bit/Field
Name
Type
Reset
9:8
ActCmpBU
R/W
0x0
Description
Action for Comparator B Up
The action to be taken when the counter matches comparator B while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
7:6
ActCmpAD
R/W
0x0
Action for Comparator A Down
The action to be taken when the counter matches comparator A while
counting down.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
5:4
ActCmpAU
R/W
0x0
Action for Comparator A Up
The action to be taken when the counter matches comparator A while
counting up. Occurs only when the Mode bit in the PWMnCTL register
is set to 1.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
3:2
ActLoad
R/W
0x0
Action for Counter=Load
The action to be taken when the counter matches the load value.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
October 01, 2007
381
Preliminary
Pulse Width Modulator (PWM)
Bit/Field
Name
Type
Reset
1:0
ActZero
R/W
0x0
Description
Action for Counter=0
The action to be taken when the counter is 0.
The table below defines the effect of the event on the output signal.
Value Description
0x0 Do nothing.
0x1 Invert the output signal.
0x2 Set the output signal to 0.
0x3 Set the output signal to 1.
382
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 40: PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068
Register 41: PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8
Register 42: PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8
The PWM0DBCTL register controls the dead-band generator, which produces the PWM0 and PWM1
signals based on the PWM0A and PWM0B signals. When disabled, the PWM0A signal passes through
to the PWM0 signal and the PWM0B signal passes through to the PWM1 signal. When enabled and
inverting the resulting waveform, the PWM0B signal is ignored; the PWM0 signal is generated by
delaying the rising edge(s) of the PWM0A signal by the value in the PWM0DBRISE register (see
page 384), and the PWM1 signal is generated by delaying the falling edge(s) of the PWM0A signal by
the value in the PWM0DBFALL register (see page 385). In a similar manner, PWM2 and PWM3 are
produced from the PWM1A and PWM1B signals, and PWM4 and PWM5 are produced from the PWM2A
and PWM2B signals.
PWM0 Dead-Band Control (PWM0DBCTL)
Base 0x4002.8000
Offset 0x068
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
0
Enable
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:1
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
0
Enable
R/W
0
Dead-Band Generator Enable
When set, the dead-band generator inserts dead bands into the output
signals; when clear, it simply passes the PWM signals through.
October 01, 2007
383
Preliminary
Pulse Width Modulator (PWM)
Register 43: PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset
0x06C
Register 44: PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset
0x0AC
Register 45: PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset
0x0EC
The PWM0DBRISE register contains the number of clock ticks to delay the rising edge of the PWM0A
signal when generating the PWM0 signal. If the dead-band generator is disabled through the
PWMnDBCTL register, the PWM0DBRISE register is ignored. If the value of this register is larger
than the width of a High pulse on the input PWM signal, the rising-edge delay consumes the entire
High time of the signal, resulting in no High time on the output. Care must be taken to ensure that
the input High time always exceeds the rising-edge delay. In a similar manner, PWM2 is generated
from PWM1A with its rising edge delayed and PWM4 is produced from PWM2A with its rising edge
delayed.
PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE)
Base 0x4002.8000
Offset 0x06C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
RiseDelay
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:12
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
11:0
RiseDelay
R/W
0
Dead-Band Rise Delay
The number of clock ticks to delay the rising edge.
384
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 46: PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset
0x070
Register 47: PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset
0x0B0
Register 48: PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset
0x0F0
The PWM0DBFALL register contains the number of clock ticks to delay the falling edge of the
PWM0A signal when generating the PWM1 signal. If the dead-band generator is disabled, this register
is ignored. If the value of this register is larger than the width of a Low pulse on the input PWM
signal, the falling-edge delay consumes the entire Low time of the signal, resulting in no Low time
on the output. Care must be taken to ensure that the input Low time always exceeds the falling-edge
delay. In a similar manner, PWM3 is generated from PWM1A with its falling edge delayed and PWM5
is produced from PWM2A with its falling edge delayed.
PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL)
Base 0x4002.8000
Offset 0x070
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
reserved
Type
Reset
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
RO
0
RO
0
RO
0
FallDelay
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:12
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
11:0
FallDelay
R/W
0x00
Dead-Band Fall Delay
The number of clock ticks to delay the falling edge.
October 01, 2007
385
Preliminary
Quadrature Encoder Interface (QEI)
16
Quadrature Encoder Interface (QEI)
A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement
into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals,
you can track the position, direction of rotation, and speed. In addition, a third channel, or index
signal, can be used to reset the position counter.
®
The Stellaris quadrature encoder interface (QEI) module interprets the code produced by a
quadrature encoder wheel to integrate position over time and determine direction of rotation. In
addition, it can capture a running estimate of the velocity of the encoder wheel.
®
The Stellaris quadrature encoder has the following features:
■ Position integrator that tracks the encoder position
■ Velocity capture using built-in timer
■ Interrupt generation on:
– Index pulse
– Velocity-timer expiration
– Direction change
– Quadrature error detection
16.1
Block Diagram
®
Figure 16-1 on page 386 provides a block diagram of a Stellaris QEI module.
Figure 16-1. QEI Block Diagram
QEILOAD
Control & Status
Velocity Timer
QEITIME
QEICTL
QEISTAT
Velocity Accumulator
Velocity
Predivider
clk
PhA
PhB
QEICOUNT
QEISPEED
QEIMAXPOS
Quadrature
Encoder dir
Position Integrator
QEIPOS
IDX
QEIINTEN
Interrupt Control
Interrupt
QEIRIS
QEIISC
386
October 01, 2007
Preliminary
LM3S601 Microcontroller
16.2
Functional Description
The QEI module interprets the two-bit gray code produced by a quadrature encoder wheel to integrate
position over time and determine direction of rotation. In addition, it can capture a running estimate
of the velocity of the encoder wheel.
The position integrator and velocity capture can be independently enabled, though the position
integrator must be enabled before the velocity capture can be enabled. The two phase signals, PhA
and PhB, can be swapped before being interpreted by the QEI module to change the meaning of
forward and backward, and to correct for miswiring of the system. Alternatively, the phase signals
can be interpreted as a clock and direction signal as output by some encoders.
The QEI module supports two modes of signal operation: quadrature phase mode and clock/direction
mode. In quadrature phase mode, the encoder produces two clocks that are 90 degrees out of
phase; the edge relationship is used to determine the direction of rotation. In clock/direction mode,
the encoder produces a clock signal to indicate steps and a direction signal to indicate the direction
of rotation. This mode is determined by the SigMode bit of the QEI Control (QEICTL) register (see
page 391).
When the QEI module is set to use the quadrature phase mode (SigMode bit equals zero), the
capture mode for the position integrator can be set to update the position counter on every edge of
the PhA signal or to update on every edge of both PhA and PhB. Updating the position counter on
every PhA and PhB provides more positional resolution at the cost of less range in the positional
counter.
When edges on PhA lead edges on PhB , the position counter is incremented. When edges on PhB
lead edges on PhA , the position counter is decremented. When a rising and falling edge pair is
seen on one of the phases without any edges on the other, the direction of rotation has changed.
The positional counter is automatically reset on one of two conditions: sensing the index pulse or
reaching the maximum position value. Which mode is determined by the ResMode bit of the QEI
Control (QEICTL) register.
When ResMode is 0, the positional counter is reset when the index pulse is sensed. This limits the
positional counter to the values [0:N-1], where N is the number of phase edges in a full revolution
of the encoder wheel. The QEIMAXPOS register must be programmed with N-1 so that the reverse
direction from position 0 can move the position counter to N-1. In this mode, the position register
contains the absolute position of the encoder relative to the index (or home) position once an index
pulse has been seen.
When ResMode is 1, the positional counter is constrained to the range [0:M], where M is the
programmable maximum value. The index pulse is ignored by the positional counter in this mode.
The velocity capture has a configurable timer and a count register. It counts the number of phase
edges (using the same configuration as for the position integrator) in a given time period. The edge
count from the previous time period is available to the controller via the QEISPEED register, while
the edge count for the current time period is being accumulated in the QEICOUNT register. As soon
as the current time period is complete, the total number of edges counted in that time period is made
available in the QEISPEED register (losing the previous value), the QEICOUNT is reset to 0, and
counting commences on a new time period. The number of edges counted in a given time period
is directly proportional to the velocity of the encoder.
®
Figure 16-2 on page 388 shows how the Stellaris quadrature encoder converts the phase input
signals into clock pulses, the direction signal, and how the velocity predivider operates (in Divide
by 4 mode).
October 01, 2007
387
Preliminary
Quadrature Encoder Interface (QEI)
Figure 16-2. Quadrature Encoder and Velocity Predivider Operation
PhA
PhB
clk
clkdiv
dir
pos
rel
-1 -1 -1 -1 -1 -1 -1 -1 -1
+1
+1
+1 +1 +1 +1 +1 +1 +1 +1
+1
+1
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
+1
+1
+1
+1
The period of the timer is configurable by specifying the load value for the timer in the QEILOAD
register. When the timer reaches zero, an interrupt can be triggered, and the hardware reloads the
timer with the QEILOAD value and continues to count down. At lower encoder speeds, a longer
timer period is needed to be able to capture enough edges to have a meaningful result. At higher
encoder speeds, both a shorter timer period and/or the velocity predivider can be used.
The following equation converts the velocity counter value into an rpm value:
rpm = (clock * (2 ^ VelDiv) * Speed * 60) ÷ (Load * ppr * edges)
where:
clock is the controller clock rate
ppr is the number of pulses per revolution of the physical encoder
edges is 2 or 4, based on the capture mode set in the QEICTL register (2 for CapMode set to 0 and
4 for CapMode set to 1)
For example, consider a motor running at 600 rpm. A 2048 pulse per revolution quadrature encoder
is attached to the motor, producing 8192 phase edges per revolution. With a velocity predivider of
÷1 (VelDiv set to 0) and clocking on both PhA and PhB edges, this results in 81,920 pulses per
second (the motor turns 10 times per second). If the timer were clocked at 10,000 Hz, and the load
value was 2,500 (¼ of a second), it would count 20,480 pulses per update. Using the above equation:
rpm = (10000 * 1 * 20480 * 60) ÷ (2500 * 2048 * 4) = 600 rpm
Now, consider that the motor is sped up to 3000 rpm. This results in 409,600 pulses per second,
or 102,400 every ¼ of a second. Again, the above equation gives:
rpm = (10000 * 1 * 102400 * 60) ÷ (2500 * 2048 * 4) = 3000 rpm
Care must be taken when evaluating this equation since intermediate values may exceed the capacity
of a 32-bit integer. In the above examples, the clock is 10,000 and the divider is 2,500; both could
be predivided by 100 (at compile time if they are constants) and therefore be 100 and 25. In fact, if
they were compile-time constants, they could also be reduced to a simple multiply by 4, cancelled
by the ÷4 for the edge-count factor.
Important: Reducing constant factors at compile time is the best way to control the intermediate
values of this equation, as well as reducing the processing requirement of computing
this equation.
The division can be avoided by selecting a timer load value such that the divisor is a power of 2; a
simple shift can therefore be done in place of the division. For encoders with a power of 2 pulses
per revolution, this is a simple matter of selecting a power of 2 load value. For other encoders, a
load value must be selected such that the product is very close to a power of two. For example, a
100 pulse per revolution encoder could use a load value of 82, resulting in 32,800 as the divisor,
388
October 01, 2007
Preliminary
LM3S601 Microcontroller
which is 0.09% above 214; in this case a shift by 15 would be an adequate approximation of the
divide in most cases. If absolute accuracy were required, the controller’s divide instruction could be
used.
The QEI module can produce a controller interrupt on several events: phase error, direction change,
reception of the index pulse, and expiration of the velocity timer. Standard masking, raw interrupt
status, interrupt status, and interrupt clear capabilities are provided.
16.3
Initialization and Configuration
The following example shows how to configure the Quadrature Encoder module to read back an
absolute position:
1. Enable the QEI clock by writing a value of 0x0000.0100 to the RCGC1 register in the System
Control module.
2. In the GPIO module, enable the appropriate pins for their alternate function using the
GPIOAFSEL register.
3. Configure the quadrature encoder to capture edges on both signals and maintain an absolute
position by resetting on index pulses. Using a 1000-line encoder at four edges per line, there
are 4000 pulses per revolution; therefore, set the maximum position to 3999 (0xF9F) since the
count is zero-based.
■ Write the QEICTL register with the value of 0x0000.0018.
■ Write the QEIMAXPOS register with the value of 0x0000.0F9F.
4. Enable the quadrature encoder by setting bit 0 of the QEICTL register.
5. Delay for some time.
6. Read the encoder position by reading the QEIPOS register value.
16.4
Register Map
Table 16-1 on page 389 lists the QEI registers. The offset listed is a hexadecimal increment to the
register’s address, relative to the module’s base address:
■ QEI0: 0x4002.C000
Table 16-1. QEI Register Map
Offset
Name
Type
Reset
Description
See
page
0x000
QEICTL
R/W
0x0000.0000
QEI Control
391
0x004
QEISTAT
RO
0x0000.0000
QEI Status
393
0x008
QEIPOS
R/W
0x0000.0000
QEI Position
394
0x00C
QEIMAXPOS
R/W
0x0000.0000
QEI Maximum Position
395
0x010
QEILOAD
R/W
0x0000.0000
QEI Timer Load
396
0x014
QEITIME
RO
0x0000.0000
QEI Timer
397
October 01, 2007
389
Preliminary
Quadrature Encoder Interface (QEI)
Offset
Name
0x018
Reset
QEICOUNT
RO
0x0000.0000
QEI Velocity Counter
398
0x01C
QEISPEED
RO
0x0000.0000
QEI Velocity
399
0x020
QEIINTEN
R/W
0x0000.0000
QEI Interrupt Enable
400
0x024
QEIRIS
RO
0x0000.0000
QEI Raw Interrupt Status
401
0x028
QEIISC
R/W1C
0x0000.0000
QEI Interrupt Status and Clear
402
16.5
Description
See
page
Type
Register Descriptions
The remainder of this section lists and describes the QEI registers, in numerical order by address
offset.
390
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 1: QEI Control (QEICTL), offset 0x000
This register contains the configuration of the QEI module. Separate enables are provided for the
quadrature encoder and the velocity capture blocks; the quadrature encoder must be enabled in
order to capture the velocity, but the velocity does not need to be captured in applications that do
not need it. The phase signal interpretation, phase swap, Position Update mode, Position Reset
mode, and velocity predivider are all set via this register.
QEI Control (QEICTL)
QEI0 base: 0x4002.C000
Offset 0x000
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
STALLEN
INVI
INVB
INVA
R/W
0
R/W
0
R/W
0
R/W
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
7
6
5
4
3
2
1
0
Swap
Enable
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
RO
0
RO
0
RO
0
VelDiv
R/W
0
R/W
0
VelEn
R/W
0
R/W
0
ResMode CapMode SigMode
R/W
0
R/W
0
R/W
0
Bit/Field
Name
Type
Reset
Description
31:13
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
12
STALLEN
R/W
0
Stall QEI
When set, the QEI stalls when the microcontroller asserts Halt.
11
INVI
R/W
0
Invert Index Pulse
When set , the input Index Pulse is inverted.
10
INVB
R/W
0
Invert PhB
When set, the PhB input is inverted.
9
INVA
R/W
0
Invert PhA
When set, the PhA input is inverted.
8:6
VelDiv
R/W
0x0
Predivide Velocity
A predivider of the input quadrature pulses before being applied to the
QEICOUNT accumulator. This field can be set to the following values:
Value Predivider
0x0
÷1
0x1
÷2
0x2
÷4
0x3
÷8
0x4
÷16
0x5
÷32
0x6
÷64
0x7
÷128
October 01, 2007
391
Preliminary
Quadrature Encoder Interface (QEI)
Bit/Field
Name
Type
Reset
5
VelEn
R/W
0
Description
Capture Velocity
When set, enables capture of the velocity of the quadrature encoder.
4
ResMode
R/W
0
Reset Mode
The Reset mode for the position counter. When 0, the position counter
is reset when it reaches the maximum; when 1, the position counter is
reset when the index pulse is captured.
3
CapMode
R/W
0
Capture Mode
The Capture mode defines the phase edges that are counted in the
position. When 0, only the PhA edges are counted; when 1, the PhA
and PhB edges are counted, providing twice the positional resolution
but half the range.
2
SigMode
R/W
0
Signal Mode
When 1, the PhA and PhB signals are clock and direction; when 0, they
are quadrature phase signals.
1
Swap
R/W
0
Swap Signals
Swaps the PhA and PhB signals.
0
Enable
R/W
0
Enable QEI
Enables the quadrature encoder module.
392
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 2: QEI Status (QEISTAT), offset 0x004
This register provides status about the operation of the QEI module.
QEI Status (QEISTAT)
QEI0 base: 0x4002.C000
Offset 0x004
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
Direction
Error
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:2
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
1
Direction
RO
0
Direction of Rotation
Indicates the direction the encoder is rotating.
The Direction values are defined as follows:
Value Description
0
Error
RO
0
0
Forward rotation
1
Reverse rotation
Error Detected
Indicates that an error was detected in the gray code sequence (that is,
both signals changing at the same time).
October 01, 2007
393
Preliminary
Quadrature Encoder Interface (QEI)
Register 3: QEI Position (QEIPOS), offset 0x008
This register contains the current value of the position integrator. Its value is updated by inputs on
the QEI phase inputs, and can be set to a specific value by writing to it.
QEI Position (QEIPOS)
QEI0 base: 0x4002.C000
Offset 0x008
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Position
Type
Reset
Position
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
Position
R/W
0x00
Current Position Integrator Value
The current value of the position integrator.
394
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 4: QEI Maximum Position (QEIMAXPOS), offset 0x00C
This register contains the maximum value of the position integrator. When moving forward, the
position register resets to zero when it increments past this value. When moving backward, the
position register resets to this value when it decrements from zero.
QEI Maximum Position (QEIMAXPOS)
QEI0 base: 0x4002.C000
Offset 0x00C
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
MaxPos
Type
Reset
MaxPos
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
MaxPos
R/W
0x00
Maximum Position Integrator Value
The maximum value of the position integrator.
October 01, 2007
395
Preliminary
Quadrature Encoder Interface (QEI)
Register 5: QEI Timer Load (QEILOAD), offset 0x010
This register contains the load value for the velocity timer. Since this value is loaded into the timer
the clock cycle after the timer is zero, this value should be one less than the number of clocks in
the desired period. So, for example, to have 2000 clocks per timer period, this register should contain
1999.
QEI Timer Load (QEILOAD)
QEI0 base: 0x4002.C000
Offset 0x010
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
Load
Type
Reset
Load
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
Load
R/W
0x00
Velocity Timer Load Value
The load value for the velocity timer.
396
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 6: QEI Timer (QEITIME), offset 0x014
This register contains the current value of the velocity timer. This counter does not increment when
VelEn in QEICTL is 0.
QEI Timer (QEITIME)
QEI0 base: 0x4002.C000
Offset 0x014
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Time
Type
Reset
Time
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
Time
RO
0x00
Velocity Timer Current Value
The current value of the velocity timer.
October 01, 2007
397
Preliminary
Quadrature Encoder Interface (QEI)
Register 7: QEI Velocity Counter (QEICOUNT), offset 0x018
This register contains the running count of velocity pulses for the current time period. Since this is
a running total, the time period to which it applies cannot be known with precision (that is, a read of
this register does not necessarily correspond to the time returned by the QEITIME register since
there is a small window of time between the two reads, during which time either value may have
changed). The QEISPEED register should be used to determine the actual encoder velocity; this
register is provided for information purposes only. This counter does not increment when VelEn in
QEICTL is 0.
QEI Velocity Counter (QEICOUNT)
QEI0 base: 0x4002.C000
Offset 0x018
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Count
Type
Reset
Count
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
Count
RO
0x00
Velocity Pulse Count
The running total of encoder pulses during this velocity timer period.
398
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 8: QEI Velocity (QEISPEED), offset 0x01C
This register contains the most recently measured velocity of the quadrature encoder. This
corresponds to the number of velocity pulses counted in the previous velocity timer period. This
register does not update when VelEn in QEICTL is 0.
QEI Velocity (QEISPEED)
QEI0 base: 0x4002.C000
Offset 0x01C
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
Speed
Type
Reset
Speed
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:0
Speed
RO
0x00
Velocity
The measured speed of the quadrature encoder in pulses per period.
October 01, 2007
399
Preliminary
Quadrature Encoder Interface (QEI)
Register 9: QEI Interrupt Enable (QEIINTEN), offset 0x020
This register contains enables for each of the QEI module’s interrupts. An interrupt is asserted to
the controller if its corresponding bit in this register is set to 1.
QEI Interrupt Enable (QEIINTEN)
QEI0 base: 0x4002.C000
Offset 0x020
Type R/W, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IntError
IntDir
IntTimer
IntIndex
RO
0
RO
0
RO
0
RO
0
RO
0
R/W
0
R/W
0
R/W
0
R/W
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
IntError
R/W
0
Phase Error Interrupt Enable
When 1, an interrupt occurs when a phase error is detected.
2
IntDir
R/W
0
Direction Change Interrupt Enable
When 1, an interrupt occurs when the direction changes.
1
IntTimer
R/W
0
Timer Expires Interrupt Enable
When 1, an interrupt occurs when the velocity timer expires.
0
IntIndex
R/W
0
Index Pulse Detected Interrupt Enable
When 1, an interrupt occurs when the index pulse is detected.
400
October 01, 2007
Preliminary
LM3S601 Microcontroller
Register 10: QEI Raw Interrupt Status (QEIRIS), offset 0x024
This register provides the current set of interrupt sources that are asserted, regardless of whether
they cause an interrupt to be asserted to the controller (this is set through the QEIINTEN register).
Bits set to 1 indicate the latched events that have occurred; a zero bit indicates that the event in
question has not occurred.
QEI Raw Interrupt Status (QEIRIS)
QEI0 base: 0x4002.C000
Offset 0x024
Type RO, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IntError
IntDir
IntTimer
IntIndex
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
IntError
RO
0
Phase Error Detected
Indicates that a phase error was detected.
2
IntDir
RO
0
Direction Change Detected
Indicates that the direction has changed.
1
IntTimer
RO
0
Velocity Timer Expired
Indicates that the velocity timer has expired.
0
IntIndex
RO
0
Index Pulse Asserted
Indicates that the index pulse has occurred.
October 01, 2007
401
Preliminary
Quadrature Encoder Interface (QEI)
Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028
This register provides the current set of interrupt sources that are asserted to the controller. Bits set
to 1 indicate the latched events that have occurred; a zero bit indicates that the event in question
has not occurred. This is a R/W1C register; writing a 1 to a bit position clears the corresponding
interrupt reason.
QEI Interrupt Status and Clear (QEIISC)
QEI0 base: 0x4002.C000
Offset 0x028
Type R/W1C, reset 0x0000.0000
31
30
29
28
27
26
25
24
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
15
14
13
12
11
10
9
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
23
22
21
20
19
18
17
16
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
RO
0
8
7
6
5
4
3
2
1
0
IntError
IntDir
IntTimer
IntIndex
RO
0
RO
0
RO
0
RO
0
RO
0
R/W1C
0
R/W1C
0
R/W1C
0
R/W1C
0
reserved
Type
Reset
reserved
Type
Reset
Bit/Field
Name
Type
Reset
Description
31:4
reserved
RO
0x00
Software should not rely on the value of a reserved bit. To provide
compatibility with future products, the value of a reserved bit should be
preserved across a read-modify-write operation.
3
IntError
R/W1C
0
Phase Error Interrupt
Indicates that a phase error was detected.
2
IntDir
R/W1C
0
Direction Change Interrupt
Indicates that the direction has changed.
1
IntTimer
R/W1C
0
Velocity Timer Expired Interrupt
Indicates that the velocity timer has expired.
0
IntIndex
R/W1C
0
Index Pulse Interrupt
Indicates that the index pulse has occurred.
402
October 01, 2007
Preliminary
LM3S601 Microcontroller
17
Pin Diagram
Figure 17-1 on page 403 shows the pin diagram and pin-to-signal-name mapping.
PB4/C0PB5/C1PB6/C0+
PB7/TRST
PC0/TCK/SWCLK
PC1/TMS/SWDIO
PC2/TDI
PC3/TDO/SWO
48
47
46
45
44
43
42
41
40
39
38
37
PD7/IDX
PD6/Fault
PD5/CCP2
PD4/CCP0
Figure 17-1. Pin Connection Diagram
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
PE1/PWM5
PE0/PWM4
PB3/I2CSDA
PB2/I2CSCL
VDD
GND
PB1/PWM3
PB0/PWM2
PD3/U1Tx
PD2/U1Rx
PD1/PWM1
PD0/PWM0
PA4/SSIRx
PA5/SSITx
VDD
GND
PC5/C1+/C0o
PC4/PhA
VDD
GND
PA0/U0Rx
PA1/U0Tx
PA2/SSIClk
PA3/SSIFss
13
14
15
16
17
18
19
20
21
22
23
24
PE5/CCP5
PE4/CCP3
PE3/CCP1
PE2/CCP4
RST
LDO
VDD
GND
OSC0
OSC1
PC7/C2PC6/C2+/PhB
LM3S601
October 01, 2007
403
Preliminary
Signal Tables
18
Signal Tables
The following tables list the signals available for each pin. Functionality is enabled by software with
the GPIOAFSEL register.
Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7
and PC[3:0]) which default to the JTAG functionality.
Table 18-1 on page 404 shows the pin-to-signal-name mapping, including functional characteristics
of the signals. Table 18-2 on page 406 lists the signals in alphabetical order by signal name.
Table 18-3 on page 409 groups the signals by functionality, except for GPIOs. Table 18-4 on page
410 lists the GPIO pins and their alternate functionality.
Table 18-1. Signals by Pin Number
Pin Number
Pin Name
Pin Type
1
PE5
I/O
TTL
GPIO port E bit 5
CCP5
I/O
TTL
Capture/Compare/PWM 5
2
3
4
Buffer Type Description
PE4
I/O
TTL
GPIO port E bit 4
CCP3
I/O
TTL
Capture/Compare/PWM 3
PE3
I/O
TTL
GPIO port E bit 3
CCP1
I/O
TTL
Capture/Compare/PWM 1
PE2
I/O
TTL
GPIO port E bit 2
CCP4
I/O
TTL
Capture/Compare/PWM 4
5
RST
I
TTL
System reset input.
6
LDO
-
Power
Low drop-out regulator output voltage. This
pin requires an external capacitor between
the pin and GND of 1 µF or greater.
7
VDD
-
Power
Positive supply for I/O and some logic.
8
GND
-
Power
Ground reference for logic and I/O pins.
9
OSC0
I
Analog
Main oscillator crystal input or an external
clock reference input.
10
OSC1
O
Analog
Main oscillator crystal output.
11
PC7
I/O
TTL
C2-
I
Analog
PC6
I/O
TTL
C2+
I
Analog
PhB
I
TTL
QEI module 0 Phase B
PC5
I/O
TTL
GPIO port C bit 5
C1+
I
Analog
C0o
O
TTL
Analog comparator 0 output
PC4
I/O
TTL
GPIO port C bit 4
QEI module 0 Phase A
12
13
14
GPIO port C bit 7
Analog comparator 2 negative input
GPIO port C bit 6
Analog comparator positive input
Analog comparator positive input
PhA
I
TTL
15
VDD
-
Power
Positive supply for I/O and some logic.
16
GND
-
Power
Ground reference for logic and I/O pins.
PA0
I/O
TTL
GPIO port A bit 0
U0Rx
I
TTL
UART module 0 receive
17
404
October 01, 2007
Preliminary
LM3S601 Microcontroller
Pin Number
Pin Name
Pin Type
18
PA1
I/O
TTL
GPIO port A bit 1
U0Tx
O
TTL
UART module 0 transmit
19
20
21
22
Buffer Type Description
PA2
I/O
TTL
GPIO port A bit 2
SSIClk
I/O
TTL
SSI clock
PA3
I/O
TTL
GPIO port A bit 3
SSIFss
I/O
TTL
SSI frame
PA4
I/O
TTL
GPIO port A bit 4
SSIRx
I
TTL
SSI module 0 receive
PA5
I/O
TTL
GPIO port A bit 5
SSI module 0 transmit
SSITx
O
TTL
23
VDD
-
Power
Positive supply for I/O and some logic.
24
GND
-
Power
Ground reference for logic and I/O pins.
25
26
27
28
29
30
PD0
I/O
TTL
GPIO port D bit 0
PWM0
O
TTL
PWM 0
PD1
I/O
TTL
GPIO port D bit 1
PWM1
O
TTL
PWM 1
PD2
I/O
TTL
GPIO port D bit 2
U1Rx
I
TTL
UART module 1 receive. When in IrDA mode,
this signal has IrDA modulation.
PD3
I/O
TTL
GPIO port D bit 3
U1Tx
O
TTL
UART module 1 transmit. When in IrDA mode,
this signal has IrDA modulation.
PB0
I/O
TTL
GPIO port B bit 0
PWM2
O
TTL
PWM 2
PB1
I/O
TTL
GPIO port B bit 1
PWM3
O
TTL
PWM 3
31
GND
-
Power
Ground reference for logic and I/O pins.
32
VDD
-
Power
Positive supply for I/O and some logic.
33
PB2
I/O
TTL
GPIO port B bit 2
I2CSCL
I/O
OD
I2C module 0 clock
PB3
I/O
TTL
GPIO port B bit 3
I2CSDA
I/O
OD
I2C module 0 data
34
35
36
37
38
PE0
I/O
TTL
GPIO port E bit 0
PWM4
O
TTL
PWM 4
PE1
I/O
TTL
GPIO port E bit 1
PWM5
O
TTL
PWM 5
PC3
I/O
TTL
GPIO port C bit 3
TDO
O
TTL
JTAG TDO and SWO
SWO
O
TTL
JTAG TDO and SWO
PC2
I/O
TTL
GPIO port C bit 2
TDI
I
TTL
JTAG TDI
October 01, 2007
405
Preliminary
Signal Tables
Pin Number
Pin Name
Pin Type
39
PC1
I/O
TTL
GPIO port C bit 1
TMS
I/O
TTL
JTAG TMS and SWDIO
SWDIO
I/O
TTL
JTAG TMS and SWDIO
PC0
I/O
TTL
GPIO port C bit 0
40
41
42
43
44
45
46
47
48
Buffer Type Description
TCK
I
TTL
JTAG/SWD CLK
SWCLK
I
TTL
JTAG/SWD CLK
PB7
I/O
TTL
GPIO port B bit 7
TRST
I
TTL
JTAG TRSTn
PB6
I/O
TTL
GPIO port B bit 6
C0+
I
Analog
PB5
I/O
TTL
C1-
I
Analog
PB4
I/O
TTL
C0-
I
Analog
PD4
I/O
TTL
GPIO port D bit 4
CCP0
I/O
TTL
Capture/Compare/PWM 0
PD5
I/O
TTL
GPIO port D bit 5
CCP2
I/O
TTL
Capture/Compare/PWM 2
PD6
I/O
TTL
GPIO port D bit 6
Fault
I
TTL
PWM Fault
PD7
I/O
TTL
GPIO port D bit 7
IDX
I
TTL
QEI index
Analog comparator 0 positive input
GPIO port B bit 5
Analog comparator 1 negative input
GPIO port B bit 4
Analog comparator 0 negative input
Table 18-2. Signals by Signal Name
Pin Name
Pin Number
Pin Type
C0+
42
I
Analog
Analog comparator 0 positive input
C0-
44
I
Analog
Analog comparator 0 negative input
C0o
13
O
TTL
C1+
13
I
Analog
Analog comparator positive input
C1-
43
I
Analog
Analog comparator 1 negative input
C2+
12
I
Analog
Analog comparator positive input
C2-
11
I
Analog
Analog comparator 2 negative input
CCP0
45
I/O
TTL
Capture/Compare/PWM 0
CCP1
3
I/O
TTL
Capture/Compare/PWM 1
CCP2
46
I/O
TTL
Capture/Compare/PWM 2
CCP3
2
I/O
TTL
Capture/Compare/PWM 3
CCP4
4
I/O
TTL
Capture/Compare/PWM 4
CCP5
1
I/O
TTL
Capture/Compare/PWM 5
Fault
47
I
TTL
PWM Fault
GND
8
-
Power
Ground reference for logic and I/O pins.
GND
16
-
Power
Ground reference for logic and I/O pins.
GND
24
-
Power
Ground reference for logic and I/O pins.
406
Buffer Type Description
Analog comparator 0 output
October 01, 2007
Preliminary
LM3S601 Microcontroller
Pin Name
Pin Number
Pin Type
GND
31
-
Power
I2CSCL
33
I/O
OD
I2C module 0 clock
I2CSDA
34
I/O
OD
I2C module 0 data
IDX
48
I
TTL
QEI index
LDO
6
-
Power
Low drop-out regulator output voltage. This
pin requires an external capacitor between
the pin and GND of 1 µF or greater.
OSC0
9
I
Analog
Main oscillator crystal input or an external
clock reference input.
OSC1
10
O
Analog
Main oscillator crystal output.
PA0
17
I/O
TTL
GPIO port A bit 0
PA1
18
I/O
TTL
GPIO port A bit 1
PA2
19
I/O
TTL
GPIO port A bit 2
PA3
20
I/O
TTL
GPIO port A bit 3
PA4
21
I/O
TTL
GPIO port A bit 4
PA5
22
I/O
TTL
GPIO port A bit 5
PB0
29
I/O
TTL
GPIO port B bit 0
PB1
30
I/O
TTL
GPIO port B bit 1
PB2
33
I/O
TTL
GPIO port B bit 2
PB3
34
I/O
TTL
GPIO port B bit 3
PB4
44
I/O
TTL
GPIO port B bit 4
PB5
43
I/O
TTL
GPIO port B bit 5
PB6
42
I/O
TTL
GPIO port B bit 6
PB7
41
I/O
TTL
GPIO port B bit 7
PC0
40
I/O
TTL
GPIO port C bit 0
PC1
39
I/O
TTL
GPIO port C bit 1
PC2
38
I/O
TTL
GPIO port C bit 2
PC3
37
I/O
TTL
GPIO port C bit 3
PC4
14
I/O
TTL
GPIO port C bit 4
PC5
13
I/O
TTL
GPIO port C bit 5
PC6
12
I/O
TTL
GPIO port C bit 6
PC7
11
I/O
TTL
GPIO port C bit 7
PD0
25
I/O
TTL
GPIO port D bit 0
PD1
26
I/O
TTL
GPIO port D bit 1
PD2
27
I/O
TTL
GPIO port D bit 2
PD3
28
I/O
TTL
GPIO port D bit 3
PD4
45
I/O
TTL
GPIO port D bit 4
PD5
46
I/O
TTL
GPIO port D bit 5
PD6
47
I/O
TTL
GPIO port D bit 6
PD7
48
I/O
TTL
GPIO port D bit 7
PE0
35
I/O
TTL
GPIO port E bit 0
PE1
36
I/O
TTL
GPIO port E bit 1
PE2
4
I/O
TTL
GPIO port E bit 2
October 01, 2007
Buffer Type Description
Ground reference for logic and I/O pins.
407
Preliminary
Signal Tables
Pin Name
Pin Number
Pin Type
PE3
3
I/O
Buffer Type Description
TTL
GPIO port E bit 3
PE4
2
I/O
TTL
GPIO port E bit 4
PE5
1
I/O
TTL
GPIO port E bit 5
PhA
14
I
TTL
QEI module 0 Phase A
PhB
12
I
TTL
QEI module 0 Phase B
PWM0
25
O
TTL
PWM 0
PWM1
26
O
TTL
PWM 1
PWM2
29
O
TTL
PWM 2
PWM3
30
O
TTL
PWM 3
PWM4
35
O
TTL
PWM 4
PWM5
36
O
TTL
PWM 5
RST
5
I
TTL
System reset input.
SSIClk
19
I/O
TTL
SSI clock
SSIFss
20
I/O
TTL
SSI frame
SSIRx
21
I
TTL
SSI module 0 receive
SSITx
22
O
TTL
SSI module 0 transmit
SWCLK
40
I
TTL
JTAG/SWD CLK
SWDIO
39
I/O
TTL
JTAG TMS and SWDIO
SWO
37
O
TTL
JTAG TDO and SWO
TCK
40
I
TTL
JTAG/SWD CLK
TDI
38
I
TTL
JTAG TDI
TDO
37
O
TTL
JTAG TDO and SWO
TMS
39
I/O
TTL
JTAG TMS and SWDIO
TRST
41
I
TTL
JTAG TRSTn
U0Rx
17
I
TTL
UART module 0 receive
U0Tx
18
O
TTL
UART module 0 transmit
U1Rx
27
I
TTL
UART module 1 receive. When in IrDA mode,
this signal has IrDA modulation.
U1Tx
28
O
TTL
UART module 1 transmit. When in IrDA mode,
this signal has IrDA modulation.
VDD
7
-
Power
Positive supply for I/O and some logic.
VDD
15
-
Power
Positive supply for I/O and some logic.
VDD
23
-
Power
Positive supply for I/O and some logic.
VDD
32
-
Power
Positive supply for I/O and some logic.
408
October 01, 2007
Preliminary
LM3S601 Microcontroller
Table 18-3. Signals by Function, Except for GPIO
Function
Analog
Comparators
Pin Name
Pin
Number
Pin Type
Buffer
Type
Description
C0+
42
I
Analog
Analog comparator 0 positive input
C0-
44
I
Analog
Analog comparator 0 negative input
C0o
13
O
TTL
C1+
13
I
Analog
Analog comparator positive input
C1-
43
I
Analog
Analog comparator 1 negative input
C2+
12
I
Analog
Analog comparator positive input
Analog comparator 2 negative input
Analog comparator 0 output
11
I
Analog
General-Purpose CCP0
Timers
CCP1
45
I/O
TTL
Capture/Compare/PWM 0
3
I/O
TTL
Capture/Compare/PWM 1
CCP2
46
I/O
TTL
Capture/Compare/PWM 2
CCP3
2
I/O
TTL
Capture/Compare/PWM 3
CCP4
4
I/O
TTL
Capture/Compare/PWM 4
CCP5
1
I/O
TTL
Capture/Compare/PWM 5
I2CSCL
33
I/O
OD
I2C module 0 clock
I2CSDA
C2-
I2C
34
I/O
OD
I2C module 0 data
JTAG/SWD/SWO SWCLK
40
I
TTL
JTAG/SWD CLK
SWDIO
39
I/O
TTL
JTAG TMS and SWDIO
SWO
37
O
TTL
JTAG TDO and SWO
TCK
40
I
TTL
JTAG/SWD CLK
TDI
38
I
TTL
JTAG TDI
TDO
37
O
TTL
JTAG TDO and SWO
TMS
39
I/O
TTL
JTAG TMS and SWDIO
Fault
47
I
TTL
PWM Fault
PWM0
25
O
TTL
PWM 0
PWM1
26
O
TTL
PWM 1
PWM2
29
O
TTL
PWM 2
PWM3
30
O
TTL
PWM 3
PWM4
35
O
TTL
PWM 4
PWM5
36
O
TTL
PWM 5
GND
8
-
Power
Ground reference for logic and I/O pins.
GND
16
-
Power
Ground reference for logic and I/O pins.
GND
24
-
Power
Ground reference for logic and I/O pins.
GND
31
-
Power
Ground reference for logic and I/O pins.
LDO
6
-
Power
Low drop-out regulator output voltage. This pin
requires an external capacitor between the pin and
GND of 1 µF or greater.
VDD
7
-
Power
Positive supply for I/O and some logic.
VDD
15
-
Power
Positive supply for I/O and some logic.
VDD
23
-
Power
Positive supply for I/O and some logic.
VDD
32
-
Power
Positive supply for I/O and some logic.
PWM
Power
October 01, 2007
409
Preliminary
Signal Tables
Function
QEI
SSI
Pin Name
Pin
Number
Pin Type
Buffer
Type
Description
IDX
48
I
TTL
QEI index
PhA
14
I
TTL
QEI module 0 Phase A
PhB
12
I
TTL
QEI module 0 Phase B
SSIClk
19
I/O
TTL
SSI clock
SSIFss
20
I/O
TTL
SSI frame
SSIRx
21
I
TTL
SSI module 0 receive
SSITx
SSI module 0 transmit
22
O
TTL
System Control & OSC0
Clocks
9
I
Analog
Main oscillator crystal input or an external clock
reference input.
OSC1
10
O
Analog
Main oscillator crystal output.
RST
5
I
TTL
System reset input.
TRST
41
I
TTL
JTAG TRSTn
U0Rx
17
I
TTL
UART module 0 receive
U0Tx
18
O
TTL
UART module 0 transmit
U1Rx
27
I
TTL
UART module 1 receive. When in IrDA mode, this
signal has IrDA modulation.
U1Tx
28
O
TTL
UART module 1 transmit. When in IrDA mode, this
signal has IrDA modulation.
UART
Table 18-4. GPIO Pins and Alternate Functions
GPIO Pin
Pin Number
Multiplexed Function
PA0
17
U0Rx
PA1
18
U0Tx
PA2
19
SSIClk
PA3
20
SSIFss
PA4
21
SSIRx
PA5
22
SSITx
PB0
29
PWM2
PB1
30
PWM3
PB2
33
I2CSCL
PB3
34
I2CSDA
PB4
44
C0-
PB5
43
C1-
PB6
42
C0+
PB7
41
TRST
PC0
40
TCK
SWCLK
PC1
39
TMS
SWDIO
PC2
38
TDI
PC3
37
TDO
PC4
14
PhA
PC5
13
C1+
C0o
PC6
12
C2+
PhB
PC7
11
C2-
410
Multiplexed Function
SWO
October 01, 2007
Preliminary
LM3S601 Microcontroller
GPIO Pin
Pin Number
Multiplexed Function
PD0
25
PWM0
PD1
26
PWM1
PD2
27
U1Rx
PD3
28
U1Tx
PD4
45
CCP0
PD5
46
CCP2
PD6
47
Fault
PD7
48
IDX
PE0
35
PWM4
PE1
36
PWM5
PE2
4
CCP4
PE3
3
CCP1
PE4
2
CCP3
PE5
1
CCP5
October 01, 2007
Multiplexed Function
411
Preliminary
Operating Characteristics
19
Operating Characteristics
Table 19-1. Temperature Characteristics
Characteristic
Symbol Value
a
Operating temperature range TA
Unit
-40 to +85
°C
a. Maximum storage temperature is 150°C.
Table 19-2. Thermal Characteristics
Characteristic
Symbol Value
a
Thermal resistance (junction to ambient) ΘJA
b
76
Unit
°C/W
Average junction temperature
TJ
TA + (PAVG • ΘJA)
°C
Maximum junction temperature
TJMAX
115
°C
c
a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.
b. Power dissipation is a function of temperature.
c. TJMAX calculation is based on power consumption values and conditions as specified in “Power Specifications” on page
383 of the data sheet.
412
October 01, 2007
Preliminary
LM3S601 Microcontroller
20
Electrical Characteristics
20.1
DC Characteristics
20.1.1
Maximum Ratings
The maximum ratings are the limits to which the device can be subjected without permanently
damaging the device.
Note:
The device is not guaranteed to operate properly at the maximum ratings.
Table 20-1. Maximum Ratings
a
Characteristic
Symbol
Value
Unit
Supply voltage range (VDD)
VDD
0.0 to +3.6
V
Input voltage
VIN
-0.3 to 5.5
V
Maximum current for pins, excluding pins operating as GPIOs
I
100
mA
Maximum current for GPIO pins
I
100
mA
a. Voltages are measured with respect to GND.
Important: This device contains circuitry to protect the inputs against damage due to high-static
voltages or electric fields; however, it is advised that normal precautions be taken to
avoid application of any voltage higher than maximum-rated voltages to this
high-impedance circuit. Reliability of operation is enhanced if unused inputs are
connected to an appropriate logic voltage level (for example, either GND or VDD).
20.1.2
Recommended DC Operating Conditions
Table 20-2. Recommended DC Operating Conditions
Parameter Parameter Name
Min
Nom
Max
Unit
VDD
Supply voltage
3.0
3.3
3.6
V
VIH
High-level input voltage
2.0
-
5.0
V
VIL
Low-level input voltage
-0.3
-
1.3
V
VSIH
High-level input voltage for Schmitt trigger inputs 0.8 * VDD
-
VDD
V
VSIL
Low-level input voltage for Schmitt trigger inputs
0
-
0.2 * VDD
V
VOH
High-level output voltage
2.4
-
-
V
VOL
Low-level output voltage
-
-
0.4
V
IOH
High-level source current, VOH=2.4 V
2-mA Drive
2.0
-
-
mA
4-mA Drive
4.0
-
-
mA
8-mA Drive
8.0
-
-
mA
2-mA Drive
2.0
-
-
mA
4-mA Drive
4.0
-
-
mA
8-mA Drive
8.0
-
-
mA
IOL
Low-level sink current, VOL=0.4 V
October 01, 2007
413
Preliminary
Electrical Characteristics
20.1.3
On-Chip Low Drop-Out (LDO) Regulator Characteristics
Table 20-3. LDO Regulator Characteristics
Parameter Parameter Name
VLDOOUT
20.1.4
Min Nom Max Unit
Programmable internal (logic) power supply output value 2.25
2.75
V
Output voltage accuracy
-
2%
-
%
tPON
Power-on time
-
-
100
µs
tON
Time on
-
-
200
µs
tOFF
Time off
-
-
100
µs
VSTEP
Step programming incremental voltage
-
50
-
mV
CLDO
External filter capacitor size for internal power supply
1.0
-
3.0
µF
Power Specifications
The power measurements specified in the tables that follow are run on the core processor using
SRAM with the following specifications (except as noted):
■ VDD = 3.3 V
■ Temperature = 25°C
Table 20-4. Detailed Power Specifications
Parameter
IDD_RUN
Parameter Name
Conditions
Run mode 1 (Flash loop) LDO = 2.50 V
Nom Max Unit
95
110
mA
60
75
mA
85
95
mA
50
60
mA
19
22
mA
Code = while(1){} executed in Flash
Peripherals = All clock-gated ON
System Clock = 50 MHz (with PLL)
Run mode 2 (Flash loop) LDO = 2.50 V
Code = while(1){} executed in Flash
Peripherals = All clock-gated OFF
System Clock = 50 MHz (with PLL)
Run mode 1 (SRAM loop) LDO = 2.50 V
Code = while(1){} executed in SRAM
Peripherals = All clock-gated ON
System Clock = 50 MHz (with PLL)
Run mode 2 (SRAM loop) LDO = 2.50 V
Code = while(1){} executed in SRAM
Peripherals = All clock-gated OFF
System Clock = 50 MHz (with PLL)
IDD_SLEEP
Sleep mode
LDO = 2.50 V
Peripherals = All clock-gated OFF
System Clock = 50 MHz (with PLL)
414
October 01, 2007
Preliminary
LM3S601 Microcontroller
Parameter
Parameter Name
IDD_DEEPSLEEP Deep-Sleep mode
Conditions
Nom Max Unit
LDO = 2.25 V
950 1150 μA
Peripherals = All OFF
System Clock = MOSC/16
20.1.5
Flash Memory Characteristics
Table 20-5. Flash Memory Characteristics
Parameter Parameter Name
PECYC
TRET
Min
Nom
a
Max Unit
Number of guaranteed program/erase cycles before failure 10,000 100,000
-
cycles
Data retention at average operating temperature of 85˚C
10
-
-
years
TPROG
Word program time
20
-
-
µs
TERASE
Page erase time
20
-
-
ms
TME
Mass erase time
200
-
-
ms
a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.
20.2
AC Characteristics
20.2.1
Load Conditions
Unless otherwise specified, the following conditions are true for all timing measurements. Timing
measurements are for 4-mA drive strength.
Figure 20-1. Load Conditions
CL = 50 pF
pin
GND
20.2.2
Clocks
Table 20-6. Phase Locked Loop (PLL) Characteristics
Parameter Parameter Name
fref_crystal
a
Crystal reference
referencea
Min
Nom Max Unit
3.579545
-
8.192 MHz
8.192 MHz
fref_ext
External clock
3.579545
-
fpll
PLL frequency
-
200
-
MHz
TREADY
PLL lock time
-
-
0.5
ms
b
a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration
(RCC) register.
b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.
Table 20-7. Clock Characteristics
Parameter
fIOSC
Parameter Name
Min Nom Max Unit
Internal oscillator frequency
7
October 01, 2007
12
22
MHz
415
Preliminary
Electrical Characteristics
Parameter
20.2.3
Parameter Name
fMOSC
Main oscillator frequency
tMOSC_per
Main oscillator period
Min Nom Max Unit
1
-
8
MHz
125
-
1000
ns
fref_crystal_bypass Crystal reference using the main oscillator (PLL in BYPASS mode)
1
-
8
MHz
fref_ext_bypass
External clock reference (PLL in BYPASS mode)
0
-
50
MHz
fsystem_clock
System clock
0
-
50
MHz
Analog Comparator
Table 20-8. Analog Comparator Characteristics
Parameter Parameter Name
Min Nom
Max
Unit
VOS
Input offset voltage
-
±10
±25
mV
VCM
Input common mode voltage range
0
-
VDD-1.5
V
CMRR
Common mode rejection ratio
50
-
-
dB
TRT
Response time
-
-
1
µs
TMC
Comparator mode change to Output Valid
-
-
10
µs
Table 20-9. Analog Comparator Voltage Reference Characteristics
Parameter Parameter Name
20.2.4
Min Nom Max Unit
RHR
Resolution high range
-
VDD/32
-
LSB
-
LSB
RLR
Resolution low range
-
VDD/24
AHR
Absolute accuracy high range
-
-
±1/2 LSB
ALR
Absolute accuracy low range
-
-
±1/4 LSB
I2C
Table 20-10. I2C Characteristics
Parameter No. Parameter Parameter Name
a
I1
a
b
a
c
I2
I3
I4
I5
tSCH
Min Nom
Max
Unit
-
system clocks
Start condition hold time
36
-
tLP
Clock Low period
36
-
-
system clocks
tSRT
I2CSCL/I2CSDA rise time (VIL =0.5 V to V IH =2.4 V)
-
-
(see note b)
ns
tDH
Data hold time
2
-
-
system clocks
-
9
10
ns
tSFT
I2CSCL/I2CSDA fall time (VIH =2.4 V to V IL =0.5 V)
a
tHT
Clock High time
24
-
-
system clocks
a
tDS
Data setup time
18
-
-
system clocks
a
tSCSR
Start condition setup time (for repeated start condition 36
only)
-
-
system clocks
a
tSCS
Stop condition setup time
-
-
system clocks
I6
I7
I8
I9
24
I2C
a. Values depend on the value programmed into the TPR bit in the
Master Timer Period (I2CMTPR) register; a TPR
programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table
above. The I 2C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low
period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above
values are minimum values.
b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time
I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.
c. Specified at a nominal 50 pF load.
416
October 01, 2007
Preliminary
LM3S601 Microcontroller
Figure 20-2. I2C Timing
I2
I6
I5
I2CSCL
I1
I4
I7
I8
I3
I9
I2CSDA
20.2.5
Synchronous Serial Interface (SSI)
Table 20-11. SSI Characteristics
Parameter No. Parameter Parameter Name
Min Nom Max
Unit
S1
tclk_per
SSIClk cycle time
2
-
65024 system clocks
S2
tclk_high
SSIClk high time
-
1/2
-
t clk_per
S3
tclk_low
SSIClk low time
-
1/2
-
t clk_per
S4
tclkrf
SSIClk rise/fall time
-
7.4
26
ns
S5
tDMd
Data from master valid delay time
0
-
20
ns
S6
tDMs
Data from master setup time
20
-
-
ns
S7
tDMh
Data from master hold time
40
-
-
ns
S8
tDSs
Data from slave setup time
20
-
-
ns
S9
tDSh
Data from slave hold time
40
-
-
ns
Figure 20-3. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement
S1
S4
S2
SSIClk
S3
SSIFss
SSITx
SSIRx
MSB
LSB
4 to 16 bits
October 01, 2007
417
Preliminary
Electrical Characteristics
Figure 20-4. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer
S2
S1
SSIClk
S3
SSIFss
SSITx
MSB
LSB
8-bit control
SSIRx
0
MSB
LSB
4 to 16 bits output data
Figure 20-5. SSI Timing for SPI Frame Format (FRF=00), with SPH=1
S1
S4
S2
SSIClk
(SPO=0)
S3
SSIClk
(SPO=1)
S6
SSITx
(master)
MSB
S5
SSIRx
(slave)
S7
S8
LSB
S9
MSB
LSB
SSIFss
20.2.6
JTAG and Boundary Scan
Table 20-12. JTAG Characteristics
Parameter No.
Parameter
J1
fTCK
Parameter Name
TCK operational clock frequency
J2
tTCK
TCK operational clock period
J3
tTCK_LOW
TCK clock Low time
418
Min Nom Max Unit
0
-
10 MHz
100
-
-
ns
-
tTCK
-
ns
October 01, 2007
Preliminary
LM3S601 Microcontroller
Parameter No.
Parameter
J4
tTCK_HIGH
J5
Parameter Name
Min Nom Max Unit
TCK clock High time
-
tTCK
-
ns
tTCK_R
TCK rise time
0
-
10
ns
J6
tTCK_F
TCK fall time
0
-
10
ns
J7
tTMS_SU
TMS setup time to TCK rise
20
-
-
ns
J8
tTMS_HLD
TMS hold time from TCK rise
20
-
-
ns
J9
tTDI_SU
TDI setup time to TCK rise
25
-
-
ns
J10
tTDI_HLD
TDI hold time from TCK rise
25
-
-
ns
J11
TCK fall to Data Valid from High-Z
-
23
35
ns
4-mA drive
15
26
ns
8-mA drive
14
25
ns
18
29
ns
21
35
ns
4-mA drive
14
25
ns
8-mA drive
13
24
ns
8-mA drive with slew rate control
18
28
ns
2-mA drive
t TDO_ZDV
8-mA drive with slew rate control
J12
TCK fall to Data Valid from Data Valid
2-mA drive
t TDO_DV
J13
TCK fall to High-Z from Data Valid
2-mA drive
9
11
ns
4-mA drive
7
9
ns
8-mA drive
6
8
ns
8-mA drive with slew rate control
7
9
ns
t TDO_DVZ
J14
tTRST
J15
tTRST_SU
-
-
TRST assertion time
100
-
-
ns
TRST setup time to TCK rise
10
-
-
ns
Figure 20-6. JTAG Test Clock Input Timing
J2
J3
J4
TCK
J6
J5
October 01, 2007
419
Preliminary
Electrical Characteristics
Figure 20-7. JTAG Test Access Port (TAP) Timing
TCK
J7
TMS
TDI
J8
J7
J8
TMS Input Valid
TMS Input Valid
J9
J9
J10
TDI Input Valid
J10
TDI Input Valid
J11
J12
TDO
J13
TDO Output Valid
TDO Output Valid
Figure 20-8. JTAG TRST Timing
TCK
J14
J15
TRST
20.2.7
General-Purpose I/O
Note:
All GPIOs are 5 V-tolerant.
Table 20-13. GPIO Characteristics
Parameter Parameter Name
tGPIOR
Condition
GPIO Rise Time (from 20% to 80% of VDD)
Min Nom Max Unit
2-mA drive
-
4-mA drive
tGPIOF
20.2.8
17
26
ns
9
13
ns
8-mA drive
6
9
ns
8-mA drive with slew rate control
10
12
ns
17
25
ns
4-mA drive
8
12
ns
8-mA drive
6
10
ns
8-mA drive with slew rate control
11
13
ns
GPIO Fall Time (from 80% to 20% of VDD)
2-mA drive
-
Reset
Table 20-14. Reset Characteristics
Parameter No. Parameter Parameter Name
R1
VTH
Reset threshold
Min Nom Max Unit
-
420
2.0
-
V
October 01, 2007
Preliminary
LM3S601 Microcontroller
Parameter No. Parameter Parameter Name
Min Nom Max Unit
R2
VBTH
Brown-Out threshold
2.85 2.9 2.95
R3
TPOR
Power-On Reset timeout
R4
TBOR
Brown-Out timeout
R5
TIRPOR
Internal reset timeout after POR
R6
TIRBOR
Internal reset timeout after BOR
R7
TIRHWR
Internal reset timeout after hardware reset (RST pin)
a
R8
TIRSWR
Internal reset timeout after software-initiated system
R9
TIRWDR
Internal reset timeout after watchdog reseta
reseta
R10
TIRLDOR
Internal reset timeout after LDO
R11
TVDDRISE
Supply voltage (VDD) rise time (0 V-3.3 V)
reset a
-
10
-
V
ms
-
500
-
µs
15
-
30
ms
2.5
-
20
µs
15
-
30
ms
2.5
-
20
µs
2.5
-
20
µs
2.5
-
20
µs
-
-
100 ms
a. 20 * t MOSC_per
Figure 20-9. External Reset Timing (RST)
RST
R7
/Reset
(Internal)
Figure 20-10. Power-On Reset Timing
R1
VDD
R3
/POR
(Internal)
R5
/Reset
(Internal)
October 01, 2007
421
Preliminary
Electrical Characteristics
Figure 20-11. Brown-Out Reset Timing
R2
VDD
R4
/BOR
(Internal)
R6
/Reset
(Internal)
Figure 20-12. Software Reset Timing
SW Reset
R8
/Reset
(Internal)
Figure 20-13. Watchdog Reset Timing
WDOG
Reset
(Internal)
R9
/Reset
(Internal)
Figure 20-14. LDO Reset Timing
LDO Reset
(Internal)
R10
/Reset
(Internal)
422
October 01, 2007
Preliminary
LM3S601 Microcontroller
21
Package Information
Figure 21-1. 48-Pin LQFP Package
aaa
bbb
ccc
Note:
The following notes apply to the package drawing.
1. All dimensions are in mm. All dimensioning and tolerancing conform to ANSI Y14.5M-1982.
2. The top package body size may be smaller than the bottom package body size by as much as
0.20.
3. Datums A-B and -D- to be determined at datum plane -H-.
4. To be determined at seating plane -C-.
5. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 per side.
D1 and E1 are maximum plastic body size dimensions including mold mismatch.
6. Surface finish of the package is #24-27 Charmille (1.6-2.3μmR0) Pin 1 and ejector pin may be
less than 0.1μmR0.
October 01, 2007
423
Preliminary
Package Information
7. Dambar removal protrusion does not exceed 0.08. Intrusion does not exceed 0.03.
8. Burr does not exceed 0.08 in any direction.
9. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall not cause
the lead width to exceed the maximum b dimension by more than 0.08. Dambar cannot be
located on the lower radius or the foot. Minimum space between protrusion and adjacent lead
is 0.07 for 0.40 and 0.50 pitch package.
10. Corner radius of plastic body does not exceed 0.20.
11. These dimensions apply to the flat section of the lead between 0.10 and 0.25 from the lead tip.
12. A1 is defined as the distance from the seating plane to the lowest point of the package body.
13. Finish of leads is tin plated.
14. All specifications and dimensions are subjected to IPAC’S manufacturing process flow and
materials.
15. M5-026A. Where discrepancies between the JEDEC and IPAC documents exist, this drawing
will take the precedence.
Symbol
Package Type
Note
48LD LQFP
MIN
NOM
MAX
A
===
===
1.60
A1
0.05
===
0.15
A2
1.35
1.40
1.45
D
9.00 BSC
D1
7.00 BSC
E
9.00 BSC
E1
L
7.00 BSC
0.45
e
0.80
0.75
0.50 BSC
b
0.17
0.22
0.27
b1
0.17
0.20
0.23
c
0.09
===
0.20
c1
0.09
===
0.16
Tolerances of form and position
aaa
0.20
bbb
0.20
ccc
0.08
ddd
0.08
424
October 01, 2007
Preliminary
LM3S601 Microcontroller
A
Serial Flash Loader
A.1
Serial Flash Loader
®
The Stellaris serial flash loader is a preprogrammed flash-resident utility used to download code
to the flash memory of a device without the use of a debug interface. The serial flash loader uses
a simple packet interface to provide synchronous communication with the device. The flash loader
runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used.
The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both
the data format and communication protocol are identical for both serial interfaces.
A.2
Interfaces
Once communication with the flash loader is established via one of the serial interfaces, that interface
is used until the flash loader is reset or new code takes over. For example, once you start
communicating using the SSI port, communications with the flash loader via the UART are disabled
until the device is reset.
A.2.1
UART
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is
automatically detected by the flash loader and can be any valid baud rate supported by the host
and the device. The auto detection sequence requires that the baud rate should be no more than
1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the
®
same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device
which is calculated as follows:
Max Baud Rate = System Clock Frequency / 16
In order to determine the baud rate, the serial flash loader needs to determine the relationship
between its own crystal frequency and the baud rate. This is enough information for the flash loader
to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows
the host to use any valid baud rate that it wants to communicate with the device.
The method used to perform this automatic synchronization relies on the host sending the flash
loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the
host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received
after at least twice the time required to transfer the two bytes, the host can resend another pattern
of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has
received a synchronization pattern correctly. For example, the time to wait for data back from the
flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate
of 115200, this time is 2*(20/115200) or 0.35 ms.
A.2.2
SSI
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See “Frame
Formats” on page 267 in the SSI chapter for more information on formats for this transfer protocol.
Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI
clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running
October 01, 2007
425
Preliminary
Serial Flash Loader
the flash loader. Since the host device is the master, the SSI on the flash loader device does not
need to determine the clock as it is provided directly by the host.
A.3
Packet Handling
All communications, with the exception of the UART auto-baud, are done via defined packets that
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same
format for receiving and sending packets, including the method used to acknowledge successful or
unsuccessful reception of a packet.
A.3.1
Packet Format
All packets sent and received from the device use the following byte-packed format.
struct
{
unsigned char ucSize;
unsigned char ucCheckSum;
unsigned char Data[];
};
A.3.2
ucSize
The first byte received holds the total size of the transfer including
the size and checksum bytes.
ucChecksum
This holds a simple checksum of the bytes in the data buffer only.
The algorithm is Data[0]+Data[1]+…+ Data[ucSize-3].
Data
This is the raw data intended for the device, which is formatted in
some form of command interface. There should be ucSize–2
bytes of data provided in this buffer to or from the device.
Sending Packets
The actual bytes of the packet can be sent individually or all at once; the only limitation is that
commands that cause flash memory access should limit the download sizes to prevent losing bytes
during flash programming. This limitation is discussed further in the section that describes the serial
flash loader command, COMMAND_SEND_DATA (see “COMMAND_SEND_DATA
(0x24)” on page 428).
Once the packet has been formatted correctly by the host, it should be sent out over the UART or
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned
from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from
the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This
does not indicate that the actual contents of the command issued in the data portion of the packet
were valid, just that the packet was received correctly.
A.3.3
Receiving Packets
The flash loader sends a packet of data in the same format that it receives a packet. The flash loader
may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte
is the size of the packet followed by a checksum byte, and finally followed by the data itself. There
is no break in the data after the first non-zero byte is sent from the flash loader. Once the device
communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to
indicate that the transmission was successful. The appropriate response after sending a NAK to
the flash loader is to resend the command that failed and request the data again. If needed, the
host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the
426
October 01, 2007
Preliminary
LM3S601 Microcontroller
flash loader only accepts the first non-zero data as a valid response. This zero padding is needed
by the SSI interface in order to receive data to or from the flash loader.
A.4
Commands
The next section defines the list of commands that can be sent to the flash loader. The first byte of
the data should always be one of the defined commands, followed by data or parameters as
determined by the command that is sent.
A.4.1
COMMAND_PING (0X20)
This command simply accepts the command and sets the global status to success. The format of
the packet is as follows:
Byte[0] = 0x03;
Byte[1] = checksum(Byte[2]);
Byte[2] = COMMAND_PING;
The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one
byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status,
the receipt of an ACK can be interpreted as a successful ping to the flash loader.
A.4.2
COMMAND_GET_STATUS (0x23)
This command returns the status of the last command that was issued. Typically, this command
should be sent after every command to ensure that the previous command was successful or to
properly respond to a failure. The command requires one byte in the data of the packet and should
be followed by reading a packet with one byte of data that contains a status code. The last step is
to ACK or NAK the received data so the flash loader knows that the data has been read.
Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS
A.4.3
COMMAND_DOWNLOAD (0x21)
This command is sent to the flash loader to indicate where to store data and how many bytes will
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit
values that are both transferred MSB first. The first 32-bit value is the address to start programming
data into, while the second is the 32-bit size of the data that will be sent. This command also triggers
an erase of the full area to be programmed so this command takes longer than other commands.
This results in a longer time to receive the ACK/NAK back from the board. This command should
be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size
are valid for the device running the flash loader.
The format of the packet to send this command is a follows:
Byte[0]
Byte[1]
Byte[2]
Byte[3]
Byte[4]
Byte[5]
Byte[6]
Byte[7]
=
=
=
=
=
=
=
=
11
checksum(Bytes[2:10])
COMMAND_DOWNLOAD
Program Address [31:24]
Program Address [23:16]
Program Address [15:8]
Program Address [7:0]
Program Size [31:24]
October 01, 2007
427
Preliminary
Serial Flash Loader
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
A.4.4
COMMAND_SEND_DATA (0x24)
This command should only follow a COMMAND_DOWNLOAD command or another
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands
automatically increment address and continue programming from the previous location. The caller
should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program
successfully and not overflow input buffers of the serial interfaces. The command terminates
programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been
received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to
ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK
to this command, the flash loader does not increment the current address to allow retransmission
of the previous data.
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
A.4.5
COMMAND_RUN (0x22)
This command is used to tell the flash loader to execute from the address passed as the parameter
in this command. This command consists of a single 32-bit value that is interpreted as the address
to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK
signal back to the host device before actually executing the code at the given address. This allows
the host to know that the command was received successfully and the code is now running.
Byte[0]
Byte[1]
Byte[2]
Byte[3]
Byte[4]
Byte[5]
Byte[6]
A.4.6
=
=
=
=
=
=
=
7
checksum(Bytes[2:6])
COMMAND_RUN
Execute Address[31:24]
Execute Address[23:16]
Execute Address[15:8]
Execute Address[7:0]
COMMAND_RESET (0x25)
This command is used to tell the flash loader device to reset. This is useful when downloading a
new image that overwrote the flash loader and wants to start from a full reset. Unlike the
COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set
up for the new code. It can also be used to reset the flash loader if a critical error occurs and the
host device wants to restart communication with the flash loader.
428
October 01, 2007
Preliminary
LM3S601 Microcontroller
Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET
The flash loader responds with an ACK signal back to the host device before actually executing the
software reset to the device running the flash loader. This allows the host to know that the command
was received successfully and the part will be reset.
October 01, 2007
429
Preliminary
Register Quick Reference
B
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
BORIOR
BORWT
System Control
Base 0x400F.E000
DID0, type RO, offset 0x000, reset VER
MAJOR
MINOR
PBORCTL, type R/W, offset 0x030, reset 0x0000.7FFD
BORTIM
LDOPCTL, type R/W, offset 0x034, reset 0x0000.0000
VADJ
RIS, type RO, offset 0x050, reset 0x0000.0000
PLLLRIS
CLRIS
IOFRIS
MOFRIS
LDORIS
BORRIS
PLLFRIS
PLLLIM
CLIM
IOFIM
MOFIM
LDOIM
BORIM
PLLFIM
PLLLMIS
CLMIS
IOFMIS
MOFMIS
LDOMIS
BORMIS
LDO
SW
WDT
BOR
POR
IMC, type R/W, offset 0x054, reset 0x0000.0000
MISC, type R/W1C, offset 0x058, reset 0x0000.0000
RESC, type R/W, offset 0x05C, reset -
EXT
RCC, type R/W, offset 0x060, reset 0x07AE.3AD1
ACG
PWRDN
OEN
BYPASS
SYSDIV
USESYSDIV
PLLVER
XTAL
PWMDIV
USEPWMDIV
OSCSRC
IOSCVER MOSCVER IOSCDIS MOSCDIS
PLLCFG, type RO, offset 0x064, reset -
OD
F
R
DSLPCLKCFG, type R/W, offset 0x144, reset 0x0780.0000
IOSC
CLKVCLR, type R/W, offset 0x150, reset 0x0000.0000
VERCLR
LDOARST, type R/W, offset 0x160, reset 0x0000.0000
LDOARST
DID1, type RO, offset 0x004, reset VER
FAM
PARTNO
TEMP
PKG
ROHS
QUAL
DC0, type RO, offset 0x008, reset 0x001F.000F
SRAMSZ
FLASHSZ
DC1, type RO, offset 0x010, reset 0x0010.309F
PWM
MINSYSDIV
MPU
PLL
WDT
SWO
SWD
JTAG
TIMER2
TIMER1
TIMER0
UART1
UART0
DC2, type RO, offset 0x014, reset 0x0707.1113
COMP2
I2C0
COMP1
COMP0
QEI0
430
SSI0
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
CCP2
CCP1
CCP0
PWM5
PWM4
PWM3
PWM2
PWM1
PWM0
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
TIMER2
TIMER1
TIMER0
UART1
UART0
TIMER1
TIMER0
UART1
UART0
TIMER1
TIMER0
UART1
UART0
DC3, type RO, offset 0x018, reset 0x3F00.37FF
CCP5
CCP4
CCP3
C2PLUS C2MINUS
C1PLUS C1MINUS
C0O
C0PLUS C0MINUS
DC4, type RO, offset 0x01C, reset 0x0000.001F
RCGC0, type R/W, offset 0x100, reset 0x00000040
PWM
WDT
SCGC0, type R/W, offset 0x110, reset 0x00000040
PWM
WDT
DCGC0, type R/W, offset 0x120, reset 0x00000040
PWM
WDT
RCGC1, type R/W, offset 0x104, reset 0x00000000
COMP2
COMP1
I2C0
COMP0
QEI0
SSI0
SCGC1, type R/W, offset 0x114, reset 0x00000000
COMP2
COMP1
I2C0
COMP0
TIMER2
QEI0
SSI0
DCGC1, type R/W, offset 0x124, reset 0x00000000
COMP2
COMP1
I2C0
COMP0
TIMER2
QEI0
SSI0
RCGC2, type R/W, offset 0x108, reset 0x00000000
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
GPIOE
GPIOD
GPIOC
GPIOB
GPIOA
TIMER2
TIMER1
TIMER0
UART1
UART0
GPIOB
GPIOA
SCGC2, type R/W, offset 0x118, reset 0x00000000
DCGC2, type R/W, offset 0x128, reset 0x00000000
SRCR0, type R/W, offset 0x040, reset 0x00000000
PWM
WDT
SRCR1, type R/W, offset 0x044, reset 0x00000000
COMP2
I2C0
COMP1
COMP0
QEI0
SSI0
SRCR2, type R/W, offset 0x048, reset 0x00000000
GPIOE
GPIOD
GPIOC
Internal Memory
Flash Control Offset
Base 0x400F.D000
FMA, type R/W, offset 0x000, reset 0x0000.0000
OFFSET
FMD, type R/W, offset 0x004, reset 0x0000.0000
DATA
DATA
October 01, 2007
431
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
COMT
MERASE
ERASE
WRITE
PRIS
ARIS
PMASK
AMASK
PMISC
AMISC
FMC, type R/W, offset 0x008, reset 0x0000.0000
WRKEY
FCRIS, type RO, offset 0x00C, reset 0x0000.0000
FCIM, type R/W, offset 0x010, reset 0x0000.0000
FCMISC, type R/W1C, offset 0x014, reset 0x0000.0000
Internal Memory
System Control Offset
Base 0x400F.E000
USECRL, type R/W, offset 0x140, reset 0x31
USEC
FMPRE, type R/W, offset 0x130, reset 0x8000.FFFF
READ_ENABLE
READ_ENABLE
FMPPE, type R/W, offset 0x134, reset 0x0000.FFFF
PROG_ENABLE
PROG_ENABLE
General-Purpose Input/Outputs (GPIOs)
GPIO Port A base: 0x4000.4000
GPIO Port B base: 0x4000.5000
GPIO Port C base: 0x4000.6000
GPIO Port D base: 0x4000.7000
GPIO Port E base: 0x4002.4000
GPIODATA, type R/W, offset 0x000, reset 0x0000.0000
DATA
GPIODIR, type R/W, offset 0x400, reset 0x0000.0000
DIR
GPIOIS, type R/W, offset 0x404, reset 0x0000.0000
IS
GPIOIBE, type R/W, offset 0x408, reset 0x0000.0000
IBE
GPIOIEV, type R/W, offset 0x40C, reset 0x0000.0000
IEV
GPIOIM, type R/W, offset 0x410, reset 0x0000.0000
IME
GPIORIS, type RO, offset 0x414, reset 0x0000.0000
RIS
GPIOMIS, type RO, offset 0x418, reset 0x0000.0000
MIS
432
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GPIOICR, type W1C, offset 0x41C, reset 0x0000.0000
IC
GPIOAFSEL, type R/W, offset 0x420, reset -
AFSEL
GPIODR2R, type R/W, offset 0x500, reset 0x0000.00FF
DRV2
GPIODR4R, type R/W, offset 0x504, reset 0x0000.0000
DRV4
GPIODR8R, type R/W, offset 0x508, reset 0x0000.0000
DRV8
GPIOODR, type R/W, offset 0x50C, reset 0x0000.0000
ODE
GPIOPUR, type R/W, offset 0x510, reset 0x0000.00FF
PUE
GPIOPDR, type R/W, offset 0x514, reset 0x0000.0000
PDE
GPIOSLR, type R/W, offset 0x518, reset 0x0000.0000
SRL
GPIODEN, type R/W, offset 0x51C, reset 0x0000.00FF
DEN
GPIOPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000
PID4
GPIOPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000
PID5
GPIOPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000
PID6
GPIOPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000
PID7
GPIOPeriphID0, type RO, offset 0xFE0, reset 0x0000.0061
PID0
GPIOPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000
PID1
GPIOPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018
PID2
October 01, 2007
433
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
GPIOPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001
PID3
GPIOPCellID0, type RO, offset 0xFF0, reset 0x0000.000D
CID0
GPIOPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0
CID1
GPIOPCellID2, type RO, offset 0xFF8, reset 0x0000.0005
CID2
GPIOPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1
CID3
General-Purpose Timers
Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
GPTMCFG, type R/W, offset 0x000, reset 0x0000.0000
GPTMCFG
GPTMTAMR, type R/W, offset 0x004, reset 0x0000.0000
TAAMS
TACMR
TAMR
TBAMS
TBCMR
TBMR
GPTMTBMR, type R/W, offset 0x008, reset 0x0000.0000
GPTMCTL, type R/W, offset 0x00C, reset 0x0000.0000
TBPWML
TBOTE
TBEVENT
TBSTALL
TBEN
TAPWML
TAOTE
RTCEN
TAEVENT
TASTALL
TAEN
CBEIM
CBMIM
TBTOIM
RTCIM
CAEIM
CAMIM
TATOIM
CBERIS
CBMRIS TBTORIS
RTCRIS
CAERIS
CAMRIS
TATORIS
CBEMIS
CBMMIS TBTOMIS
RTCMIS
CAEMIS
CAMMIS TATOMIS
GPTMIMR, type R/W, offset 0x018, reset 0x0000.0000
GPTMRIS, type RO, offset 0x01C, reset 0x0000.0000
GPTMMIS, type RO, offset 0x020, reset 0x0000.0000
GPTMICR, type W1C, offset 0x024, reset 0x0000.0000
CBECINT CBMCINT TBTOCINT
RTCCINT CAECINT CAMCINT TATOCINT
GPTMTAILR, type R/W, offset 0x028, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
TAILRH
TAILRL
GPTMTBILR, type R/W, offset 0x02C, reset 0x0000.FFFF
TBILRL
GPTMTAMATCHR, type R/W, offset 0x030, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
TAMRH
TAMRL
434
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
RESEN
INTEN
GPTMTBMATCHR, type R/W, offset 0x034, reset 0x0000.FFFF
TBMRL
GPTMTAPR, type R/W, offset 0x038, reset 0x0000.0000
TAPSR
GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000
TBPSR
GPTMTAPMR, type R/W, offset 0x040, reset 0x0000.0000
TAPSMR
GPTMTBPMR, type R/W, offset 0x044, reset 0x0000.0000
TBPSMR
GPTMTAR, type RO, offset 0x048, reset 0x0000.FFFF (16-bit mode) and 0xFFFF.FFFF (32-bit mode)
TARH
TARL
GPTMTBR, type RO, offset 0x04C, reset 0x0000.FFFF
TBRL
Watchdog Timer
Base 0x4000.0000
WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF
WDTLoad
WDTLoad
WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF
WDTValue
WDTValue
WDTCTL, type R/W, offset 0x008, reset 0x0000.0000
WDTICR, type WO, offset 0x00C, reset WDTIntClr
WDTIntClr
WDTRIS, type RO, offset 0x010, reset 0x0000.0000
WDTRIS
WDTMIS, type RO, offset 0x014, reset 0x0000.0000
WDTMIS
WDTTEST, type R/W, offset 0x418, reset 0x0000.0000
STALL
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000
WDTLock
WDTLock
WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000
PID4
WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000
PID5
October 01, 2007
435
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
OE
BE
PE
FE
WDTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000
PID6
WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000
PID7
WDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005
PID0
WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018
PID1
WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018
PID2
WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001
PID3
WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D
CID0
WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0
CID1
WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005
CID2
WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1
CID3
Universal Asynchronous Receivers/Transmitters (UARTs)
UART0 base: 0x4000.C000
UART1 base: 0x4000.D000
UARTDR, type R/W, offset 0x000, reset 0x0000.0000
OE
BE
PE
FE
DATA
UARTRSR/UARTECR, type RO, offset 0x004, reset 0x0000.0000
UARTRSR/UARTECR, type WO, offset 0x004, reset 0x0000.0000
DATA
UARTFR, type RO, offset 0x018, reset 0x0000.0090
TXFE
RXFF
TXFF
RXFE
BUSY
UARTIBRD, type R/W, offset 0x024, reset 0x0000.0000
DIVINT
UARTFBRD, type R/W, offset 0x028, reset 0x0000.0000
DIVFRAC
436
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FEN
STP2
EPS
PEN
BRK
UARTLCRH, type R/W, offset 0x02C, reset 0x0000.0000
SPS
WLEN
UARTCTL, type R/W, offset 0x030, reset 0x0000.0300
RXE
TXE
LBE
UARTEN
UARTIFLS, type R/W, offset 0x034, reset 0x0000.0012
RXIFLSEL
TXIFLSEL
UARTIM, type R/W, offset 0x038, reset 0x0000.0000
OEIM
BEIM
PEIM
FEIM
RTIM
TXIM
RXIM
OERIS
BERIS
PERIS
FERIS
RTRIS
TXRIS
RXRIS
OEMIS
BEMIS
PEMIS
FEMIS
RTMIS
TXMIS
RXMIS
OEIC
BEIC
PEIC
FEIC
RTIC
TXIC
RXIC
UARTRIS, type RO, offset 0x03C, reset 0x0000.000F
UARTMIS, type RO, offset 0x040, reset 0x0000.0000
UARTICR, type W1C, offset 0x044, reset 0x0000.0000
UARTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000
PID4
UARTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000
PID5
UARTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000
PID6
UARTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000
PID7
UARTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0011
PID0
UARTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000
PID1
UARTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018
PID2
UARTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001
PID3
UARTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D
CID0
UARTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0
CID1
October 01, 2007
437
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
UARTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005
CID2
UARTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1
CID3
Synchronous Serial Interface (SSI)
SSI0 base: 0x4000.8000
SSICR0, type R/W, offset 0x000, reset 0x0000.0000
SCR
SPH
SPO
FRF
DSS
SSICR1, type R/W, offset 0x004, reset 0x0000.0000
SOD
MS
SSE
LBM
RFF
RNE
TNF
TFE
TXIM
RXIM
RTIM
RORIM
TXRIS
RXRIS
RTRIS
RORRIS
TXMIS
RXMIS
RTMIS
RORMIS
RTIC
RORIC
SSIDR, type R/W, offset 0x008, reset 0x0000.0000
DATA
SSISR, type RO, offset 0x00C, reset 0x0000.0003
BSY
SSICPSR, type R/W, offset 0x010, reset 0x0000.0000
CPSDVSR
SSIIM, type R/W, offset 0x014, reset 0x0000.0000
SSIRIS, type RO, offset 0x018, reset 0x0000.0008
SSIMIS, type RO, offset 0x01C, reset 0x0000.0000
SSIICR, type W1C, offset 0x020, reset 0x0000.0000
SSIPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000
PID4
SSIPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000
PID5
SSIPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000
PID6
SSIPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000
PID7
SSIPeriphID0, type RO, offset 0xFE0, reset 0x0000.0022
PID0
SSIPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000
PID1
438
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
SSIPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018
PID2
SSIPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001
PID3
SSIPCellID0, type RO, offset 0xFF0, reset 0x0000.000D
CID0
SSIPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0
CID1
SSIPCellID2, type RO, offset 0xFF8, reset 0x0000.0005
CID2
SSIPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1
CID3
Inter-Integrated Circuit (I2C) Interface
I2C Master
I2C Master 0 base: 0x4002.0000
I2CMSA, type R/W, offset 0x000, reset 0x0000.0000
SA
R/S
I2CMCS, type RO, offset 0x004, reset 0x0000.0000
BUSBSY
IDLE
ARBLST
DATACK
ADRACK
ERROR
BUSY
ACK
STOP
START
RUN
I2CMCS, type WO, offset 0x004, reset 0x0000.0000
I2CMDR, type R/W, offset 0x008, reset 0x0000.0000
DATA
I2CMTPR, type R/W, offset 0x00C, reset 0x0000.0001
TPR
I2CMIMR, type R/W, offset 0x010, reset 0x0000.0000
IM
I2CMRIS, type RO, offset 0x014, reset 0x0000.0000
RIS
I2CMMIS, type RO, offset 0x018, reset 0x0000.0000
MIS
I2CMICR, type WO, offset 0x01C, reset 0x0000.0000
IC
I2CMCR, type R/W, offset 0x020, reset 0x0000.0000
SFE
Inter-Integrated Circuit
(I2C)
MFE
LPBK
Interface
October 01, 2007
439
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
FBR
TREQ
RREQ
I2C
Slave
I2C Slave 0 base: 0x4002.0800
I2CSOAR, type R/W, offset 0x000, reset 0x0000.0000
OAR
I2CSCSR, type RO, offset 0x004, reset 0x0000.0000
I2CSCSR, type WO, offset 0x004, reset 0x0000.0000
DA
I2CSDR, type R/W, offset 0x008, reset 0x0000.0000
DATA
I2CSIMR, type R/W, offset 0x00C, reset 0x0000.0000
IM
I2CSRIS, type RO, offset 0x010, reset 0x0000.0000
RIS
I2CSMIS, type RO, offset 0x014, reset 0x0000.0000
MIS
I2CSICR, type WO, offset 0x018, reset 0x0000.0000
IC
Analog Comparators
Base 0x4003.C000
ACMIS, type R/W1C, offset 0x00, reset 0x0000.0000
IN2
IN1
IN0
IN2
IN1
IN0
IN2
IN1
IN0
ACRIS, type RO, offset 0x04, reset 0x0000.0000
ACINTEN, type R/W, offset 0x08, reset 0x0000.0000
ACREFCTL, type R/W, offset 0x10, reset 0x0000.0000
EN
RNG
VREF
ACSTAT0, type RO, offset 0x20, reset 0x0000.0000
OVAL
ACSTAT1, type RO, offset 0x40, reset 0x0000.0000
OVAL
ACSTAT2, type RO, offset 0x60, reset 0x0000.0000
OVAL
ACCTL0, type R/W, offset 0x24, reset 0x0000.0000
ASRCP
ISLVAL
440
ISEN
CINV
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
ACCTL1, type R/W, offset 0x44, reset 0x0000.0000
ASRCP
ISLVAL
ISEN
CINV
ASRCP
ISLVAL
ISEN
CINV
ACCTL2, type R/W, offset 0x64, reset 0x0000.0000
Pulse Width Modulator (PWM)
Base 0x4002.8000
PWMCTL, type R/W, offset 0x000, reset 0x0000.0000
GlobalSync2 GlobalSync1 GlobalSync0
PWMSYNC, type R/W, offset 0x004, reset 0x0000.0000
Sync2
Sync1
Sync0
PWMENABLE, type R/W, offset 0x008, reset 0x0000.0000
PWM5En PWM4En PWM3En PWM2En PWM1En PWM0En
PWMINVERT, type R/W, offset 0x00C, reset 0x0000.0000
PWM5Inv PWM4Inv PWM3Inv PWM2Inv PWM1Inv PWM0Inv
PWMFAULT, type R/W, offset 0x010, reset 0x0000.0000
Fault5
Fault4
Fault3
Fault2
Fault1
Fault0
PWMINTEN, type R/W, offset 0x014, reset 0x0000.0000
IntFault
IntPWM2 IntPWM1 IntPWM0
PWMRIS, type RO, offset 0x018, reset 0x0000.0000
IntFault
IntPWM2 IntPWM1 IntPWM0
PWMISC, type R/W1C, offset 0x01C, reset 0x0000.0000
IntFault
IntPWM2 IntPWM1 IntPWM0
PWMSTATUS, type RO, offset 0x020, reset 0x0000.0000
Fault
PWM0CTL, type R/W, offset 0x040, reset 0x0000.0000
CmpBUpd CmpAUpd LoadUpd
Debug
Mode
Enable
CmpBUpd CmpAUpd LoadUpd
Debug
Mode
Enable
CmpBUpd CmpAUpd LoadUpd
Debug
Mode
Enable
PWM1CTL, type R/W, offset 0x080, reset 0x0000.0000
PWM2CTL, type R/W, offset 0x0C0, reset 0x0000.0000
PWM0INTEN, type R/W, offset 0x044, reset 0x0000.0000
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
PWM1INTEN, type R/W, offset 0x084, reset 0x0000.0000
PWM2INTEN, type R/W, offset 0x0C4, reset 0x0000.0000
October 01, 2007
441
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PWM0RIS, type RO, offset 0x048, reset 0x0000.0000
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
IntCmpBD IntCmpBU IntCmpAD IntCmpAU IntCntLoad
IntCntZero
PWM1RIS, type RO, offset 0x088, reset 0x0000.0000
PWM2RIS, type RO, offset 0x0C8, reset 0x0000.0000
PWM0ISC, type R/W1C, offset 0x04C, reset 0x0000.0000
PWM1ISC, type R/W1C, offset 0x08C, reset 0x0000.0000
PWM2ISC, type R/W1C, offset 0x0CC, reset 0x0000.0000
PWM0LOAD, type R/W, offset 0x050, reset 0x0000.0000
Load
PWM1LOAD, type R/W, offset 0x090, reset 0x0000.0000
Load
PWM2LOAD, type R/W, offset 0x0D0, reset 0x0000.0000
Load
PWM0COUNT, type RO, offset 0x054, reset 0x0000.0000
Count
PWM1COUNT, type RO, offset 0x094, reset 0x0000.0000
Count
PWM2COUNT, type RO, offset 0x0D4, reset 0x0000.0000
Count
PWM0CMPA, type R/W, offset 0x058, reset 0x0000.0000
CompA
PWM1CMPA, type R/W, offset 0x098, reset 0x0000.0000
CompA
PWM2CMPA, type R/W, offset 0x0D8, reset 0x0000.0000
CompA
PWM0CMPB, type R/W, offset 0x05C, reset 0x0000.0000
CompB
PWM1CMPB, type R/W, offset 0x09C, reset 0x0000.0000
CompB
442
October 01, 2007
Preliminary
LM3S601 Microcontroller
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PWM2CMPB, type R/W, offset 0x0DC, reset 0x0000.0000
CompB
PWM0GENA, type R/W, offset 0x060, reset 0x0000.0000
ActCmpBD
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
ActCmpBU
ActCmpAD
ActCmpAU
ActLoad
ActZero
PWM1GENA, type R/W, offset 0x0A0, reset 0x0000.0000
ActCmpBD
PWM2GENA, type R/W, offset 0x0E0, reset 0x0000.0000
ActCmpBD
PWM0GENB, type R/W, offset 0x064, reset 0x0000.0000
ActCmpBD
PWM1GENB, type R/W, offset 0x0A4, reset 0x0000.0000
ActCmpBD
PWM2GENB, type R/W, offset 0x0E4, reset 0x0000.0000
ActCmpBD
PWM0DBCTL, type R/W, offset 0x068, reset 0x0000.0000
Enable
PWM1DBCTL, type R/W, offset 0x0A8, reset 0x0000.0000
Enable
PWM2DBCTL, type R/W, offset 0x0E8, reset 0x0000.0000
Enable
PWM0DBRISE, type R/W, offset 0x06C, reset 0x0000.0000
RiseDelay
PWM1DBRISE, type R/W, offset 0x0AC, reset 0x0000.0000
RiseDelay
PWM2DBRISE, type R/W, offset 0x0EC, reset 0x0000.0000
RiseDelay
PWM0DBFALL, type R/W, offset 0x070, reset 0x0000.0000
FallDelay
PWM1DBFALL, type R/W, offset 0x0B0, reset 0x0000.0000
FallDelay
PWM2DBFALL, type R/W, offset 0x0F0, reset 0x0000.0000
FallDelay
Quadrature Encoder Interface (QEI)
QEI0 base: 0x4002.C000
QEICTL, type R/W, offset 0x000, reset 0x0000.0000
STALLEN
INVI
INVB
INVA
VelDiv
October 01, 2007
VelEn
ResMode CapMode SigMode
Swap
Enable
443
Preliminary
Register Quick Reference
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Direction
Error
QEISTAT, type RO, offset 0x004, reset 0x0000.0000
QEIPOS, type R/W, offset 0x008, reset 0x0000.0000
Position
Position
QEIMAXPOS, type R/W, offset 0x00C, reset 0x0000.0000
MaxPos
MaxPos
QEILOAD, type R/W, offset 0x010, reset 0x0000.0000
Load
Load
QEITIME, type RO, offset 0x014, reset 0x0000.0000
Time
Time
QEICOUNT, type RO, offset 0x018, reset 0x0000.0000
Count
Count
QEISPEED, type RO, offset 0x01C, reset 0x0000.0000
Speed
Speed
QEIINTEN, type R/W, offset 0x020, reset 0x0000.0000
IntError
IntDir
IntTimer
IntIndex
IntError
IntDir
IntTimer
IntIndex
IntError
IntDir
IntTimer
IntIndex
QEIRIS, type RO, offset 0x024, reset 0x0000.0000
QEIISC, type R/W1C, offset 0x028, reset 0x0000.0000
444
October 01, 2007
Preliminary
LM3S601 Microcontroller
C
Ordering and Contact Information
C.1
Ordering Information
LM3Snnnn–gppss–rrm
Part Number
Shipping Medium
T = Tape-and-reel
Omitted = Default shipping (tray or tube)
Temperature
I = -40 C to 85 C
Revision
Omitted = Default to current shipping
revision
A0 = First all-layer mask
A1 = Metal layers update to A0
A2 = Metal layers update to A1
B0 = Second all-layer mask revision
Package
RN = 28-pin SOIC
QN = 48-pin LQFP
QC = 100-pin LQFP
Speed
20 = 20 MHz
25 = 25 MHz
50 = 50 MHz
Table C-1. Part Ordering Information
Orderable Part Number Description
C.2
®
LM3S601-IQN50
Stellaris LM3S601 Microcontroller
LM3S601-IQN50(T)
Stellaris LM3S601 Microcontroller
®
Kits
®
The Luminary Micro Stellaris Family provides the hardware and software tools that engineers need
to begin development quickly.
■ Reference Design Kits accelerate product development by providing ready-to-run hardware, and
comprehensive documentation including hardware design files:
http://www.luminarymicro.com/products/reference_design_kits/
®
■ Evaluation Kits provide a low-cost and effective means of evaluating Stellaris microcontrollers
before purchase:
http://www.luminarymicro.com/products/evaluation_kits/
■ Development Kits provide you with all the tools you need to develop and prototype embedded
applications right out of the box:
http://www.luminarymicro.com/products/boards.html
See the Luminary Micro website for the latest tools available or ask your Luminary Micro distributor.
C.3
Company Information
Luminary Micro, Inc. designs, markets, and sells ARM Cortex-M3-based microcontrollers (MCUs).
Austin, Texas-based Luminary Micro is the lead partner for the Cortex-M3 processor, delivering the
world's first silicon implementation of the Cortex-M3 processor. Luminary Micro's introduction of the
October 01, 2007
445
Preliminary
Ordering and Contact Information
Stellaris® family of products provides 32-bit performance for the same price as current 8- and 16-bit
microcontroller designs. With entry-level pricing at $1.00 for an ARM technology-based MCU,
Luminary Micro's Stellaris product line allows for standardization that eliminates future architectural
upgrades or software tool changes.
Luminary Micro, Inc.
108 Wild Basin, Suite 350
Austin, TX 78746
Main: +1-512-279-8800
Fax: +1-512-279-8879
http://www.luminarymicro.com
[email protected]
C.4
Support Information
For support on Luminary Micro products, contact:
[email protected] +1-512-279-8800, ext. 3
446
October 01, 2007
Preliminary
Similar pages