Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Datasheet The Intel® LXT9785 and Intel® LXT9785E are 8-port Fast Ethernet PHY Transceivers supporting IEEE 802.3 physical layer applications at 10 Mbps and 100 Mbps. These devices provide Serial/Source Synchronous Serial Media Independent Interfaces (SMII/SS-SMII) and Reduced Media Independent Interface (RMII) for switching and other independent port applications. The LXT9785 and LXT9785E are identical except for the IP telephony features included in the LXT9785E transceiver. The LXT9785E is an enhanced version of the LXT9785 that detects Data Terminal Equipment (DTE) requiring power from the switch over a CAT5 cable. The system uses the information collected by the LXT97985E to apply power if the DTE at the far end requires power over the cable, such as an IP telephone. Each network port can provide a twisted-pair (TP) or Low-Voltage Positive Emitter Coupled Logic (LVPECL) interface. The twisted-pair interface supports 10 Mbps and 100 Mbps (10BASE-T and 100BASE-TX) Ethernet over twisted-pair. The LVPECL interface supports 100 Mbps (100BASE-FX) Ethernet over fiber-optic media. The LXT9785/LXT9785E provides three discrete LED driver outputs for each port. The devices support both half-duplex and full-duplex operation at 10 Mbps and 100 Mbps and require only a single 2.5 V power supply. Applications Enterprise switches IP telephony switches Storage Area Networks Multi-port Network Interface Cards (NICs) Product Features Eight IEEE 802.3-compliant 10BASE-T or 100BASE-TX ports with integrated filters. 100BASE-FX fiber-optic capability on all ports. 2.5 V operation. Low power consumption; 250 mW per port typical. Multiple RMII or SMII/SS-SMII ports for independent PHY port operation. Auto MDI/MDIX crossover capability. Proprietary Optimal Signal Processing™ architecture improves SNR by 3 dB over ideal analog filters. Optimized for dual-high stacked RJ-45 applications. MDIO sectionalization into 2x4 or 1x8 configurations. Supports both auto-negotiation systems and legacy systems without auto-negotiation capability. Robust baseline wander correction. Configurable through the MDIO port or external control pins. JTAG boundary scan. 208-pin PQFP: LXT9785HC, LXT9785EHC, LXT9785HE. 241-ball BGA: LXT9785BC, LXT9785EBC. 196-ball BGA: LXT9785MBC DTE detection for remote powering applications (LXT9785E only). Extended temperature operation of -40oC to +85oC (LXT9785HE). Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, life sustaining applications. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The Intel® LXT9785 and Intel® LXT9785E may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com. AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, CT Media, Dialogic, DM3, EtherExpress, ETOX, FlashFile, i386, i486, i960, iCOMP, InstantIP, Intel, Intel Centrino, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Create & Share, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure, Intel Play, Intel Play logo, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel Xeon, Intel XScale, IPLink, Itanium, MCS, MMX, MMX logo, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, PDCharm, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, RemoteExpress, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside., The Journey Inside, TokenExpress, VoiceBrick, VTune, and Xircom are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2003, Intel Corporation 2 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents Contents 1.0 Introduction.................................................................................................................................. 18 1.1 1.2 What You Will Find in This Document ................................................................................ 18 Related Documents ............................................................................................................ 18 2.0 Block Diagram ............................................................................................................................. 19 3.0 Pin/Ball Assignments and Signal Descriptions ........................................................................ 20 3.1 3.2 3.3 3.4 3.5 3.6 4.0 PQFP Pin Assignments ...................................................................................................... 20 3.1.1 PQFP Pin Assignments – RMII Configuration ....................................................... 21 3.1.2 PQFP Pin Assignments – SMII Configuration........................................................ 26 3.1.3 PQFP Pin Assignments – SS-SMII Configuration.................................................. 31 PQFP Signal Descriptions .................................................................................................. 36 3.2.1 Signal Name Conventions ..................................................................................... 36 3.2.2 PQFP Signal Descriptions – RMII, SMII, and SS-SMII Configurations.................. 36 BGA23 Ball Assignments.................................................................................................... 51 3.3.1 RMII BGA23 Ball List ............................................................................................. 52 3.3.2 SMII BGA23 Ball List ............................................................................................. 62 3.3.3 SS-SMII BGA23 Ball List ....................................................................................... 72 BGA23 Signal Descriptions ................................................................................................ 82 3.4.1 Signal Name Conventions ..................................................................................... 82 3.4.2 Signal Descriptions – RMII, SMII, and SS-SMII Configurations............................. 82 BGA15 Ball Assignments.................................................................................................... 98 3.5.1 BGA15 Ball List...................................................................................................... 99 BGA15 Signal Descriptions ..............................................................................................109 3.6.1 Signal Name Conventions ...................................................................................109 3.6.2 Signal Descriptions – SMII and SS-SMII Configurations .....................................109 Functional Description..............................................................................................................116 4.1 4.2 4.3 Introduction .......................................................................................................................116 4.1.1 OSP™ Architecture .............................................................................................116 4.1.2 Comprehensive Functionality ..............................................................................117 4.1.2.1 Sectionalization ....................................................................................117 Interface Descriptions .......................................................................................................117 4.2.1 10/100 Network Interface.....................................................................................117 4.2.1.1 Twisted-Pair Interface ..........................................................................118 4.2.1.2 MDI Crossover (MDIX).........................................................................119 4.2.1.3 Fiber Interface......................................................................................119 Media Independent Interface (MII) Interfaces...................................................................119 4.3.1 Global MII Mode Select .......................................................................................119 4.3.2 Internal Loopback ................................................................................................120 4.3.3 RMII Data Interface..............................................................................................120 4.3.4 Serial Media Independent Interface (SMII) and Source SynchronousSerial Media Independent Interface (SS-SMII) ....................................................121 4.3.4.1 SMII Interface.......................................................................................121 4.3.4.2 Source Synchronous-Serial Media Independent Interface ..................121 4.3.5 Configuration Management Interface ..................................................................121 4.3.6 MII Isolate ............................................................................................................121 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 3 Contents 4.4 4.5 4.6 4.7 4.8 4.9 4 4.3.7 MDIO Management Interface .............................................................................. 121 4.3.8 MII Sectionalization.............................................................................................. 123 4.3.9 MII Interrupts........................................................................................................ 123 4.3.10 Global Hardware Control Interface ...................................................................... 124 4.3.11 FIFO Initial Fill Values.......................................................................................... 124 Operating Requirements................................................................................................... 125 4.4.1 Power Requirements ........................................................................................... 125 4.4.2 Clock/SYNC Requirements ................................................................................. 125 4.4.2.1 Reference Clock .................................................................................. 125 4.4.2.2 TxCLK Signal (SS-SMII only)............................................................... 125 4.4.2.3 TxSYNC Signal (SMII/SS-SMII)........................................................... 125 4.4.2.4 RxSYNC Signal (SS-SMII only) ........................................................... 125 4.4.2.5 RxCLK Signal (SS-SMII only) .............................................................. 126 Initialization ....................................................................................................................... 126 4.5.1 MDIO Control Mode............................................................................................. 126 4.5.2 Hardware Control Mode....................................................................................... 126 4.5.3 Power-Down Mode .............................................................................................. 127 4.5.3.1 Global (Hardware) Power Down .......................................................... 128 4.5.3.2 Port (Software) Power Down ............................................................... 128 4.5.4 Reset ................................................................................................................... 128 4.5.5 Hardware Configuration Settings......................................................................... 129 Link Establishment............................................................................................................ 129 4.6.1 Auto-Negotiation .................................................................................................. 129 4.6.1.1 Base Page Exchange .......................................................................... 129 4.6.1.2 Manual Next Page Exchange .............................................................. 130 4.6.1.3 Controlling Auto-Negotiation ................................................................ 130 4.6.1.4 Link Criteria.......................................................................................... 130 4.6.1.5 Parallel Detection................................................................................. 131 4.6.1.6 Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced Speed Mode .......................................................... 131 Serial MII Operation.......................................................................................................... 132 4.7.1 SMII Reference Clock.......................................................................................... 135 4.7.2 TxSYNC Pulse (SMII/SS-SMII)............................................................................ 135 4.7.3 Transmit Data Stream.......................................................................................... 135 4.7.3.1 Transmit Enable................................................................................... 135 4.7.3.2 Transmit Error ...................................................................................... 135 4.7.4 Receive Data Stream........................................................................................... 136 4.7.4.1 Carrier Sense....................................................................................... 136 4.7.4.2 Receive Data Valid .............................................................................. 136 4.7.4.3 Receive Error ....................................................................................... 136 4.7.4.4 Receive Status Encoding..................................................................... 136 4.7.5 Collision ............................................................................................................... 136 4.7.6 Source Synchronous-Serial Media Independent Interface .................................. 137 RMII Operation ................................................................................................................. 141 4.8.1 RMII Reference Clock.......................................................................................... 141 4.8.2 Transmit Enable................................................................................................... 142 4.8.3 Carrier Sense & Data Valid.................................................................................. 142 4.8.4 Receive Error....................................................................................................... 142 4.8.5 Out-of-Band Signaling ......................................................................................... 142 4.8.6 4B/5B Coding Operations .................................................................................... 142 100 Mbps Operation ......................................................................................................... 145 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents 4.9.1 4.9.2 4.10 4.11 4.12 4.13 4.14 5.0 100BASE-X Network Operations .........................................................................145 100BASE-X Protocol Sublayer Operations..........................................................145 4.9.2.1 PCS Sublayer ......................................................................................145 4.9.3 PMA Sublayer ......................................................................................................147 4.9.3.1 Link ......................................................................................................148 4.9.3.2 Link Failure Override............................................................................148 4.9.3.3 Carrier Sense/Data Valid (RMII) ..........................................................148 4.9.3.4 Carrier Sense (SMII) ............................................................................148 4.9.3.5 Receive Data Valid (SMII)....................................................................148 4.9.3.6 Twisted-Pair PMD Sublayer .................................................................149 4.9.3.7 Fiber PMD Sublayer.............................................................................149 10 Mbps Operation ...........................................................................................................150 4.10.1 Preamble Handling ..............................................................................................150 4.10.2 Dribble Bits ..........................................................................................................151 4.10.3 Link Test ..............................................................................................................151 4.10.3.1 Link Failure ..........................................................................................151 4.10.4 Jabber ..................................................................................................................151 DTE Discovery Process ....................................................................................................152 4.11.1 Definitions ............................................................................................................152 4.11.2 Interaction between Processor, MAC, and PHY ..................................................153 4.11.3 Management Interface and Control .....................................................................153 4.11.4 DTE Discovery Process Flow ..............................................................................154 4.11.5 DTE Discovery Behavior......................................................................................155 Monitoring Operations ......................................................................................................157 4.12.1 Monitoring Auto-Negotiation ................................................................................157 4.12.2 Per-Port LED Driver Functions ............................................................................157 4.12.3 Out-of-Band Signaling .........................................................................................158 4.12.4 Boundary Scan Interface .....................................................................................159 4.12.5 State Machine ......................................................................................................159 4.12.6 Instruction Register ..............................................................................................159 4.12.7 Boundary Scan Register ......................................................................................159 Cable Diagnostics Overview .............................................................................................160 4.13.1 Features...............................................................................................................160 4.13.2 Operation .............................................................................................................160 4.13.2.1 Short and Long Cable Testing Requirements ......................................160 4.13.2.2 Precision ..............................................................................................160 4.13.3 Implementation Considerations ...........................................................................161 4.13.4 Basic Implementation ..........................................................................................161 Link Hold-Off Overview .....................................................................................................162 4.14.1 Features...............................................................................................................162 4.14.2 Operation .............................................................................................................163 Application Information ............................................................................................................164 5.1 5.2 Design Recommendations................................................................................................164 General Design Guidelines ...............................................................................................164 5.2.1 Power Supply Filtering .........................................................................................164 5.2.2 Power and Ground Plane Layout Considerations................................................165 5.2.2.1 Chassis Ground ...................................................................................165 5.2.3 MII Terminations ..................................................................................................165 5.2.4 Twisted-Pair Interface ..........................................................................................165 5.2.4.1 Magnetic Requirements .......................................................................166 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 5 Contents 5.3 5.2.5 The Fiber Interface .............................................................................................. 166 5.2.6 LED Circuit........................................................................................................... 167 Typical Application Circuits............................................................................................... 168 6.0 Test Specifications.................................................................................................................... 173 7.0 Register Definitions................................................................................................................... 199 8.0 Package Specifications............................................................................................................. 221 9.0 Ordering Information................................................................................................................. 227 Figures 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 6 Intel® LXT9785/LXT9785E Block Diagram ................................................................................. 19 Intel® LXT9785 and Intel® LXT9785E RMII 208-Pin PQFP Assignments .................................. 21 Intel® LXT9785/LXT9785E SMII 208-Pin PQFP Assignments ................................................... 26 Intel® LXT9785/LXT9785E SS-SMII 208-Pin PQFP Assignments ............................................. 31 Intel® LXT9785/LXT9785E 241-Ball BGA23 Assignments (Top View)...................................... 51 Intel® LXT9785MBC 196-Ball BGA15 Assignments (Top View) ................................................ 98 Intel® LXT9785/LXT9785E Interfaces ...................................................................................... 118 Intel® LXT9785/LXT9785E Internal Loopback.......................................................................... 120 Intel® LXT9785/LXT9785E Management Interface Read Frame Structure.............................. 122 Intel® LXT9785/LXT9785E Management Interface Write Frame Structure .............................. 122 Intel® LXT9785/LXT9785E Port Address Scheme ................................................................... 123 Intel® LXT9785/LXT9785E Interrupt Logic ............................................................................... 124 Intel® LXT9785/LXT9785E Initialization Sequence .................................................................. 127 Intel® LXT9785/LXT9785E Auto-Negotiation Operation........................................................... 131 Intel® LXT9785/LXT9785E Typical SMII Interface Diagram ..................................................... 133 Intel® LXT9785/LXT9785E Typical SMII Quad Sectionalization Diagram ................................ 134 Intel® LXT9785/LXT9785E 100 Mbps Serial MII Data Flow ..................................................... 135 Intel® LXT9785/LXT9785E Serial MII Transmit Synchronization ............................................. 136 Intel® LXT9785/LXT9785E Serial MII Receive Synchronization .............................................. 137 Intel® LXT9785/LXT9785E Typical SS-SMII Interface Diagram ............................................... 139 Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram .......................... 140 Intel® LXT9785/LXT9785E SS-SMII Transmit Timing .............................................................. 141 Intel® LXT9785/LXT9785E SS-SMII Receive Timing ............................................................... 141 Intel® LXT9785/LXT9785E RMII Data Flow ............................................................................. 142 Intel® LXT9785/LXT9785E Typical RMII Interface Diagram..................................................... 143 Intel® LXT9785/LXT9785E Typical RMII Quad Sectionalization Diagram................................ 144 Intel® LXT9785/LXT9785E 100BASE-X Frame Format ........................................................... 145 Intel® LXT9785/LXT9785E Protocol Sublayers ........................................................................ 146 Typical IP Telephone System Connection................................................................................ 152 Intel® LXT9785E Negotiation Flow Chart ................................................................................. 156 Intel® LXT9785/LXT9785E LED Pulse Stretching .................................................................... 158 Intel® LXT9785/LXT9785E RMII Programmable Out-of-Band Signaling.................................. 158 LED Circuit ............................................................................................................................... 167 Intel® LXT9785/LXT9785E Power and Ground Supply Connections ....................................... 168 Intel® LXT9785/LXT9785E Typical Twisted-Pair Interface ....................................................... 169 Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface Circuitry ...... 170 Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry ......... 171 ON Semiconductor Triple PECL-to-LVPECL Translator .......................................................... 172 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing.............................................178 Intel® LXT9785/LXT9785E SMII - 100BASE-TX Transmit Timing............................................179 Intel® LXT9785/LXT9785E SMII - 100BASE-FX Receive Timing.............................................180 Intel® LXT9785/LXT9785E SMII - 100BASE-FX Transmit Timing............................................181 Intel® LXT9785/LXT9785E SMII - 10BASE-T Receive Timing .................................................182 Intel® LXT9785/LXT9785E SMII - 10BASE-T Transmit Timing ................................................183 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing.......................................184 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Transmit Timing......................................185 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Receive Timing.......................................186 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Transmit Timing......................................187 Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Receive Timing ...........................................188 Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Transmit Timing ..........................................189 Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing ............................................190 Intel® LXT9785/LXT9785E RMII - 100BASE-TX Transmit Timing ...........................................191 Intel® LXT9785/LXT9785E RMII - 100BASE-FX Receive Timing ............................................192 Intel® LXT9785/LXT9785E RMII - 100BASE-FX Transmit Timing ...........................................193 Intel® LXT9785/LXT9785E RMII - 10BASE-T Receive Timing.................................................194 Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing................................................195 Intel® LXT9785/LXT9785E Auto-Negotiation and Fast Link Pulse Timing ...............................196 Intel® LXT9785/LXT9785E Fast Link Pulse Timing ..................................................................196 Intel® LXT9785/LXT9785E MDIO Write Timing (MDIO Sourced by MAC)...............................197 Intel® LXT9785/LXT9785E MDIO Read Timing (MDIO Sourced by PHY) ...............................197 Intel® LXT9785/LXT9785E Power-Up Timing...........................................................................198 Intel® LXT9785/LXT9785E Reset Recovery Timing .................................................................198 PHY Identifier Bit Mapping........................................................................................................203 Intel® LXT9785/LXT9785E 208-Pin PQFP Plastic Package Specification ...............................221 Intel® LXT9785/LXT9785E 241-Ball BGA23 Package Specs - Top/Side View (LXT9785BC) .222 Intel® LXT9785/LXT9785E 241-Ball BGA23 Package Specs - Bottom View (LXT9785BC) ....223 Intel® LXT9785MBC 196-Ball BGA15 Package Specs - Top/Side View (LXT9785MBC) ........225 Ordering Information - Sample .................................................................................................228 Tables 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Intel® LXT9785/LXT9785E Signal Type Descriptions.................................................................20 Intel® LXT9785/LXT9785E RMII PQFP Pin List ......................................................................... 22 Intel® LXT9785/LXT9785E SMII PQFP Pin List ......................................................................... 27 Intel® LXT9785/LXT9785 SS-SMII PQFP Pin List...................................................................... 32 Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP ................................................... 36 Intel® LXT9785/LXT9785E SMII / SS-SMII Common Signal Descriptions – PQFP ................... 39 Intel® LXT9785/LXT9785E SMII Specific Signal Descriptions – PQFP...................................... 39 Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – PQFP................................ 40 Intel® LXT9785/LXT9785E MDIO Control Interface Signals – PQFP......................................... 41 Intel® LXT9785/LXT9785E Signal Detect – PQFP ..................................................................... 42 Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – PQFP............................... 42 Intel® LXT9785/LXT9785E JTAG Test Signal Descriptions – PQFP.......................................... 43 Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP .................................... 43 Intel® LXT9785/LXT9785E LED Signal Descriptions – PQFP....................................................47 Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – PQFP..................................... 48 Intel® LXT9785/LXT9785E Unused/Reserved Pins – PQFP...................................................... 50 Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations............................................... 50 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 7 Contents 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 8 Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Signal Name ...... 52 Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball Location ...... 57 Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Signal Name....... 62 Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball Location....... 67 Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name. 72 Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location. 77 Intel® LXT9785/LXT9785E RMII Signal Descriptions – BGA23 ................................................. 82 Intel® LXT9785/LXT9785E SMII / SS-SMII Common Signal Descriptions – BGA23 ................. 85 Intel® LXT9785/LXT9785E SMII Specific Signal Descriptions – BGA23 .................................... 85 Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – BGA23 .............................. 86 Intel® LXT9785/LXT9785E MDIO Control Interface Signals – BGA23 ....................................... 87 Intel® LXT9785/LXT9785E Signal Detect – BGA23 ................................................................... 88 Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – BGA23............................. 88 Intel® LXT9785/LXT9785E JTAG Test Signal Descriptions – BGA23........................................ 89 Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23 .................................. 90 Intel® LXT9785/LXT9785E LED Signal Descriptions – BGA23 .................................................. 94 Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – BGA23................................... 95 Intel® LXT9785/LXT9785E Unused/Reserved Pins – BGA23 .................................................... 97 Intel® LXT9785/LXT9785E Receive FIFO Depth Configurations ............................................... 97 Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name ......................... 99 Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/SS-SMII) ......................................................................................................................... 103 Intel® LXT9785 BGA15 Signal Descriptions ............................................................................ 109 Intel® LXT9785/LXT9785E MDIX Selection ............................................................................. 119 Intel® LXT9785/LXT9785E MII Mode Select ............................................................................ 120 Intel® LXT9785/9785E Global Hardware Configuration Settings ............................................. 129 Intel® LXT9785/LXT9785E SMII Signal Summary ................................................................... 132 Intel® LXT9785/LXT9785E RX Status Encoding Bit Definitions ............................................... 137 Intel® LXT9785/LXT9785E SS-SMII ......................................................................................... 138 4B/5B Coding ........................................................................................................................... 147 Next Page Message #5 Code Word Definitions ....................................................................... 155 BSR Mode of Operation ........................................................................................................... 159 Supported JTAG Instructions ................................................................................................... 159 Intel® LXT9785/LXT9785E Magnetics Requirements .............................................................. 166 Intel® LXT9785/LXT9785E Absolute Maximum Ratings .......................................................... 173 Intel® LXT9785/LXT9785E Operating Conditions .................................................................... 173 Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%) . 174 Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%) . 175 Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins ....................... 175 Intel® LXT9785/LXT9785E Required Clock Characteristics ..................................................... 175 Intel® LXT9785/LXT9785E 100BASE-TX Transceiver Characteristics .................................... 176 Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics .................................... 176 Intel® LXT9785/LXT9785E 10BASE-T Transceiver Characteristics......................................... 177 Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing Parameters ......................... 178 Intel® LXT9785/LXT9785E SMII - 100BASE-TX Transmit Timing Parameters ........................ 179 Intel® LXT9785/LXT9785E SMII - 100BASE-FX Receive Timing Parameters ......................... 180 Intel® LXT9785/LXT9785E SMII - 100BASE-FX Transmit Timing Parameters ........................ 181 Intel® LXT9785/LXT9785E SMII - 10BASE-T Receive Timing Parameters ............................. 182 Intel® LXT9785/LXT9785E SMII-10BASE-T Transmit Timing Parameters .............................. 183 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing Parameters ................... 184 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Transmit Timing......................................185 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Receive Timing Parameters ...................186 Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Transmit Timing Parameters ..................187 Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Receive Timing Parameters .......................188 Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Transmit Timing Parameters ......................189 Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing Parameters.........................190 Intel® LXT9785/LXT9785E RMII - 100BASE-TX Transmit Timing Parameters........................191 Intel® LXT9785/LXT9785E RMII - 100BASE-FX Receive Timing Parameters.........................192 Intel® LXT9785/LXT9785E RMII - 100BASE-FX Transmit Timing Parameters........................193 Intel® LXT9785/LXT9785E RMII - 10BASE-T Receive Timing Parameters .............................194 Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing Parameters ............................195 Intel® LXT9785/LXT9785E Auto-Negotiation and Fast Link Pulse Timing Parameters............196 Intel® LXT9785/LXT9785E MDIO Timing Parameters..............................................................197 Intel® LXT9785/LXT9785E Power-Up Timing Parameters .......................................................198 Intel® LXT9785/LXT9785E Reset Recovery Timing Parameters .............................................198 Intel® LXT9785/LXT9785E Register Set...................................................................................199 Control Register (Address 0) ....................................................................................................200 Status Register (Address 1)......................................................................................................201 PHY Identification Register 1 (Address 2) ................................................................................203 PHY Identification Register 2 (Address 3) ................................................................................203 Auto-Negotiation Advertisement Register (Address 4) .............................................................204 Auto-Negotiation Link Partner Base Page Ability Register (Address 5) ...................................205 Auto-Negotiation Expansion Register (Address 6) ...................................................................206 Auto-Negotiation Next Page Transmit Register (Address 7) ....................................................206 Auto-Negotiation Link Partner Next Page Receive Register (Address 8).................................207 Port Configuration Register (Address 16, Hex 10) ...................................................................207 Quick Status Register (Address 17, Hex 11) ............................................................................209 Interrupt Enable Register (Address 18, Hex 12).......................................................................211 Interrupt Status Register (Address 19, Hex 13)........................................................................212 LED Configuration Register (Address 20, Hex 14) ...................................................................213 Receive Error Count Register (Address 21, Hex 15)................................................................214 RMII Out-of-Band Signaling Register (Address 25, Hex 19) ....................................................215 Trim Enable Register (Address 27, Hex 1B).............................................................................216 Cable Diagnostics Register (Address 29, Hex 1D)...................................................................217 Intel® LXT9785/LXT9785E Register Bit Map............................................................................219 Intel® LXT9785MBC 196-Ball BGA15 Package Dimensions ...................................................226 Product Information ..................................................................................................................227 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 9 Contents Revision History Revision Number: 007 Revision Date: August 28, 2003 Page 10 Description 21 Modified Figure 2 “Intel® LXT9785 and Intel® LXT9785E RMII 208-Pin PQFP Assignments”. 22 Modified Table 2 “Intel® LXT9785/LXT9785E RMII PQFP Pin List”. 26 Modified Figure 3 “Intel® LXT9785/LXT9785E SMII 208-Pin PQFP Assignments”. 27 Modified Table 3 “Intel® LXT9785/LXT9785E SMII PQFP Pin List”. 31 Modified Figure 4 “Intel® LXT9785/LXT9785E SS-SMII 208-Pin PQFP Assignments”. 32 Modified Table 4 “Intel® LXT9785/LXT9785 SS-SMII PQFP Pin List”. 36 Modified Table 5 “Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”. 40 Modified Table 8 “Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – PQFP”. 43 Modified Table 13 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”. 50 Modified Table 16 “Intel® LXT9785/LXT9785E Unused/Reserved Pins – PQFP”. 51 Replaced old Figures 5, 6, and 7 with Figure 5 “Intel® LXT9785/LXT9785E 241-Ball BGA23 Assignments (Top View)”. 52 Modified Table 18 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Signal Name”. 57 Modified Table 19 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball Location”. 62 Modified Table 20 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Signal Name”. 67 Modified Table 21 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball Location” 72 Modified Table 22 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name”. 77 Modified Table 23 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location”. 82 Modified Table 23 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location”. 86 Modified Table 27 “Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – BGA23”. 90 Modified Table 32 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23”. 97 Modified Table 35 “Intel® LXT9785/LXT9785E Unused/Reserved Pins – BGA23”. 98 Added Section 3.5, “BGA15 Ball Assignments” (including Figure 6 “Intel® LXT9785MBC 196-Ball BGA15 Assignments (Top View)”, Table 37 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name” through Table 39 “Intel® LXT9785 BGA15 Signal Descriptions”. 116 Added second paragraph under Section 4.1, “Introduction”. 117 Added note under Section 4.1.2.1, “Sectionalization”. 119 Added note under Table 40 “Intel® LXT9785/LXT9785E MDIX Selection”. 119 Added note under Section 4.3, “Media Independent Interface (MII) Interfaces”. 120 Added note to Table 41 “Intel® LXT9785/LXT9785E MII Mode Select”. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents Revision Number: 007 Revision Date: August 28, 2003 Page Description 120 Modified/added text under Section 4.3.2, “Internal Loopback”. 121 Modified text under Section 4.3.6, “MII Isolate”. 121 Section 4.3.7, “MDIO Management Interface”: Added note under second paragraph. Added last paragraph. 123 Added note under Section 4.3.8, “MII Sectionalization”. 124 Added new Section 4.3.11, “FIFO Initial Fill Values” 125 Modified paragraph three under Section 4.4.1, “Power Requirements”. 127 Added notes under second and last paragraphs under Section 4.5.3, “Power-Down Mode”. 128 Modified last bullet under Section 4.5.3.1, “Global (Hardware) Power Down”. 128 Added last paragraph to Section 4.5.4, “Reset”. 129 Modified Table 42 “Intel® LXT9785/9785E Global Hardware Configuration Settings”. 130 Change heading and modified last line under Section 4.6.1.2, “Manual Next Page Exchange”. 130 Section 4.6.1.4, “Link Criteria”: Changed scrambler to descrambler in first line. Modified second paragraph. Added two new paragraphs. 131 Added second paragraph under Section 4.6.1.5, “Parallel Detection”. 131 Modified paragraphs under Section 4.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced Speed Mode”. 136 Changed “1110” to “0101” under Section 4.7.4.3, “Receive Error”. 141 Added note under first paragraph of Section 4.8, “RMII Operation” 148 Changed “asynchronously” to “synchronously” in second paragraph under Section 4.9.3.3, “Carrier Sense/Data Valid (RMII)”. 148 Modified last sentence in first paragraph under Section 4.9.3.4, “Carrier Sense (SMII)”. 149 Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”. 149 Added note under Section 4.9.3.7, “Fiber PMD Sublayer”. 149 Added second paragraph under Section 4.9.3.7.1, “Far End Fault Indications”. 150 Modified/added text under Section 4.10.1, “Preamble Handling”. 151 Modified text under Section 4.10.4, “Jabber”. 152 Modified first paragraph under Section 4.11, “DTE Discovery Process”. 153 Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”. 154 Modified second paragraph under Section 4.11.4, “DTE Discovery Process Flow”. 155 Added Section 4.11.5, “DTE Discovery Behavior” 157 Added BGA15 information into first paragraph under Section 4.12.2, “Per-Port LED Driver Functions”. 158 Added last sentence to first paragraph and note under first paragraph under Section 4.12.3, “Out-ofBand Signaling”. 160 Added Section 4.13, “Cable Diagnostics Overview”. 161 Modified/added text under Section 4.13.3, “Implementation Considerations”. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 11 Contents Revision Number: 007 Revision Date: August 28, 2003 Page 12 Description 162 Added Section 4.14, “Link Hold-Off Overview”. 173 Modified Table 52 “Intel® LXT9785/LXT9785E Operating Conditions” 176 Modified Table 58 “Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics” 178195 Added note to Table 60 “Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing Parameters” through Table 77 “Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing Parameters”. 178 Added table note to Table 60 “Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing Parameters”. 184 Added table note to Table 66 “Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing Parameters”. 190 Added table note to Table 72 “Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing Parameters” 198 Added software power-down and note to Table 80 “Intel® LXT9785/LXT9785E Power-Up Timing Parameters”. 199 Modified paragraphs and added last paragraph under Section 7.0, “Register Definitions”. 199 Modified Table 82 “Intel® LXT9785/LXT9785E Register Set”. 200 Modified Table 83 “Control Register (Address 0)”. 201 Modified Table 84 “Status Register (Address 1)”. 203 Modified Table 85 “PHY Identification Register 1 (Address 2)”. 203 Modified Table 86 “PHY Identification Register 2 (Address 3)” 204 Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)” 205 Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”. 206 Modified Table 89 “Auto-Negotiation Expansion Register (Address 6)”. 206 Modified Table 90 “Auto-Negotiation Next Page Transmit Register (Address 7)”. 206 Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”. 207 Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”. (Register bits 16.6, 16.4:3) 209 Modified Table 93 “Quick Status Register (Address 17, Hex 11)”. (Register bit 17.8) 211 Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)” 212 Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)” 213 Modified Table 96 “LED Configuration Register (Address 20, Hex 14)” 214 Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”. 215 Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”. 216 Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”. (Register bit 27.6) 217 Added Table 100 “Cable Diagnostics Register (Address 29, Hex 1D)”. 219 Modified Table 101 “Intel® LXT9785/LXT9785E Register Bit Map”. 226 Added Figure 102 “Intel® LXT9785MBC 196-Ball BGA15 Package Dimensions” 227 Modified table and figure under Section 9.0, “Ordering Information”. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents Revision Number: 006 (INTERNAL RELEASE) Revision Date: June 10, 2003 Page Description 1 Changed "pseudo-ECL (PECL)" to "Low Voltage Positive Emitter Coupled Logic (LVPECL)" in the second paragraph, front page. 36 Modified Table 5 “Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP”. Added last sentence to RXER0 through RXER7 signal description. 42 Modified Table 10 “Intel® LXT9785/LXT9785E Signal Detect – PQFP”. 42 Modified Table 11 “Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – PQFP”, 43 Modified Table 13 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP”. Added note to PREASEL signal description. 116 Modified Section 4.1, “Introduction”. Changed "Pseudo-ECL (PECL)" to "Low Voltage PECL (LVPECL)" in the first paragraph, second sentence. 119 Replace text under Section 4.2.1.3, “Fiber Interface”. 120 Modified Section 4.3.2, “Internal Loopback”. 130 Modified last sentence under Section 4.6.1.4, “Link Criteria”. 131 Modified text under Section 4.6.1.5, “Parallel Detection”. Added second paragraph. 136 Modified text under Section 4.7.4.3, “Receive Error”. 145 Changed "PECL" to "LVPECL in third paragraph, first sentence under Section 4.9.1, “100BASE-X Network Operations”. 146 Modified Figure 28 “Intel® LXT9785/LXT9785E Protocol Sublayers”. 148 Modified Section 4.9.3.3, “Carrier Sense/Data Valid (RMII)”. Changed “asynchronously to “synchronously.” 148 Modified text under Section 4.9.3.4, “Carrier Sense (SMII)”. Revised last sentence in first paragraph. 149 Modified paragraph under Section 4.9.3.6.3, “Polarity Correction”. 149 Replaced text under Section 4.9.3.7, “Fiber PMD Sublayer”. 150 Modified Section 4.10.1, “Preamble Handling”. Added text to last paragraph. 151 Modified first sentence under Section 4.10.4, “Jabber”. 152 Modified first paragraph of Section 4.11, “DTE Discovery Process”. 153 Modified Item 1 of Section 4.11.2, “Interaction between Processor, MAC, and PHY”. 158 Modified Section 4.12.3, “Out-of-Band Signaling”. Added sentence to end of first paragraph. 166 Replaced text under Section 5.2.5, “The Fiber Interface”. 170 Replaced Figure 36 “Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface Circuitry”. 171 Replaced Figure 37 “Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry”. 173 Modified Table 52 “Intel® LXT9785/LXT9785E Operating Conditions”. 174 Modified Table 53 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%)”. 175 Modified Table 54 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)”. 175 Added Table 55 “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins”. 176 Modified Table 58 “Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics”. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 13 Contents Revision Number: 006 (INTERNAL RELEASE) Revision Date: June 10, 2003 Page Description 200 Modified Table 83 “Control Register (Address 0)”. 201 Modified Table 84 “Status Register (Address 1)”. 204 Modified Table 87 “Auto-Negotiation Advertisement Register (Address 4)”. 205 Modified Table 88 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)”. 207 Modified Table 91 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)”. 207 Modified Table 92 “Port Configuration Register (Address 16, Hex 10)”. 209 Modified Table 93 “Quick Status Register (Address 17, Hex 11)”. 211 Modified Table 94 “Interrupt Enable Register (Address 18, Hex 12)” 212 Modified Table 95 “Interrupt Status Register (Address 19, Hex 13)”. Changed all references of RO/ SC to R/LH. 214 Modified Table 97 “Receive Error Count Register (Address 21, Hex 15)”. 215 Modified Table 98 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)”. Added note to Register bit 25.0. 216 Modified Table 99 “Trim Enable Register (Address 27, Hex 1B)”. 227 Modified Table 103 “Product Information”. Revision Number: 005 Revision Date: January 2002 Page 14 Description 1 Added bullet to Product Features 49 Modified Table 12 “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions” (Added FIFOSEL1 and FIFOSEL0) 70 Added Section 2.6.1.6, “Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced Speed Mode” 109 Modified Figure 38 “Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface Circuitry” 110 Added Figure 39 “Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry” 111 Added Figure 40 “ON Semiconductor Triple PECL-to-LVPECL Translator” 112 Modified Table 28 “Absolute Maximum Ratings” 112 Modified Table 29 “Operating Conditions” 114 Modified Table 31 “Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)”(Output low voltage SD pins - Max) 129 Modified Figure 53 “RMII - 100BASE-TX Receive Timing” and Table 49 “RMII - 100BASE-TX Receive Timing Parameters” 131 Modified Figure 55 “RMII - 100BASE-FX Receive Timing” and Table 51 “RMII - 100BASE-FX Receive Timing Parameters” 133 Modified Figure 57 “RMII - 10BASE-T Receive Timing” and Table 53 “RMII - 10BASE-T Receive Timing Parameters” Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Contents Revision Number: 005 Revision Date: January 2002 Page Description 146 Modified Table 69 “Port Configuration Register (Address 16, Hex 10)” (Bits 16.5 and 16.6) 148 Modified Table 71 “Interrupt Enable Register (Address 18, Hex 12)” 168 Added product ordering table and diagram. Revision Number: 003 Revision Date: April 2001 Page Description 1 Modified and added new language to front page. 61 Reset: Modified language in first paragraph. 85 Added new section on DTE discovery. 93 Supported JTAG Instructions table: replaced long hit streams with hex. 97 LED Circuit: Modified paragraph language. 97 LED Circuit diagram: Modified diagram. 99 Replaced Typical Fiber Interface diagram. 102 Required Clock Characteristics table: Replaced SMII Input frequency and RMII Input frequency symbol with “f”. 122 Auto-Negotiation and Fast Link Pulse Timing Parameters: FLP burst width under Typ = 2. 126 Control Register table: Modified table and table notes. 128 PHY Identification Register 2 (Address 3): Modified table. 128 PHY Identifier Bit Mapping: Modified diagram. 131 Auto-Negotiation Expansion: Modified table and table notes. 133 Port Configuration Register table: Modified table and table notes. 140 Trim Enable Register: Modified table (DTE Discovery). 141 Modified Register Bit Map table. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 15 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 1.0 Introduction This document contains information on the Intel® LXT9785/LXT9785E Advanced 8-port 10/100 Mbps Fast Ethernet transceivers. 1.1 What You Will Find in This Document This document contains the following sections: • Section 3.0, “Pin/Ball Assignments and Signal Descriptions” on page 20 This section contains pin/ball assignments and signal descriptions for the following: — Section 3.1, “PQFP Pin Assignments” on page 20 — Section 3.2, “PQFP Signal Descriptions” on page 36 — Section 3.3, “BGA23 Ball Assignments” on page 51 — Section 3.4, “BGA23 Signal Descriptions” on page 82 — Section 3.5, “BGA15 Ball Assignments” on page 98 — Section 3.6, “BGA15 Signal Descriptions” on page 109 • • • • • • 1.2 Section 4.0, “Functional Description” on page 116 Section 5.0, “Application Information” on page 164 Section 6.0, “Test Specifications” on page 173 Section 7.0, “Register Definitions” on page 199 Section 8.0, “Package Specifications” on page 221 Section 9.0, “Ordering Information” on page 227 Related Documents Document Number Document Intel® LXT9785/LXT9785E Design and Layout Guide 249509 ® 18 Intel LXT9785/LXT9785E Specification Update 249357 Intel® LXT9785/LXT9785E 100BASE-FX Fiber Optic Transceivers: Connecting a PECL/ LVPECL Interface 250781 IP Telephony and DTE Discovery Using Intel Ethernet® PHYs 249611 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 2.0 Block Diagram Figure 1 provides the LXT9785/LXT9785E block diagram. Figure 1. Intel® LXT9785/LXT9785E Block Diagram 8-Port Global Functions RMII/SMII Contr ADD_<4:0> MDIO Management / Mode Select Logic & LED Drivers 2 MDC 2 MDINT RESET PWRDN Clock Generator REFCLK SYNC (SMII only) 2 Register Set Manchester Encoder TX PCS TxDatan Parallel/Serial Converter Scrambler & Encoder 10 100 Pulse Shaper ECL Driver Auto Negotiation Mgmt Counters TP Driver + TP / Fiber Out + Fiber select n Media Select Clock Generator RX PCS RxDatan Port LED Drivers 3 + Adaptive EQ with BL Wander Cancellation 100TX - Serial to Parallel Converter Carrier Sense Data Valid Error Detect TPFONn - Register Set LEDn_<2:0> TPFOPn 10 100 Manchester Decoder + 100FX Slicer - Decoder & Descrambler TP / Fiber In TPFIPn TPFINn + 10BT Per-Port Functions PORT 0 - PORT 1 PORT 2 PORT 3 PORT 4 PORT 5 PORT 6 PORT 7 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 19 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.0 Pin/Ball Assignments and Signal Descriptions 3.1 PQFP Pin Assignments The following sections show PQFP pin assignments and signal descriptions: • Section 3.1.1, “PQFP Pin Assignments – RMII Configuration” on page 21 • Section 3.1.2, “PQFP Pin Assignments – SMII Configuration” on page 26 • Section 3.1.3, “PQFP Pin Assignments – SS-SMII Configuration” on page 31 Table 1 lists the acronyms and descriptions for signal types. Table 1. Intel® LXT9785/LXT9785E Signal Type Descriptions Acronym 20 Description AI Analog Input AO Analog Output I Input O Output OD Open Drain Output ST Schmitt Triggered Input TS Three-State-able Output SL Slew-rate Limited Output IP Weak Internal Pull-Up ID Weak Internal Pull-Down Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.1.1 PQFP Pin Assignments – RMII Configuration Figure 2 and Table 2, “Intel® LXT9785/LXT9785E RMII PQFP Pin List” on page 22 provide LXT9785/LXT9785 RMII PQFP pin assignments. 208 ........ VCCIO 207 ........ GNDIO 206 ........ RxData6_0 205 ........ RxData6_1 204 ........ TxData7_1 203 ........ TxData7_0 202 ........ TxEN7 201 ........ RxER7 200 ........ CRS_DV7 199 ........ GNDIO 198 ........ RxData7_0 197 ........ RxData7_1 196 ........ VCCD 195 ........ GNDD 194 ........ LED7_3 193 ........ LED7_2 192 ........ LED7_1 191 ........ LED6_3 190 ........ LED6_2 189 ........ LED6_1 188 ........ GNDIO 187 ........ LED5_3 186 ........ LED5_2 185 ........ LED5_1 184 ........ VCCD 183 ........ GNDD 182 ........ LED4_3 181 ........ LED4_2 180 ........ LED4_1 179 ........ SGND 178 ........ ModeSel1 177 ........ ModeSel0 176 ........ Section 175 ........ RESET 174 ........ PWRDWN 173 ........ G_FX/TP 172 ........ N/C 171....... TRST 170 ........ TCK 169 ........ TMS 168 ........ TDO 167 ........ TDI 166 ........ SD7 165 ........ SD6 164 ........ VCCPECL 163 ........ GNDPECL 162 ........ SD5 161 ........ SD4 160 ........ N/C 159 ........ N/C 158 ........ VCCR7 157 ........ TPFIP7 Figure 2. Intel® LXT9785 and Intel® LXT9785E RMII 208-Pin PQFP Assignments Part # LOT # FPO # LXT9785/9785E XX XXXXXX XXXXXXXX Rev # 156 .........TPFIN7 155 .........GNDR7 154 .........TPFOP7 153 .........TPFON7 152 .........VCCT6/7 151 .........TPFON6 150 .........TPFOP6 149 .........GNDR6 148 .........GNDT6/7 147 .........TPFIN6 146 .........TPFIP6 145 .........VCCR6 144 .........VCCR5 143 .........TPFIP5 142 .........TPFIN5 141 .........GNDR5 140 .........TPFOP5 139 .........TPFON5 138 .........VCCT4/5 137 .........TPFON4 136 .........TPFOP4 135 .........GNDR4 134 .........GNDT4/5 133 .........TPFIN4 132 .........TPFIP4 131 .........VCCR4 130 .........VCCR3 129 .........TPFIP3 128 .........TPFIN3 127 .........GNDT2/3 126 .........GNDR3 125 .........TPFOP3 124 .........TPFON3 123 .........VCCT2/3 122 .........TPFON2 121 .........TPFOP2 120 .........GNDR2 119 .........TPFIN2 118 .........TPFIP2 117 .........VCCR2 116 .........VCCR1 115 .........TPFIP1 114 .........TPFIN1 113 .........GNDT0/1 112 .........GNDR1 111 .........TPFOP1 110 .........TPFON1 109 .........VCCT0/1 108 .........TPFON0 107 .........TPFOP0 106 .........GNDR0 105 .........TPFIN0 TxData1_1 ...... 53 RxData0_1 ...... 54 RxData0_0 ...... 55 VCCIO ...... 56 GNDIO ...... 57 CRS_DV0 ...... 58 RxER0/MDIX ...... 59 TxEN0 ...... 60 TxData0_0 ...... 61 TxData0_1 ...... 62 MDC0 ...... 63 MDIO0 ...... 64 VCCD ...... 65 GNDD ...... 66 MDINT0 ...... 67 LED3_3 ...... 68 LED3_2 ...... 69 LED3_1 ...... 70 LED2_3 ...... 71 LED2_2 ...... 72 LED2_1 ...... 73 GNDIO ...... 74 LED1_3 ...... 75 LED1_2 ...... 76 LED1_1 ...... 77 VCCD ...... 78 GNDD ...... 79 LED0_3 ...... 80 LED0_2 ...... 81 LED0_1 ...... 82 AMDIX_EN ...... 83 MDDIS ...... 84 CFG_3 ...... 85 CFG_2 ...... 86 CFG_1 ...... 87 ADD_4 ...... 88 ADD_3 ...... 89 ADD_2 ...... 90 ADD_1 ...... 91 ADD_0 ...... 92 TxSlew_1 ...... 93 TxSlew_0 ...... 94 SD_2P5V ...... 95 SD0 ...... 96 SD1 ...... 97 VCCPECL ...... 98 GNDPECL ...... 99 SD2 ...... 100 SD3 ...... 101 N/C ...... 102 VCCR0 ...... 103 TPFIP0 ...... 104 CRS_DV6.......1 RxER6/LINKHOLD..2 TxEN6.......3 TxData6_0.......4 TxData6_1.......5 REFCLK1.......6 RxData5_1.......7 RxData5_0.......8 GNDIO.......9 CRS_DV5.......10 RxER5/FIFOSEL1.....11 TxEN5.......12 TxData5_0.......13 TxData5_1.......14 RxData4_1.......15 RxData4_0.......16 CRS_DV4.......17 VCCIO.......18 GNDIO.......19 RxER4/FIFOSEL0.....20 TxEN4.......21 TxData4_0.......22 TxData4_1.......23 MDC1.......24 MDIO1.......25 MDINT1.......26 RxData3_1.......27 RxData3_0.......28 VCCIO.......29 GNDIO.......30 CRS_DV3.......31 RxER3.......32 TxEN3.......33 TxData3_0.......34 TxData3_1.......35 RxData2_1.......36 RxData2_0.......37 GNDIO.......38 CRS_DV2.......39 RxER2/PREASEL .....40 TxEN2.......41 TxData2_0.......42 TxData2_1.......43 REFCLK0.......44 RxData1_1.......45 RxData1_0.......46 VCCIO.......47 GNDIO.......48 CRS_DV1.......49 RxER1/PAUSE.......50 TxEN1.......51 TxData1_0.......52 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 21 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 2. Intel® LXT9785/LXT9785E RMII PQFP Pin List Symbol Type Reference for Full Description 1 CRS_DV6 O, TS, SL Table 5 (page 36) 2 RxER6/ LINKHOLD O, TS, SL, ID, I, ST Table 5 (page 36) 3 TxEN6 I, ID Table 5 (page 36) 4 TxData6_0 I, ID Table 5 (page 36) 5 TxData6_1 I, ID Table 5 (page 36) 6 REFCLK1 I Table 5 (page 36) 7 RxData5_1 O, TS, ID Table 5 (page 36) 8 RxData5_0 O, TS Table 5 (page 36) 9 GNDIO – Table 15 (page 48) 10 CRS_DV5 O, TS, SL Table 5 (page 36) 11 RxER5 / FIFOSEL1 O, TS, SL, ID, I, ST Table 5 (page 36) 12 TxEN5 I, ID Table 5 (page 36) 13 TxData5_0 I, ID Table 5 (page 36) 14 TxData5_1 I, ID Table 5 (page 36) 15 RxData4_1 O, TS,ID Table 5 (page 36) 16 RxData4_0 O, TS Table 5 (page 36) 17 CRS_DV4 O, TS, SL Table 5 (page 36) Pin 22 Pin Symbol Type Reference for Full Description 30 GNDIO – Table 15 (page 48) 31 CRS_DV3 O, TS, SL Table 5 (page 36) 32 RxER3 O, TS, SL, ID Table 5 (page 36) 33 TxEN3 I, ID Table 5 (page 36) 34 TxData3_0 I, ID Table 5 (page 36) 35 TxData3_1 I, ID Table 5 (page 36) 36 RxData2_1 O, TS, ID Table 5 (page 36) 37 RxData2_0 O, TS Table 5 (page 36) 38 GNDIO – Table 15 (page 48) 39 CRS_DV2 O, TS, SL Table 5 (page 36) 40 RxER2 (PREASEL) O, TS, SL, ID, I, ST Table 5 (page 36) 41 TxEN2 I, ID Table 5 (page 36) 42 TxData2_0 I, ID Table 5 (page 36) 43 TxData2_1 I, ID Table 5 (page 36) 44 REFCLK0 I Table 5 (page 36) 45 RxData1_1 O, TS, ID Table 5 (page 36) 46 RxData1_0 O, TS Table 5 (page 36) 47 VCCIO – Table 15 (page 48) GNDIO – Table 15 (page 48) 18 VCCIO – Table 15 (page 48) 48 19 GNDIO – Table 15 (page 48) 49 CRS_DV1 O, TS, SL Table 5 (page 36) 20 RxER4 / FIFOSEL0 O, TS, SL, ID, I, ST Table 5 (page 36) 50 RxER1/ PAUSE O, TS, SL, ID, I, ST Table 5 (page 36) 21 TxEN4 I, ID Table 5 (page 36) 51 TxEN1 I, ID Table 5 (page 36) 22 TxData4_0 I, ID Table 5 (page 36) 52 TxData1_0 I, ID Table 5 (page 36) 23 TxData4_1 I, ID Table 5 (page 36) 53 TxData1_1 I, ID Table 5 (page 36) 24 MDC1 I, ST, ID Table 8 (page 40) RxData0_1 Table 8 (page 40) O, TS, ID Table 5 (page 36) MDIO1 I/O, TS, SL, IP 54 25 55 RxData0_0 O, TS Table 5 (page 36) 26 MDINT1 OD, TS, SL, IP Table 8 (page 40) 56 VCCIO – Table 15 (page 48) 27 RxData3_1 O, TS, ID Table 5 (page 36) 57 GNDIO – Table 15 (page 48) 28 RxData3_0 O, TS Table 5 (page 36) 58 CRS_DV0 O, TS, SL Table 5 (page 36) 29 VCCIO – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Pin Symbol Type Reference for Full Description 87 CFG_1 I, ST, ID Table 13 (page 43) 88 ADD_4 I, ST, ID Table 13 (page 43) Table 5 (page 36) 89 ADD_3 I, ST, ID Table 13 (page 43) Table 5 (page 36) 90 ADD_2 I, ST, ID Table 13 (page 43) ADD_1 I, ST, ID Table 13 (page 43) Pin Symbol Type Reference for Full Description 59 RxER0/ MDIX O, TS, SL, ID, I, ST Table 5 (page 36) 60 TxEN0 I, ID 61 TxData0_0 I, ID 62 TxData0_1 I, ID Table 5 (page 36) 91 63 MDC0 I, ST, ID Table 8 (page 40) 92 ADD_0 I, ST, ID Table 13 (page 43) 64 MDIO0 I/O, TS, SL, IP Table 8 (page 40) 93 TxSLEW_1 I, ST, ID Table 13 (page 43) 94 TxSLEW_0 I, ST, ID Table 13 (page 43) 65 VCCD – Table 15 (page 48) 95 SD_2P5V I, ST, ID Table 10 (page 42) 66 GNDD – Table 15 (page 48) 96 SD0 I Table 10 (page 42) 67 MDINT0 OD, TS, SL, IP Table 8 (page 40) 97 SD1 I Table 10 (page 42) VCCPECL – Table 15 (page 48) LED3_3 OD, TS, SO, IP 98 68 Table 14 (page 47) 99 GNDPECL – Table 15 (page 48) 69 LED3_2 OD, TS, SL, IP Table 14 (page 47) 100 SD2 I Table 10 (page 42) 101 SD3 I Table 10 (page 42) 70 LED3_1 OD, TS, SL, IP Table 14 (page 47) 102 N/C – Table 17 (page 50) 103 VCCR0 – Table 15 (page 48) 104 TPFIP0 AO/AI Table 11 (page 42) 105 TPFIN0 AO/AI Table 11 (page 42) 106 GNDR0 – Table 15 (page 48) 107 TPFOP0 AO/AI Table 11 (page 42) 108 TPFON0 AO/AI Table 11 (page 42) 109 VCCT0/1 – Table 15 (page 48) 110 TPFON1 AO/AI Table 11 (page 42) 111 TPFOP1 AO/AI Table 11 (page 42) 112 GNDR1 – Table 15 (page 48) 113 GNDT0/1 – Table 15 (page 48) LED2_3 OD, TS, SL, IP Table 14 (page 47) 72 LED2_2 OD, TS, SL, IP Table 14 (page 47) 73 LED2_1 OD, TS, SL, IP Table 14 (page 47) 74 GNDIO – Table 15 (page 48) 75 LED1_3 OD, TS, SL, IP Table 14 (page 47) 76 LED1_2 OD, TS, SL, IP Table 14 (page 47) 77 LED1_1 OD, TS, SL, IP Table 14 (page 47) 78 VCCD – Table 15 (page 48) 114 TPFIN1 AO/AI Table 11 (page 42) 79 GNDD – Table 15 (page 48) 115 TPFIP1 AO/AI Table 11 (page 42) 80 LED0_3 OD, TS, SL, IP Table 14 (page 47) 116 VCCR1 – Table 15 (page 48) VCCR2 – Table 15 (page 48) LED0_2 OD, TS, SL, IP 117 81 Table 14 (page 47) 118 TPFIP2 AO/AI Table 11 (page 42) 82 LED0_1 OD, TS, SL, IP Table 14 (page 47) 119 TPFIN2 AO/AI Table 11 (page 42) 120 GNDR2 – Table 15 (page 48) 83 AMDIX_EN I, ST, IP Table 13 (page 43) 121 TPFOP2 AO/AI Table 11 (page 42) 84 MDDIS I, ST, ID Table 9 (page 41) 85 CFG_3 I, ST, ID Table 13 (page 43) 86 CFG_2 I, ST, ID Table 13 (page 43) 71 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 122 TPFON2 AO/AI Table 11 (page 42) 123 VCCT2/3 – Table 15 (page 48) 124 TPFON3 AO/AI Table 11 (page 42) 23 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Pin Symbol Type Reference for Full Description Pin Symbol Type Reference for Full Description 125 TPFOP3 AO/AI Table 11 (page 42) 163 GNDPECL – Table 15 (page 48) 126 GNDR3 – Table 15 (page 48) 164 VCCPECL – Table 15 (page 48) 127 GNDT2/3 – Table 15 (page 48) 165 SD6 I Table 10 (page 42) 128 TPFIN3 AO/AI Table 11 (page 42) 166 SD7 I Table 10 (page 42) 129 TPFIP3 AO/AI Table 11 (page 42) 167 TDI I, ST, IP Table 12 (page 43) 130 VCCR3 – Table 15 (page 48) 168 TDO O, TS Table 12 (page 43) 131 VCCR4 – Table 15 (page 48) 169 TMS I, ST, IP Table 12 (page 43) 132 TPFIP4 AO/AI Table 11 (page 42) 170 TCK I, ST, ID Table 12 (page 43) 133 TPFIN4 AO/AI Table 11 (page 42) 171 TRST I, ST, IP Table 12 (page 43) 134 GNDT4/5 – Table 15 (page 48) 172 N/C – Table 17 (page 50) 135 GNDR4 – Table 15 (page 48) 173 G_FX/TP I, ST, ID Table 13 (page 43) 136 TPFOP4 AO/AI Table 11 (page 42) 174 PWRDWN I, ST, ID Table 13 (page 43) 137 TPFON4 AO/AI Table 11 (page 42) 175 RESET I, ST, IP Table 13 (page 43) 138 VCCT4/5 – Table 15 (page 48) 176 SECTION I, ST, ID Table 13 (page 43) 139 TPFON5 AO/AI Table 11 (page 42) 177 ModeSel0 I, ST, ID Table 13 (page 43) 140 TPFOP5 AO/AI Table 11 (page 42) 178 ModeSel1 I, ST, ID Table 13 (page 43) 141 GNDR5 – Table 15 (page 48) 179 SGND – Table 15 (page 48) 142 TPFIN5 AO/AI Table 11 (page 42) 180 LED4_1 Table 14 (page 47) 143 TPFIP5 AO/AI Table 11 (page 42) OD, TS, SL, IP 144 VCCR5 – Table 15 (page 48) 181 LED4_2 OD, TS, SL, IP Table 14 (page 47) 145 VCCR6 – Table 15 (page 48) 146 TPFIP6 AO/AI Table 11 (page 42) 182 LED4_3 OD, TS, SL, IP Table 14 (page 47) 147 TPFIN6 AO/AI Table 11 (page 42) 183 GNDD – Table 15 (page 48) 148 GNDT6/7 – Table 15 (page 48) 184 VCCD – Table 15 (page 48) 149 GNDR6 – Table 15 (page 48) 185 LED5_1 OD, TS, SL, IP Table 14 (page 47) 150 TPFOP6 AO/AI Table 11 (page 42) 151 TPFON6 AO/AI Table 11 (page 42) 186 LED5_2 OD, TS, SL, IP Table 14 (page 47) 187 LED5_3 OD, TS, SL, IP Table 14 (page 47) 188 GNDIO – Table 15 (page 48) 189 LED6_1 OD, TS, SL, IP Table 14 (page 47) 190 LED6_2 OD, TS, SL, IP Table 14 (page 47) 191 LED6_3 OD, TS, SL, IP Table 14 (page 47) 192 LED7_1 OD, TS, SL, IP Table 14 (page 47) 193 LED7_2 OD, TS, SL, IP Table 14 (page 47) 152 VCCT6/7 – Table 15 (page 48) 153 TPFON7 AO/AI Table 11 (page 42) 154 TPFOP7 AO/AI Table 11 (page 42) 155 24 GNDR7 – Table 15 (page 48) 156 TPFIN7 AO/AI Table 11 (page 42) 157 TPFIP7 AO/AI Table 11 (page 42) 158 VCCR7 – Table 15 (page 48) 159 N/C – Table 17 (page 50) 160 N/C – Table 17 (page 50) 161 SD4 I Table 10 (page 42) 162 SD5 I Table 10 (page 42) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Pin Symbol Type Reference for Full Description 194 LED7_3 OD, TS, SL, IP Table 5 (page 36) 195 GNDD – Table 15 (page 48) 196 VCCD – Table 15 (page 48) 197 RxData7_1 O, TS, ID Table 5 (page 36) 198 RxData7_0 O, TS Table 5 (page 36) 199 GNDIO – Table 15 (page 48) 200 CRS_DV7 O, TS, SL Table 5 (page 36) 201 RxER7 O, TS, SL, ID Table 5 (page 36) 202 TxEN7 I, ID Table 5 (page 36) 203 TxData7_0 I, ID Table 5 (page 36) 204 TxData7_1 I, ID Table 5 (page 36) 205 RxData6_1 O, TS, ID Table 5 (page 36) 206 RxData6_0 O, TS Table 5 (page 36) 207 GNDIO – Table 15 (page 48) 208 VCCIO – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 25 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.1.2 PQFP Pin Assignments – SMII Configuration Figure 3 and Table 3, “Intel® LXT9785/LXT9785E SMII PQFP Pin List” on page 27 provide the LXT9785/LXT9785E SMII PQFP pin assignments. 208 ........ VCCIO 207 ........ GNDIO 206 ........ RxData6 205 ........ N/C 204 ........ SYNC1 203 ........ TxData7 202 ........ N/C 201 ........ N/C 200 ........ N/C 199 ........ GNDIO 198 ........ RxData7 197 ........ N/C 196 ........ VCCD 195 ........ GNDD 194 ........ LED7_3 193 ........ LED7_2 192 ........ LED7_1 191 ........ LED6_3 190 ........ LED6_2 189 ........ LED6_1 188 ........ GNDIO 187 ........ LED5_3 186 ........ LED5_2 185 ........ LED5_1 184 ........ VCCD 183 ........ GNDD 182 ........ LED4_3 181 ........ LED4_2 180 ........ LED4_1 179 ........ SGND 178 ........ ModeSel_1 177 ........ ModeSel_0 176 ........ Section 175 ........ RESET 174 ........ PWRDWN 173 ........ G_FX/TP 172 ........ N/C 171....... TRST 170 ........ TCK 169 ........ TMS 168 ........ TDO 167 ........ TDI 166 ........ SD7 165 ........ SD6 164 ........ VCCPECL 163 ........ GNDPECL 162 ........ SD5 161 ........ SD4 160 ........ N/C 159 ........ N/C 158 ........ VCCR7 157 ........ TPFIP7 Figure 3. Intel® LXT9785/LXT9785E SMII 208-Pin PQFP Assignments N/C.......1 .......2 N/C.......3 TxData6.......4 N/C.......5 REFCLK1.......6 N/C.......7 RxData5.......8 GNDIO.......9 N/C.......10 FIFOSEL1.......11 N/C.......12 TxData5.......13 N/C.......14 N/C.......15 RxData4.......16 N/C.......17 VCCIO.......18 GNDIO.......19 FIFOSEL0.......20 N/C.......21 TxData4.......22 N/C.......23 MDC1.......24 MDIO1.......25 MDINT1.......26 N/C.......27 RxData3.......28 VCCIO.......29 GNDIO.......30 N/C.......31 N/C.......32 N/C.......33 TxData3.......34 SYNC0.......35 N/C.......36 RxData2.......37 GNDIO.......38 N/C.......39 PREASEL.......40 N/C.......41 TxData2.......42 N/C.......43 REFCLK0.......44 N/C.......45 RxData1.......46 VCCIO.......47 GNDIO.......48 N/C.......49 PAUSE.......50 N/C.......51 TxData1.......52 LINKHOLD LXT9785/9785E XX XXXXXX XXXXXXXX Rev # N/C ...... 53 N/C ...... 54 RxData0 ...... 55 VCCIO ...... 56 GNDIO ...... 57 N/C ...... 58 MDIX ...... 59 N/C ...... 60 TxData0 ...... 61 N/C ...... 62 MDC0 ...... 63 MDIO0 ...... 64 VCCD ...... 65 GNDD ...... 66 MDINT0 ...... 67 LED3_3 ...... 68 LED3_2 ...... 69 LED3_1 ...... 70 LED2_3 ...... 71 LED2_2 ...... 72 LED2_1 ...... 73 GNDIO ...... 74 LED1_3 ...... 75 LED1_2 ...... 76 LED1_1 ...... 77 VCCD ...... 78 GNDD ...... 79 LED0_3 ...... 80 LED0_2 ...... 81 LED0_1 ...... 82 AMDIX_EN ...... 83 MDDIS ...... 84 CFG_3 ...... 85 CFG_2 ...... 86 CFG_1 ...... 87 ADD_4 ...... 88 ADD_3 ...... 89 ADD_2 ...... 90 ADD_1 ...... 91 ADD_0 ...... 92 TxSlew_1 ...... 93 TxSlew_0 ...... 94 SD_2P5V ...... 95 SD0 ...... 96 SD1 ...... 97 VCCPECL ...... 98 GNDPECL ...... 99 SD2 ...... 100 SD3 ...... 101 N/C ...... 102 VCCR0 ...... 103 TPFIP0 ...... 104 Part # LOT # FPO # 156 ........ TPFIN7 155 ........ GNDR7 154 ........ TPFOP7 153 ........ TPFON7 152 ........ VCCT6/7 151 ........ TPFON6 150 ........ TPFOP6 149 ........ GNDR6 148 ........ GNDT6/7 147 ........ TPFIN6 146 ........ TPFIP6 145 ........ VCCR6 144 ........ VCCR5 143 ........ TPFIP5 142 ........ TPFIN5 141 ........ GNDR5 140 ........ TPFOP5 139 ........ TPFON5 138 ........ VCCT4/5 137 ........ TPFON4 136 ........ TPFOP4 135 ........ GNDR4 134 ........ GNDT4/5 133 ........ TPFIN4 132 ........ TPFIP4 131 ........ VCCR4 130 ........ VCCR3 129 ........ TPFIP3 128 ........ TPFIN3 127 ........ GNDT2/3 126 ........ GNDR3 125 ........ TPFOP3 124 ........ TPFON3 123 ........ VCCT2/3 122 ........ TPFON2 121 ........ TPFOP2 120 ........ GNDR2 119 ........ TPFIN2 118 ........ TPFIP2 117 ........ VCCR2 116 ........ VCCR1 115 ........ TPFIP1 114 ........ TPFIN1 113 ........ GNDT0/1 112 ........ GNDR1 111 ........ TPFOP1 110 ........ TPFON1 109 ........ VCCT0/1 108 ........ TPFON0 107 ........ TPFOP0 106 ........ GNDR0 105 ........ TPFIN0 26 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 3. Intel® LXT9785/LXT9785E SMII PQFP Pin List Pin Symbol 1 N/C 2 N/C (LINKHOLD) 3 N/C 4 TxData6 5 Type1 – – I, ID, Reference for Full Description Pin Symbol Type1 Table 16 (page 50) 34 TxData3 I, ID Table 6 (page 39) 35 SYNC0 I, ID Table 7 (page 39) Table 16 (page 50) Reference for Full Description 36 N/C – Table 16 (page 50) – Table 16 (page 50) 37 RxData2 O, TS Table 6 (page 39) I, ID Table 6 (page 39) 38 GNDIO – Table 15 (page 48) N/C – Table 16 (page 50) 39 N/C – Table 16 (page 50) 6 REFCLK1 I Table 5 (page 36) 7 N/C – Table 16 (page 50) 40 PREASEL I, ID, ST Table 16 (page 50) 8 RxData5 O, TS Table 6 (page 39) 41 N/C TxData2 – Table 16 (page 50) I, ID Table 6 (page 39) 9 GNDIO – Table 15 (page 48) 42 10 N/C – Table 16 (page 50) 43 N/C – Table 16 (page 50) 11 FIFOSEL1 I, ID, ST Table 16 (page 50) 44 REFCLK0 I Table 5 (page 36) 45 N/C 12 N/C – Table 16 (page 50) 46 RxData1 13 TxData5 I, ID Table 6 (page 39) 47 14 N/C – Table 16 (page 50) 15 N/C – Table 16 (page 50) 16 RxData4 O, TS Table 6 (page 39) 17 N/C – Table 16 (page 50) 18 VCCIO – 19 GNDIO 20 – Table 16 (page 50) O, TS Table 6 (page 39) VCCIO – Table 15 (page 48) 48 GNDIO – Table 15 (page 48) 49 N/C 50 PAUSE Table 15 (page 48) 51 N/C – Table 15 (page 48) 52 TxData1 FIFOSEL0 I, ID, ST Table 16 (page 50) 53 N/C 54 N/C 21 N/C I, ID Table 16 (page 50) 55 RxData0 22 TxData4 I, ID Table 6 (page 39) 56 23 N/C – Table 16 (page 50) 24 MDC1 I, ST, ID Table 9 (page 41) 25 MDIO1 I/O, TS, SL, IP Table 9 (page 41) 26 MDINT1 OD, TS, SL, IP Table 9 (page 41) – 27 N/C Table 13 (page 43) – Table 16 (page 50) I, ID Table 6 (page 39) – Table 16 (page 50) – Table 16 (page 50) O, TS Table 6 (page 39) VCCIO – Table 15 (page 48) 57 GNDIO – Table 15 (page 48) 58 N/C – Table 16 (page 50) I, ID, ST Table 13 (page 43) – Table 16 (page 50) I, ID Table 6 (page 39) – Table 16 (page 50) MDIX 60 N/C 61 TxData0 Table 16 (page 50) 62 N/C 63 MDC0 I, ST, ID Table 9 (page 41) 64 MDIO0 I/O, TS, SL, IP Table 9 (page 41) 65 VCCD – Table 15 (page 48) 66 GNDD – Table 15 (page 48) 67 MDINT0 OD, TS, SL, IP Table 9 (page 41) RxData3 O, TS Table 6 (page 39) 29 VCCIO – Table 15 (page 48) 30 GNDIO – Table 15 (page 48) 31 N/C – Table 16 (page 50) 32 N/C – Table 16 (page 50) 33 N/C – Table 16 (page 50) Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Table 16 (page 50) 59 28 Datasheet – I, ID, ST 27 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Pin Symbol Type1 Reference for Full Description 68 LED3_3 OD, TS, SO, IP Table 14 (page 47) 69 LED3_2 OD, TS, SL, IP Table 14 (page 47) 70 71 72 Table 14 (page 47) LED2_3 OD, TS, SL, IP Table 14 (page 47) OD, TS, SL, IP Table 14 (page 47) LED2_2 73 LED2_1 OD, TS, SL, IP Table 14 (page 47) 74 GNDIO – Table 15 (page 48) 75 LED1_3 OD, TS, SL, IP Table 14 (page 47) 76 77 LED1_2 OD, TS, SL, IP Table 14 (page 47) LED1_1 OD, TS, SL, IP Table 14 (page 47) Symbol Type1 92 ADD_0 I, ST, ID Table 13 (page 43) 93 TxSLEW_1 I, ST, ID Table 13 (page 43) 94 TxSLEW_0 I, ST, ID Table 13 (page 43) 95 SD_2P5V I, ST, ID Table 10 (page 42) 96 SD0 I Table 10 (page 42) 97 SD1 I Table 10 (page 42) 98 VCCPECL – Table 15 (page 48) 99 GNDPECL – Table 15 (page 48) 100 SD2 I Table 10 (page 42) 101 SD3 I Table 10 (page 42) 102 N/C – Table 17 (page 50) 103 VCCR0 – Table 15 (page 48) 104 TPFIP0 AI/AO Table 11 (page 42) 105 TPFIN0 AI/AO Table 11 (page 42) 106 GNDR0 – Table 15 (page 48) 107 TPFOP0 AO/AI Table 11 (page 42) 108 TPFON0 AO/AI Table 11 (page 42) 109 VCCT0/1 – Table 15 (page 48) 110 TPFON1 AO/AI Table 11 (page 42) 111 TPFOP1 AO/AI Table 11 (page 42) 112 GNDR1 – Table 15 (page 48) – Table 15 (page 48) 78 VCCD – Table 15 (page 48) 113 GNDT0/1 79 GNDD – Table 15 (page 48) 114 TPFIN1 AI/AO Table 11 (page 42) OD, TS, SL, IP Table 14 (page 47) 115 TPFIP1 AI/AO Table 11 (page 42) 116 VCCR1 – Table 15 (page 48) 117 VCCR2 – Table 15 (page 48) 118 TPFIP2 AI/AO Table 11 (page 42) 80 28 LED3_1 OD, TS, SL, IP Reference for Full Description Pin LED0_3 81 LED0_2 OD, TS, SL, IP Table 14 (page 47) 82 LED0_1 OD, TS, SL, IP Table 14 (page 47) 83 AMDIX_EN I, ST, IP Table 13 (page 43) 84 MDDIS I, ST, ID Table 8 (page 40) 85 CFG_3 I, ST, ID Table 13 (page 43) 86 CFG_2 I, ST, ID Table 13 (page 43) 87 CFG_1 I, ST, ID Table 13 (page 43) 88 ADD_4 I, ST, ID Table 13 (page 43) 89 ADD_3 I, ST, ID Table 13 (page 43) 90 ADD_2 I, ST, ID Table 13 (page 43) 91 ADD_1 I, ST, ID Table 13 (page 43) 119 TPFIN2 AI/AO Table 11 (page 42) 120 GNDR2 – Table 15 (page 48) 121 TPFOP2 AO/AI Table 11 (page 42) 122 TPFON2 AO/AI Table 11 (page 42) 123 VCCT2/3 – Table 15 (page 48) 124 TPFON3 AO/AI Table 11 (page 42) 125 TPFOP3 AO/AI Table 11 (page 42) 126 GNDR3 – Table 15 (page 48) 127 GNDT2/3 – Table 15 (page 48) 128 TPFIN3 AI/AO Table 11 (page 42) 129 TPFIP3 AI/AO Table 11 (page 42) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Reference for Full Description Pin Symbol – Table 15 (page 48) 168 TDO O, TS Table 12 (page 43) VCCR4 – Table 15 (page 48) 169 TMS I, ST, IP Table 12 (page 43) TPFIP4 AI/AO Table 11 (page 42) 170 TCK I, ST, ID Table 12 (page 43) 133 TPFIN4 AI/AO Table 11 (page 42) 171 TRST I, ST, IP Table 12 (page 43) 134 GNDT4/5 – Table 15 (page 48) 172 N/C – Table 17 (page 50) 135 GNDR4 – Table 15 (page 48) 173 G_FX/TP I, ST, ID Table 13 (page 43) 136 TPFOP4 AO/AI Table 11 (page 42) 174 PWRDWN I, ST, ID Table 13 (page 43) 137 TPFON4 AO/AI Table 11 (page 42) 175 RESET I, ST, IP Table 13 (page 43) 138 VCCT4/5 – Table 15 (page 48) 176 Section I, ST, ID Table 13 (page 43) 139 TPFON5 AO/AI Table 11 (page 42) 177 ModeSel0 I, ST, ID Table 13 (page 43) 140 TPFOP5 AO/AI Table 11 (page 42) 178 ModeSel1 I, ST, ID Table 13 (page 43) 141 GNDR5 – Table 15 (page 48) 179 SGND 142 TPFIN5 AI/AO Table 11 (page 42) 143 TPFIP5 AI/AO Table 11 (page 42) 144 VCCR5 – Table 15 (page 48) 145 VCCR6 – Table 15 (page 48) 146 TPFIP6 AI/AO Table 11 (page 42) 147 TPFIN6 AI/AO Table 11 (page 42) 148 GNDT6/7 – Table 15 (page 48) 149 GNDR6 – Table 15 (page 48) 150 TPFOP6 AO/AI Table 11 (page 42) 151 TPFON6 AO/AI Table 11 (page 42) 152 VCCT6/7 – Table 15 (page 48) 153 TPFON7 AO/AI Table 11 (page 42) 154 TPFOP7 AO/AI Table 11 (page 42) 155 GNDR7 – Table 15 (page 48) Pin Symbol 130 VCCR3 131 132 156 Type1 TPFIN7 AI/AO Table 11 (page 42) 157 TPFIP7 AI/AO Table 11 (page 42) 158 VCCR7 – Table 15 (page 48) 159 N/C – Table 17 (page 50) 160 N/C – Table 17 (page 50) 161 SD4 I Table 10 (page 42) 162 SD5 I Table 10 (page 42) 163 GNDPECL – Table 15 (page 48) 164 VCCPECL – Table 15 (page 48) 165 SD6 I Table 10 (page 42) 166 SD7 I Table 10 (page 42) 167 TDI I, ST, IP Table 12 (page 43) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Type1 Reference for Full Description – Table 15 (page 48) Table 14 (page 47) 180 LED4_1 OD, TS, SL, IP 181 LED4_2 OD, TS, SL, IP Table 14 (page 47) 182 LED4_3 OD, TS, SL, IP Table 14 (page 47) 183 GNDD – Table 15 (page 48) 184 VCCD – Table 15 (page 48) 185 LED5_1 OD, TS, SL, IP Table 14 (page 47) 186 LED5_2 OD, TS, SL, IP Table 14 (page 47) 187 LED5_3 OD, TS, SL, IP Table 14 (page 47) 188 GNDIO – Table 15 (page 48) 189 LED6_1 OD, TS, SL, IP Table 14 (page 47) 190 LED6_2 OD, TS, SL, IP Table 14 (page 47) 191 LED6_3 OD, TS, SL, IP Table 14 (page 47) 192 LED7_1 OD, TS, SL, IP Table 14 (page 47) 29 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 30 Pin Symbol Type1 Reference for Full Description 193 LED7_2 OD, TS, SL, IP Table 14 (page 47) 194 LED7_3 OD, TS, SL, IP Table 5 (page 36) 195 GNDD – Table 15 (page 48) 196 VCCD – Table 15 (page 48) Table 16 (page 50) 197 N/C O, TS, ID 198 RxData7 O, TS Table 6 (page 39) 199 GNDIO – Table 15 (page 48) 200 N/C – Table 16 (page 50) 201 N/C – Table 16 (page 50) 202 N/C – Table 16 (page 50) 203 TxData7 I, ID Table 6 (page 39) 204 SYNC1 I, ID Table 5 (page 36) 205 N/C – Table 16 (page 50) 206 RxData6 O, TS Table 6 (page 39) 207 GNDIO – Table 15 (page 48) 208 VCCIO – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.1.3 PQFP Pin Assignments – SS-SMII Configuration Figure 4 and Table 4, “Intel® LXT9785/LXT9785 SS-SMII PQFP Pin List” on page 32 provide the LXT9785/LXT9785E SS-SMII PQFP pin assignments. 208 ......... VCCIO 207 ......... GNDIO 206 ......... N/C 205 ......... RxData6 204 ......... TxSYNC1 203 ......... TxData7 202 ......... N/C 201 ......... TxCLK1 200 ......... N/C 199 ......... GNDIO 198 ......... N/C 197 ......... RxData7 196 .........VCCD 195 ......... GNDD 194 ......... LED7_3 193 ......... LED7_2 192 ......... LED7_1 191 ......... LED6_3 190 ......... LED6_2 189 ......... LED6_1 188 ......... GNDIO 187 ......... LED5_3 186 ......... LED5_2 185 ......... LED5_1 184 ......... VCCD 183 ......... GNDD 182 ......... LED4_3 181 ......... LED4_2 180 ......... LED4_1 179 ......... SGND 178 ......... ModeSel_1 177 ......... ModeSel_0 176 ......... Section 175 ......... RESET 174 ......... PWRDWN 173 ......... G_FX/TP 172 ......... N/C 171....... TRST 170 ......... TCK 169 ......... TMS 168 ......... TDO 167 ......... TDI 166 ......... SD7 165 ......... SD6 164 ......... VCCPECL 163 ......... GNDPECL 162 ......... SD5 161 ......... SD4 160 ......... N/C 159 ......... N/C 158 ......... VCCR7 157 ......... TPFIP7 Figure 4. Intel® LXT9785/LXT9785E SS-SMII 208-Pin PQFP Assignments Part # LOT # FPO # LXT9785/9785E XX XXXXXX XXXXXXXX Rev # 156.........TPFIN7 155.........GNDR7 154......... TPFOP7 153.........TPFON7 152......... VCCT6/7 151.........TPFON6 150......... TPFOP6 149.........GNDR6 148......... GNDT6/7 147......... TPFIN6 146......... TPFIP6 145.........VCCR6 144.........VCCR5 143......... TPFIP5 142......... TPFIN5 141.........GNDR5 140......... TPFOP5 139.........TPFON5 138......... VCCT4/5 137.........TPFON4 136......... TPFOP4 135.........GNDR4 134......... GNDT4/5 133......... TPFIN4 132......... TPFIP4 131.........VCCR4 130.........VCCR3 129......... TPFIP3 128......... TPFIN3 127......... GNDT2/3 126.........GNDR3 125......... TPFOP3 124.........TPFON3 123......... VCCT2/3 122.........TPFON2 121......... TPFOP2 120.........GNDR2 119......... TPFIN2 118......... TPFIP2 117.........VCCR2 116.........VCCR1 115......... TPFIP1 114......... TPFIN1 113......... GNDT0/1 112.........GNDR1 111......... TPFOP1 110.........TPFON1 109......... VCCT0/1 108.........TPFON0 107......... TPFOP0 106.........GNDR0 105......... TPFIN0 N/C...... 53 RxData0...... 54 N/C...... 55 VCCIO...... 56 GNDIO...... 57 RxSYNC0...... 58 MDIX...... 59 RxCLK0...... 60 TxData0...... 61 N/C...... 62 MDC0...... 63 MDIO0...... 64 VCCD...... 65 GNDD...... 66 MDINT0...... 67 LED3_3...... 68 LED3_2...... 69 LED3_1...... 70 LED2_3...... 71 LED2_2...... 72 LED2_1...... 73 GNDIO...... 74 LED1_3...... 75 LED1_2...... 76 LED1_1...... 77 VCCD...... 78 GNDD...... 79 LED0_3...... 80 LED0_2...... 81 LED0_1...... 82 AMDIX_EN...... 83 MDDIS...... 84 CFG_3...... 85 CFG_2...... 86 CFG_1...... 87 ADD_4...... 88 ADD_3...... 89 ADD_2...... 90 ADD_1...... 91 ADD_0...... 92 TxSlew_1...... 93 TxSlew_0...... 94 SD_2P5V...... 95 SD0...... 96 SD1...... 97 VCCPECL...... 98 GNDPECL...... 99 SD2...... 100 SD3...... 101 N/C...... 102 VCCR0...... 103 TPFIP0...... 104 N/C ......1 N/CLINKHOLD ...... 2 N/C ......3 TxData6 ...... 4 N/C ......5 REFCLK1 ......6 RxData5 ......7 N/C ......8 GNDIO ......9 N/C ......10 FIFOSEL1 ...... 11 N/C ......12 TxData5 ......13 N/C ......14 RxData4 ......15 N/C ......16 RxSYNC1 ......17 VCCIO ......18 GNDIO ......19 FIFOSEL0 ...... 20 RxCLK1 ......21 TxData4 ......22 N/C ......23 MDC1 ......24 MDIO1 ...... 25 MDINT1 ......26 RxData3 ......27 N/C ......28 VCCIO ......29 GNDIO ......30 N/C ......31 TxCLK0 ......32 N/C ......33 TxData3 ......34 TxSYNC0 ......35 RxData2 ......36 N/C ......37 GNDIO ......38 N/C ......39 PREASEL ......40 N/C ......41 TxData2 ......42 N/C ......43 REFCLK0 ......44 RxData1 ......45 N/C ......46 VCCIO ......47 GNDIO ......48 N/C ......49 PAUSE ......50 N/C ......51 TxData1 ......52 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 31 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 4. Intel® LXT9785/LXT9785 SS-SMII PQFP Pin List Pin 32 Symbol 1 N/C 2 N/C LINKHOLD 3 N/C 4 TxData6 5 Type1 – Reference for Full Description Pin Symbol Table 16 (page 50) 33 N/C 34 TxData3 35 Table 13 (page 43) Type1 Reference for Full Description – Table 16 (page 50) I, ID Table 6 (page 39) TxSYNC0 I, ID Table 8 (page 40) 36 RxData2 O, TS, ID Table 8 (page 40) – Table 16 (page 50) I, ID Table 6 (page 39) N/C I Table 16 (page 50) 37 N/C – Table 16 (page 50) 6 REFCLK1 I Table 6 (page 39) 38 GNDIO – Table 15 (page 48) 7 RxData5 O, TS, ID Table 8 (page 40) 39 N/C – Table 16 (page 50) 40 PREASEL I, ST Table 13 (page 43) 8 N/C – Table 16 (page 50) 41 N/C – Table 16 (page 50) 9 GNDIO – Table 15 (page 48) 42 TxData2 I, ID Table 6 (page 39) 10 N/C – Table 16 (page 50) 43 N/C – Table 16 (page 50) 11 FIFOSEL1 I, ID, ST Table 13 (page 43) 44 REFCLK0 12 N/C – Table 16 (page 50) 13 TxData5 I, ID Table 6 (page 39) 14 N/C – Table 16 (page 50) 15 RxData4 O, TS, ID Table 8 (page 40) 16 N/C – Table 16 (page 50) 17 RxSYNC1 O, TS, ID Table 8 (page 40) 18 VCCIO – 19 GNDIO 20 FIFOSEL0 I Table 6 (page 39) O, TS, ID Table 8 (page 40) 45 RxData1 46 N/C – Table 16 (page 50) 47 VCCIO – Table 15 (page 48) 48 GNDIO – Table 15 (page 48) 49 N/C 50 PAUSE Table 15 (page 48) 51 N/C – Table 15 (page 48) 52 TxData1 I, ID, ST Table 13 (page 43) 53 N/C – Table 16 (page 50) I, ID, ST Table 13 (page 43) – Table 16 (page 50) I, ID Table 6 (page 39) – Table 16 (page 50) O, TS, ID Table 8 (page 40) 21 RxCLK1 O, TS, ID Table 8 (page 40) 54 RxData0 22 TxData4 I, ID Table 6 (page 39) 55 N/C – Table 16 (page 50) 23 N/C – Table 16 (page 50) 56 VCCIO – Table 15 (page 48) 24 MDC1 I, ST, ID Table 9 (page 41) 57 GNDIO – Table 15 (page 48) 25 MDIO1 I/O, TS, SL, IP Table 9 (page 41) 58 RxSYNC0 O, TS, ID Table 8 (page 40) 26 MDINT1 OD, TS, SL, IP Table 9 (page 41) 59 MDIX I, ID, ST Table 13 (page 43) 60 RxCLK0 – Table 8 (page 40) 27 RxData3 O, TS, ID Table 8 (page 40) 61 TxData0 I, ID Table 6 (page 39) 28 N/C – Table 16 (page 50) 62 N/C – Table 16 (page 50) 29 VCCIO – Table 15 (page 48) 63 MDC0 I, ST, ID Table 9 (page 41) Table 9 (page 41) 30 GNDIO 31 N/C 32 TxCLK0 – Table 15 (page 48) 64 MDIO0 I/O, TS, SL, IP – Table 16 (page 50) 65 VCCD – Table 15 (page 48) I, ID Table 8 (page 40) 66 GNDD – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Pin Symbol Type1 Reference for Full Description 67 MDINT0 OD, TS, SL, IP Table 9 (page 41) 68 LED3_3 OD, TS, SO, IP Table 14 (page 47) 69 LED3_2 OD, TS, SL, IP Table 14 (page 47) 70 LED3_1 OD, TS, SL, IP Table 14 (page 47) 71 LED2_3 OD, TS, SL, IP Table 14 (page 47) 72 LED2_2 OD, TS, SL, IP Table 14 (page 47) 73 LED2_1 OD, TS, SL, IP Table 14 (page 47) 74 GNDIO – Table 15 (page 48) Type1 Reference for Full Description Pin Symbol 97 SD1 I Table 10 (page 42) 98 VCCPECL – Table 15 (page 48) 99 GNDPECL – Table 15 (page 48) 100 SD2 I Table 10 (page 42) 101 SD3 I Table 10 (page 42) 102 N/C – Table 16 (page 50) 103 VCCR0 – Table 15 (page 48) 104 TPFIP0 AI/AO Table 11 (page 42) 105 TPFIN0 AI/AO Table 11 (page 42) 106 GNDR0 – Table 15 (page 48) 107 TPFOP0 AO/AI Table 11 (page 42) 108 TPFON0 AO/AI Table 11 (page 42) 109 VCCT0/1 – Table 15 (page 48) 110 TPFON1 AO/AI Table 11 (page 42) 111 TPFOP1 AO/AI Table 11 (page 42) 112 GNDR1 – Table 15 (page 48) 113 GNDT0/1 – Table 15 (page 48) LED1_3 OD, TS, SL, IP Table 14 (page 47) 76 LED1_2 OD, TS, SL, IP Table 14 (page 47) 77 LED1_1 OD, TS, SL, IP Table 14 (page 47) 78 VCCD – Table 15 (page 48) 114 TPFIN1 AI/AO Table 11 (page 42) 79 GNDD – Table 15 (page 48) 115 TPFIP1 AI/AO Table 11 (page 42) 80 LED0_3 OD, TS, SL, IP Table 14 (page 47) 116 VCCR1 – Table 15 (page 48) 117 VCCR2 – Table 15 (page 48) Table 14 (page 47) 118 TPFIP2 AI/AO Table 11 (page 42) 119 TPFIN2 AI/AO Table 11 (page 42) 75 81 LED0_2 OD, TS, SL, IP 82 LED0_1 OD, TS, SL, IP Table 14 (page 47) 120 GNDR2 – Table 15 (page 48) 83 AMDIX_EN I, ST, IP Table 13 (page 43) 121 TPFOP2 AO/AI Table 11 (page 42) 84 MDDIS I, ST, ID Table 9 (page 41) 122 TPFON2 AO/AI Table 11 (page 42) 85 CFG_3 I, ST, ID Table 13 (page 43) 123 VCCT2/3 – Table 15 (page 48) 86 CFG_2 I, ST, ID Table 13 (page 43) 124 TPFON3 AO/AI Table 11 (page 42) 87 CFG_1 I, ST, ID Table 13 (page 43) 125 TPFOP3 AO/AI Table 11 (page 42) 88 ADD_4 I, ST, ID Table 13 (page 43) 126 GNDR3 – Table 15 (page 48) 89 ADD_3 I, ST, ID Table 13 (page 43) 127 GNDT2/3 – Table 15 (page 48) 90 ADD_2 I, ST, ID Table 13 (page 43) 128 TPFIN3 AI/AO Table 11 (page 42) 91 ADD_1 I, ST, ID Table 13 (page 43) 129 TPFIP3 AI/AO Table 11 (page 42) 92 ADD_0 I, ST, ID Table 13 (page 43) 130 VCCR3 – Table 15 (page 48) 93 TxSLEW_1 I, ST, ID Table 13 (page 43) 131 VCCR4 – Table 15 (page 48) 94 TxSLEW_0 I, ST, ID Table 13 (page 43) 132 TPFIP4 AI/AO Table 11 (page 42) 95 SD_2P5V I, ST, ID Table 10 (page 42) 133 TPFIN4 AI/AO Table 11 (page 42) 96 SD0 I Table 10 (page 42) 134 GNDT4/5 – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 33 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Reference for Full Description Pin Symbol Type1 Reference for Full Description – Table 15 (page 48) 173 G_FX/TP I, ST, ID Table 13 (page 43) TPFOP4 AO/AI Table 11 (page 42) 174 PWRDWN I, ST, ID Table 13 (page 43) 137 TPFON4 AO/AI Table 11 (page 42) 175 RESET I, ST, IP Table 13 (page 43) 138 VCCT4/5 – Table 15 (page 48) 176 SECTION I, ST, ID Table 13 (page 43) 139 TPFON5 AO/AI Table 11 (page 42) 177 ModeSel0 I, ST, ID Table 13 (page 43) 140 TPFOP5 AO/AI Table 11 (page 42) 178 ModeSel1 I, ST, ID Table 13 (page 43) 141 GNDR5 – Table 15 (page 48) 179 SGND – Table 15 (page 48) 142 TPFIN5 AI/AO Table 11 (page 42) 180 LED4_1 TPFIP5 AI/AO Table 11 (page 42) OD, TS, SL, IP Table 14 (page 47) 143 144 VCCR5 – Table 15 (page 48) 181 LED4_2 OD, TS, SL, IP Table 14 (page 47) 145 VCCR6 – Table 15 (page 48) 146 TPFIP6 AI/AO Table 11 (page 42) 182 LED4_3 OD, TS, SL, IP Table 14 (page 47) 147 TPFIN6 AI/AO Table 11 (page 42) 183 GNDD – Table 15 (page 48) VCCD – Table 15 (page 48) Pin Symbol 135 GNDR4 136 148 GNDT6/7 – Table 15 (page 48) 184 149 GNDR6 – Table 15 (page 48) 185 LED5_1 OD, TS, SL, IP Table 14 (page 47) 150 TPFOP6 AO/AI Table 11 (page 42) 151 TPFON6 AO/AI Table 11 (page 42) 186 LED5_2 OD, TS, SL, IP Table 14 (page 47) 152 VCCT6/7 – Table 15 (page 48) 187 LED5_3 Table 14 (page 47) 153 TPFON7 AO/AI Table 11 (page 42) OD, TS, SL, IP 154 TPFOP7 AO/AI Table 11 (page 42) 188 GNDIO – Table 15 (page 48) 155 GNDR7 – Table 15 (page 48) 189 LED6_1 OD, TS, SL, IP Table 14 (page 47) 156 TPFIN7 AI/AO Table 11 (page 42) 157 TPFIP7 AI/AO Table 11 (page 42) 190 LED6_2 OD, TS, SL, IP Table 14 (page 47) 158 VCCR7 – Table 15 (page 48) 191 LED6_3 OD, TS, SL, IP Table 14 (page 47) 159 N/C – Table 16 (page 50) 160 N/C – Table 16 (page 50) 192 LED7_1 OD, TS, SL, IP Table 14 (page 47) 161 SD4 I Table 10 (page 42) 193 LED7_2 Table 14 (page 47) 162 SD5 I Table 10 (page 42) OD, TS, SL, IP 163 GNDPECL – Table 15 (page 48) 194 LED7_3 OD, TS, SL, IP Table 14 (page 47) 164 VCCPECL – Table 15 (page 48) 195 GNDD – Table 15 (page 48) 165 SD6 I Table 10 (page 42) 196 VCCD 166 SD7 I Table 10 (page 42) 167 TDI I, ST, IP Table 12 (page 43) 168 TDO O, TS 169 TMS 170 171 172 34 Type1 – Table 15 (page 48) O, TS, ID Table 8 (page 40) 197 RxData7 Table 12 (page 43) 198 N/C – Table 16 (page 50) I, ST, IP Table 12 (page 43) 199 GNDIO – Table 15 (page 48) TCK I, ST, ID Table 12 (page 43) 200 N/C – Table 16 (page 50) TRST I, ST, IP Table 12 (page 43) 201 TxCLK1 I, ID Table 8 (page 40) Table 16 (page 50) 202 N/C – Table 16 (page 50) N/C – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Reference for Full Description Pin Symbol Type1 203 TxData7 I, ID Table 6 (page 39) 204 TxSYNC1 I, ID Table 8 (page 40) 205 RxData6 O, TS, ID Table 8 (page 40) 206 N/C – Table 16 (page 50) 207 GNDIO – Table 15 (page 48) 208 VCCIO – Table 15 (page 48) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 35 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.2 PQFP Signal Descriptions 3.2.1 Signal Name Conventions Signal names may contain either a port designation or a serial designation, or a combination of the two designations. Signal naming conventions are as follows: • Port Number Only. Individual signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2. • Serial Number Only. A set of signals which are not tied to any specific port are designated by the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3. • Port and Serial Number. In cases where each port is assigned a set of multiple signals, each signal is designated in the following order: Signal Mnemonic, Port Designation, an underscore, and the serial designation. For example, a set of three Port Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and RxData2_0 and RxData2_1. 3.2.2 PQFP Signal Descriptions – RMII, SMII, and SS-SMII Configurations Table 5 through Table 17, “Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations” on page 50 provide PQFP signal descriptions. Ball designations are included for cross-reference. Table 5. Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP (Sheet 1 of 3) Pin-Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA Reference Clock. 44 6 E6, E12 REFCLK0 REFCLK1 I 61 62 E2, F4 TxData0_0 TxData0_1 I, ID 52 53 C3, D4 TxData1_0 TxData1_1 I, ID 42 43 B5 A4 TxData2_0 TxData2_1 I, ID 50 MHz RMII reference clock is always required. RMII inputs are sampled on the rising edge of REFCLK, RMII outputs are sourced on the falling edge. See “Clock/SYNC Requirements” on page 125 for detailed CLK requirements. Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits to be transmitted from port 0 are clocked in synchronously to REFCLK. Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits to be transmitted from port 1 are clocked in synchronously to REFCLK Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits to be transmitted from port 2 are clocked in synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 36 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 5. Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP (Sheet 2 of 3) Pin-Ball Designation Symbol Type1 PQFP PBGA 34 35 D8, A6 TxData3_0 TxData3_1 I, ID 22 23 A11, C10 TxData4_0 TxData4_1 I, ID 13 14 B13, D11 TxData5_0 TxData5_1 I, ID 4 5 D13, A16 TxData6_0 TxData6_1 I, ID 203 204 E14, C16 TxData7_0 TxData7_1 I, ID 60 51 41 33 21 12 3 202 E3, B2, C6, A7, B11, A14, C14, D16 TxEN0 TxEN1 TxEN2 TxEN3 TxEN4 TxEN5 TxEN6 TxEN7 I, ID 55 54 C2, B1 RxData0_0 RxData0_1 O, TS O, TS, ID 46 45 A3, B4 RxData1_0 RxData1_1 O, TS O, TS, ID 37 36 B6, C7 RxData2_0 RxData2_1 O, TS O, TS, ID 28 27 D9, B9 RxData3_0 RxData3_1 O, TS O, TS, ID 16 15 A13, C12 RxData4_0 RxData4_1 O, TS O, TS, ID 8 7 B14, B15 RxData5_0 RxData5_1 O, TS O, TS, ID Signal Description2,3 Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits to be transmitted from port 3 are clocked in synchronously to REFCLK. Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits to be transmitted from port 4 are clocked in synchronously to REFCLK. Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits to be transmitted from port 5 are clocked in synchronously to REFCLK. Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits to be transmitted from port 6 are clocked in synchronously to REFCLK. Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits to be transmitted from port 7 are clocked in synchronously to REFCLK. Transmit Enable - Ports 0-7. Active High input enables respective port transmitter. This signal must be synchronous to the REFCLK. Receive Data - Port 0. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 1. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 2. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 3. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 4. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 5. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 37 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 5. Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP (Sheet 3 of 3) Pin-Ball Designation Symbol Type1 PQFP PBGA 206 205 C15, B17 RxData6_0 RxData6_1 O, TS O, TS, ID 198 197 E16, F14 RxData7_0 RxData7_1 O, TS O, TS, ID 58 49 39 31 17 10 1 200 E4, C4, A5, B8, B12, D12, B16, E15 CRS_DV0 CRS_DV1 CRS_DV2 CRS_DV3 CRS_DV4 CRS_DV5 CRS_DV6 CRS_DV7 O, TS, SL, ID Signal Description2,3 Receive Data - Port 6. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 7. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Carrier Sense/Receive Data Valid - Ports 0-7. On detection of valid carrier, these signals are asserted asynchronously with respect to REFCLK. CRS_DVn is de-asserted on loss of carrier, synchronous to REFCLK. Receive Error - Ports 0-7. 59 50 40 32 20 11 2 201 D2, D5, D7, C8, A12, A15, A17, D17 RxER0 RxER1 RxER2 RxER3 RxER4 RxER5 RxER6 RxER7 These signals are synchronous to the respective REFCLK. Active High indicates that received code group is invalid, or that PLL is not locked. O, TS, SL, ID The RxER signals have the following additional function pins: RxER0 (MDIX) RxER1 (PAUSE) RxER2 (PREASEL) RxER4 (FIFOSEL0) RxER5 (FIFOSEL1) RxER6 (LINKHOLD) 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 38 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 6. Intel® LXT9785/LXT9785E SMII / SS-SMII Common Signal Descriptions – PQFP Pin/Ball Designation PQFP PBGA 61 52 42 34 22 13 4 203 E2, C3, B5, D8, A11, B13, D13, E14 44 6 E6, Symbol Type1 TxData0 TxData1 TxData2 TxData3 TxData4 TxData5 TxData6 TxData7 I, ID Signal Description2 Transmit Data - Ports 0-7. These serial input streams provide data to be transmitted to the network. The LXT9785/9785E clocks the data in synchronously to REFCLK. Reference Clock. E12 REFCLK0 REFCLK1 I The LXT9785/9785E always requires a 125 MHz reference clock input. Refer to Functional Description for detailed clock requirements. REFCLK0 and REFCLK1 are always connected regardless of sectionalization mode. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. Table 7. Intel® LXT9785/LXT9785E SMII Specific Signal Descriptions – PQFP Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA SMII Synchronization. 35 204 A6, C16 SYNC0 SYNC1 55 46 37 28 16 8 206 198 C2, A3, B6, D9, A13, B14, C15, E16 RxData0 RxData1 RxData2 RxData3 RxData4 RxData5 RxData6 RxData7 I, ID The MAC must generate a SYNC pulse every 10 REFCLK cycles to synchronize the SMII. SYNC0 is used when 1x8 port sectionalization is selected. SYNC0 and SYNC1 are to be used when 2x4 port sectionalization is chosen. Receive Data - Ports 0-7. O, TS These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware reset. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 39 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 8. Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – PQFP Pin/Ball Designation PQFP PBGA 35 204 A6, C16 Symbol Type1 TxSYNC0 TxSYNC1 I, ID Signal Description2,3 SS-SMII Transmit Synchronization. The MAC must generate a TxSYNC pulse every 10 TxCLK cycles to mark the start of TxData segments. TxSYNC0 is used when 1x8 port sectionalization is selected. SS-SMII Receive Synchronization. 58 17 E4, B12 RxSYNC0 RxSYNC1 O, TS, ID The LXT9785/9785E generates these pulses every 10 RxCLK cycles to mark the start of RxData segments for the MAC. RxSYNC1 is used when 1x8 port sectionalization is selected. RxSYNC0 may not be used. These outputs are only enabled when SS-SMII mode is enabled. SS-SMII Transmit Clock. 32 201 C8, D17 TxCLK0 TxCLK1 I, ID The MAC sources this 125 MHz clock as the timing reference for TxData and TxSYNC. Only TxCLK0 is used when 1x8 port sectionalization is selected. See “Clock/ SYNC Requirements” on page 125 for detailed clock requirements. SS-SMII Receive Clock. 60 21 E3, B11 RxCLK0 RxCLK1 O, TS, ID 54 45 36 27 15 7 205 197 B1, B4, C7, B9, C12, B15, B17, F14 RxData0 RxData1 RxData2 RxData3 RxData4 RxData5 RxData6 RxData7 O, TS, ID The LXT9785/9785E generates these clocks, based on REFCLK, to provide a timing reference for RxData and RxSYNC to the MAC. RxCLK1 is used when 1x8 port sectionalization is selected. RxCLK0 may not be used. See “Clock/SYNC Requirements” on page 125 for detailed clock requirements. These outputs are only enabled when SSSMII mode is enabled. Receive Data - Ports 0-7. These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 40 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 9. Intel® LXT9785/LXT9785E MDIO Control Interface Signals – PQFP Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3,4 PBGA Management Data Input/Output. 64 25 F3, A10 MDIO0 MDIO1 I/O, TS, SL, IP Bidirectional serial data channel for communication between the PHY and MAC or switch ASIC. Only MDIO0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDIO0 accesses ports 0-3 and MDIO1 accesses ports 4-7. Refer to Figure 21 on page 140. Management Data Interrupt. 67 26 F1, C9 MDINT0 MDINT1 OD,TS, SL, IP When Register bit 18.1 = 1, an active Low output on this Pin indicates status change. Only MDINT0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDINT0 is associated with ports 0-3 and MDINT1 is associated with ports 4-7. Refer to Figure 21 on page 140. Management Data Clock. 63 24 E1, B10 MDC0 MDC1 I, ST, ID Clock for the MDIO serial data channel. Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDC0 clocks ports 0-3 register accesses and MDC1 clocks ports 4-7 register accesses. Refer to Figure 21 on page 140. Management Disable. When MDDIS is tied High, the MDIO port is completely disabled and the Hardware Control Interface pins set their respective bits at power up and reset. 84 L1 MDDIS I, ST, ID When MDDIS is pulled Low at power up or reset, via the internal pull-down resistor or by tieing it to ground, the Hardware Control Interface Pins control only the initial or “default” values of their respective register bits. After the power-up/reset cycle is complete, bit control reverts to the MDIO serial channel. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. MDIO[0:1] and MDINT[0:1] outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is the bit number (0-15). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 41 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 10. Intel® LXT9785/LXT9785E Signal Detect – PQFP Pin/Ball Designation PQFP Symbol Type1 Signal Description2,3 PBGA Signal Detect 2.5 Volt Interface. SD input threshold voltage select. 95 P1 SD_2P5V I, ST, ID Tie to VCCPECL = Select 2.5 V LVPECL input levels Float or Tie to GNDPECL = Select 3.3 V LVPECL input levels 96 97 100 101 161 162 165 166 P2, N4, P3, N5, P15, P16, P17, N17 Signal Detect - Ports 0-7. SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 Signal Detect input from the fiber transceiver (these inputs are only active for ports operating in fiber mode). I Logic High = Normal operation (the process of searching for receive idles for the purpose of bringing link up is initiated) Logic Low = Link is declared lost 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. Tie SD[0:7] inputs to GNDPECL if unused. Table 11. Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – PQFP Pin/Ball Designation Symbol PQFP PBGA 107, 108 111, 110 121, 122 125, 124 136, 137 140, 139 150, 151 154, 153 T2, U1, T3, R4, T6, U5, U7, T7, T10, R10, T11, U11, T14,U15, R14, T15 TPFOP0, TPFON0 TPFOP1, TPFON1 TPFOP2, TPFON2 TPFOP3, TPFON3 TPFOP4, TPFON4 TPFOP5, TPFON5 TPFOP6, TPFON6 TPFOP7, TPFON7 104, 105 115, 114 118, 119 129, 128 132, 133 143, 142 146, 147 157, 156 R2, T1, U3, T4, R6, T5, T8, R8, T9, U9, U13, T12, R12, T13, R16, T16 TPFIP0, TPFIN0 TPFIP1, TPFIN1 TPFIP2, TPFIN2 TPFIP3, TPFIN3 TPFIP4, TPFIN4 TPFIP5, TPFIN5 TPFIP6, TPFIN6 TPFIP7, TPFIN7 Type1 Signal Description Twisted-Pair/Fiber Outputs2, Positive & Negative, Ports 0-7. AO/AI During 100BASE-TX or 10BASE-T operation, TPFO pins drive 802.3 compliant pulses onto the line. During 100BASE-FX operation, TPFO pins produce differential LVPECL outputs for fiber transceivers. Twisted-Pair/Fiber Inputs3, Positive & Negative, Ports 0-7. AI/AO During 100BASE-TX or 10BASE-T operation, TPFI pins receive differential 100BASE-TX or 10BASE-T signals from the line. During 100BASE-FX operation, TPFI pins receive differential LVPECL inputs from fiber transceivers. 1. Type Column Coding: AI = Analog Input, AO = Analog Output. 2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is, twisted-pair, non-crossover MDI mode]. 3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is, twisted-pair, non-crossover MDI mode]. 42 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 12. Intel® LXT9785/LXT9785E JTAG Test Signal Descriptions – PQFP Pin/Ball Designation Symbol Type1 PQFP PBGA 167 N14 TDI I, ST, IP 168 N15 TDO O, TS 169 N16 TMS I, ST, IP 170 M16 TCK I, ST, ID 171 M17 TRST I, ST, IP Signal Description2,3 Test Data Input. Test data sampled with respect to the rising edge of TCK. Test Data Output. Test data driven with respect to the falling edge of TCK. Test Mode Select. Test Clock. Clock input for JTAG test. Test Reset. Reset input for JTAG test. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT = Schmitt Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. TDO output is three-stated in H/W Power-Down mode and during H/W reset. Table 13. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP (Sheet 1 of 4) Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA Tx Output Slew Controls 0 and 1 Defaults. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 27.11:10 for all ports. These register bits can be read and overwritten after startup / reset. 94 93 N3, M4 TxSLEW_0 TxSLEW_1 These pins select the TX output slew rate for all ports (rise and fall time) as follows: I, ST, ID TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall Time) 0 0 3.3 ns 0 1 3.6 ns 1 0 3.9 ns 1 1 4.2 ns 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 43 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 13. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP (Sheet 2 of 4) Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA Pause Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 4.10 for all ports. This register bit can be read and overwritten after startup / reset. 50 D5 PAUSE I, ID, ST When High, the LXT9785/9785E advertises Pause capabilities on all ports during auto-negotiation. This pin is shared with RMII-RxER1. An external pullup resistor (see applications section for value) can be used to set Pause active while RxER1 is three-stated during H/W reset. If no pull-up is used, the default Pause state is set inactive via the internal pull-down resistor. Power-Down. 174 L14 PWRDWN I, ST, ID When High, forces the LXT9785/9785E into global power-down mode. Pin is not on JTAG chain. Reset. 175 M15 RESET I, ST, IP This active low input is ORed with the control register Reset Register bit 0.15. When held Low, all outputs are forced to inactive state. Pin is not on JTAG chain. Address <4:0>. 88 89 90 91 92 L4, M2, M3, N1, N2 ADD_4 ADD_3 ADD_2 ADD_1 ADD_0 Sets base address. Each port adds its port number (starting with 0) to this address to determine its PHY address. I, ST, ID Port 0 Address = Base Port 1 Address = Base + 1 Port 2 Address = Base + 2 Port 3 Address = Base + 3 Port 4 Address = Base + 4 Port 5 Address = Base + 5 Port 6 Address = Base + 6 Port 7 Address = Base + 7 Mode Select[1:0]. 00 = RMII 178 177 L17, L16 MODESEL_1 MODESEL_0 01 = SMII I, ST, ID 10 = SS-SMII 11 = Reserved All ports are configured the same. Interfaces cannot be mixed and must be all RMII, SMII, or SS-SMII. Sectionalization Select. 176 L15 SECTION I, ST, ID This pin selects sectionalization into separate ports. 0 = 1x8 ports, 1 = 2x4 ports 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. 44 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 13. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP (Sheet 3 of 4) Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA Auto MDIX Enable Default. 83 K1 AMDIX_EN I, ST, IP This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 27.9 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 40 on page 119. When active (High), automatic MDI crossover (MDIX) (regardless of segmentation) is selected for all ports. When inactive (Low) MDIX is selected according to the MDIX pin. MDIX Select Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 27.8 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 40, “Intel® LXT9785/LXT9785E MDIX Selection” on page 119. When AMDIX_EN is active this pin is ignored. 59 D2 MDIX I, ID, ST When AMDIX_EN is inactive, all ports are forced to the MDI or the MDIX function regardless of segmentation. If this pin is active (high), MDI crossover (MDIX) is selected. If this pin is inactive, non-crossover MDI mode is set. This pin is shared with RMII-RxER0. An external pullup resistor (see applications section for value) can be used to set MDIX active while RxER0 is three-stated during H/W reset. If no pull-up is used, the default MDIX state is set inactive via the internal pull-down resistor. Do not tie this pin directly to VCCIO (vs. using a pull-up) in non-RMII modes. Global Port Configuration Defaults 1-3. 85 86 87 L2, L3, M1 CFG_3 CFG_2 CFG_1 I, ST, ID These pins are read at startup or reset. Their value at that time is used to set the default state of register bits shown in Table 42, “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129 for all ports. These register bits can be read and overwritten after startup / reset. When operating in Hardware Control Mode, these pins provide configuration control options for all the ports (refer to page 129 for details). Global FX/TP Enable Default. 173 M14 G_FX/TP I, ST, ID This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 16.0 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 92, “Port Configuration Register (Address 16, Hex 10)” on page 207. This input selects whether all the ports are defaulted to TP vs. FX mode. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 45 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 13. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP (Sheet 4 of 4) Pin/Ball Designation PQFP Symbol Type1 Signal Description2 PBGA FIFO Select <1:0>. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 18.15:14 for all ports. These register bits can be read and overwritten after startup/reset. 11 20 A15 A12 FIFOSEL1 FIFOSEL0 I, ID, ST These pins are shared with RMII-RxER<5:4>. An external pull-up resistor (see applications section for value) can be used to set FIFO Select<1:0> to active while RxER<5:4> are three-stated during hardware reset. If no pull-up is used, the default FIFO select state is set via the internal pull-down resistors. See Table 17, “Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations” on page 50. Preamble Select. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 16.5 for all ports. This register bit can be read and overwritten after startup/reset. 40 D7 PREASEL I, ID, ST This pin is shared with RMII-RxER2. An external pullup resistor (see applications section for value) can be used to set Preamble Select to active while RxER2 is three-stated during hardware reset. If no pull-up is used, the default Preamble Select state is set via the internal pull-down resistors. Note: Preamble select has no effect in 100 Mbps operation. 2 A17 LINKHOLD ID LINKHOLD Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 0.11 for all ports. This register bit can be read and overwritten after startup / reset. When High, the LXT9785/9785E powers down all ports. This pin is shared with RMII-RxER6. An external pullup resistor (see applications section for value) can be used to set LINKHOLD active while RxER6 is tri-stated during H/W reset. If no pull-up is used, the default LINKHOLD state is set inactive via the internal pulldown resistor. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. 46 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 14. Intel® LXT9785/LXT9785E LED Signal Descriptions – PQFP (Sheet 1 of 2) Pin/Ball Designation PQFP PBGA 82 81 80 K3, K2, J1 Symbol Type1 Signal Description2,3 Port 0 LED Drivers 1-3. LED0_1 LED0_2 LED0_3 OD, TS, SL, IP These pins drive LED indicators for Port 0. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 1 LED Drivers 1-3. 77 76 75 J4, J3, H1 LED1_1 LED1_2 LED1_3 OD, TS, SL, IP These pins drive LED indicators for Port 1. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 2 LED Drivers 1-3. 73 72 71 H2, H3, G1 LED2_1 LED2_2 LED2_3 OD, TS, SL, IP These pins drive LED indicators for Port 2. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 3 LED Drivers 1-3. 70 69 68 F2, G3, G4 LED3_1 LED3_2 LED3_3 180 181 182 K16, K17, J17 LED4_1 LED4_2 LED4_3 OD, TS, SL, IP These pins drive LED indicators for Port 3. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 4 LED Drivers 1-3. OD, TS, SL, IP These pins drive LED indicators for Port 4. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 47 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 14. Intel® LXT9785/LXT9785E LED Signal Descriptions – PQFP (Sheet 2 of 2) Pin/Ball Designation Symbol PQFP PBGA 185 186 187 J15, J16, H17 Type1 Signal Description2,3 Port 5 LED Drivers 1-3. LED5_1 LED5_2 LED5_3 OD, TS, SL, IP These pins drive LED indicators for Port 5. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 6 LED Drivers 1-3. 189 190 191 H15, H16, G17 LED6_1 LED6_2 LED6_3 OD, TS, SL, IP These pins drive LED indicators for Port 6. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 7 LED Drivers 1-3. 192 193 194 G15, F17, F16 LED7_1 LED7_2 LED7_3 OD, TS, SL, IP These pins drive LED indicators for Port 7. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. Table 15. Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – PQFP (Sheet 1 of 2) Pin/Ball Designation PQFP PBGA 65, 78, 184, 196 G13, J14, F5, J5 Symbol Type VCCD - Signal Description Digital Power Supply - Core. +2.5 V supply for core digital circuits. Digital Power Supply - I/O Ring. 18, 29, 47, 56, 208 A2, A8, C1, C11, D14 VCCIO - +2.5/3.3 V supply for digital I/O circuits. The digital input circuits running off of this rail, having a TTL-level threshold and over-voltage protection, may be interfaced with 3.3/5.0 V, when the IO supply is 3.3 V, and 2.5/3.3/5.0 V when 2.5 V. Digital Power Supply - PECL Signal Detect Inputs. 98, 164 L13, L5 VCCPECL - 103, 116, 117, 130, 131, 144, 145, 158 N13, P4, P7, P8, P9, P10, P11, P12 VCCR - +2.5/3.3 V supply for PECL Signal Detect input circuits. If Fiber Mode is not used, tie these pins to GNDPECL to save power. Analog Power Supply - Receive. +2.5 V supply for all analog receive circuits. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 48 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 15. Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – PQFP (Sheet 2 of 2) Pin/Ball Designation PQFP PBGA 109, 123, 138, 152 N6, N7, N9, N11, N12 66, 79, 183, 195 A1, A9, B3, B7, C5, C13, C17, D1, D3, D6, D10, D15, E5, E7, E9, E11, E13, E17, F13, H8, H9, H10, J8, J9, J10, K8, K9, K10 9, 19, 30, 38, 48, 57, 74, 188, 199, 207 Symbol Type VCCT - Signal Description Analog Power Supply - Transmit. +2.5 V supply for all analog transmit circuits. Digital Ground. GNDD - GNDIO - 99, 163 M5, M13 GNDPECL - 106, 112, 120, 126, 135, 141, 149, 155 P5, P6, P13, R7, R9, R11, R13, U8 GNDR - 113, 127, 134, 148 P14, R1, R3, R5, R15, R17, T17, U2, U4, U6, U10, U12, U14, U16, U17 GNDT - 179 K14 SGND - Ground return for core digital supplies (VCCD). All ground pins can be tied together using a single ground plane. Digital GND - I/O Ring. Ground return for digital I/O circuits (VCCIO). Digital GND - PECL Signal Detect Inputs. Ground return for PECL Signal Detect input circuits. Analog Ground - Receive. Ground return for receive analog supply. All ground pins can be tied together using a single ground plane. Analog Ground - Transmit. Ground return for transmit analog supply. All ground pins can be tied together using a single ground plane. Substrate Ground. Ground for chip substrate. All ground pins can be tied together using a single ground plane. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 49 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 16. Intel® LXT9785/LXT9785E Unused/Reserved Pins – PQFP Pin/Ball Designation PQFP PBGA N/C F15, G2, G5, G14, G16, H4, H14, J2, J13, K4, K15 Symbol Type1 N/C – Signal Description No Connection. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. Table 17. Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations 50 FIFOSEL1 FIFOSEL0 Register 18.15 Value Register 18.14 Value 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.3 BGA23 Ball Assignments The following sections provide BGA23 ball location and signal description information for RMII, SMII, and SS-SMII: • • • • Table 3.3.1 “RMII BGA23 Ball List” on page 52 Table 3.3.2 “SMII BGA23 Ball List” on page 62 Table 3.3.3 “SS-SMII BGA23 Ball List” on page 72 Table 3.4 “BGA23 Signal Descriptions” on page 82 Figure 5 illustrates the LXT9785/LXT9785E 241-ball BGA23 ball locations for RMII, SMII, and SS-SMII. Figure 5. Intel® LXT9785/LXT9785E 241-Ball BGA23 Assignments (Top View) 1 2 3 4 5 6 7 8 9 10 11 A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C D D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D E E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E15 E16 E17 E F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F16 F17 F G G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G H H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 H17 H J J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J17 J K K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K L L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L M M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15 N16 N17 N P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P R R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R T T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T17 T U U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U 1 2 3 4 5 6 7 8 9 10 J11 L11 T11 11 12 F12 J12 L12 T12 12 13 F13 J13 L13 T13 13 14 F14 J14 L14 T14 14 15 F15 J15 L15 T15 15 16 J16 L16 T16 16 17 L17 17 = No Ball B1498-01 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 51 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.3.1 RMII BGA23 Ball List The following tables provide the RMII BGA23 ball locations and signal names arranged in alphanumeric order as follows: • Table 18 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Signal Name” • Table 19 “Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 57 Table 18. Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Signal Name 52 Signal Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description ADD_0 N2 I, ST, ID Table 32 (page 90) GNDD D10 – Table 34 (page 95) ADD_1 N1 I, ST, ID Table 32 (page 90) GNDD D15 – Table 34 (page 95) ADD_2 M3 I, ST, ID Table 32 (page 90) GNDD E5 – Table 34 (page 95) ADD_3 M2 I, ST, ID Table 32 (page 90) GNDD E7 – Table 34 (page 95) ADD_4 L4 I, ST, ID Table 32 (page 90) GNDD E9 – Table 34 (page 95) AMDIX_EN K1 I, ST, IP Table 32 (page 90) GNDD E11 – Table 34 (page 95) CFG_1 M1 I, ST, ID Table 32 (page 90) GNDD E13 – Table 34 (page 95) CFG_2 L3 I, ST, ID Table 32 (page 90) GNDD E17 – Table 34 (page 95) CFG_3 L2 I, ST, ID Table 32 (page 90) GNDD F13 – Table 34 (page 95) CRS_DV0 E4 O, TS, SL Table 24 (page 82) GNDD H8 – Table 34 (page 95) CRS_DV1 C4 O, TS, SL Table 24 (page 82) GNDD H9 – Table 34 (page 95) CRS_DV2 A5 O, TS, SL Table 24 (page 82) GNDD H10 – Table 34 (page 95) CRS_DV3 B8 O, TS, SL Table 24 (page 82) GNDD J8 – Table 34 (page 95) CRS_DV4 B12 O, TS, SL Table 24 (page 82) GNDD J9 – Table 34 (page 95) CRS_DV5 D12 O, TS, SL Table 24 (page 82) GNDD J10 – Table 34 (page 95) CRS_DV6 B16 O, TS, SL Table 24 (page 82) GNDD K8 – Table 34 (page 95) CRS_DV7 E15 O, TS, SL Table 24 (page 82) GNDD K9 – Table 34 (page 95) G_FX/TP M14 I, ST, ID Table 32 (page 90) GNDD K10 – Table 34 (page 95) GNDD A1 – Table 34 (page 95) GNDPECL M5 – Table 34 (page 95) GNDD A9 – Table 34 (page 95) GNDPECL M13 – Table 34 (page 95) GNDD B3 – Table 34 (page 95) GNDR P5 – Table 34 (page 95) GNDD B7 – Table 34 (page 95) GNDR P6 – Table 34 (page 95) GNDD C5 – Table 34 (page 95) GNDR P13 – Table 34 (page 95) GNDD C13 – Table 34 (page 95) GNDR R7 – Table 34 (page 95) GNDD C17 – Table 34 (page 95) GNDR R9 – Table 34 (page 95) GNDD D1 – Table 34 (page 95) GNDR R11 – Table 34 (page 95) GNDD D3 – Table 34 (page 95) GNDR R13 – Table 34 (page 95) GNDD D6 – Table 34 (page 95) GNDR U8 Table 34 (page 95) – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description GNDT P14 – Table 34 (page 95) GNDT R1 – Table 34 (page 95) GNDT R3 – Table 34 (page 95) GNDT R5 – Table 34 (page 95) GNDT R15 – Table 34 (page 95) GNDT R17 – Table 34 (page 95) GNDT T17 – Table 34 (page 95) GNDT U2 – Table 34 (page 95) GNDT U4 – Table 34 (page 95) GNDT U6 – Table 34 (page 95) GNDT U10 – Table 34 (page 95) GNDT U12 – Table 34 (page 95) GNDT U14 – Table 34 (page 95) GNDT U16 – Table 34 (page 95) GNDT U17 – Table 34 (page 95) K3 OD, TS, SL, IP Table 33 (page 94) LED0_2 K2 OD, TS, SL, IP Table 33 (page 94) LED0_3 J1 OD, TS, SL, IP Table 33 (page 94) J4 OD, TS, SL, IP Table 33 (page 94) J3 OD, TS, SL, IP Table 33 (page 94) H1 OD, TS, SL, IP Table 33 (page 94) H2 OD, TS, SL, IP Table 33 (page 94) LED2_2 H3 OD, TS, SL, IP Table 33 (page 94) LED2_3 G1 OD, TS, SL, IP Table 33 (page 94) LED3_1 F2 OD, TS, SL, IP Table 33 (page 94) Table 33 (page 94) Table 33 (page 94) LED0_1 LED1_1 LED1_2 LED1_3 LED2_1 LED3_2 G3 OD, TS, SL, IP LED3_3 G4 OD, TS, SO, IP LED4_1 OD, TS, K16 SL, IP Table 33 (page 94) LED4_2 K17 OD, TS, SL, IP Table 33 (page 94) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Reference for Full Description Signal Ball Type1 LED4_3 J17 OD, TS, SL, IP Table 33 (page 94) LED5_1 J15 OD, TS, SL, IP Table 33 (page 94) LED5_2 J16 OD, TS, SL, IP Table 33 (page 94) LED5_3 H17 OD, TS, SL, IP Table 33 (page 94) LED6_1 H15 OD, TS, SL, IP Table 33 (page 94) LED6_2 H16 OD, TS, SL, IP Table 33 (page 94) LED6_3 G17 OD, TS, SL, IP Table 33 (page 94) LED7_1 G15 OD, TS, SL, IP Table 33 (page 94) LED7_2 F17 OD, TS, SL, IP Table 33 (page 94) LED7_3 F16 OD, TS, SL, IP Table 33 (page 94) MDC0 E1 I, ST, ID Table 28 (page 87) MDC1 B10 I, ST, ID Table 28 (page 87) MDDIS L1 I, ST, ID Table 28 (page 87) MDINT0 F1 OD, TS, SL, IP Table 28 (page 87) MDINT1 C9 OD, TS, SL, IP Table 28 (page 87) MDIO0 F3 I/O, TS, SL, IP Table 28 (page 87) MDIO1 A10 I/O, TS, SL, IP Table 28 (page 87) ModeSel0 L16 I, ST, ID Table 32 (page 90) ModeSel1 L17 I, ST, ID Table 32 (page 90) N/C F15 – Table 35 (page 97) N/C G2 – Table 35 (page 97) N/C G5 – Table 35 (page 97) N/C G14 – Table 35 (page 97) N/C G16 – Table 35 (page 97) N/C H4 – Table 35 (page 97) N/C H14 – Table 35 (page 97) N/C J2 – Table 35 (page 97) N/C J13 – Table 35 (page 97) N/C K4 – Table 35 (page 97) N/C K15 – Table 35 (page 97) 53 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Reference for Full Description Signal Ball Type1 Reference for Full Description No ball F6 – – No Ball L11 – – No ball F7 – – No Ball M6 – – No ball F8 – – No Ball M7 – – No Ball E8 – – No Ball M8 – – No Ball E10 No Ball M9 – – No Ball F9 – – No Ball M10 – – No Ball F10 – – No Ball M11 – – No Ball F11 – – No Ball M12 – – No Ball F12 – – No Ball N8 – – No Ball G6 – – No Ball N10 – – No Ball G7 – – PWRDWN L14 I, ST, ID Table 32 (page 90) No Ball G8 – – REFCLK0 E6 I Table 24 (page 82) No Ball G9 – – REFCLK1 E12 I Table 24 (page 82) No Ball G10 – – RESET M15 I, ST, IP Table 32 (page 90) No Ball G11 – – RxData0_0 No Ball G12 – C2 O, TS Table 24 (page 82) – RxData0_1 B1 O, TS, ID Table 24 (page 82) No Ball H5 – – RxData1_0 A3 O, TS Table 24 (page 82) No Ball H6 – – RxData1_1 B4 O, TS, ID Table 24 (page 82) No Ball H7 – – RxData2_0 B6 O, TS Table 24 (page 82) No Ball H11 – – RxData2_1 C7 O, TS, ID Table 24 (page 82) No Ball H12 – – RxData3_0 D9 O, TS Table 24 (page 82) No Ball H13 – – RxData3_1 B9 O, TS, ID Table 24 (page 82) – – RxData4_0 A13 O, TS Table 24 (page 82) No Ball 54 Ball Type1 J6 No Ball J7 – – RxData4_1 C12 O, TS,ID Table 24 (page 82) No Ball J11 – – RxData5_0 B14 O, TS Table 24 (page 82) No Ball J12 – – RxData5_1 B15 O, TS, ID Table 24 (page 82) No Ball K5 – – RxData6_0 C15 O, TS Table 24 (page 82) No Ball K6 – – RxData6_1 B17 O, TS, ID Table 24 (page 82) No Ball K7 – – RxData7_0 E16 O, TS Table 24 (page 82) No Ball K11 – – RxData7_1 F14 O, TS, ID Table 24 (page 82) No Ball K12 – – D2 K13 – – O, TS, SL, ID, I, ST Table 32 (page 90) No Ball RxER0 (MDIX) RxER1 (PAUSE) D5 O, TS, SL, ID, I, ST Table 32 (page 90) No Ball L6 – – No Ball L7 – – No Ball L8 – – RxER2 (PREASEL) D7 O, TS, SL, ID, I, ST Table 24 (page 82) No Ball L9 – – RxER3 C8 O, TS, SL, ID Table 24 (page 82) No Ball L10 – – No Ball L11 – RxER4 (FIFOSEL0) A12 O, TS, SL, ID, I, ST Table 24 (page 82) – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Reference for Full Description Signal Ball Type1 RxER5 (FIFOSEL1) A15 O, TS, SL, ID, I, ST Table 24 (page 82) RxER6LINK HOLD A17 O, TS, SL, ID Table 24 (page 82) RxER7 D17 O, TS, SL, ID Table 24 (page 82) Signal Ball Type1 Reference for Full Description TPFON2 U5 AO/AI Table 30 (page 88) TPFON3 T7 AO/AI Table 30 (page 88) R10 AO/AI Table 30 (page 88) TPFON5 U11 AO/AI Table 30 (page 88) TPFON6 U15 AO/AI Table 30 (page 88) TPFON4 SD_2P5V P1 I, ST, ID Table 29 (page 88) TPFON7 T15 AO/AI Table 30 (page 88) SD0 P2 I Table 29 (page 88) TPFOP0 T2 AO/AI Table 30 (page 88) SD1 N4 I Table 29 (page 88) TPFOP1 T3 AO/AI Table 30 (page 88) SD2 P3 I Table 29 (page 88) TPFOP2 T6 AO/AI Table 30 (page 88) SD3 N5 I Table 29 (page 88) TPFOP3 U7 AO/AI Table 30 (page 88) SD4 P15 I Table 29 (page 88) TPFOP4 T10 AO/AI Table 30 (page 88) SD5 P16 I Table 29 (page 88) TPFOP5 T11 AO/AI Table 30 (page 88) SD6 P17 I Table 29 (page 88) TPFOP6 T14 AO/AI Table 30 (page 88) SD7 N17 I Table 29 (page 88) TPFOP7 R14 AO/AI Table 30 (page 88) SECTION L15 I, ST, ID Table 32 (page 90) TRST M17 I, ST, IP Table 31 (page 89) SGND K14 – Table 34 (page 95) TxData0_0 E2 I, ID Table 24 (page 82) TCK M16 I, ST, ID Table 31 (page 89) TxData0_1 F4 I, ID Table 24 (page 82) TDI N14 I, ST, IP Table 31 (page 89) TxData1_0 C3 I, ID Table 24 (page 82) TDO N15 O, TS Table 31 (page 89) TxData1_1 D4 I, ID Table 24 (page 82) TMS N16 I, ST, IP Table 31 (page 89) TxData2_0 B5 I, ID Table 24 (page 82) TPFIN0 T1 AO/AI Table 30 (page 88) TxData2_1 A4 I, ID Table 24 (page 82) TPFIN1 T4 AO/AI Table 30 (page 88) TxData3_0 D8 I, ID Table 24 (page 82) TPFIN2 T5 AO/AI Table 30 (page 88) TxData3_1 A6 I, ID Table 24 (page 82) TPFIN3 R8 AO/AI Table 30 (page 88) TxData4_0 A11 I, ID Table 24 (page 82) TPFIN4 U9 AO/AI Table 30 (page 88) TxData4_1 C10 I, ID Table 24 (page 82) TPFIN5 T12 AO/AI Table 30 (page 88) TxData5_0 B13 I, ID Table 24 (page 82) TPFIN6 T13 AO/AI Table 30 (page 88) TxData5_1 D11 I, ID Table 24 (page 82) TPFIN7 T16 AO/AI Table 30 (page 88) TxData6_0 D13 I, ID Table 24 (page 82) TPFIP0 R2 AO/AI Table 30 (page 88) TxData6_1 A16 I, ID Table 24 (page 82) TPFIP1 U3 AO/AI Table 30 (page 88) TxData7_0 E14 I, ID Table 24 (page 82) TPFIP2 R6 AO/AI Table 30 (page 88) TxData7_1 C16 I, ID Table 24 (page 82) TPFIP3 T8 AO/AI Table 30 (page 88) TxEN0 E3 I, ID Table 24 (page 82) TPFIP4 T9 AO/AI Table 30 (page 88) TxEN1 B2 I, ID Table 24 (page 82) TPFIP5 U13 AO/AI Table 30 (page 88) TxEN2 C6 I, ID Table 24 (page 82) TPFIP6 R12 AO/AI Table 30 (page 88) TxEN3 A7 I, ID Table 24 (page 82) TPFIP7 R16 AO/AI Table 30 (page 88) TxEN4 B11 I, ID Table 24 (page 82) TPFON0 U1 AO/AI Table 30 (page 88) TxEN5 A14 I, ID Table 24 (page 82) TPFON1 R4 AO/AI Table 30 (page 88) TxEN6 C14 I, ID Table 24 (page 82) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 55 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description TxEN7 D16 I, ID Table 24 (page 82) TxSLEW_0 N3 I, ST, ID Table 32 (page 90) TxSLEW_1 M4 I, ST, ID Table 32 (page 90) F5 – Table 34 (page 95) G13 – Table 34 (page 95) VCCD VCCD 56 VCCD J5 – Table 34 (page 95) VCCD J14 – Table 34 (page 95) VCCIO A2 – Table 34 (page 95) VCCIO A8 – Table 34 (page 95) VCCIO C1 – Table 34 (page 95) VCCIO C11 – Table 34 (page 95) VCCIO D14 – Table 34 (page 95) VCCPECL L5 – Table 34 (page 95) VCCPECL L13 – Table 34 (page 95) VCCR N13 – Table 34 (page 95) VCCR P4 – Table 34 (page 95) VCCR P7 – Table 34 (page 95) VCCR P8 – Table 34 (page 95) VCCR P9 – Table 34 (page 95) VCCR P10 – Table 34 (page 95) VCCR P11 – Table 34 (page 95) VCCR P12 – Table 34 (page 95) VCCT N6 – Table 34 (page 95) VCCT N7 – Table 34 (page 95) VCCT N9 – Table 34 (page 95) VCCT N11 – Table 34 (page 95) VCCT N12 – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 19. Intel® LXT9785/LXT9785E RMII BGA23 Ball List in Alphanumeric Order by Ball Location Ball Signal Type1 Reference for Full Description Ball Signal Type1 Reference for Full Description A1 GNDD – Table 34 (page 95) B17 RxData6_1 O, TS, ID Table 24 (page 82) A2 VCCIO – Table 34 (page 95) C1 VCCIO – Table 34 (page 95) A3 RxData1_0 O, TS Table 24 (page 82) C2 RxData0_0 O, TS Table 24 (page 82) A4 TxData2_1 I, ID Table 24 (page 82) C3 TxData1_0 I, ID Table 24 (page 82) A5 CRS_DV2 O, TS, SL Table 24 (page 82) C4 CRS_DV1 O, TS, SL Table 24 (page 82) A6 TxData3_1 I, ID Table 24 (page 82) C5 GNDD – Table 34 (page 95) A7 TxEN3 I, ID Table 24 (page 82) C6 TxEN2 I, ID Table 24 (page 82) A8 VCCIO – Table 34 (page 95) C7 RxData2_1 O, TS, ID Table 24 (page 82) A9 GNDD – Table 34 (page 95) C8 RxER3 O, TS, SL, Table 24 (page 82) ID A10 MDIO1 I/O, TS, SL, IP Table 28 (page 87) C9 MDINT1 TxData4_0 I, ID Table 24 (page 82) OD, TS, SL, IP Table 28 (page 87) A11 RxER4 (FIFOSEL0) O, TS, SL, Table 24 (page 82) ID, I, ST C10 TxData4_1 I, ID Table 24 (page 82) A12 C11 VCCIO – Table 34 (page 95) A13 RxData4_0 O, TS Table 24 (page 82) C12 RxData4_1 O, TS,ID Table 24 (page 82) A14 TxEN5 I, ID Table 24 (page 82) C13 GNDD – Table 34 (page 95) A15 RxER5 (FIFOSEL1) O, TS, SL, Table 24 (page 82) ID, I, ST C14 TxEN6 I, ID Table 24 (page 82) C15 RxData6_0 O, TS Table 24 (page 82) A16 TxData6_1 I, ID C16 TxData7_1 I, ID Table 24 (page 82) A17 RxER6LINK HOLD O, TS, SL, Table 24 (page 82) ID C17 GNDD – Table 34 (page 95) B1 RxData0_1 O, TS, ID D1 GNDD – Table 34 (page 95) D2 RxER0 (MDIX) O, TS, SL, Table 32 (page 90) ID, I, ST D3 GNDD – Table 34 (page 95) D4 TxData1_1 I, ID Table 24 (page 82) D5 RxER1 (PAUSE) O, TS, SL, Table 32 (page 90) ID, I, ST D6 GNDD – D7 RxER2 (PREASEL) O, TS, SL, Table 24 (page 82) ID, I, ST Table 24 (page 82) Table 24 (page 82) B2 TxEN1 I, ID Table 24 (page 82) B3 GNDD – Table 34 (page 95) B4 RxData1_1 O, TS, ID Table 24 (page 82) B5 TxData2_0 I, ID Table 24 (page 82) B6 RxData2_0 O, TS Table 24 (page 82) B7 GNDD – Table 34 (page 95) B8 CRS_DV3 O, TS, SL Table 24 (page 82) B9 RxData3_1 O, TS, ID Table 24 (page 82) B10 MDC1 I, ST, ID Table 28 (page 87) B11 TxEN4 I, ID Table 24 (page 82) B12 CRS_DV4 O, TS, SL Table 24 (page 82) B13 TxData5_0 I, ID Table 24 (page 82) B14 RxData5_0 O, TS Table 24 (page 82) B15 RxData5_1 O, TS, ID Table 24 (page 82) B16 CRS_DV6 O, TS, SL Table 24 (page 82) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Table 34 (page 95) D8 TxData3_0 I, ID Table 24 (page 82) D9 RxData3_0 O, TS Table 24 (page 82) D10 GNDD – Table 34 (page 95) D11 TxData5_1 I, ID Table 24 (page 82) D12 CRS_DV5 O, TS, SL Table 24 (page 82) D13 TxData6_0 I, ID Table 24 (page 82) D14 VCCIO – Table 34 (page 95) D15 GNDD – Table 34 (page 95) 57 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description D16 TxEN7 I, ID Table 24 (page 82) RxER7 O, TS, SL, Table 24 (page 82) ID D17 58 Ball Signal Type1 Reference for Full Description F17 LED7_2 OD, TS, SL, IP Table 33 (page 94) G1 LED2_3 OD, TS, SL, IP Table 33 (page 94) G2 N/C – Table 35 (page 97) G3 LED3_2 OD, TS, SL, IP Table 33 (page 94) G4 LED3_3 OD, TS, SO, IP Table 33 (page 94) E1 MDC0 I, ST, ID Table 28 (page 87) E2 TxData0_0 I, ID Table 24 (page 82) E3 TxEN0 I, ID Table 24 (page 82) E4 CRS_DV0 O, TS, SL Table 24 (page 82) E5 GNDD – Table 34 (page 95) E6 REFCLK0 I Table 24 (page 82) G5 N/C – Table 35 (page 97) E7 GNDD – Table 34 (page 95) G6 No Ball – – E8 No Ball – – G7 No Ball – – Table 34 (page 95) G8 No Ball – – G9 No Ball – – G10 No Ball – – E9 GNDD – E10 No Ball E11 GNDD – Table 34 (page 95) E12 REFCLK1 I Table 24 (page 82) G11 No Ball – – No Ball – – E13 GNDD – Table 34 (page 95) G12 E14 TxData7_0 I, ID Table 24 (page 82) G13 VCCD – Table 34 (page 95) E15 CRS_DV7 O, TS, SL Table 24 (page 82) G14 N/C – Table 35 (page 97) E16 RxData7_0 O, TS Table 24 (page 82) G15 LED7_1 OD, TS, SL, IP Table 33 (page 94) E17 GNDD – Table 34 (page 95) G16 N/C – Table 35 (page 97) F1 MDINT0 OD, TS, SL, IP Table 28 (page 87) G17 LED6_3 OD, TS, SL, IP Table 33 (page 94) F2 LED3_1 OD, TS, SL, IP Table 33 (page 94) H1 LED1_3 OD, TS, SL, IP Table 33 (page 94) F3 MDIO0 I/O, TS, SL, IP Table 28 (page 87) H2 LED2_1 OD, TS, SL, IP Table 33 (page 94) F4 TxData0_1 I, ID Table 24 (page 82) F5 VCCD – Table 34 (page 95) H3 LED2_2 OD, TS, SL, IP Table 33 (page 94) F6 No ball – – H4 N/C – Table 35 (page 97) F7 No ball – – H5 No Ball – – F8 No ball – – H6 No Ball – – F9 No Ball – – H7 No Ball – – F10 No Ball – – H8 GNDD – Table 34 (page 95) F11 No Ball – – H9 GNDD – Table 34 (page 95) F12 No Ball – – H10 GNDD – Table 34 (page 95) F13 GNDD – Table 34 (page 95) H11 No Ball – – F14 RxData7_1 O, TS, ID Table 24 (page 82) H12 No Ball – – F15 N/C – Table 35 (page 97) H13 No Ball – – F16 LED7_3 OD, TS, SL, IP Table 33 (page 94) H14 N/C – Table 35 (page 97) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description H15 LED6_1 OD, TS, SL, IP Table 33 (page 94) H16 LED6_2 OD, TS, SL, IP Table 33 (page 94) H17 LED5_3 OD, TS, SL, IP Table 33 (page 94) J1 LED0_3 OD, TS, SL, IP Table 33 (page 94) J2 N/C – Table 35 (page 97) J3 LED1_2 OD, TS, SL, IP Table 33 (page 94) J4 LED1_1 OD, TS, SL, IP Table 33 (page 94) J5 VCCD – Table 34 (page 95) J6 No Ball – – J7 No Ball – – J8 GNDD – Table 34 (page 95) J9 GNDD – Table 34 (page 95) J10 GNDD – Table 34 (page 95) J11 No Ball – – J12 No Ball – – J13 N/C – Table 35 (page 97) Ball Signal Type1 Reference for Full Description K12 No Ball – – K13 No Ball – – K14 SGND – Table 34 (page 95) K15 N/C – Table 35 (page 97) K16 LED4_1 OD, TS, SL, IP Table 33 (page 94) K17 LED4_2 OD, TS, SL, IP Table 33 (page 94) L1 MDDIS I, ST, ID Table 28 (page 87) L2 CFG_3 I, ST, ID Table 32 (page 90) L3 CFG_2 I, ST, ID Table 32 (page 90) L4 ADD_4 I, ST, ID Table 32 (page 90) L5 VCCPECL – Table 34 (page 95) L6 No Ball – – L7 No Ball – – L8 No Ball – – L9 No Ball – – L10 No Ball – – L11 No Ball – – L11 No Ball – – L13 VCCPECL – Table 34 (page 95) L14 PWRDWN I, ST, ID Table 32 (page 90) L15 SECTION I, ST, ID Table 32 (page 90) L16 ModeSel0 I, ST, ID Table 32 (page 90) L17 ModeSel1 I, ST, ID Table 32 (page 90) J14 VCCD – Table 34 (page 95) J15 LED5_1 OD, TS, SL, IP Table 33 (page 94) J16 LED5_2 OD, TS, SL, IP Table 33 (page 94) Table 33 (page 94) M1 CFG_1 I, ST, ID Table 32 (page 90) M2 ADD_3 I, ST, ID Table 32 (page 90) M3 ADD_2 I, ST, ID Table 32 (page 90) M4 TxSLEW_1 I, ST, ID Table 32 (page 90) M5 GNDPECL – Table 34 (page 95) M6 No Ball – – M7 No Ball – – M8 No Ball – – M9 No Ball – – M10 No Ball – – J17 LED4_3 OD, TS, SL, IP K1 AMDIX_EN I, ST, IP Table 32 (page 90) K2 LED0_2 OD, TS, SL, IP Table 33 (page 94) K3 LED0_1 OD, TS, SL, IP Table 33 (page 94) K4 N/C – Table 35 (page 97) K5 No Ball – – K6 No Ball – – K7 No Ball – – K8 GNDD – Table 34 (page 95) K9 GNDD – Table 34 (page 95) K10 GNDD – Table 34 (page 95) K11 No Ball – – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 M11 No Ball – – M12 No Ball – – M13 GNDPECL – Table 34 (page 95) M14 G_FX/TP I, ST, ID Table 32 (page 90) 59 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description Ball Signal Type1 Reference for Full Description M15 RESET I, ST, IP Table 32 (page 90) R2 TPFIP0 AO/AI Table 30 (page 88) M16 TCK I, ST, ID Table 31 (page 89) R3 GNDT – Table 34 (page 95) M17 TRST I, ST, IP Table 31 (page 89) R4 TPFON1 AO/AI Table 30 (page 88) N1 ADD_1 I, ST, ID Table 32 (page 90) R5 GNDT – Table 34 (page 95) N2 ADD_0 I, ST, ID Table 32 (page 90) R6 TPFIP2 AO/AI Table 30 (page 88) N3 TxSLEW_0 I, ST, ID Table 32 (page 90) R7 GNDR – Table 34 (page 95) N4 SD1 I Table 29 (page 88) R8 TPFIN3 AO/AI Table 30 (page 88) N5 SD3 I Table 29 (page 88) R9 GNDR – Table 34 (page 95) N6 VCCT – Table 34 (page 95) R10 TPFON4 AO/AI Table 30 (page 88) N7 VCCT – Table 34 (page 95) R11 GNDR – Table 34 (page 95) N8 No Ball – – R12 TPFIP6 AO/AI Table 30 (page 88) N9 VCCT – Table 34 (page 95) R13 GNDR – Table 34 (page 95) N10 No Ball – – R14 TPFOP7 AO/AI Table 30 (page 88) N11 VCCT – Table 34 (page 95) R15 GNDT – Table 34 (page 95) N12 VCCT – Table 34 (page 95) R16 TPFIP7 AO/AI Table 30 (page 88) N13 VCCR – Table 34 (page 95) R17 GNDT – Table 34 (page 95) N14 TDI I, ST, IP Table 31 (page 89) T1 TPFIN0 AO/AI Table 30 (page 88) N15 TDO O, TS Table 31 (page 89) T2 TPFOP0 AO/AI Table 30 (page 88) N16 TMS I, ST, IP Table 31 (page 89) T3 TPFOP1 AO/AI Table 30 (page 88) SD7 I Table 29 (page 88) T4 TPFIN1 AO/AI Table 30 (page 88) P1 SD_2P5V I, ST, ID Table 29 (page 88) T5 TPFIN2 AO/AI Table 30 (page 88) P2 SD0 I Table 29 (page 88) T6 TPFOP2 AO/AI Table 30 (page 88) P3 SD2 I Table 29 (page 88) T7 TPFON3 AO/AI Table 30 (page 88) P4 VCCR – Table 34 (page 95) T8 TPFIP3 AO/AI Table 30 (page 88) P5 GNDR – Table 34 (page 95) T9 TPFIP4 AO/AI Table 30 (page 88) P6 GNDR – Table 34 (page 95) T10 TPFOP4 AO/AI Table 30 (page 88) P7 VCCR – Table 34 (page 95) T11 TPFOP5 AO/AI Table 30 (page 88) P8 VCCR – Table 34 (page 95) T12 TPFIN5 AO/AI Table 30 (page 88) P9 VCCR – Table 34 (page 95) T13 TPFIN6 AO/AI Table 30 (page 88) P10 VCCR – Table 34 (page 95) T14 TPFOP6 AO/AI Table 30 (page 88) P11 VCCR – Table 34 (page 95) T15 TPFON7 AO/AI Table 30 (page 88) P12 VCCR – Table 34 (page 95) T16 TPFIN7 AO/AI Table 30 (page 88) P13 GNDR – Table 34 (page 95) T17 GNDT – Table 34 (page 95) P14 GNDT – Table 34 (page 95) U1 TPFON0 AO/AI Table 30 (page 88) P15 SD4 I Table 29 (page 88) U2 GNDT – Table 34 (page 95) P16 SD5 I Table 29 (page 88) U3 TPFIP1 AO/AI Table 30 (page 88) P17 SD6 I Table 29 (page 88) U4 GNDT – Table 34 (page 95) R1 GNDT – Table 34 (page 95) U5 TPFON2 AO/AI Table 30 (page 88) N17 60 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description U6 GNDT – Table 34 (page 95) U7 TPFOP3 AO/AI Table 30 (page 88) U8 GNDR – Table 34 (page 95) U9 TPFIN4 AO/AI Table 30 (page 88) U10 GNDT – Table 34 (page 95) U11 TPFON5 AO/AI Table 30 (page 88) U12 GNDT – Table 34 (page 95) U13 TPFIP5 AO/AI Table 30 (page 88) U14 GNDT – Table 34 (page 95) U15 TPFON6 AO/AI Table 30 (page 88) U16 GNDT – Table 34 (page 95) U17 GNDT – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 61 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.3.2 SMII BGA23 Ball List The following tables provide the SMII ball locations and signal names arranged in alphanumeric order as follows: • Table 20 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Signal Name” • Table 21 “Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 67 Table 20. Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Signal Name 62 Signal Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description ADD_0 N2 I, ST, ID Table 32 (page 90) GNDD D1 – Table 34 (page 95) ADD_1 N1 I, ST, ID Table 32 (page 90) GNDD D3 – Table 34 (page 95) ADD_2 M3 I, ST, ID Table 32 (page 90) GNDD D6 – Table 34 (page 95) ADD_3 M2 I, ST, ID Table 32 (page 90) GNDD D10 – Table 34 (page 95) D15 – Table 34 (page 95) ADD_4 L4 I, ST, ID Table 32 (page 90) GNDD AMDIX_EN K1 I, ST, IP Table 32 (page 90) GNDD E5 – Table 34 (page 95) CFG_1 M1 I, ST, ID Table 32 (page 90) GNDD E7 – Table 34 (page 95) CFG_2 L3 I, ST, ID Table 32 (page 90) GNDD E9 – Table 34 (page 95) CFG_3 L2 I, ST, ID Table 32 (page 90) GNDD E11 – Table 34 (page 95) CRS_DV0 E4 O, TS, SL Table 24 (page 82) GNDD E13 – Table 34 (page 95) CRS_DV1 C4 O, TS, SL Table 24 (page 82) GNDD E17 – Table 34 (page 95) CRS_DV2 A5 O, TS, SL Table 24 (page 82) GNDD F13 – Table 34 (page 95) CRS_DV3 B8 O, TS, SL Table 24 (page 82) GNDD H8 – Table 34 (page 95) CRS_DV4 B12 O, TS, SL Table 24 (page 82) GNDD H9 – Table 34 (page 95) CRS_DV5 D12 O, TS, SL Table 24 (page 82) GNDD H10 – Table 34 (page 95) CRS_DV6 B16 O, TS, SL Table 24 (page 82) GNDD CRS_DV7 E15 O, TS, SL Table 24 (page 82) GNDD FIFOSEL0 O, TS, SL, A12 Table 24 (page 82) ID, I, ST GNDD GNDD FIFOSEL1 A15 G_FX/TP M14 I, ST, ID – Table 34 (page 95) J9 – Table 34 (page 95) J10 – Table 34 (page 95) K8 – Table 34 (page 95) GNDD K9 – Table 34 (page 95) Table 32 (page 90) GNDD K10 – Table 34 (page 95) M5 – Table 34 (page 95) M13 – Table 34 (page 95) O, TS, SL, Table 24 (page 82) ID, I, ST GNDD A1 – Table 34 (page 95) GNDPECL GNDD A9 – Table 34 (page 95) GNDPECL GNDD B3 – Table 34 (page 95) GNDR GNDD B7 – Table 34 (page 95) J8 P5 – Table 34 (page 95) GNDR P6 – Table 34 (page 95) P13 – Table 34 (page 95) GNDD C5 – Table 34 (page 95) GNDR GNDD C13 – Table 34 (page 95) GNDR R7 – Table 34 (page 95) GNDD C17 – Table 34 (page 95) GNDR R9 – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description GNDR R11 – Table 34 (page 95) GNDR R13 – Table 34 (page 95) GNDR U8 – Table 34 (page 95) GNDT P14 – Table 34 (page 95) GNDT R1 – Table 34 (page 95) GNDT R3 – Table 34 (page 95) GNDT R5 – Table 34 (page 95) GNDT R15 – Table 34 (page 95) GNDT R17 – Table 34 (page 95) GNDT T17 – Table 34 (page 95) GNDT U2 – Table 34 (page 95) GNDT U4 – Table 34 (page 95) GNDT U6 – Table 34 (page 95) GNDT U10 – Table 34 (page 95) GNDT U12 – Table 34 (page 95) GNDT U14 – Table 34 (page 95) GNDT U16 – Table 34 (page 95) GNDT U17 – Table 34 (page 95) LED0_1 K3 OD, TS, SL, IP Table 33 (page 94) LED0_2 K2 OD, TS, SL, IP Table 33 (page 94) LED0_3 J1 OD, TS, SL, IP Table 33 (page 94) LED1_1 J4 OD, TS, SL, IP Table 33 (page 94) LED1_2 J3 OD, TS, SL, IP Table 33 (page 94) LED1_3 H1 OD, TS, SL, IP Table 33 (page 94) LED2_1 H2 OD, TS, SL, IP Table 33 (page 94) LED2_2 H3 OD, TS, SL, IP Table 33 (page 94) LED2_3 G1 OD, TS, SL, IP Table 33 (page 94) LED3_1 F2 OD, TS, SL, IP Table 33 (page 94) LED3_2 G3 OD, TS, SL, IP Table 33 (page 94) G4 OD, TS, SO, IP Table 33 (page 94) LED3_3 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Reference for Full Description Signal Ball Type1 LED4_1 K16 OD, TS, SL, IP Table 33 (page 94) LED4_2 K17 OD, TS, SL, IP Table 33 (page 94) LED4_3 J17 OD, TS, SL, IP Table 33 (page 94) LED5_1 J15 OD, TS, SL, IP Table 33 (page 94) LED5_2 J16 OD, TS, SL, IP Table 33 (page 94) LED5_3 H17 OD, TS, SL, IP Table 33 (page 94) LED6_1 H15 OD, TS, SL, IP Table 33 (page 94) LED6_2 H16 OD, TS, SL, IP Table 33 (page 94) LED6_3 G17 OD, TS, SL, IP Table 33 (page 94) LED7_1 G15 OD, TS, SL, IP Table 33 (page 94) LED7_2 F17 OD, TS, SL, IP Table 33 (page 94) LED7_3 F16 OD, TS, SL, IP Table 33 (page 94) LINKHOLD A17 O, TS, SL, Table 24 (page 82) ID, I, ST MDC0 E1 I, ST, ID Table 28 (page 87) MDC1 B10 I, ST, ID Table 28 (page 87) MDDIS L1 I, ST, ID Table 28 (page 87) MDINT0 F1 OD, TS, SL, IP Table 28 (page 87) MDINT1 C9 OD, TS, SL, IP Table 28 (page 87) MDIO0 F3 I/O, TS, SL, IP Table 28 (page 87) MDIO1 A10 I/O, TS, SL, IP Table 28 (page 87) MDIX D2 O, TS, SL, Table 32 (page 90) ID, I, ST ModeSel0 L16 I, ST, ID Table 32 (page 90) ModeSel1 L17 I, ST, ID Table 32 (page 90) N/C A4 I, ID Table 24 (page 82) N/C A7 I, ID Table 24 (page 82) N/C A14 I, ID Table 24 (page 82) N/C A16 I, ID Table 24 (page 82) 63 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal 64 Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description N/C B1 O, TS, ID Table 24 (page 82) No Ball F10 – – N/C B2 I, ID Table 24 (page 82) No Ball F11 – – N/C B4 O, TS, ID Table 24 (page 82) No Ball F12 – – N/C B9 O, TS, ID Table 24 (page 82) No Ball G6 – – N/C B11 I, ID Table 24 (page 82) No Ball G7 – – N/C B15 O, TS, ID Table 24 (page 82) No Ball G8 – – N/C B17 O, TS, ID Table 24 (page 82) No Ball G9 – – N/C C6 I, ID Table 24 (page 82) No Ball G10 – – N/C C7 O, TS, ID Table 24 (page 82) No Ball G11 – – N/C C8 O, TS, SL, Table 24 (page 82) ID No Ball G12 – – N/C C10 I, ID Table 24 (page 82) N/C C12 O, TS,ID Table 24 (page 82) N/C C14 I, ID Table 24 (page 82) N/C D4 I, ID Table 24 (page 82) N/C D11 I, ID Table 24 (page 82) N/C D16 I, ID Table 24 (page 82) N/C O, TS, SL, D17 Table 24 (page 82) ID No Ball H5 – – No Ball H6 – – No Ball H7 – – No Ball H11 – – No Ball H12 – – No Ball H13 – – No Ball J6 – – No Ball J7 – – – – N/C E3 I, ID Table 24 (page 82) No Ball J11 N/C F4 I, ID Table 24 (page 82) No Ball J12 – – K5 – – N/C F14 O, TS, ID Table 24 (page 82) No Ball N/C F15 – Table 35 (page 97) No Ball K6 – – N/C G2 – Table 35 (page 97) No Ball K7 – – N/C G5 – Table 35 (page 97) No Ball K11 – – K12 – – K13 – – N/C G14 – Table 35 (page 97) No Ball N/C G16 – Table 35 (page 97) No Ball N/C H4 – Table 35 (page 97) No Ball L6 – – N/C H14 – Table 35 (page 97) No Ball L7 – – L8 – – N/C J2 – Table 35 (page 97) No Ball N/C J13 – Table 35 (page 97) No Ball L9 – – N/C K4 – Table 35 (page 97) No Ball L10 – – N/C K15 – Table 35 (page 97) No Ball L11 – – L11 – – No ball F6 – – No Ball No ball F7 – – No Ball M6 – – No ball F8 – – No Ball M7 – – No Ball E8 – – No Ball M8 – – No Ball M9 – – No Ball M10 – – No Ball E10 No Ball F9 – – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description Signal No Ball M11 – – TPFIN2 T5 AO/AI Table 30 (page 88) No Ball M12 – – TPFIN3 R8 AO/AI Table 30 (page 88) Ball Type1 Reference for Full Description No Ball N8 – – TPFIN4 U9 AO/AI Table 30 (page 88) No Ball N10 – – TPFIN5 T12 AO/AI Table 30 (page 88) TPFIN6 T13 AO/AI Table 30 (page 88) TPFIN7 T16 AO/AI Table 30 (page 88) TPFIP0 R2 AO/AI Table 30 (page 88) Table 32 (page 90) TPFIP1 U3 AO/AI Table 30 (page 88) R6 AO/AI Table 30 (page 88) PAUSE D5 O, TS, SL, Table 32 (page 90) ID, I, ST PREASEL D7 O, TS, SL, Table 24 (page 82) ID, I, ST PWRDWN L14 I, ST, ID REFCLK0 E6 I Table 24 (page 82) TPFIP2 REFCLK1 E12 I Table 24 (page 82) TPFIP3 T8 AO/AI Table 30 (page 88) RESET M15 I, ST, IP Table 32 (page 90) TPFIP4 T9 AO/AI Table 30 (page 88) Table 24 (page 82) TPFIP5 U13 AO/AI Table 30 (page 88) R12 AO/AI Table 30 (page 88) RxData0 C2 O, TS RxData1 A3 O, TS Table 24 (page 82) TPFIP6 RxData2 B6 O, TS Table 24 (page 82) TPFIP7 R16 AO/AI Table 30 (page 88) RxData3 D9 O, TS Table 24 (page 82) TPFON0 U1 AO/AI Table 30 (page 88) RxData4 A13 O, TS Table 24 (page 82) TPFON1 R4 AO/AI Table 30 (page 88) U5 AO/AI Table 30 (page 88) T7 AO/AI Table 30 (page 88) R10 AO/AI Table 30 (page 88) RxData5 B14 O, TS Table 24 (page 82) TPFON2 RxData6 C15 O, TS Table 24 (page 82) TPFON3 RxData7 E16 O, TS Table 24 (page 82) TPFON4 SD_2P5V P1 Table 29 (page 88) TPFON5 U11 AO/AI Table 30 (page 88) U15 AO/AI Table 30 (page 88) I, ST, ID SD0 P2 I Table 29 (page 88) TPFON6 SD1 N4 I Table 29 (page 88) TPFON7 T15 AO/AI Table 30 (page 88) SD2 P3 I Table 29 (page 88) TPFOP0 T2 AO/AI Table 30 (page 88) SD3 N5 I Table 29 (page 88) TPFOP1 T3 AO/AI Table 30 (page 88) T6 AO/AI Table 30 (page 88) SD4 P15 I Table 29 (page 88) TPFOP2 SD5 P16 I Table 29 (page 88) TPFOP3 U7 AO/AI Table 30 (page 88) SD6 P17 I Table 29 (page 88) TPFOP4 T10 AO/AI Table 30 (page 88) SD7 N17 I Table 29 (page 88) TPFOP5 T11 AO/AI Table 30 (page 88) T14 AO/AI Table 30 (page 88) SECTION L15 I, ST, ID Table 32 (page 90) TPFOP6 SGND K14 – Table 34 (page 95) TPFOP7 R14 AO/AI Table 30 (page 88) SYNC0 A6 I, ID Table 24 (page 82) TRST M17 I, ST, IP Table 31 (page 89) SYNC1 C16 I, ID Table 24 (page 82) TxData0 E2 I, ID Table 24 (page 82) C3 I, ID Table 24 (page 82) TCK M16 I, ST, ID Table 31 (page 89) TxData1 TDI N14 I, ST, IP Table 31 (page 89) TxData2 B5 I, ID Table 24 (page 82) TDO N15 O, TS Table 31 (page 89) TxData3 D8 I, ID Table 24 (page 82) TMS N16 I, ST, IP Table 31 (page 89) TxData4 A11 I, ID Table 24 (page 82) B13 I, ID Table 24 (page 82) D13 I, ID Table 24 (page 82) TPFIN0 T1 AO/AI Table 30 (page 88) TxData5 TPFIN1 T4 AO/AI Table 30 (page 88) TxData6 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 65 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description TxData7 E14 I, ID Table 24 (page 82) TxSLEW_0 N3 I, ST, ID Table 32 (page 90) TxSLEW_1 M4 I, ST, ID Table 32 (page 90) F5 – Table 34 (page 95) G13 – Table 34 (page 95) VCCD VCCD 66 VCCD J5 – Table 34 (page 95) VCCD J14 – Table 34 (page 95) VCCIO A2 – Table 34 (page 95) VCCIO A8 – Table 34 (page 95) VCCIO C1 – Table 34 (page 95) VCCIO C11 – Table 34 (page 95) VCCIO D14 – Table 34 (page 95) VCCPECL L5 – Table 34 (page 95) VCCPECL L13 – Table 34 (page 95) VCCR N13 – Table 34 (page 95) VCCR P4 – Table 34 (page 95) VCCR P7 – Table 34 (page 95) VCCR P8 – Table 34 (page 95) VCCR P9 – Table 34 (page 95) VCCR P10 – Table 34 (page 95) VCCR P11 – Table 34 (page 95) VCCR P12 – Table 34 (page 95) VCCT N6 – Table 34 (page 95) VCCT N7 – Table 34 (page 95) VCCT N9 – Table 34 (page 95) VCCT N11 – Table 34 (page 95) VCCT N12 – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 21. Intel® LXT9785/LXT9785E SMII BGA23 Ball List in Alphanumeric Order by Ball Location Ball Signal Type1 Reference for Full Description Ball Signal Type1 Reference for Full Description A1 GNDD – Table 34 (page 95) B17 N/C O, TS, ID Table 24 (page 82) A2 VCCIO – Table 34 (page 95) C1 VCCIO – Table 34 (page 95) A3 RxData1 O, TS Table 24 (page 82) C2 RxData0 O, TS Table 24 (page 82) A4 N/C I, ID Table 24 (page 82) C3 TxData1 I, ID Table 24 (page 82) A5 CRS_DV2 O, TS, SL Table 24 (page 82) C4 CRS_DV1 O, TS, SL Table 24 (page 82) A6 SYNC0 I, ID Table 24 (page 82) C5 GNDD – Table 34 (page 95) A7 N/C I, ID Table 24 (page 82) C6 N/C I, ID Table 24 (page 82) A8 VCCIO – Table 34 (page 95) C7 N/C O, TS, ID Table 24 (page 82) A9 GNDD – Table 34 (page 95) C8 N/C O, TS, SL, ID Table 24 (page 82) C9 MDINT1 OD, TS, SL, Table 28 (page 87) IP A10 MDIO1 I/O, TS, SL, Table 28 (page 87) IP A11 TxData4 I, ID Table 24 (page 82) A12 FIFOSEL0 O, TS, SL, ID, I, ST Table 24 (page 82) A13 RxData4 O, TS A14 N/C A15 FIFOSEL1 C10 N/C I, ID Table 24 (page 82) C11 VCCIO – Table 34 (page 95) Table 24 (page 82) C12 N/C O, TS,ID Table 24 (page 82) I, ID Table 24 (page 82) C13 GNDD – Table 34 (page 95) O, TS, SL, ID, I, ST Table 24 (page 82) C14 N/C I, ID Table 24 (page 82) C15 RxData6 O, TS Table 24 (page 82) A16 N/C I, ID Table 24 (page 82) C16 SYNC1 I, ID Table 24 (page 82) A17 LINKHOLD O, TS, SL, ID Table 24 (page 82) C17 GNDD – Table 34 (page 95) B1 O, TS Table 24 (page 82) D1 GNDD – Table 34 (page 95) D2 MDIX O, TS, SL, ID, I, ST Table 32 (page 90) D3 GNDD – Table 34 (page 95) D4 N/C I, ID Table 24 (page 82) D5 PAUSE O, TS, SL, ID, I, ST Table 32 (page 90) D6 GNDD – Table 34 (page 95) D7 PREASEL O, TS, SL, ID, I, ST Table 24 (page 82) N/C B2 N/C – Table 24 (page 82) B3 GNDD – Table 34 (page 95) B4 N/C O, TS, ID Table 24 (page 82) B5 TxData2 I, ID Table 24 (page 82) B6 RxData2 O, TS Table 24 (page 82) B7 GNDD – Table 34 (page 95) B8 CRS_DV3 O, TS, SL Table 24 (page 82) B9 N/C O, TS, ID Table 24 (page 82) I, ST, ID Table 28 (page 87) B10 MDC1 B11 N/C I, ID Table 24 (page 82) B12 CRS_DV4 O, TS, SL Table 24 (page 82) B13 TxData5 I, ID Table 24 (page 82) B14 RxData5 O, TS Table 24 (page 82) B15 N/C O, TS, ID Table 24 (page 82) B16 CRS_DV6 O, TS, SL Table 24 (page 82) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 D8 TxData3 I, ID Table 24 (page 82) D9 RxData3 O, TS Table 24 (page 82) D10 GNDD – Table 34 (page 95) D11 N/C I, ID Table 24 (page 82) D12 CRS_DV5 O, TS, SL Table 24 (page 82) D13 TxData6 I, ID Table 24 (page 82) D14 VCCIO – Table 34 (page 95) D15 GNDD – Table 34 (page 95) 67 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description D16 N/C I, ID Table 24 (page 82) D17 N/C O, TS, SL, ID Table 24 (page 82) Type1 F17 LED7_2 OD, TS, SL, Table 33 (page 94) IP G1 LED2_3 OD, TS, SL, Table 33 (page 94) IP G2 N/C – G3 LED3_2 OD, TS, SL, Table 33 (page 94) IP G4 LED3_3 OD, TS, SO, IP Table 33 (page 94) E1 MDC0 I, ST, ID Table 28 (page 87) E2 TxData0 I, ID Table 24 (page 82) E3 N/C I, ID Table 24 (page 82) E4 CRS_DV0 O, TS, SL Table 24 (page 82) E5 GNDD – Table 34 (page 95) E6 REFCLK0 I Table 24 (page 82) G5 N/C – Table 35 (page 97) E7 GNDD – Table 34 (page 95) G6 No Ball – – E8 No Ball – – G7 No Ball – – Table 34 (page 95) G8 No Ball – – G9 No Ball – – G10 No Ball – – E9 GNDD – E10 No Ball 68 Reference for Full Description Ball Signal Table 35 (page 97) E11 GNDD – Table 34 (page 95) E12 REFCLK1 I Table 24 (page 82) G11 No Ball – – – – E13 GNDD – Table 34 (page 95) G12 No Ball E14 TxData7 I, ID Table 24 (page 82) G13 VCCD – Table 34 (page 95) E15 CRS_DV7 O, TS, SL Table 24 (page 82) G14 N/C – Table 35 (page 97) E16 RxData7 O, TS Table 24 (page 82) G15 LED7_1 OD, TS, SL, Table 33 (page 94) IP E17 GNDD – Table 34 (page 95) G16 N/C – G17 LED6_3 OD, TS, SL, Table 33 (page 94) IP Table 35 (page 97) F1 MDINT0 OD, TS, SL, Table 28 (page 87) IP F2 LED3_1 OD, TS, SL, Table 33 (page 94) IP H1 LED1_3 OD, TS, SL, Table 33 (page 94) IP F3 MDIO0 I/O, TS, SL, Table 28 (page 87) IP H2 LED2_1 OD, TS, SL, Table 33 (page 94) IP F4 N/C I, ID Table 24 (page 82) F5 VCCD – Table 34 (page 95) H3 LED2_2 OD, TS, SL, Table 33 (page 94) IP F6 No ball – – H4 N/C – Table 35 (page 97) F7 No ball – – H5 No Ball – – F8 No ball – – H6 No Ball – – F9 No Ball – – H7 No Ball – – F10 No Ball – – H8 GNDD – Table 34 (page 95) F11 No Ball – – H9 GNDD – Table 34 (page 95) F12 No Ball – – H10 GNDD – Table 34 (page 95) F13 GNDD – Table 34 (page 95) H11 No Ball – – F14 N/C O, TS, ID Table 24 (page 82) H12 No Ball – – F15 N/C – Table 35 (page 97) H13 No Ball – – F16 LED7_3 OD, TS, SL, Table 33 (page 94) IP H14 N/C – Table 35 (page 97) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Reference for Full Description Ball Signal Type1 H15 LED6_1 OD, TS, SL, Table 33 (page 94) IP H16 LED6_2 OD, TS, SL, Table 33 (page 94) IP H17 LED5_3 OD, TS, SL, Table 33 (page 94) IP Ball Signal Type1 Reference for Full Description K12 No Ball – – K13 No Ball – – K14 SGND – Table 34 (page 95) K15 N/C – Table 35 (page 97) K16 LED4_1 OD, TS, SL, Table 33 (page 94) IP K17 LED4_2 OD, TS, SL, Table 33 (page 94) IP J1 LED0_3 OD, TS, SL, Table 33 (page 94) IP J2 N/C – J3 LED1_2 OD, TS, SL, Table 33 (page 94) IP L1 MDDIS I, ST, ID Table 28 (page 87) L2 CFG_3 I, ST, ID Table 32 (page 90) J4 LED1_1 OD, TS, SL, Table 33 (page 94) IP L3 CFG_2 I, ST, ID Table 32 (page 90) J5 VCCD – L4 ADD_4 I, ST, ID Table 32 (page 90) L5 VCCPECL – Table 34 (page 95) L6 No Ball – – L7 No Ball – – L8 No Ball – – L9 No Ball – – L10 No Ball – – L11 No Ball – – L11 No Ball Table 35 (page 97) Table 34 (page 95) J6 No Ball – – J7 No Ball – – J8 GNDD – Table 34 (page 95) J9 GNDD – Table 34 (page 95) J10 GNDD – Table 34 (page 95) J11 No Ball – – J12 No Ball – – J13 N/C – Table 35 (page 97) J14 VCCD – Table 34 (page 95) J15 LED5_1 OD, TS, SL, Table 33 (page 94) IP J16 LED5_2 OD, TS, SL, Table 33 (page 94) IP – – L13 VCCPECL – Table 34 (page 95) L14 PWRDWN I, ST, ID Table 32 (page 90) L15 SECTION I, ST, ID Table 32 (page 90) L16 ModeSel0 I, ST, ID Table 32 (page 90) L17 ModeSel1 I, ST, ID Table 32 (page 90) M1 CFG_1 I, ST, ID Table 32 (page 90) I, ST, ID Table 32 (page 90) J17 LED4_3 OD, TS, SL, Table 33 (page 94) IP K1 AMDIX_EN I, ST, IP Table 32 (page 90) M2 ADD_3 K2 LED0_2 OD, TS, SL, Table 33 (page 94) IP M3 ADD_2 I, ST, ID Table 32 (page 90) M4 TxSLEW_1 I, ST, ID Table 32 (page 90) K3 LED0_1 OD, TS, SL, Table 33 (page 94) IP M5 GNDPECL – Table 34 (page 95) K4 N/C – Table 35 (page 97) M6 No Ball – – K5 No Ball – – M7 No Ball – – M8 No Ball – – M9 No Ball – – M10 No Ball – – K6 No Ball – – K7 No Ball – – K8 GNDD – Table 34 (page 95) K9 GNDD – Table 34 (page 95) K10 GNDD – Table 34 (page 95) K11 No Ball – – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 M11 No Ball – – M12 No Ball – – M13 GNDPECL – Table 34 (page 95) M14 G_FX/TP I, ST, ID Table 32 (page 90) 69 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 70 Ball Signal Type1 Reference for Full Description Ball Signal Type1 Reference for Full Description M15 RESET I, ST, IP Table 32 (page 90) R2 TPFIP0 AO/AI Table 30 (page 88) M16 TCK I, ST, ID Table 31 (page 89) R3 GNDT – Table 34 (page 95) M17 TRST I, ST, IP Table 31 (page 89) R4 TPFON1 AO/AI Table 30 (page 88) N1 ADD_1 I, ST, ID Table 32 (page 90) R5 GNDT – Table 34 (page 95) N2 ADD_0 I, ST, ID Table 32 (page 90) R6 TPFIP2 AO/AI Table 30 (page 88) N3 TxSLEW_0 I, ST, ID Table 32 (page 90) R7 GNDR – Table 34 (page 95) N4 SD1 I Table 29 (page 88) R8 TPFIN3 AO/AI Table 30 (page 88) GNDR N5 SD3 I Table 29 (page 88) R9 – Table 34 (page 95) N6 VCCT – Table 34 (page 95) R10 TPFON4 AO/AI Table 30 (page 88) N7 VCCT – Table 34 (page 95) R11 GNDR – Table 34 (page 95) N8 No Ball – – R12 TPFIP6 AO/AI Table 30 (page 88) N9 VCCT – Table 34 (page 95) R13 GNDR – Table 34 (page 95) N10 No Ball – – R14 TPFOP7 AO/AI Table 30 (page 88) N11 VCCT – Table 34 (page 95) R15 GNDT – Table 34 (page 95) N12 VCCT – Table 34 (page 95) R16 TPFIP7 AO/AI Table 30 (page 88) N13 VCCR – Table 34 (page 95) R17 GNDT – Table 34 (page 95) N14 TDI I, ST, IP Table 31 (page 89) T1 TPFIN0 AO/AI Table 30 (page 88) N15 TDO O, TS Table 31 (page 89) T2 TPFOP0 AO/AI Table 30 (page 88) N16 TMS I, ST, IP Table 31 (page 89) T3 TPFOP1 AO/AI Table 30 (page 88) N17 SD7 I Table 29 (page 88) T4 TPFIN1 AO/AI Table 30 (page 88) P1 SD_2P5V I, ST, ID Table 29 (page 88) T5 TPFIN2 AO/AI Table 30 (page 88) P2 SD0 I Table 29 (page 88) T6 TPFOP2 AO/AI Table 30 (page 88) P3 SD2 I Table 29 (page 88) T7 TPFON3 AO/AI Table 30 (page 88) P4 VCCR – Table 34 (page 95) T8 TPFIP3 AO/AI Table 30 (page 88) P5 GNDR – Table 34 (page 95) T9 TPFIP4 AO/AI Table 30 (page 88) P6 GNDR – Table 34 (page 95) T10 TPFOP4 AO/AI Table 30 (page 88) P7 VCCR – Table 34 (page 95) T11 AO/AI Table 30 (page 88) P8 VCCR – Table 34 (page 95) T12 TPFIN5 AO/AI Table 30 (page 88) P9 VCCR – Table 34 (page 95) T13 TPFIN6 AO/AI Table 30 (page 88) P10 VCCR – Table 34 (page 95) T14 TPFOP6 AO/AI Table 30 (page 88) P11 VCCR – Table 34 (page 95) T15 TPFON7 AO/AI Table 30 (page 88) P12 VCCR – Table 34 (page 95) T16 TPFIN7 AO/AI Table 30 (page 88) P13 GNDR – Table 34 (page 95) T17 GNDT – Table 34 (page 95) P14 GNDT – Table 34 (page 95) U1 TPFON0 AO/AI Table 30 (page 88) P15 SD4 I Table 29 (page 88) U2 GNDT – Table 34 (page 95) P16 SD5 I Table 29 (page 88) U3 TPFIP1 AO/AI Table 30 (page 88) P17 SD6 I Table 29 (page 88) U4 GNDT – Table 34 (page 95) R1 – Table 34 (page 95) U5 TPFON2 AO/AI Table 30 (page 88) GNDT TPFOP5 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Type1 Reference for Full Description U6 GNDT – Table 34 (page 95) U7 TPFOP3 AO/AI Table 30 (page 88) U8 GNDR – Table 34 (page 95) U9 TPFIN4 AO/AI Table 30 (page 88) U10 GNDT – Table 34 (page 95) U11 TPFON5 AO/AI Table 30 (page 88) U12 GNDT – Table 34 (page 95) U13 TPFIP5 AO/AI Table 30 (page 88) U14 GNDT – Table 34 (page 95) U15 TPFON6 AO/AI Table 30 (page 88) U16 GNDT – Table 34 (page 95) U17 GNDT – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 71 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.3.3 SS-SMII BGA23 Ball List The following tables provide the SS-SMII ball locations and signal names arranged in alphanumeric order as follows: • Table 22 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name” • Table 23 “Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location” on page 77 Table 22. Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Signal Name Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description ADD_0 N2 I Table 29 (page 88) GNDD C17 – Table 34 (page 95) ADD_1 N1 I, ST, ID Table 29 (page 88) GNDD D1 – Table 34 (page 95) ADD_2 M3 – – GNDD D3 – Table 34 (page 95) ADD_3 M2 – – GNDD D6 – Table 34 (page 95) ADD_4 L4 – – GNDD D10 – Table 34 (page 95) AMDIX_EN K1 – – GNDD D15 – Table 34 (page 95) CFG_1 M1 – – CFG_2 L3 – – CFG_3 L2 – CRS_DV0 E4 CRS_DV1 Signal 72 GNDD E5 OD, TS, SL, IP Table 33 (page 94) – GNDD E7 OD, TS, SL, IP Table 33 (page 94) OD, TS, SL, IP Table 33 (page 94) GNDD E9 OD, TS, SL, IP Table 33 (page 94) C4 – Table 34 (page 95) CRS_DV2 A5 I, ST, ID Table 32 (page 90) GNDD E11 OD, TS, SL, IP Table 33 (page 94) CRS_DV3 B8 – Table 34 (page 95) GNDD E13 OD, TS, SL, IP Table 33 (page 94) CRS_DV4 B12 – Table 34 (page 95) CRS_DV5 D12 – Table 34 (page 95) GNDD E17 OD, TS, SL, IP Table 33 (page 94) CRS_DV6 B16 – Table 34 (page 95) GNDD F13 I, ST, ID Table 28 (page 87) CRS_DV7 E15 OD, TS, SO, IP Table 33 (page 94) GNDD H8 – Table 24 (page 82) GNDD H9 I, ID Table 24 (page 82) FIFOSEL0 A12 O, TS, SL, I, ST Table 24 (page 82) GNDD H10 I, ID Table 24 (page 82) FIFOSEL1 A15 O, TS, SL, I, ST Table 24 (page 82) G_FX/TP M14 O, TS GNDD J8 – – GNDD J9 – – Table 24 (page 82) GNDD J10 – – GNDD A1 I, ST, ID Table 32 (page 90) GNDD K8 – – GNDD A9 I, ST, ID Table 32 (page 90) GNDD K9 – – GNDD B3 – Table 34 (page 95) GNDD K10 – – GNDD B7 – Table 34 (page 95) GNDPECL M5 Table 32 (page 90) GNDD C5 – Table 34 (page 95) GNDPECL M13 O, TS GNDD C13 – Table 34 (page 95) GNDR P5 I, ST, ID AO/AI Table 24 (page 82) Table 30 (page 88) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description GNDR P6 AO/AI Table 30 (page 88) LED4_3 J17 – – GNDR P13 AO/AI Table 30 (page 88) LED5_1 J15 – – GNDR R7 AO/AI Table 30 (page 88) LED5_2 J16 – – GNDR R9 AO/AI Table 30 (page 88) LED5_3 H17 – Table 35 (page 97) GNDR R11 AO/AI Table 30 (page 88) LED6_1 H15 – Table 35 (page 97) GNDR R13 AO/AI Table 30 (page 88) LED6_2 H16 – Table 35 (page 97) GNDR U8 Table 34 (page 95) LED6_3 G17 – Table 24 (page 82) GNDT P14 AO/AI Table 30 (page 88) LED7_1 G15 I, ID Table 24 (page 82) GNDT R1 AO/AI Table 30 (page 88) LED7_2 Table 28 (page 87) GNDT R3 AO/AI Table 30 (page 88) I/O, TS, F17 SL, IP GNDT R5 AO/AI Table 30 (page 88) LED7_3 F16 I/O, TS, SL, IP Table 28 (page 87) GNDT R15 O, TS, SL, Table 24 (page 82) ID LINKHOLD A17 O, TS, SL Table 24 (page 82) GNDT R17 I, ID Table 24 (page 82) MDC0 E1 – Table 34 (page 95) GNDT T17 – Table 34 (page 95) MDC1 B10 – Table 34 (page 95) GNDT U2 Table 34 (page 95) – – MDDIS L1 – – Table 33 (page 94) U4 – Table 34 (page 95) MDINT0 F1 OD, TS, SL, IP GNDT U6 – Table 34 (page 95) MDINT1 C9 – Table 34 (page 95) GNDT U10 – Table 34 (page 95) GNDT U12 – Table 34 (page 95) MDIO0 F3 OD, TS, SL, IP Table 33 (page 94) GNDT U14 – Table 34 (page 95) MDIO1 A10 O, TS, SL Table 24 (page 82) GNDT U16 – Table 34 (page 95) MDIX D2 Table 34 (page 95) GNDT U17 – Table 34 (page 95) ModeSel0 L16 – – L17 – – GNDT I, ST LED0_1 K3 – – ModeSel1 LED0_2 K2 – – N/C A3 I, ST, ID Table 32 (page 90) LED0_3 J1 – Table 35 (page 97) N/C A4 I, ST, ID Table 32 (page 90) LED1_1 J4 – Table 35 (page 97) N/C A7 I, ST, ID Table 32 (page 90) A13 O, TS, SL Table 24 (page 82) LED1_2 J3 – Table 35 (page 97) N/C LED1_3 H1 I, ID Table 24 (page 82) N/C A14 O, TS, SL Table 24 (page 82) LED2_1 H2 O, TS, SL, Table 24 (page 82) ID N/C A16 O, TS, SL Table 24 (page 82) N/C B2 – Table 34 (page 95) LED2_2 H3 I, ID Table 24 (page 82) N/C B6 – Table 34 (page 95) LED2_3 G1 O, TS, SL, Table 32 (page 90) ID N/C B11 – Table 34 (page 95) B14 – Table 34 (page 95) F2 OD, TS, SL, IP N/C LED3_1 Table 33 (page 94) N/C C2 – Table 34 (page 95) LED3_2 G3 I, ST, ID Table 32 (page 90) N/C C6 – Table 34 (page 95) LED3_3 G4 – Table 24 (page 82) N/C C8 – Table 34 (page 95) LED4_1 K16 – – N/C C10 – Table 34 (page 95) LED4_2 K17 – – N/C C14 – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 73 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description N/C C15 – Table 34 (page 95) N/C D4 – Table 34 (page 95) N/C D9 – Table 34 (page 95) N/C D11 – N/C N/C Ball Type1 No Ball G10 No Ball G11 I, ID Table 34 (page 95) No Ball G12 D16 – Table 34 (page 95) No Ball H5 – Table 24 (page 82) OD, TS, E16 SL, IP Table 33 (page 94) No Ball H6 I, ID Table 24 (page 82) No Ball H7 O, TS, SL, Table 24 (page 82) ID N/C F4 OD, TS, SL, IP Table 33 (page 94) N/C F15 OD, TS, SL, IP Table 28 (page 87) N/C G2 I, ST, ID N/C G5 I, ID N/C N/C O, TS, SL, Table 24 (page 82) ID Table 24 (page 82) O, TS, SL, Table 24 (page 82) ID No Ball H11 – Table 24 (page 82) No Ball H12 I, ID Table 24 (page 82) Table 32 (page 90) No Ball H13 – Table 35 (page 97) Table 24 (page 82) No Ball G14 – Table 24 (page 82) G16 – Table 24 (page 82) N/C H4 N/C H14 – I, ID J6 – Table 35 (page 97) No Ball J7 – – No Ball J11 Table 24 (page 82) No Ball J12 – – Table 35 (page 97) No Ball K5 – – N/C J2 – Table 35 (page 97) No Ball K6 – – N/C J13 – – No Ball K7 – – N/C K4 – – No Ball K11 – – N/C K15 – – No Ball K12 – – No Ball K13 – – No ball 74 Reference for Full Description Signal F6 OD, TS, SL, IP Table 33 (page 94) Table 33 (page 94) Table 33 (page 94) No Ball L6 – – No Ball L7 – – No Ball L8 – – No Ball L9 – – No Ball L10 – – No Ball L11 – – No Ball L11 – – No Ball M6 I Table 24 (page 82) No Ball M7 I Table 24 (page 82) No ball F7 OD, TS, SL, IP No ball F8 OD, TS, SL, IP No Ball E8 OD, TS, SL, IP Table 33 (page 94) No Ball E10 OD, TS, SL, IP Table 33 (page 94) No Ball F9 OD, TS, SL, IP Table 33 (page 94) No Ball OD, TS, F10 SL, IP Table 33 (page 94) No Ball M8 I, ST, IP Table 32 (page 90) No Ball F11 I, ST, ID Table 28 (page 87) No Ball M9 I, ID Table 24 (page 82) No Ball F12 I, ST, ID Table 28 (page 87) No Ball M10 O, TS Table 24 (page 82) No Ball M11 O, TS Table 24 (page 82) No Ball M12 O, TS Table 24 (page 82) No Ball G6 I, ID Table 24 (page 82) No Ball G7 O, TS, SL, ID Table 24 (page 82) No Ball N8 I Table 29 (page 88) No Ball G8 – Table 24 (page 82) No Ball N10 I, ST, ID Table 32 (page 90) No Ball G9 I, ID Table 24 (page 82) PAUSE D5 Table 34 (page 95) I, ST Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Ball Type1 Reference for Full Description Signal Ball Type1 Reference for Full Description PREASEL D7 Table 34 (page 95) TPFIN7 T16 – Table 34 (page 95) PWRDWN L14 – – TPFIP0 R2 AO/AI Table 30 (page 88) REFCLK0 E6 OD, TS, SL, IP Table 33 (page 94) TPFIP1 U3 – Table 34 (page 95) TPFIP2 R6 AO/AI Table 30 (page 88) REFCLK1 E12 OD, TS, SL, IP Table 33 (page 94) TPFIP3 T8 I, ST, ID Table 32 (page 90) RESET M15 O, TS, ID Table 24 (page 82) TPFIP4 T9 I, ID Table 24 (page 82) I, ST RxCLK0 E3 – Table 34 (page 95) TPFIP5 U13 – Table 34 (page 95) RxData0 B1 I, ST, ID Table 32 (page 90) TPFIP6 R12 AO/AI Table 30 (page 88) R16 I, ID Table 24 (page 82) RxData1 B4 – Table 34 (page 95) TPFIP7 RxData2 C7 – Table 34 (page 95) TPFON0 U1 – Table 34 (page 95) RxData3 B9 – Table 34 (page 95) TPFON1 R4 AO/AI Table 30 (page 88) C12 – Table 34 (page 95) TPFON2 U5 – Table 34 (page 95) T7 I, ST, ID Table 32 (page 90) RxData4 RxData5 B15 – Table 34 (page 95) TPFON3 RxData6 B17 – Table 34 (page 95) TPFON4 R10 AO/AI Table 30 (page 88) RxData7 F14 OD, TS, SL, IP Table 28 (page 87) TPFON5 U11 – Table 34 (page 95) TPFON6 U15 – Table 34 (page 95) SD_2P5V P1 AO/AI Table 30 (page 88) TPFON7 T15 – Table 34 (page 95) SD0 P2 AO/AI Table 30 (page 88) TPFOP0 T2 I, ID Table 24 (page 82) SD1 N4 I Table 29 (page 88) TPFOP1 T3 I, ID Table 24 (page 82) SD2 P3 AO/AI Table 30 (page 88) TPFOP2 T6 I, ID Table 24 (page 82) SD3 N5 I Table 29 (page 88) TPFOP3 U7 – Table 34 (page 95) SD4 P15 AO/AI Table 30 (page 88) TPFOP4 T10 I, ID Table 24 (page 82) SD5 P16 AO/AI Table 30 (page 88) TPFOP5 T11 – Table 34 (page 95) SD6 P17 AO/AI Table 30 (page 88) TPFOP6 T14 – Table 34 (page 95) SD7 N17 AO/AI Table 30 (page 88) TPFOP7 R14 I, ST, IP Table 31 (page 89) SECTION L15 – – TRST M17 O, TS, ID Table 24 (page 82) SGND K14 – – TxCLK1 D17 – Table 34 (page 95) TCK M16 O, TS, ID Table 24 (page 82) TxData0 E2 – Table 34 (page 95) TDI N14 O, TS Table 31 (page 89) TxData1 C3 – Table 34 (page 95) TDO N15 I, ST, IP Table 31 (page 89) TxData2 B5 – Table 34 (page 95) TMS N16 AO/AI Table 30 (page 88) TxData3 D8 – Table 34 (page 95) TPFIN0 T1 I, ID Table 24 (page 82) TxData4 A11 O, TS, SL Table 24 (page 82) TPFIN1 T4 I, ID Table 24 (page 82) TxData5 B13 – Table 34 (page 95) TPFIN2 T5 I, ID Table 24 (page 82) TxData6 D13 – Table 34 (page 95) TPFIN3 R8 AO/AI Table 30 (page 88) TPFIN4 U9 – Table 34 (page 95) TxData7 E14 OD, TS, SL, IP Table 33 (page 94) TPFIN5 T12 – Table 34 (page 95) TxSLEW_0 N3 I Table 29 (page 88) TPFIN6 T13 – Table 34 (page 95) TxSLEW_1 M4 O, TS, SL, Table 32 (page 90) ID Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 75 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal TxSYNC0 TxSYNC1 VCCD VCCD A6 I, ST, IP C16 – F5 OD, TS, SL, IP G13 I, ID Reference for Full Description Table 32 (page 90) Table 34 (page 95) Table 33 (page 94) Table 24 (page 82) VCCD J5 – Table 35 (page 97) VCCD J14 – – VCCIO A2 I, ST, ID Table 32 (page 90) VCCIO A8 I, ST, ID Table 32 (page 90) VCCIO C1 – Table 34 (page 95) VCCIO C11 – Table 34 (page 95) VCCIO D14 – Table 34 (page 95) VCCPECL 76 Ball Type1 L5 – – VCCPECL L13 – – VCCR N13 I, ST, IP Table 31 (page 89) VCCR P4 AO/AI Table 30 (page 88) VCCR P7 AO/AI Table 30 (page 88) VCCR P8 AO/AI Table 30 (page 88) VCCR P9 AO/AI Table 30 (page 88) VCCR P10 AO/AI Table 30 (page 88) VCCR P11 AO/AI Table 30 (page 88) VCCR P12 AO/AI Table 30 (page 88) VCCT N6 I Table 29 (page 88) VCCT N7 I Table 29 (page 88) VCCT N9 I Table 29 (page 88) VCCT N11 – Table 34 (page 95) VCCT N12 I, ST, ID Table 31 (page 89) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 23. Intel® LXT9785/LXT9785E SS-SMII BGA23 Ball List in Alphanumeric Order by Ball Location Ball Symbol Type1 Reference for Full Description Ball Symbol Type1 Reference for Full Description A1 GNDD – Table 34 (page 95) B17 RxData6 O, TS, ID Table 24 (page 82) A2 VCCIO – Table 34 (page 95) C1 VCCIO – Table 34 (page 95) A3 N/C O, TS Table 24 (page 82) C2 N/C – Table 24 (page 82) A4 N/C I, ID Table 24 (page 82) C3 TxData1 I, ID Table 24 (page 82) A5 CRS_DV2 O, TS, SL Table 24 (page 82) C4 CRS_DV1 O, TS, SL Table 24 (page 82) A6 TxSYNC0 I, ID Table 24 (page 82) C5 GNDD – Table 34 (page 95) A7 N/C I, ID Table 24 (page 82) C6 N/C I, ID Table 24 (page 82) A8 VCCIO – Table 34 (page 95) C7 RxData2 O, TS, ID Table 24 (page 82) A9 GNDD – Table 34 (page 95) C8 N/C O, TS, SL, Table 24 (page 82) ID A10 MDIO1 I/O, TS, SL, IP Table 28 (page 87) C9 MDINT1 I, ID Table 24 (page 82) OD, TS, SL, IP Table 28 (page 87) A11 TxData4 O, TS, SL, Table 24 (page 82) ID, I, ST C10 N/C I, ID Table 24 (page 82) A12 FIFOSEL0 C11 VCCIO – Table 34 (page 95) A13 N/C O, TS Table 24 (page 82) C12 RxData4 O, TS,ID Table 24 (page 82) A14 N/C I, ID Table 24 (page 82) C13 GNDD – Table 34 (page 95) A15 FIFOSEL1 O, TS, SL, Table 24 (page 82) ID, I, ST C14 N/C I, ID Table 24 (page 82) C15 N/C O, TS Table 24 (page 82) A16 N/C I, ID C16 TxSYNC1 I, ID Table 24 (page 82) A17 LINKHOLD O, TS, SL, Table 24 (page 82) ID, I, ST C17 GNDD – Table 34 (page 95) B1 O, TS D1 GNDD – Table 34 (page 95) D2 MDIX O, TS, SL, Table 32 (page 90) ID, I, ST D3 GNDD – Table 34 (page 95) D4 N/C I, ID Table 24 (page 82) D5 PAUSE O, TS, SL, Table 32 (page 90) ID, I, ST D6 GNDD – D7 PREASEL O, TS, SL, Table 24 (page 82) ID, I, ST RxData0 Table 24 (page 82) Table 24 (page 82) B2 N/C I, ID Table 24 (page 82) B3 GNDD – Table 34 (page 95) B4 RxData1 O, TS, ID Table 24 (page 82) B5 TxData2 I, ID Table 24 (page 82) B6 N/C O, TS Table 24 (page 82) B7 GNDD – Table 34 (page 95) B8 CRS_DV3 O, TS, SL Table 24 (page 82) B9 RxData3 O, TS, ID Table 24 (page 82) I, ST, ID Table 28 (page 87) B10 MDC1 B11 N/C I, ID Table 24 (page 82) B12 CRS_DV4 O, TS, SL Table 24 (page 82) B13 TxData5 I, ID Table 24 (page 82) B14 N/C O, TS Table 24 (page 82) B15 RxData5 O, TS, ID Table 24 (page 82) B16 CRS_DV6 O, TS, SL Table 24 (page 82) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Table 34 (page 95) D8 TxData3 I, ID Table 24 (page 82) D9 N/C O, TS Table 24 (page 82) D10 GNDD – Table 34 (page 95) D11 N/C I, ID Table 24 (page 82) D12 CRS_DV5 O, TS, SL Table 24 (page 82) D13 TxData6 I, ID Table 24 (page 82) D14 VCCIO – Table 34 (page 95) D15 GNDD – Table 34 (page 95) 77 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Symbol Type1 Reference for Full Description D16 N/C I, ID Table 24 (page 82) D17 TxCLK1 O, TS, SL, ID Table 24 (page 82) Type1 Reference for Full Description F17 LED7_2 OD, TS, SL, IP Table 33 (page 94) G1 LED2_3 OD, TS, SL, IP Table 33 (page 94) G2 N/C – Table 35 (page 97) G3 LED3_2 OD, TS, SL, IP Table 33 (page 94) G4 LED3_3 OD, TS, SO, IP Table 33 (page 94) E1 MDC0 I, ST, ID Table 28 (page 87) E2 TxData0 I, ID Table 24 (page 82) E3 RxCLK0 I, ID Table 24 (page 82) E4 CRS_DV0 O, TS, SL Table 24 (page 82) E5 GNDD – Table 34 (page 95) E6 REFCLK0 I Table 24 (page 82) G5 N/C – Table 35 (page 97) E7 GNDD – Table 34 (page 95) G6 No Ball – – E8 No Ball – – G7 No Ball – – Table 34 (page 95) G8 No Ball – – G9 No Ball – – G10 No Ball – – E9 GNDD – E10 No Ball 78 Ball Symbol E11 GNDD – Table 34 (page 95) E12 REFCLK1 I Table 24 (page 82) G11 No Ball – – – – E13 GNDD – Table 34 (page 95) G12 No Ball E14 TxData7 I, ID Table 24 (page 82) G13 VCCD – Table 34 (page 95) E15 CRS_DV7 O, TS, SL Table 24 (page 82) G14 N/C – Table 35 (page 97) E16 N/C O, TS Table 24 (page 82) G15 LED7_1 OD, TS, SL, IP Table 33 (page 94) E17 GNDD – Table 34 (page 95) G16 N/C – Table 35 (page 97) G17 LED6_3 OD, TS, SL, IP Table 33 (page 94) F1 MDINT0 OD, TS, SL, IP Table 28 (page 87) F2 LED3_1 OD, TS, SL, IP Table 33 (page 94) F3 MDIO0 I/O, TS, SL, IP Table 28 (page 87) F4 N/C I, ID Table 24 (page 82) F5 VCCD – Table 34 (page 95) F6 No ball – F7 No ball F8 No ball F9 H1 LED1_3 OD, TS, SL, IP Table 33 (page 94) H2 LED2_1 OD, TS, SL, IP Table 33 (page 94) H3 LED2_2 OD, TS, SL, IP Table 33 (page 94) – H4 N/C – Table 35 (page 97) – – H5 No Ball – – – – H6 No Ball – – No Ball – – H7 No Ball – – F10 No Ball – – H8 GNDD – Table 34 (page 95) F11 No Ball – – H9 GNDD – Table 34 (page 95) F12 No Ball – – H10 GNDD – Table 34 (page 95) F13 GNDD – Table 34 (page 95) H11 No Ball – – F14 RxData7 O, TS, ID Table 24 (page 82) H12 No Ball – – F15 N/C – Table 35 (page 97) H13 No Ball – – F16 LED7_3 OD, TS, SL, IP Table 33 (page 94) H14 N/C – Table 35 (page 97) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Symbol Type1 Reference for Full Description H15 LED6_1 OD, TS, SL, IP Table 33 (page 94) H16 LED6_2 OD, TS, SL, IP Table 33 (page 94) H17 LED5_3 OD, TS, SL, IP Table 33 (page 94) J1 LED0_3 OD, TS, SL, IP Table 33 (page 94) J2 N/C – Table 35 (page 97) J3 LED1_2 OD, TS, SL, IP Table 33 (page 94) J4 LED1_1 OD, TS, SL, IP Table 33 (page 94) J5 VCCD – Table 34 (page 95) J6 No Ball – – J7 No Ball – – J8 GNDD – Table 34 (page 95) J9 GNDD – Table 34 (page 95) J10 GNDD – Table 34 (page 95) J11 No Ball – – J12 No Ball – – J13 N/C – Table 35 (page 97) Ball Symbol Type1 Reference for Full Description K12 No Ball – – K13 No Ball – – K14 SGND – Table 34 (page 95) K15 N/C – Table 35 (page 97) K16 LED4_1 OD, TS, SL, IP Table 33 (page 94) K17 LED4_2 OD, TS, SL, IP Table 33 (page 94) L1 MDDIS I, ST, ID Table 28 (page 87) L2 CFG_3 I, ST, ID Table 32 (page 90) L3 CFG_2 I, ST, ID Table 32 (page 90) L4 ADD_4 I, ST, ID Table 32 (page 90) L5 VCCPECL – Table 34 (page 95) L6 No Ball – – L7 No Ball – – L8 No Ball – – L9 No Ball – – L10 No Ball – – L11 No Ball – – L11 No Ball – – L13 VCCPECL – Table 34 (page 95) L14 PWRDWN I, ST, ID Table 32 (page 90) L15 SECTION I, ST, ID Table 32 (page 90) L16 ModeSel0 I, ST, ID Table 32 (page 90) L17 ModeSel1 I, ST, ID Table 32 (page 90) J14 VCCD – Table 34 (page 95) J15 LED5_1 OD, TS, SL, IP Table 33 (page 94) J16 LED5_2 OD, TS, SL, IP Table 33 (page 94) Table 33 (page 94) M1 CFG_1 I, ST, ID Table 32 (page 90) M2 ADD_3 I, ST, ID Table 32 (page 90) M3 ADD_2 I, ST, ID Table 32 (page 90) M4 TxSLEW_1 I, ST, ID Table 32 (page 90) M5 GNDPECL – Table 34 (page 95) M6 No Ball – – M7 No Ball – – M8 No Ball – – M9 No Ball – – M10 No Ball – – J17 LED4_3 OD, TS, SL, IP K1 AMDIX_EN I, ST, IP Table 32 (page 90) K2 LED0_2 OD, TS, SL, IP Table 33 (page 94) K3 LED0_1 OD, TS, SL, IP Table 33 (page 94) K4 N/C – Table 35 (page 97) K5 No Ball – – K6 No Ball – – K7 No Ball – – K8 GNDD – Table 34 (page 95) K9 GNDD – Table 34 (page 95) K10 GNDD – Table 34 (page 95) K11 No Ball – – Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 M11 No Ball – – M12 No Ball – – M13 GNDPECL – Table 34 (page 95) M14 G_FX/TP I, ST, ID Table 32 (page 90) 79 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 80 Ball Symbol Type1 Reference for Full Description Ball Symbol Type1 Reference for Full Description M15 RESET I, ST, IP Table 32 (page 90) R2 TPFIP0 AO/AI Table 30 (page 88) M16 TCK I, ST, ID Table 31 (page 89) R3 GNDT – Table 34 (page 95) M17 TRST I, ST, IP Table 31 (page 89) R4 TPFON1 AO/AI Table 30 (page 88) N1 ADD_1 I, ST, ID Table 32 (page 90) R5 GNDT – Table 34 (page 95) N2 ADD_0 I, ST, ID Table 32 (page 90) R6 TPFIP2 AO/AI Table 30 (page 88) N3 TxSLEW_0 I, ST, ID Table 32 (page 90) R7 GNDR – Table 34 (page 95) N4 SD1 I Table 29 (page 88) R8 TPFIN3 AO/AI Table 30 (page 88) GNDR N5 SD3 I Table 29 (page 88) R9 – Table 34 (page 95) N6 VCCT – Table 34 (page 95) R10 TPFON4 AO/AI Table 30 (page 88) N7 VCCT – Table 34 (page 95) R11 GNDR – Table 34 (page 95) N8 No Ball – – R12 TPFIP6 AO/AI Table 30 (page 88) N9 VCCT – Table 34 (page 95) R13 GNDR – Table 34 (page 95) N10 No Ball – – R14 TPFOP7 AO/AI Table 30 (page 88) N11 VCCT – Table 34 (page 95) R15 GNDT – Table 34 (page 95) N12 VCCT – Table 34 (page 95) R16 TPFIP7 AO/AI Table 30 (page 88) N13 VCCR – Table 34 (page 95) R17 GNDT – Table 34 (page 95) N14 TDI I, ST, IP Table 31 (page 89) T1 TPFIN0 AO/AI Table 30 (page 88) N15 TDO O, TS Table 31 (page 89) T2 TPFOP0 AO/AI Table 30 (page 88) N16 TMS I, ST, IP Table 31 (page 89) T3 TPFOP1 AO/AI Table 30 (page 88) N17 SD7 I Table 29 (page 88) T4 TPFIN1 AO/AI Table 30 (page 88) P1 SD_2P5V I, ST, ID Table 29 (page 88) T5 TPFIN2 AO/AI Table 30 (page 88) P2 SD0 I Table 29 (page 88) T6 TPFOP2 AO/AI Table 30 (page 88) P3 SD2 I Table 29 (page 88) T7 TPFON3 AO/AI Table 30 (page 88) P4 VCCR – Table 34 (page 95) T8 TPFIP3 AO/AI Table 30 (page 88) P5 GNDR – Table 34 (page 95) T9 TPFIP4 AO/AI Table 30 (page 88) P6 GNDR – Table 34 (page 95) T10 TPFOP4 AO/AI Table 30 (page 88) P7 VCCR – Table 34 (page 95) T11 AO/AI Table 30 (page 88) P8 VCCR – Table 34 (page 95) T12 TPFIN5 AO/AI Table 30 (page 88) P9 VCCR – Table 34 (page 95) T13 TPFIN6 AO/AI Table 30 (page 88) P10 VCCR – Table 34 (page 95) T14 TPFOP6 AO/AI Table 30 (page 88) P11 VCCR – Table 34 (page 95) T15 TPFON7 AO/AI Table 30 (page 88) P12 VCCR – Table 34 (page 95) T16 TPFIN7 AO/AI Table 30 (page 88) P13 GNDR – Table 34 (page 95) T17 GNDT – Table 34 (page 95) P14 GNDT – Table 34 (page 95) U1 TPFON0 AO/AI Table 30 (page 88) P15 SD4 I Table 29 (page 88) U2 GNDT – Table 34 (page 95) P16 SD5 I Table 29 (page 88) U3 TPFIP1 AO/AI Table 30 (page 88) P17 SD6 I Table 29 (page 88) U4 GNDT – Table 34 (page 95) R1 – Table 34 (page 95) U5 TPFON2 AO/AI Table 30 (page 88) GNDT TPFOP5 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Symbol Type1 Reference for Full Description U6 GNDT – Table 34 (page 95) U7 TPFOP3 AO/AI Table 30 (page 88) U8 GNDR – Table 34 (page 95) U9 TPFIN4 AO/AI Table 30 (page 88) U10 GNDT – Table 34 (page 95) U11 TPFON5 AO/AI Table 30 (page 88) U12 GNDT – Table 34 (page 95) U13 TPFIP5 AO/AI Table 30 (page 88) U14 GNDT – Table 34 (page 95) U15 TPFON6 AO/AI Table 30 (page 88) U16 GNDT – Table 34 (page 95) U17 GNDT – Table 34 (page 95) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 81 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.4 BGA23 Signal Descriptions 3.4.1 Signal Name Conventions Signal names may contain either a port designation or a serial designation, or a combination of the two designations. Signal naming conventions are as follows: • Port Number Only. Individual signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2. • Serial Number Only. A set of signals which are not tied to any specific port are designated by the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3. • Port and Serial Number. In cases where each port is assigned a set of multiple signals, each signal is designated in the following order: Signal Mnemonic, Port Designation, an underscore, and the serial designation. For example, a set of three Port Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and RxData2_0 and RxData2_1. 3.4.2 Signal Descriptions – RMII, SMII, and SS-SMII Configurations Table 24. Intel® LXT9785/LXT9785E RMII Signal Descriptions – BGA23 (Sheet 1 of 3) Ball/Pin Designation BGA23 Symbol Type1 Signal Description2,3 PQFP Reference Clock. E6, E12 44 6 REFCLK0 REFCLK1 I E2, F4 61 62 TxData0_0 TxData0_1 I, ID C3, D4 52 53 TxData1_0 TxData1_1 I, ID B5 A4 42 43 TxData2_0 TxData2_1 I, ID 50 MHz RMII reference clock is always required. RMII inputs are sampled on the rising edge of REFCLK, RMII outputs are sourced on the falling edge. See “Clock/SYNC Requirements” on page 125. for detailed CLK requirements. Transmit Data - Port 0. Inputs containing 2-bit parallel di-bits to be transmitted from port 0 are clocked in synchronously to REFCLK. Transmit Data - Port 1. Inputs containing 2-bit parallel di-bits to be transmitted from port 1 are clocked in synchronously to REFCLK Transmit Data - Port 2. Inputs containing 2-bit parallel di-bits to be transmitted from port 2 are clocked in synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 82 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 24. Intel® LXT9785/LXT9785E RMII Signal Descriptions – BGA23 (Sheet 2 of 3) Ball/Pin Designation Symbol Type1 BGA23 PQFP D8, A6 34 35 TxData3_0 TxData3_1 I, ID A11, C10 22 23 TxData4_0 TxData4_1 I, ID B13, D11 13 14 TxData5_0 TxData5_1 I, ID D13, A16 4 5 TxData6_0 TxData6_1 I, ID E14, C16 203 204 TxData7_0 TxData7_1 I, ID E3, B2, C6, A7, B11, A14, C14, D16 60 51 41 33 21 12 3 202 TxEN0 TxEN1 TxEN2 TxEN3 TxEN4 TxEN5 TxEN6 TxEN7 I, ID C2, B1 55 54 RxData0_0 RxData0_1 O, TS O, TS, ID A3, B4 46 45 RxData1_0 RxData1_1 O, TS O, TS, ID B6, C7 37 36 RxData2_0 RxData2_1 O, TS O, TS, ID D9, B9 28 27 RxData3_0 RxData3_1 O, TS O, TS, ID A13, C12 16 15 RxData4_0 RxData4_1 O, TS O, TS, ID B14, B15 8 7 RxData5_0 RxData5_1 O, TS O, TS, ID Signal Description2,3 Transmit Data - Port 3. Inputs containing 2-bit parallel di-bits to be transmitted from port 3 are clocked in synchronously to REFCLK. Transmit Data - Port 4. Inputs containing 2-bit parallel di-bits to be transmitted from port 4 are clocked in synchronously to REFCLK. Transmit Data - Port 5. Inputs containing 2-bit parallel di-bits to be transmitted from port 5 are clocked in synchronously to REFCLK. Transmit Data - Port 6. Inputs containing 2-bit parallel di-bits to be transmitted from port 6 are clocked in synchronously to REFCLK. Transmit Data - Port 7. Inputs containing 2-bit parallel di-bits to be transmitted from port 7 are clocked in synchronously to REFCLK. Transmit Enable - Ports 0-7. Active High input enables respective port transmitter. This signal must be synchronous to the REFCLK. Receive Data - Port 0. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 1. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 2. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 3. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 4. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 5. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 83 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 24. Intel® LXT9785/LXT9785E RMII Signal Descriptions – BGA23 (Sheet 3 of 3) Ball/Pin Designation Symbol Type1 BGA23 PQFP C15, B17 206 205 RxData6_0 RxData6_1 O, TS O, TS, ID E16, F14 198 197 RxData7_0 RxData7_1 O, TS O, TS, ID E4, C4, A5, B8, B12, D12, B16, E15 58 49 39 31 17 10 1 200 CRS_DV0 CRS_DV1 CRS_DV2 CRS_DV3 CRS_DV4 CRS_DV5 CRS_DV6 CRS_DV7 O, TS, SL, ID Signal Description2,3 Receive Data - Port 6. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Receive Data - Port 7. Receive data signals (2-bit parallel di-bits) are driven synchronously to REFCLK. Carrier Sense/Receive Data Valid - Ports 0-7. On detection of valid carrier, these signals are asserted asynchronously with respect to REFCLK. CRS_DVn is de-asserted on loss of carrier, synchronous to REFCLK. Receive Error - Ports 0-7. D2, D5, D7, C8, A12, A15, A17, D17 59 50 40 32 20 11 2 201 RxER0 RxER1 RxER2 RxER3 RxER4 RxER5 RxER6 RxER7 These signals are synchronous to the respective REFCLK. Active High indicates that received code group is invalid, or that PLL is not locked. O, TS, SL, ID, I, ST The RxER signals have the following additional function pins: RxER0 (MDIX) RxER1 (PAUSE) RxER2 (PREASEL) RxER4 (FIFOSEL0) RxER5 (FIFOSEL1) RxER6 {LINKHOLD) 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7]_0, RxData[0:7]_1, CRS_DV[0:7] and RxER[0:7] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 84 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 25. Intel® LXT9785/LXT9785E SMII / SS-SMII Common Signal Descriptions – BGA23 Ball/Pin Designation BGA23 PQFP E2, C3, B5, D8, A11, B13, D13, E14 61 52 42 34 22 13 4 203 Symbol Type1 TxData0 TxData1 TxData2 TxData3 TxData4 TxData5 TxData6 TxData7 I, ID Signal Description2 Transmit Data - Ports 0-7. These serial input streams provide data to be transmitted to the network. The LXT9785/9785E clocks the data in synchronously to REFCLK. Reference Clock. E6, E12 44 6 REFCLK0 REFCLK1 I The LXT9785/9785E always requires a 125 MHz reference clock input. Refer to Functional Description for detailed clock requirements. REFCLK0 and REFCLK1 are always connected regardless of sectionalization mode. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. Table 26. Intel® LXT9785/LXT9785E SMII Specific Signal Descriptions – BGA23 Pin/Ball Designation BGA23 Symbol Type1 Signal Description2,3 PQFP SMII Synchronization. A6, C16 35 204 SYNC0 SYNC1 C2, A3, B6, D9, A13, B14, C15, E16 55 46 37 28 16 8 206 198 RxData0 RxData1 RxData2 RxData3 RxData4 RxData5 RxData6 RxData7 I, ID The MAC must generate a SYNC pulse every 10 REFCLK cycles to synchronize the SMII. SYNC0 is used when 1x8 port sectionalization is selected. SYNC0 and SYNC1 are to be used when 2x4 port sectionalization is chosen. Receive Data - Ports 0-7. O, TS These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to RXCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. RxData[0:7] outputs are three-stated in Isolation and hardware power-down modes and during hardware reset. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 85 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 27. Intel® LXT9785/LXT9785E SS-SMII Specific Signal Descriptions – BGA23 Ball/Pin Designation BGA23 PQFP A6, C16 35 204 Symbol Type1 TxSYNC0 TxSYNC1 I, ID Signal Description2,3 SS-SMII Transmit Synchronization. The MAC must generate a TxSYNC pulse every 10 TxCLK cycles to mark the start of TxData segments. TxSYNC0 is used when 1x8 port sectionalization is selected. SS-SMII Receive Synchronization. E4, B12 58 17 RxSYNC0 RxSYNC1 O, TS, ID The LXT9785/9785E generates these pulses every 10 RxCLK cycles to mark the start of RxData segments for the MAC. RxSYNC1 is used when 1x8 port sectionalization is selected. RxSYNC0 may not be used. These outputs are only enabled when SS-SMII mode is enabled. SS-SMII Transmit Clock. C8, D17 32 201 TxCLK0 TxCLK1 I, ID The MAC sources this 125 MHz clock as the timing reference for TxData and TxSYNC. Only TxCLK0 is used when 1x8 port sectionalization is selected. See “Clock/ SYNC Requirements” on page 125. for detailed clock requirements. SS-SMII Receive Clock. E3, B11 60 21 RxCLK0 RxCLK1 O, TS, ID B1, B4, C7, B9, C12, B15, B17, F14 54 45 36 27 15 7 205 197 RxData0 RxData1 RxData2 RxData3 RxData4 RxData5 RxData6 RxData7 O, TS, ID The LXT9785/9785E generates these clocks, based on REFCLK, to provide a timing reference for RxData and RxSYNC to the MAC. RxCLK1 is used when 1x8 port sectionalization is selected. RxCLK0 may not be used. See “Clock/SYNC Requirements” on page 125. for detailed clock requirements. These outputs are only enabled when SSSMII mode is enabled. Receive Data - Ports 0-7. These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to REFCLK. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. RxData[0:7], RxSYNC[0:1], and RxCLK[0:1] outputs are three-stated in Isolation and H/W Power-Down modes and during H/W reset. 86 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 28. Intel® LXT9785/LXT9785E MDIO Control Interface Signals – BGA23 Ball/Pin Designation BGA23 Symbol Type1 Signal Description2,3,4 PQFP Management Data Input/Output. F3, A10 64 25 MDIO0 MDIO1 I/O, TS, SL, IP Bidirectional serial data channel for communication between the PHY and MAC or switch ASIC. Only MDIO0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDIO0 accesses ports 0-3 and MDIO1 accesses ports 4-7. Refer to Figure 21 “Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram” on page 140. Management Data Interrupt. F1, C9 67 26 MDINT0 MDINT1 OD, TS, SL, IP When Register bit 18.1 = 1, an active Low output on this Pin indicates status change. Only MDINT0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDINT0 is associated with ports 0-3 and MDINT1 is associated with ports 4-7. Refer to Figure 21 “Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram” on page 140. Management Data Clock. E1, B10 63 24 MDC0 MDC1 I, ST, ID Clock for the MDIO serial data channel. Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDC0 clocks ports 0-3 register accesses and MDC1 clocks ports 4-7 register accesses. Refer to Figure 21 “Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram” on page 140. Management Disable. When MDDIS is tied High, the MDIO port is completely disabled and the Hardware Control Interface pins set their respective bits at power up and reset. L1 84 MDDIS I, ST, ID When MDDIS is pulled Low at power up or reset, via the internal pull-down resistor or by tieing it to ground, the Hardware Control Interface Pins control only the initial or “default” values of their respective register bits. After the power-up/reset cycle is complete, bit control reverts to the MDIO serial channel. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a Pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. MDIO[0:1] and MDINT[0:1] outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. Supports the 802.3 MDIO register set. Specific bits in the registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is the bit number (0-15). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 87 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 29. Intel® LXT9785/LXT9785E Signal Detect – BGA23 Ball/Pin Designation BGA23 Symbol Type1 Signal Description2,3 PQFP Signal Detect 2.5 Volt Interface. SD input threshold voltage select. P1 95 SD_2P5V I, ST, ID Tie to VCCPECL = Select 2.5 V LVPECL input levels Float or Tie to GNDPECL = Select 3.3 V LVPECL input levels P2, N4, P3, N5, P15, P16, P17, N17 96 97 100 101 161 162 165 166 Signal Detect - Ports 0-7. SD0 SD1 SD2 SD3 SD4 SD5 SD6 SD7 Signal Detect input from the fiber transceiver (these inputs are only active for ports operating in fiber mode). I Logic High = Normal operation (the process of searching for receive idles for the purpose of bringing link up is initiated) Logic Low = Link is declared lost 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. 3. Tie SD[0:7] inputs to GNDPECL if unused. Table 30. Intel® LXT9785/LXT9785E Network Interface Signal Descriptions – BGA23 Ball/Pin Designation Symbol BGA23 PQFP T2, U1, T3, R4, T6, U5, U7, T7, T10, R10, T11, U11, T14,U15, R14, T15 107, 108 111, 110 121, 122 125, 124 136, 137 140, 139 150, 151 154, 153 TPFOP0, TPFON0 TPFOP1, TPFON1 TPFOP2, TPFON2 TPFOP3, TPFON3 TPFOP4, TPFON4 TPFOP5, TPFON5 TPFOP6, TPFON6 TPFOP7, TPFON7 R2, T1, U3, T4, R6, T5, T8, R8, T9, U9, U13, T12, R12, T13, R16, T16 104, 105 115, 114 118, 119 129, 128 132, 133 143, 142 146, 147 157, 156 TPFIP0, TPFIN0 TPFIP1, TPFIN1 TPFIP2, TPFIN2 TPFIP3, TPFIN3 TPFIP4, TPFIN4 TPFIP5, TPFIN5 TPFIP6, TPFIN6 TPFIP7, TPFIN7 Type1 Signal Description Twisted-Pair/Fiber Outputs2, Positive & Negative, Ports 0-7. AO/AI During 100BASE-TX or 10BASE-T operation, TPFO pins drive 802.3 compliant pulses onto the line. During 100BASE-FX operation, TPFO pins produce differential LVPECL outputs for fiber transceivers. Twisted-Pair/Fiber Inputs3, Positive & Negative, Ports 0-7. AI/AO During 100BASE-TX or 10BASE-T operation, TPFI pins receive differential 100BASE-TX or 10BASE-T signals from the line. During 100BASE-FX operation, TPFI pins receive differential LVPECL inputs from fiber transceivers. 1. Type Column Coding: AI = Analog Input, AO = Analog Output. 2. Switched to Inputs (see TPFIP/N description) when not in fiber mode and MDIX is not active [that is, twisted-pair, non-crossover MDI mode]. 3. Switched to Outputs (see TPFOP/N description) when not in fiber mode and MDIX is not active [that is, twisted-pair, non-crossover MDI mode]. 88 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 31. Intel® LXT9785/LXT9785E JTAG Test Signal Descriptions – BGA23 Ball/Pin Designation Symbol Type1 BGA23 PQFP N14 167 TDI I, ST, IP N15 168 TDO O, TS N16 169 TMS I, ST, IP M16 170 TCK I, ST, ID M17 171 TRST I, ST, IP Signal Description2,3 Test Data Input. Test data sampled with respect to the rising edge of TCK. Test Data Output. Test data driven with respect to the falling edge of TCK. Test Mode Select. Test Clock. Clock input for JTAG test. Test Reset. Reset input for JTAG test. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain, TS = Three-State-able output, SMT = Schmitt Triggered input, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. TDO output is three-stated in H/W Power-Down mode and during H/W reset. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 89 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 32. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23 (Sheet 1 of 4) Ball/Pin Designation BGA23 Symbol Type1 Signal Description2 PQFP Tx Output Slew Controls 0 and 1 Defaults. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 27.11:10 for all ports. These register bits can be read and overwritten after startup / reset. N3, M4 94 93 TxSLEW_0 TxSLEW_1 These pins select the TX output slew rate for all ports (rise and fall time) as follows: I, ST, ID TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall Time) 0 0 3.3 ns 0 1 3.6 ns 1 0 3.9 ns 1 1 4.2 ns Pause Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 4.10 for all ports. This register bit can be read and overwritten after startup / reset. D5 50 PAUSE ID, I, ST When High, the LXT9785/9785E advertises Pause capabilities on all ports during auto-negotiation. This pin is shared with RMII-RxER1. An external pullup resistor (see applications section for value) can be used to set Pause active while RxER1 is three-stated during H/W reset. If no pull-up is used, the default Pause state is set inactive via the internal pull-down resistor. Power-Down. L14 174 PWRDWN I, ST, ID When High, forces the LXT9785/9785E into global power-down mode. Pin is not on JTAG chain. Reset. M15 175 RESET I, ST, IP This active low input is ORed with the control register Reset Register bit 0.15. When held Low, all outputs are forced to inactive state. Pin is not on JTAG chain. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. 90 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 32. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23 (Sheet 2 of 4) Ball/Pin Designation BGA23 Symbol Type1 Signal Description2 PQFP Address <4:0>. L4, M2, M3, N1, N2 88 89 90 91 92 ADD_4 ADD_3 ADD_2 ADD_1 ADD_0 Sets base address. Each port adds its port number (starting with 0) to this address to determine its PHY address. I, ST, ID Port 0 Address = Base Port 1 Address = Base + 1 Port 2 Address = Base + 2 Port 3 Address = Base + 3 Port 4 Address = Base + 4 Port 5 Address = Base + 5 Port 6 Address = Base + 6 Port 7 Address = Base + 7 Mode Select[1:0]. 00 = RMII L17, L16 178 177 MODESEL_1 MODESEL_0 01 = SMII I, ST, ID 10 = SS-SMII 11 = Reserved All ports are configured the same. Interfaces cannot be mixed and must be all RMII, SMII, or SS-SMII. Sectionalization Select. L15 176 SECTION I, ST, ID This pin selects sectionalization into separate ports. 0 = 1x8 ports, 1 = 2x4 ports Auto MDI/MDIX Enable Default. K1 83 AMDIX_EN I, ST, IP This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 27.9 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 40 “Intel® LXT9785/LXT9785E MDIX Selection” on page 119. When active (High), automatic MDI crossover (MDIX) (regardless of segmentation) is selected for all ports. When inactive (Low) MDIX is selected according to the MDIX pin. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 91 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 32. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23 (Sheet 3 of 4) Ball/Pin Designation BGA23 Symbol Type1 Signal Description2 PQFP MDIX Select Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 27.8 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 40 “Intel® LXT9785/LXT9785E MDIX Selection” on page 119. When AMDIX_EN is active this pin is ignored. D2 59 MDIX I, ID, ST When AMDIX_EN is inactive, all ports are forced to the MDI or the MDIX function regardless of segmentation. If this pin is active (high), MDI crossover (MDIX) is selected. If this pin is inactive, non-crossover MDI mode is set. This pin is shared with RMII-RxER0. An external pullup resistor (see applications section for value) can be used to set MDIX active while RxER0 is three-stated during H/W reset. If no pull-up is used, the default MDIX state is set inactive via the internal pull-down resistor. Do not tie this pin directly to VCCIO (vs. using a pull-up) in non-RMII modes. Global Port Configuration Defaults 1-3. L2, L3, M1 85 86 87 CFG_3 CFG_2 CFG_1 I, ST, ID These pins are read at startup or reset. Their value at that time is used to set the default state of register bits shown in Table 42 “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129 for all ports. These register bits can be read and overwritten after startup / reset. When operating in Hardware Control Mode, these pins provide configuration control options for all the ports (refer to Table 42 “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129 for details). Global FX/TP Enable Default. M14 173 G_FX/TP I, ST, ID This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 16.0 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 92 “Port Configuration Register (Address 16, Hex 10)” on page 207. This input selects whether all the ports are defaulted to TP vs. FX mode. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. 92 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 32. Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – BGA23 (Sheet 4 of 4) Ball/Pin Designation BGA23 Symbol Type1 Signal Description2 PQFP FIFO Select <1:0>. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 18.15:14 for all ports. These register bits can be read and overwritten after startup/reset. A15 A12 11 20 FIFOSEL1 FIFOSEL0 I, ID, ST These pins are shared with RMII-RxER<5:4>. An external pull-up resistor (see applications section for value) can be used to set FIFO Select<1:0> to active while RxER<5:4> are three-stated during hardware reset. If no pull-up is used, the default FIFO select state is set via the internal pull-down resistors. See Table 36 “Intel® LXT9785/LXT9785E Receive FIFO Depth Configurations” on page 97. Preamble Select. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 16.5 for all ports. This register bit can be read and overwritten after startup/reset. D7 40 PREASEL I, ID, ST This pin is shared with RMII-RxER2. An external pullup resistor (see applications section for value) can be used to set Preamble Select to active while RxER2 is three-stated during hardware reset. If no pull-up is used, the default Preamble Select state is set via the internal pull-down resistors. Note: Preamble select has no effect in 100 Mbps operation. A17 2 LINKHOLD I, ID, ST LINKHOLD Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 0.11 for all ports. This register bit can be read and overwritten after startup / reset. When High, the LXT9785/9785E powers down all ports. This pin is shared with RMII-RxER6. An external pullup resistor (see applications section for value) can be used to set LINKHOLD active while RxER6 is tri-stated during H/W reset. If no pull-up is used, the default LINKHOLD state is set inactive via the internal pulldown resistor. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain Output, ST = Schmitt Triggered Input, TS = Three-State-able Output, SL = Slew-rate Limited Output, IP = Weak Internal Pull-Up, ID = Weak Internal Pull-Down. 2. The IP/ID resistors are disabled during hardware power-down mode. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 93 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 33. Intel® LXT9785/LXT9785E LED Signal Descriptions – BGA23 (Sheet 1 of 2) Ball/Pin Designation BGA23 PQFP K3, K2, J1 82 81 80 Symbol Type1 Signal Description2,3 Port 0 LED Drivers 1-3. LED0_1 LED0_2 LED0_3 OD, TS, SL, IP These pins drive LED indicators for Port 0. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 1 LED Drivers 1-3. J4, J3, H1 77 76 75 LED1_1 LED1_2 LED1_3 OD, TS, SL, IP These pins drive LED indicators for Port 1. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 2 LED Drivers 1-3. H2, H3, G1 73 72 71 LED2_1 LED2_2 LED2_3 OD, TS, SL, IP These pins drive LED indicators for Port 2. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 3 LED Drivers 1-3. F2, G3, G4 70 69 68 LED3_1 LED3_2 LED3_3 K16, K17, J17 180 181 182 LED4_1 LED4_2 LED4_3 OD, TS, SL, IP These pins drive LED indicators for Port 3. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 4 LED Drivers 1-3. OD, TS, SL, IP These pins drive LED indicators for Port 4. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. 94 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 33. Intel® LXT9785/LXT9785E LED Signal Descriptions – BGA23 (Sheet 2 of 2) Ball/Pin Designation Symbol BGA23 PQFP J15, J16, H17 185 186 187 Type1 Signal Description2,3 Port 5 LED Drivers 1-3. LED5_1 LED5_2 LED5_3 OD, TS, SL, IP These pins drive LED indicators for Port 5. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 6 LED Drivers 1-3. H15, H16, G17 189 190 191 LED6_1 LED6_2 LED6_3 OD, TS, SL, IP These pins drive LED indicators for Port 6. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 7 LED Drivers 1-3. G15, F17, F16 192 193 194 LED7_1 LED7_2 LED7_3 OD, TS, SL, IP These pins drive LED indicators for Port 7. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96 “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 2. The IP/ID resistors are disabled during H/W Power-Down mode. If a pin is an output or an I/O, the IP/ID resistors are also disabled when the output is enabled. 3. The LED outputs are three-stated in H/W Power-Down mode and during H/W reset. 4. Table 34. Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – BGA23 (Sheet 1 of 2) Ball/Pin Designation BGA23 PQFP G13, J14, F5, J5 65, 78, 184, 196 Symbol Type VCCD - Signal Description Digital Power Supply - Core. +2.5 V supply for core digital circuits. Digital Power Supply - I/O Ring. A2, A8, C1, C11, D14 18, 29, 47, 56, 208 VCCIO - +2.5/3.3 V supply for digital I/O circuits. The digital input circuits running off of this rail, having a TTL-level threshold and over-voltage protection, may be interfaced with 3.3/5.0 V, when the IO supply is 3.3 V, and 2.5/3.3/5.0 V when 2.5 V. Digital Power Supply - PECL Signal Detect Inputs. L13, L5 98, 164 VCCPECL - N13, P4, P7, P8, P9, P10, P11, P12 103, 116, 117, 130, 131, 144, 145, 158 VCCR - +2.5/3.3 V supply for PECL Signal Detect input circuits. If Fiber Mode is not used, tie these pins to GNDPECL to save power. Analog Power Supply - Receive. +2.5 V supply for all analog receive circuits. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 95 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 34. Intel® LXT9785/LXT9785E Power Supply Signal Descriptions – BGA23 (Sheet 2 of 2) Ball/Pin Designation Symbol Type VCCT - BGA23 PQFP N6, N7, N9, N11, N12 109, 123, 138, 152 A1, A9, B3, B7, C5, C13, C17, D1, D3, D6, D10, D15, E5, E7, E9, E11, E13, E17, F13, H8, H9, H10, J8, J9, J10, K8, K9, K10 66, 79, 183, 195 GNDD - 9, 19, 30, 38, 48, 57, 74, 188, 199, 207 GNDIO - M5, M13 99, 163 GNDPECL - P5, P6, P13, R7, R9, R11, R13, U8 106, 112, 120, 126, 135, 141, 149, 155 GNDR - P14, R1, R3, R5, R15, R17, T17, U2, U4, U6, U10, U12, U14, U16, U17 113, 127, 134, 148 GNDT - K14 179 SGND - Signal Description Analog Power Supply - Transmit. +2.5 V supply for all analog transmit circuits. Digital Ground. Ground return for core digital supplies (VCCD). All ground pins can be tied together using a single ground plane. Digital GND - I/O Ring. Ground return for digital I/O circuits (VCCIO). Digital GND - PECL Signal Detect Inputs. Ground return for PECL Signal Detect input circuits. Analog Ground - Receive. Ground return for receive analog supply. All ground pins can be tied together using a single ground plane. Analog Ground - Transmit. Ground return for transmit analog supply. All ground pins can be tied together using a single ground plane. Substrate Ground. Ground for chip substrate. All ground pins can be tied together using a single ground plane. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 96 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 35. Intel® LXT9785/LXT9785E Unused/Reserved Pins – BGA23 Pin/Ball Designation BGA23 PQFP F15, G2, G5, G14, G16, H4, H14, J2, J13, K4, K15 N/C Symbol Type1 N/C – Signal Description No Connection. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown 2. Table 36. Intel® LXT9785/LXT9785E Receive FIFO Depth Configurations FIFOSEL1 FIFOSEL0 Register 18.15 Value Register 18.14 Value 0 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 97 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.5 BGA15 Ball Assignments The following figure and tables provide the BGA15 ball locations and signal names arranged in alphanumeric order as follows: • Figure 6 “Intel® LXT9785MBC 196-Ball BGA15 Assignments (Top View)” • Table 37, “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name” on page 99 • Table 38, “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/SS-SMII)” on page 103 Figure 6. Intel® LXT9785MBC 196-Ball BGA15 Assignments (Top View) 1 2 3 4 5 6 7 8 9 10 11 A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B C C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C D D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D E E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12 E13 E14 E F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F14 F G G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G H H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H J J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J14 J K K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K L L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L M M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M N N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N P P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P 1 2 3 4 5 6 7 8 9 10 J11 L11 11 12 F12 J12 L12 12 13 F13 J13 L13 13 14 L14 14 B1532-01 98 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.5.1 BGA15 Ball List The following tables provide the RMII BGA23 ball locations and signal names arranged in alphanumeric order as follows: Table 37 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name” Table 38 “Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/ SS-SMII)” Table 37. Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Signal Name Signal Name Ball Type Reference for Full Description Signal Name Ball Type Reference for Full Description ADD_3 P10 I, ST, ID Table 39 on page 109 CFG_2 L9 I, ST, ID Table 39 on page 109 ADD_4 N10 I, ST, ID Table 39 on page 109 CFG_3 M9 I, ST, ID Table 39 on page 109 AMDIX_EN K8 I, ST, IP Table 39 on page 109 FIFOSEL0 F1 I, ID Table 39 on page 109 FIFOSEL1 C1 I, ID Table 39 on page 109 AVCC D12 – Table 39 on page 109 GNDD A1 – Table 39 on page 109 AVCC E12 – Table 39 on page 109 GNDD A2 – Table 39 on page 109 AVCC F12 – Table 39 on page 109 GNDD A3 – Table 39 on page 109 AVCC G12 – Table 39 on page 109 GNDD B1 – Table 39 on page 109 AVCC H12 – Table 39 on page 109 GNDD B2 – Table 39 on page 109 AVCC J12 – Table 39 on page 109 AVCC K12 – Table 39 on page 109 AVCC L12 – Table 39 on page 109 AVSS E11 – Table 39 on page 109 AVSS F9 – Table 39 on page 109 AVSS F10 – Table 39 on page 109 AVSS F11 – Table 39 on page 109 AVSS G9 – Table 39 on page 109 AVSS G10 – Table 39 on page 109 AVSS G11 – Table 39 on page 109 AVSS H9 – Table 39 on page 109 AVSS H10 – Table 39 on page 109 AVSS H11 – Table 39 on page 109 AVSS J9 – Table 39 on page 109 AVSS J10 – Table 39 on page 109 AVSS J11 – Table 39 on page 109 AVSS K11 – Table 39 on page 109 AVSS L11 – Table 39 on page 109 M10 I, ST, ID Table 39 on page 109 CFG_1 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 GNDD B5 – Table 39 on page 109 GNDD B10 – Table 39 on page 109 GNDD D9 – Table 39 on page 109 GNDD D11 – Table 39 on page 109 GNDD E5 – Table 39 on page 109 GNDD E6 – Table 39 on page 109 GNDD E9 – Table 39 on page 109 GNDD E10 – Table 39 on page 109 GNDD F5 – Table 39 on page 109 GNDD F6 – Table 39 on page 109 GNDD F7 – Table 39 on page 109 GNDD F8 – Table 39 on page 109 GNDD G4 – Table 39 on page 109 GNDD G6 – Table 39 on page 109 GNDD G7 – Table 39 on page 109 GNDD G8 – Table 39 on page 109 GNDD H6 – Table 39 on page 109 GNDD H7 – Table 39 on page 109 GNDD H8 – Table 39 on page 109 GNDD J5 – Table 39 on page 109 99 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Name Ball Type Reference for Full Description GNDD J6 – Table 39 on page 109 Ball Type Reference for Full Description LED6_1 A7 OD, TS, SL, IP Table 39 on page 109 LED6_2 B7 OD, TS, SL, IP Table 39 on page 109 LED7_1 B6 OD, TS, SL, IP Table 39 on page 109 LED7_2 A6 OD, TS, SL, IP Table 39 on page 109 GNDD J7 – Table 39 on page 109 GNDD J8 – Table 39 on page 109 GNDD K5 – Table 39 on page 109 GNDD K6 – Table 39 on page 109 GNDD K9 – Table 39 on page 109 GNDD K10 – Table 39 on page 109 GNDD L2 – Table 39 on page 109 GNDD N1 – Table 39 on page 109 GNDD N11 – Table 39 on page 109 LINKHOLD B3 ID Table 39 on page 109 GNDD P1 – Table 39 on page 109 MDC P4 I, ST, ID Table 39 on page 109 GNDD P11 – Table 39 on page 109 MDINT P5 OD, TS, SL, IP Table 39 on page 109 N9 OD, TS, SL, IP MDIO N5 IO, TS, SL, IP Table 39 on page 109 P9 OD, TS, SL, IP Table 39 on page 109 ModeSel_0 C9 I, ST, ID Table 39 on page 109 ModeSel_1 E8 I, ST, ID Table 39 on page 109 N/C C4 – Table 39 on page 109 N/C C7 – Table 39 on page 109 N/C D1 – Table 39 on page 109 N/C D2 – Table 39 on page 109 N/C D5 – Table 39 on page 109 N/C D6 – Table 39 on page 109 N/C D8 – Table 39 on page 109 N/C D10 – Table 39 on page 109 N/C E4 – Table 39 on page 109 N/C E7 – Table 39 on page 109 N/C G2 – Table 39 on page 109 N/C G5 – Table 39 on page 109 N/C H1 – Table 39 on page 109 N/C H5 – Table 39 on page 109 N/C J4 – Table 39 on page 109 N/C K4 – Table 39 on page 109 N/C K7 – Table 39 on page 109 N/C L1 – Table 39 on page 109 N/C L6 – Table 39 on page 109 N/C L8 – Table 39 on page 109 LED0_1 LED0_2 Table 39 on page 109 LED1_1 N8 OD, TS, SL, IP Table 39 on page 109 LED1_2 P8 OD, TS, SL, IP Table 39 on page 109 P7 OD, TS, SL, IP Table 39 on page 109 N7 OD, TS, SL, IP Table 39 on page 109 P6 OD, TS, SL, IP Table 39 on page 109 LED2_1 LED2_2 LED3_1 LED3_2 N6 OD, TS, SL, IP Table 39 on page 109 LED4_1 B9 OD, TS, SL, IP Table 39 on page 109 A9 OD, TS, SL, IP B8 OD, TS, SL, IP Table 39 on page 109 A8 OD, TS, SL, IP Table 39 on page 109 LED4_2 LED5_1 LED5_2 100 Signal Name Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Signal Name Ball Type Reference for Full Description N/C L10 – Table 39 on page 109 N/C M4 – Table 39 on page 109 N/C M5 – N/C M6 N/C M7 N/C Signal Name Ball Type Reference for Full Description TCK A11 I, ST, ID Table 39 on page 109 Table 39 on page 109 TDI C12 I, ST, IP Table 39 on page 109 – Table 39 on page 109 TDO C11 O, TS Table 39 on page 109 – Table 39 on page 109 M8 – Table 39 on page 109 TMS B11 I, ST, IP Table 39 on page 109 N/C P2 – Table 39 on page 109 TPIN0 N12 AI/AO Table 39 on page 109 N/C P3 – Table 39 on page 109 TPIN1 M13 AI/AO Table 39 on page 109 REFCLK0 L4 I Table 39 on page 109 TPIN2 L14 AI/AO Table 39 on page 109 TPIN3 H13 AI/AO Table 39 on page 109 TPIN4 G13 AI/AO Table 39 on page 109 TPIN5 D14 AI/AO Table 39 on page 109 TPIN6 C13 AI/AO Table 39 on page 109 TPIN7 B12 AI/AO Table 39 on page 109 TPIP0 P12 AI/AO Table 39 on page 109 TPIP1 M14 AI/AO Table 39 on page 109 REFCLK1 C3 I Table 39 on page 109 RESET C10 I, ST, IP Table 39 on page 109 G1 O, TS, ID Table 39 on page 109 RXCLK RxData0_S N3 O, TS Table 39 on page 109 RxData0_SS M3 O, TS, ID Table 39 on page 109 RxData1_S M2 O, TS Table 39 on page 109 RxData1_SS M1 O, TS, ID Table 39 on page 109 RxData2_S K2 O, TS Table 39 on page 109 RxData2_SS J2 O, TS, ID Table 39 on page 109 TPIP2 L13 AI/AO Table 39 on page 109 TPIP3 H14 AI/AO Table 39 on page 109 TPIP4 G14 AI/AO Table 39 on page 109 TPIP5 D13 AI/AO Table 39 on page 109 TPIP6 C14 AI/AO Table 39 on page 109 TPIP7 A12 AI/AO Table 39 on page 109 TPON0 N13 AO/AI Table 39 on page 109 AO/AI Table 39 on page 109 RxData3_S H3 O, TS Table 39 on page 109 RxData3_SS H2 O, TS, ID Table 39 on page 109 TPON1 P14 RxData4_S F2 O, TS Table 39 on page 109 TPON2 K14 AO/AI Table 39 on page 109 RxData4_SS F3 O, TS, ID Table 39 on page 109 TPON3 J13 AO/AI Table 39 on page 109 RxData5_S E3 O, TS Table 39 on page 109 TPON4 F13 AO/AI Table 39 on page 109 RxData5_SS C2 O, TS Table 39 on page 109 TPON5 E14 AO/AI Table 39 on page 109 RxData6_S B4 O, TS Table 39 on page 109 TPON6 A14 AO/AI Table 39 on page 109 TPON7 B13 AO/AI Table 39 on page 109 TPOP0 P13 AO/AI Table 39 on page 109 TPOP1 N14 AO/AI Table 39 on page 109 TPOP2 K13 AO/AI Table 39 on page 109 TPOP3 J14 AO/AI Table 39 on page 109 RxData6_SS A4 O, TS, ID Table 39 on page 109 RxData7_S C5 O, TS Table 39 on page 109 RxData7_SS C6 O, TS, ID Table 39 on page 109 Table 39 on page 109 TPOP4 F14 AO, AI Table 39 on page 109 TPOP5 E13 AO/AI Table 39 on page 109 TPOP6 B14 AO/AI Table 39 on page 109 TPOP7 A13 AO/AI Table 39 on page 109 RxSYNC E1 O, TS, ID SGND C8 – Table 39 on page 109 SYNC/ TXSYNC K1 I, ID Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 101 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 102 Signal Name Ball Type Reference for Full Description TRST A10 I, ST, IP Table 39 on page 109 TXCLK J3 I, ID Table 39 on page 109 TxData0 N4 I, ID Table 39 on page 109 TxData1 N2 I, ID Table 39 on page 109 TxData2 K3 I, ID Table 39 on page 109 TxData3 J1 I, ID Table 39 on page 109 TxData4 G3 I, ID Table 39 on page 109 TxData5 E2 I, ID Table 39 on page 109 TxData6 D3 I, ID Table 39 on page 109 TxData7 A5 I, ID Table 39 on page 109 TXSLEW_0 M11 I, ST, ID Table 39 on page 109 TXSLEW_1 M12 I,ST, ID Table 39 on page 109 VCCD D7 – Table 39 on page 109 VCCD L7 – Table 39 on page 109 VCCIO D4 – Table 39 on page 109 VCCIO F4 – Table 39 on page 109 VCCIO H4 – Table 39 on page 109 VCCIO L3 – Table 39 on page 109 VCCIO L5 – Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 38 shows the ball locations and signal names arranged in order by ball location. Table 38. Intel® LXT9785MBC BGA15 Ball List in Alphanumeric Order by Ball Location (SMII/ SS-SMII) Ball Signal Name Type Reference for Full Description A1 GNDD – Table 39 on page 109 A2 GNDD – Table 39 on page 109 Ball Signal Name Type Reference for Full Description B7 LED6_2 OD, TS, SL, IP Table 39 on page 109 B8 LED5_1 OD, TS, SL, IP Table 39 on page 109 A3 GNDD – Table 39 on page 109 A4 RxData6_SS O, TS, ID Table 39 on page 109 B9 LED4_1 OD, TS, SL, IP Table 39 on page 109 A5 TxData7 I, ID Table 39 on page 109 B10 GNDD – Table 39 on page 109 A6 LED7_2 OD, TS, SL, IP Table 39 on page 109 B11 TMS I, ST, IP Table 39 on page 109 Table 39 on page 109 B12 TPIN7 AI/AO LED6_1 OD, TS, SL, IP Table 39 on page 109 B13 TPON7 AO/AI Table 39 on page 109 B14 TPOP6 AO/AI Table 39 on page 109 C1 FIFOSEL1 I, ID Table 39 on page 109 C2 RxData5_SS O, TS, ID Table 39 on page 109 C3 REFCLK1 I Table 39 on page 109 C4 N/C – Table 39 on page 109 C5 RxData7_S O, TS Table 39 on page 109 C6 RxData7_SS O, TS, ID Table 39 on page 109 C7 N/C – Table 39 on page 109 C8 SGND – Table 39 on page 109 C9 ModeSel_0 I, ST, ID Table 39 on page 109 C10 RESET I, ST, IP Table 39 on page 109 C11 TDO O, TS Table 39 on page 109 C12 TDI I, ST, IP Table 39 on page 109 C13 TPIN6 AI/AO Table 39 on page 109 A7 A8 LED5_2 OD, TS, SL, IP Table 39 on page 109 A9 LED4_2 OD, TS, SL, IP Table 39 on page 109 A10 TRST I, ST, IP Table 39 on page 109 A11 TCK I, ST, ID Table 39 on page 109 A12 TPIP7 AI/AO Table 39 on page 109 A13 TPOP7 AO/AI Table 39 on page 109 A14 TPON6 AO/AI Table 39 on page 109 B1 GNDD – Table 39 on page 109 B2 GNDD – Table 39 on page 109 B3 LINKHOLD ID Table 39 on page 109 B4 RxData6_S O, TS Table 39 on page 109 B5 GNDD – Table 39 on page 109 LED7_1 OD, TS, SL, IP Table 39 on page 109 B6 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 103 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 104 Ball Signal Name Type Reference for Full Description Ball Signal Name Type Reference for Full Description C14 TPIP6 AI/AO Table 39 on page 109 E10 GNDD – Table 39 on page 109 D1 N/C – Table 39 on page 109 E11 AVSS – Table 39 on page 109 D2 N/C – Table 39 on page 109 E12 AVCC – Table 39 on page 109 D3 TxData6 I, ID Table 39 on page 109 E13 TPOP5 AO/AI Table 39 on page 109 D4 VCCIO – Table 39 on page 109 E14 TPON5 AO/AI Table 39 on page 109 D5 N/C – Table 39 on page 109 F1 FIFOSEL0 I, ID Table 39 on page 109 D6 N/C – Table 39 on page 109 F2 RxData4_S O, TS Table 39 on page 109 D7 VCCD – Table 39 on page 109 F3 RxData4_SS O, TS, ID Table 39 on page 109 D8 N/C – Table 39 on page 109 F4 VCCIO – Table 39 on page 109 D9 GNDD – Table 39 on page 109 F5 GNDD – Table 39 on page 109 D10 N/C – Table 39 on page 109 F6 GNDD – Table 39 on page 109 D11 GNDD – Table 39 on page 109 F7 GNDD – Table 39 on page 109 D12 AVCC – Table 39 on page 109 F8 GNDD – Table 39 on page 109 D13 TPIP5 AI/AO Table 39 on page 109 F9 AVSS – Table 39 on page 109 D14 TPIN5 AI/AO Table 39 on page 109 F10 AVSS – Table 39 on page 109 E1 RxSYNC O, TS, ID Table 39 on page 109 F11 AVSS – Table 39 on page 109 E2 TxData5 I, ID Table 39 on page 109 F12 AVCC – Table 39 on page 109 E3 RxData5_S O, TS Table 39 on page 109 F13 TPON4 AO/AI Table 39 on page 109 E4 N/C – Table 39 on page 109 F14 TPOP4 AO, AI Table 39 on page 109 E5 GNDD – Table 39 on page 109 G1 RXCLK O, TS, ID Table 39 on page 109 E6 GNDD – Table 39 on page 109 G2 N/C – Table 39 on page 109 E7 N/C – Table 39 on page 109 G3 TxData4 I, ID Table 39 on page 109 E8 ModeSel_1 I, ST, ID Table 39 on page 109 G4 GNDD – Table 39 on page 109 E9 GNDD – Table 39 on page 109 G5 N/C – Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Name Type Reference for Full Description Ball Signal Name Type Reference for Full Description G6 GNDD – Table 39 on page 109 J2 RxData2_SS O, TS, ID Table 39 on page 109 G7 GNDD – Table 39 on page 109 J3 TXCLK I, ID Table 39 on page 109 G8 GNDD – Table 39 on page 109 J4 N/C – Table 39 on page 109 G9 AVSS – Table 39 on page 109 J5 GNDD – Table 39 on page 109 G10 AVSS – Table 39 on page 109 J6 GNDD – Table 39 on page 109 G11 AVSS – Table 39 on page 109 J7 GNDD – Table 39 on page 109 G12 AVCC – Table 39 on page 109 J8 GNDD – Table 39 on page 109 G13 TPIN4 AI/AO Table 39 on page 109 J9 AVSS – Table 39 on page 109 G14 TPIP4 AI/AO Table 39 on page 109 J10 AVSS – Table 39 on page 109 H1 N/C – Table 39 on page 109 J11 AVSS – Table 39 on page 109 H2 RxData3_SS O, TS, ID Table 39 on page 109 J12 AVCC – Table 39 on page 109 H3 RxData3_S O, TS Table 39 on page 109 J13 TPON3 AO/AI Table 39 on page 109 H4 VCCIO – Table 39 on page 109 J14 TPOP3 AO/AI Table 39 on page 109 H5 N/C – Table 39 on page 109 K1 SYNC/ TXSYNC I, ID Table 39 on page 109 H6 GNDD – Table 39 on page 109 K2 RxData2_S O, TS Table 39 on page 109 H7 GNDD – Table 39 on page 109 K3 TxData2 I, ID Table 39 on page 109 H8 GNDD – Table 39 on page 109 K4 N/C – Table 39 on page 109 H9 AVSS – Table 39 on page 109 K5 GNDD – Table 39 on page 109 H10 AVSS – Table 39 on page 109 K6 GNDD – Table 39 on page 109 H11 AVSS – Table 39 on page 109 K7 N/C – Table 39 on page 109 H12 AVCC – Table 39 on page 109 K8 AMDIX_EN I, ST, IP Table 39 on page 109 H13 TPIN3 AI/AO Table 39 on page 109 K9 GNDD – Table 39 on page 109 H14 TPIP3 AI/AO Table 39 on page 109 K10 GNDD – Table 39 on page 109 J1 TxData3 I, ID Table 39 on page 109 K11 AVSS – Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 105 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 106 Ball Signal Name Type Reference for Full Description Ball Signal Name Type Reference for Full Description K12 AVCC – Table 39 on page 109 M8 N/C – Table 39 on page 109 K13 TPOP2 AO/AI Table 39 on page 109 M9 CFG_3 I, ST, ID Table 39 on page 109 K14 TPON2 AO/AI Table 39 on page 109 M10 CFG_1 I, ST, ID Table 39 on page 109 L1 N/C – Table 39 on page 109 M11 TXSLEW_0 I, ST, ID Table 39 on page 109 L2 GNDD – Table 39 on page 109 M12 TXSLEW_1 I,ST, ID Table 39 on page 109 L3 VCCIO – Table 39 on page 109 M13 TPIN1 AI/AO Table 39 on page 109 L4 REFCLK0 I Table 39 on page 109 M14 TPIP1 AI/AO Table 39 on page 109 L5 VCCIO – Table 39 on page 109 N1 GNDD – Table 39 on page 109 L6 N/C – Table 39 on page 109 N2 TxData1 I, ID Table 39 on page 109 L7 VCCD – Table 39 on page 109 N3 RxData0_S O, TS Table 39 on page 109 L8 N/C – Table 39 on page 109 N4 TxData0 I, ID Table 39 on page 109 L9 CFG_2 I, ST, ID Table 39 on page 109 N5 MDIO Table 39 on page 109 L10 N/C – Table 39 on page 109 IO, TS, SL, IP N6 LED3_2 OD, TS, SL, IP Table 39 on page 109 N7 LED2_2 OD, TS, SL, IP Table 39 on page 109 N8 LED1_1 OD, TS, SL, IP Table 39 on page 109 L11 AVSS – Table 39 on page 109 L12 AVCC – Table 39 on page 109 L13 TPIP2 AI/AO Table 39 on page 109 L14 TPIN2 AI/AO Table 39 on page 109 M1 RxData1_SS O, TS, ID Table 39 on page 109 N9 LED0_1 OD, TS, SL, IP Table 39 on page 109 M2 RxData1_S O, TS Table 39 on page 109 N10 ADD_4 I, ST, ID Table 39 on page 109 M3 RxData0_SS O, TS, ID Table 39 on page 109 N11 GNDD – Table 39 on page 109 M4 N/C – Table 39 on page 109 N12 TPIN0 AI/AO Table 39 on page 109 M5 N/C – Table 39 on page 109 N13 TPON0 AO/AI Table 39 on page 109 M6 N/C – Table 39 on page 109 N14 TPOP1 AO/AI Table 39 on page 109 M7 N/C – Table 39 on page 109 P1 GNDD – Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Ball Signal Name Type Reference for Full Description P2 N/C – Table 39 on page 109 P3 N/C – Table 39 on page 109 P4 MDC I, ST, ID Table 39 on page 109 P5 MDINT OD, TS, SL, IP Table 39 on page 109 P6 LED3_1 OD, TS, SL, IP Table 39 on page 109 P7 LED2_1 OD, TS, SL, IP Table 39 on page 109 P8 LED1_2 OD, TS, SL, IP Table 39 on page 109 P9 LED0_2 OD, TS, SL, IP Table 39 on page 109 P10 ADD_3 I, ST, ID Table 39 on page 109 P11 GNDD – Table 39 on page 109 P12 TPIP0 AI/AO Table 39 on page 109 P13 TPOP0 AO/AI Table 39 on page 109 P14 TPON1 AO/AI Table 39 on page 109 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 107 Intel® LXT9785 and Intel® LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 108 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3.6 BGA15 Signal Descriptions 3.6.1 Signal Name Conventions Signal names may contain either a port designation or a serial designation, or a combination of the two designations. Signal naming conventions are as follows: • Port Number Only. Individual signals that apply to a particular port are designated by the Signal Mnemonic, immediately followed by the Port Designation. For example, Transmit Enable signals would be identified as TxEN0, TxEN1, and TxEN2. • Serial Number Only. A set of signals which are not tied to any specific port are designated by the Signal Mnemonic, followed by an underscore and a serial designation. For example, a set of three Global Configuration signals would be identified as CFG_1, CFG_2, and CFG_3. • Port and Serial Number. In cases where each port is assigned a set of multiple signals, each signal is designated in the following order: Signal Mnemonic, Port Designation, an underscore, and the serial designation. For example, a set of three Port Configuration signals would be identified as RxData0_0 and RxData0_1, RxData1_0 and RxData1_1, and RxData2_0 and RxData2_1. 3.6.2 Signal Descriptions – SMII and SS-SMII Configurations Table 39 provides the BGA15 signal descriptions. Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 1 of 7) BGA15 Ball Designation Symbol Type Signal Description SMII/SS-SMII Common Signal Descriptions N4, N2, K3, J1, G3, E2, D3, A5 TxData0 TxData1 TxData2 TxData3 TxData4 TxData5 TxData6 TxData7 C3 L4 REFCLK1 Transmit Data - Ports 0-7. I, ID These serial input streams provide data to be transmitted to the network. The LXT9785/9785E clocks the data in synchronously to REFCLK. Reference Clock. REFCLK0 I The LXT9785/9785E always requires a 125 MHz reference clock input. Refer to Section 4.4.2, “Clock/SYNC Requirements” on page 125 for detailed clock requirements. SMII Specific Signal Descriptions SMII Synchronization. K1 SYNC I, ID The MAC must generate a SYNC pulse every 10 REFCLK cycles to synchronize the SMII. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 109 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 2 of 7) BGA15 Ball Designation Symbol N3, M2, K2, H3, F2, E3, B4, C5 RxData0_S RxData1_S RxData2_S RxData3_S RxData4_S RxData5_S RxData6_S RxData7_S Type Signal Description Receive Data - Ports 0-7. O, TS These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to REFCLK. SS-SMII Specific Signal Descriptions SS-SMII Transmit Synchronization. K1 TxSYNC I, ID RxSYNC O, TS, ID The MAC must generate a TxSYNC pulse every 10 TxCLK cycles to mark the start of TxData segments. SS-SMII Receive Synchronization. E1 The LXT9785/9785E generates these pulses every 10 RxCLK cycles to mark the start of RxData segments for the MAC. SS-SMII Transmit Clock. J3 TxCLK I, ID The MAC sources this 125 MHz clock as the timing reference for TxData and TxSYNC. See “Clock/SYNC Requirements” on page 125 for detailed clock requirements. SS-SMII Receive Clock. G1 RxCLK O, TS, ID M3, M1, J2, H2, F3, C2, A4, C6 RxData0_SS RxData1_SS RxData2_SS RxData3_SS RxData4_SS RxData5_SS RxData6_SS RxData7_SS O, TS, ID The LXT9785/9785E generates these clocks, based on REFCLK, to provide a timing reference for RxData and RxSYNC to the MAC. See “Clock/SYNC Requirements” on page 125 for detailed clock requirements. These outputs are only enabled when SS-SMII mode is enabled. Receive Data - Ports 0-7. These serial output streams provide data received from the network. The LXT9785/9785E drives the data out synchronously to REFCLK. MDIO Control Interface Signal Descriptions Management Data Input/Output. N5 P5 MDIO I/O, TS, SL, IP MDINT OD, TS, SL, IP Bidirectional serial data channel for communication between the PHY and MAC or switch ASIC. Refer to Figure 21 on page 140. Management Data Interrupt. When Register bit 18.1 = 1, an active Low output on this Pin indicates status change. Refer to Figure 21 on page 140. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 110 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 3 of 7) BGA15 Ball Designation Symbol Type Signal Description Management Data Clock. P4 MDC I, ST, ID Clock for the MDIO serial data channel. Maximum frequency is 20 MHz. Only MDC0 is used when 1x8 port sectionalization is selected. In 2x4 port sectionalization mode, MDC0 clocks ports 0-3 register accesses and MDC1 clocks ports 4-7 register accesses. Refer to Figure 21 on page 140. Network Interface Signal Description P13, N13, N14, P14, K13, K14, J14, J13, F14, F13, E13, E14, B14, A14, A13, B13 TPOP0, TPON0 TPOP1, TPON1 TPOP2, TPON2 TPOP3, TPON3 TPOP4, TPON4 TPOP5, TPON5 TPOP6, TPON6 TPOP7, TPON7 P12, N12, M14, M13, L13, L14, H14, H13, G14, G13, D13, D14, C14, C13, A12, B12 TPIP0, TPIN0 TPIP1, TPIN1 TPIP2, TPIN2 TPIP3, TPIN3 TPIP4, TPIN4 TPIP5, TPIN5 TPIP6, TPIN6 TPIP7, TPIN7 Twisted-Pair Outputs2, Positive & Negative, Ports 0-7. AO/AI During 100BASE-TX or 10BASE-T operation, TPO pins drive 802.3 compliant pulses onto the line. Twisted-Pair Inputs3, Positive & Negative, Ports 0-7. AI/AO During 100BASE-TX or 10BASE-T operation, TPI pins receive differential 100BASE-TX or 10BASE-T signals from the line. JTAG Test Signal Description C12 TDI I, ST, IP C11 TDO O, TS B11 TMS I, ST, IP A11 TCK I, ST, ID A10 TRST I, ST, IP Test Data Input. Test data sampled with respect to the rising edge of TCK. Test Data Output. Test data driven with respect to the falling edge of TCK. Test Mode Select. Test Clock. Clock input for JTAG test. Test Reset. Reset input for JTAG test. Miscellaneous Signal Description 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 111 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 4 of 7) BGA15 Ball Designation Symbol Type Signal Description Tx Output Slew Controls 0 and 1 Defaults. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 27.11:10 for all ports. These register bits can be read and overwritten after startup / reset. M11, M12 TxSLEW_0 TxSLEW_1 These pins select the TX output slew rate for all ports (rise and fall time) as follows: I, ST, ID TxSLEW_1 TxSLEW_0 Slew Rate (Rise and Fall Time) 0 0 3.3 ns 0 1 3.6 ns 1 0 3.9 ns 1 1 4.2 ns Reset. C10 RESET I, ST, IP This active low input is ORed with the control register Reset Register bit 0.15. When held Low, all outputs are forced to inactive state. Pin is not on JTAG chain. Address <4:3>. Sets base address to one of the following four possible addresses: • 00000 • 01000 • 10000 • 11000 N10, P10 ADD_4 ADD_3 I, ST, ID Each port adds its port number (starting with 0) to this address to determine its PHY address. Port 0 Address = Base Port 1 Address = Base + 1 Port 2 Address = Base + 2 Port 3 Address = Base + 3 Port 4 Address = Base + 4 Port 5 Address = Base + 5 Port 6 Address = Base + 6 Port 7 Address = Base + 7 Mode Select[1:0]. 00 = Reserved E8 C9, MODESEL_1 MODESEL_0 01 = SMII I, ST, ID 10 = SS-SMII 11 = Reserved All ports are configured the same. Interfaces cannot be mixed and must be all SMII or SS-SMII. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 112 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 5 of 7) BGA15 Ball Designation Symbol Type Signal Description Auto MDI/MDIX Enable Default. K8 AMDIX_EN I, ST, IP This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 27.9 for all ports. These register bits can be read and overwritten after startup / reset. Refer to Table 40 on page 119. When active (High), automatic MDI crossover (MDIX) (regardless of segmentation) is selected for all ports. When inactive (Low) MDIX is selected according to the MDIX pin. Global Port Configuration Defaults 1-3. M10, L9, M9 CFG_1 CFG_2 CFG_3 I, ST, ID These pins are read at startup or reset. Their value at that time is used to set the default state of register bits shown in Table 42, “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129 for all ports. These register bits can be read and overwritten after startup / reset. When operating in Hardware Control Mode, these pins provide configuration control options for all the ports (refer to page 129 for details). FIFO Select <1:0>. These pins are read at startup or reset. Their value at that time is used to set the default state of Register bits 18.15:14 for all ports. These register bits can be read and overwritten after startup/reset. C1, F1 FIFOSEL1 FIFOSEL0 I, ID, ST These pins are shared with RMII-RxER<5:4>. An external pull-up resistor (see applications section for value) can be used to set FIFO Select<1:0> to active while RxER<5:4> are three-stated during hardware reset. If no pull-up is used, the default FIFO select state is set via the internal pull-down resistors. See Table 36, “Intel® LXT9785/LXT9785E Receive FIFO Depth Configurations” on page 97. B3 LINKHOLD I, ID, ST LINKHOLD Default. This pin is read at startup or reset. Its value at that time is used to set the default state of Register bit 0.11 for all ports. This register bit can be read and overwritten after startup / reset. When High, the LXT9785/ 9785E powers down all ports. This pin is shared with RMII-RxER6. An external pull-up resistor (see applications section for value) can be used to set LINKHOLD active while RxER6 is three-stated during H/W reset. If no pull-up is used, the default LINKHOLD state is set inactive via the internal pull-down resistor. LED Signal Descriptions Port 0 LED Drivers 1-2. N9, P9 LED0_1 LED0_2 OD, TS, SL, IP These pins drive LED indicators for Port 0. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 113 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 6 of 7) BGA15 Ball Designation Symbol Type Signal Description Port 1 LED Drivers 1-2. N8, P8 LED1_1 LED1_2 OD, TS, SL, IP These pins drive LED indicators for Port 1. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 2 LED Drivers 1-2. P7, N7, LED2_1 LED2_2 OD, TS, SL, IP These pins drive LED indicators for Port 2. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 3 LED Drivers 1-2. P6, N6 LED3_1 LED3_2 OD, TS, SL, IP These pins drive LED indicators for Port 3. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 4 LED Drivers 1-2. B9, A9 LED4_1 LED4_2 OD, TS, SL, IP These pins drive LED indicators for Port 4. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 5 LED Drivers 1-2. B8, A8 LED5_1 LED5_2 OD, TS, SL, IP These pins drive LED indicators for Port 5. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 6 LED Drivers 1-2. A7, B7 LED6_1 LED6_2 OD, TS, SL, IP These pins drive LED indicators for Port 6. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Port 7 LED Drivers 1-2. B6, A6 LED7_1 LED7_2 OD, TS, SL, IP These pins drive LED indicators for Port 7. Each LED can display one of several available status conditions as selected by the LED Configuration Register (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213 for details). Power Supply Signal Descriptions D12, E12, F12, G12, H12, J12, K12, L12, AVCC – Analog Power Supply. +2.5 V supply for analog circuits. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. 114 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 39. Intel® LXT9785 BGA15 Signal Descriptions (Sheet 7 of 7) BGA15 Ball Designation Symbol Type E11, F9, F10, F11, G9, G10, G11, H9, H10, H11, J9, J10, J11, K11, L11 AVSS – D7, L7 VCCD – Signal Description Analog Ground. Ground return for analog supply (AVCC). all grounds can be tied together using a single ground plane. Digital Power Supply - Core. +2.5 V supply for core digital circuits. Digital Power Supply - I/O Ring. D4, F4, H4, L3, L5, VCCIO – A1, A2, A3, B1, B2, B5, B10, D9, D11, E5, E6, E9, E10, F5, F6, F7, F8, G4, G6, G7, G8, H6, H7, H8, J5, J6, J7, J8, K5, K6, K9, K10, L2, N1, N11, P1, P11 GNDD – C8 SGND – +2.5/3.3 V supply for digital I/O circuits. The digital input circuits running off of this rail, having a TTL-level threshold and over-voltage protection, may be interfaced with 3.3/5.0 V, when the IO supply is 3.3 V, and 2.5/3.3/5.0 V when 2.5 V. Digital Ground. Ground return for core digital supplies (VCCD). All ground pins can be tied together using a single ground plane. Substrate Ground. Ground for chip substrate. All ground pins can be tied together using a single ground plane. Unused/Reserved Balls C4, C7, D1, D2, D5, D6, D8, D10, E4, E7, G2, G5, H1, H5, J4, K4, K7, L1, L6, L8, L10, M4, M5, M6, M7, M8, P2, P3 N/C – No Connection. 1. Type Column Coding: I = Input, O = Output, OD = Open Drain output, ST = Schmitt Triggered input, TS = Three-State-able output, SL = Slew-rate Limited output, IP = weak Internal Pull-up, ID = weak Internal pullDown. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 115 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.0 Functional Description 4.1 Introduction The Intel® LXT9785/LXT9785E is an 8-port Fast Ethernet 10/100 PHY transceiver that supports 10 Mbps and 100 Mbps networks, complying with all applicable requirements of IEEE 802.3 standards. The device incorporates a Serial Media Independent Interface (SMII), Source Synchronous-Serial Media Independent Interface (SS-SMII), and a Reduced Serial Independent Interface (RMII) to enable each individual network port to interface with multiple 10/100 MACs. Each port directly drives either a 100BASE-TX line or a 10BASE-T line. The LXT9785/9785E also supports 100BASE-FX operation via an LVPECL interface. The device has a 241-ball BGA, a 208-pin QFP, or a 196-ball BGA package. The 196-ball BGA package (BGA15) is a reduced feature-set product. The BGA15 package does not support the following features: • • • • • RMII Fiber Sectionalization Third LED port (only two LEDs per port) Hardware control pins: — PAUSE — MDIX — MDDIS — PWRDWN — Lower three PHY address (out of five PHY address bits) • Extended temperature Note: 4.1.1 Unless otherwise noted, all information in this document applies to the LXT9785 and LXT9785E. OSP™ Architecture The Intel LXT9785/LXT9785E incorporates high-efficiency Optimal Signal Processing™ design techniques, combining the best properties of digital and analog signal processing to produce a truly optimal device. The receiver utilizes decision feedback equalization to increase noise and cross-talk immunity by as much as 3 dB over an ideal all-analog equalizer. Using OSP mixed-signal processing techniques in the receive equalizer avoids the quantization noise and calculation truncation errors found in traditional DSP-based receivers (typically complex DSP engines with A/D converters). The result is improved receiver noise and cross-talk performance. The OSP architecture also requires substantially less computational logic than traditional DSPbased designs. The result is lower power consumption and reduced logic switching noise generated by DSP engines clocked at speeds up to 125 MHz. The logic switching noise can be a considerable source of EMI when generated from the device’s power supplies. 116 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers The OSP-based LXT9785/LXT9785E provides improved data recovery, EMI performance and power consumption. 4.1.2 Comprehensive Functionality The LXT9785/LXT9785E performs all functions of the Physical Coding Sublayer (PCS) and Physical Media Attachment (PMA) sublayer as defined in the IEEE 802.3 100BASE-X specification. This device also performs all functions of the Physical Media Dependent (PMD) sublayer for 100BASE-TX connections. On power-up, the LXT9785/LXT9785E reads its configuration inputs to check for forced operation settings. If not configured for forced operation, each port uses auto-negotiation/parallel detection to automatically determine line operating conditions. If the PHY device on the other side of the link supports auto-negotiation, the LXT9785/LXT9785E auto-negotiates with it using Fast Link Pulse (FLP) Bursts. If the PHY partner does not support auto-negotiation, the LXT9785/LXT9785E automatically detects the presence of either link pulses (10 Mbps PHY) or Idle symbols (100 Mbps PHY) and set its operating conditions accordingly. The LXT9785/LXT9785E provides half-duplex and full-duplex operation at 100 Mbps and 10 Mbps. 4.1.2.1 Sectionalization The LXT9785/LXT9785E’s sectional design allows flexibility with large multiport MACs and ASICs. With the use of the Section pin, the LXT9785/LXT9785E can be configured into a single 8port or two separate 4-port sections, each with its own MDIO (with separate MDC clock) and MII data (with separate REFCLK/TxCLK/RxCLK clocks) interfaces. See Figure 16, “Intel® LXT9785/LXT9785E Typical SMII Quad Sectionalization Diagram” on page 134, Figure 21, “Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram” on page 140, and Figure 26, “Intel® LXT9785/LXT9785E Typical RMII Quad Sectionalization Diagram” on page 144. Note: The BGA15 package does not support sectionalization. 4.2 Interface Descriptions 4.2.1 10/100 Network Interface The LXT9785/LXT9785E supports 10 Mbps and 100 Mbps (10BASE-T and 100BASE-TX) Ethernet over twisted-pair, or 100 Mbps (100BASE-FX) Ethernet over fiber media. Each network interface port consists of four external pins (two differential signal pairs). The pins are shared between twisted-pair (TP) and fiber. The LXT9785/LXT9785E pinout is designed to interface seamlessly with dual-high stacked RJ-45 connectors. Refer to Table 11, “Intel® LXT9785/ LXT9785E Network Interface Signal Descriptions – PQFP” on page 42 for specific pin assignments. The LXT9785/LXT9785E output drivers generate either 100BASE-TX, 10BASE-T, or 100BASEFX output. When not transmitting data, the device generates IEEE 802.3-compliant link pulses or idle code. Input signals are decoded either as a 100BASE-TX, 100BASE-FX, or 10BASE-T input, depending on the mode selected. Auto-negotiation/parallel detection or manual control is used to determine the speed of this interface. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 117 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 7. Intel® LXT9785/LXT9785E Interfaces TXENn TXDn_0 TXDn_1 Data Interface TXCLK TPFOPn TPFONn RXCLK RXDn_1 TPFIPn RXDn_0 TPFINn Network Interface RXERn CRS_DVn MDIO Management Interface MDIOn MDCn MDINTn MDDIS Direct Drive Port LEDs/ Controls Addr & MDIX/ Contr LEDn_2 LEDn_2 LEDn_3 MDIX_Enb Mode Select ADD<4:0> VCCIO +3.3 V OR +2.5 V VCCD +2.5 V GNDD .01 uF 4.2.1.1 Twisted-Pair Interface The LXT9785/LXT9785E supports either 100BASE-TX or 10BASE-T connections over 100 Ω, Category 5, Unshielded Twisted-Pair (UTP). Only a transformer, RJ-45, and bypass capacitors are required to complete this interface. Using Intel's patented waveshaping technology, the transmitter shapes the outgoing signal to help reduce the need for external EMI filters. Four slew rate settings (refer to Table 13, “Intel® LXT9785/LXT9785E Miscellaneous Signal Descriptions – PQFP” on page 43) allow the designer to match the output waveform to the magnetic characteristics. Both transmit and receive terminations are built into the LXT9785/LXT9785E so no external components are required between the LXT9785/LXT9785E and the external transformer. The transmitter uses a transformer with a center tap to help reduce power consumption. When operating at 100 Mbps, MLT3 symbols are continuously transmitted and received. When not transmitting data, the LXT9785/LXT9785E generates “IDLE” symbols. 118 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers During 10 Mbps operation, LXT9785/LXT9785E encoded data is exchanged. When no data are being exchanged, the line is left in an idle state with NLPs transmitted to maintain link. 4.2.1.2 MDI Crossover (MDIX) The LXT9785/LXT9785E crossover function, which is compliant to the IEEE 802.3, clause 23 standard, connects the transmit output of the device to the far-end receiver in a link segment. This function can be disabled via Register bits 27.9:8 or by using the hardware configuration pins. Table 40. Intel® LXT9785/LXT9785E MDIX Selection Note: 4.2.1.3 AMDIX_EN MDIX MDIX Mode 0 0 MDI forced 0 1 MDIX forced 1 X Auto MDI/MDIX The BGA15 package does not support MDIX hardware configuration. Software must be used to control the function after power-up. Fiber Interface The LXT9785/LXT9785E fiber ports are designed to interface with common industry-standard 3.3 V and 5 V fiber-optic transceivers. Each of the 8 ports incorporates a Low-Voltage PECL interface that complies with the ANSI X3.166 standard for seamless integration. Note: The BGA15 package does not support the fiber interface. Fiber mode is selected through Register bit 16.0 by the following two methods: 1. Configure Register bit 16.0 = 1 on a global basis (all 8 ports) by driving the Hardware Control pin G_FX/TP to a logic High value on power-up and/or reset. 2. Configure Register bit 16.0 = 1 on a per-port basis through the MDIO interface. The fiber interface is capable of full-duplex or half-duplex operation. In half duplex, operation collisions must be managed by external Layer 2 logic (MAC). Auto negotiation is not supported for fiber mode. 4.3 Media Independent Interface (MII) Interfaces The LXT9785/LXT9785E supports Reduced MII or Serial MII, but not concurrently. The interface mode selection pins configures the device for either RMII or SMII/SS-SMII on all eight ports. Refer to Table 41 for the mode select settings. Note: 4.3.1 The BGA15 package does not support the RMII interface. Global MII Mode Select The mode select pins are used for MII interface configuration settings upon power-up sequencing. All ports are configured the same and cannot be intermixed. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 119 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 41. Intel® LXT9785/LXT9785E MII Mode Select ModeSel1 ModeSel0 RMII1 0 0 SMII 0 1 SS-SMII 1 0 Reserved 1 1 1. Invalid for the BGA15 package. 4.3.2 Internal Loopback Register bit 0.14 must be set to enable internal loopback operation. Register bits 16.14 and 0.8 must be set for 10 Mbps operation. Intel recommends that auto-negotiation be disabled while internal loopback is enabled. The normal auto-negotiation process code word exchange cannot be completed.The following two-step sequence is recommended for the most efficient mode change when enabling forced 100 Mbps internal loopback mode directly from auto-negotiation mode: 1. Write Register 0 with 0x2100h (forced 100 Mbps), and 2. Write Register 0 with 0x6100h (enable internal loopback with forced 100 Mbps) This two-step process ensures the 100 Mbps link comes up quickly. If the one-write process of writing 0x6100h is followed, it may take up to 1.5 seconds before link is established and data is received on the port. The 1.5 second delay is due to the IEEE auto-negotiation Break Link Timer (BLT) requirement. The timer must expire before link is established when changing modes directly from auto-negotiation to internal loopback forced 100 Mbps mode. Use the above two-step process to eliminate the auto-negotiation BLT timer requirement. Figure 8. Intel® LXT9785/LXT9785E Internal Loopback LXT9785/9785E RMII/ SMII/ SSSMII inter face 4.3.3 Fx Driver Digital Block Loopback Analog Block Tx Driver RMII Data Interface The LXT9785/LXT9785E provides a separate RMII for each network port, each complying with the RMII Specification, Revision 1.2. The RMII includes both a data interface and an MDIO management interface. The RMII Data Interface exchanges data between the LXT9785/LXT9785E and up to eight Media Access Controllers (MACs). 120 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.3.4 Serial Media Independent Interface (SMII) and Source SynchronousSerial Media Independent Interface (SS-SMII) 4.3.4.1 SMII Interface The LXT9785/LXT9785E provides an independent serial interface for each network port, complying with the Serial-MII Specification, Revision 1.2. All SMII ports use a common reference clock and SYNC signal. The SMII Data Interface exchanges data between the LXT9785/ LXT9785E and multiple Media Access Controllers (MACs). All signals are synchronous to the reference clock. One SYNC control stream is sourced by the MAC to the PHY. Both the transmit and receive data streams are segmented into boundaries delimited by the SYNC pulses. This interface is expected to drive up to 6 inches of trace lengths. 4.3.4.2 Source Synchronous-Serial Media Independent Interface The new revision to the SMII interface, SS-SMII, allows for a longer trace length and helps to relieve timing constraints, requiring the addition of four new signals, TxCLK, TxSYNC, RxCLK, and RxSYNC. The transmit TxCLK and TxSYNC are sourced from the MAC to the PHY and referenced to the REFCLK input. The receive RxCLK and RxSYNC are sourced by the PHY to the MAC and in reference to the REFCLK. 4.3.5 Configuration Management Interface The LXT9785/LXT9785E provides an MDIO Management Interface and a Hardware Control Interface (via the CFG pins) for device configuration and management. Mode control selection is provided via the MDDIS pin as shown in Table 9, “Intel® LXT9785/LXT9785E MDIO Control Interface Signals – PQFP” on page 41. When sectionalization (2x4) is selected, separate MDIO interfaces are enabled (see Figure 13 on page 127). 4.3.6 MII Isolate In applications where the MII must be isolated from the bus, the RMII and the SMII/SS-SMII configurations can be three-stated using Register 0.10. On each individual port, Register bit 0.10 controls the isolation of the transmit and receive data signals for that port. Register bit 0.10 on ports 0 and 4 isolate the RxCLKn/TxCLKn and SYNC signals. When 1x8 sectionalization is selected, TxCLK0, TxSYNC0, RxCLK1, and RxSYNC1 are used for the clocking and synchronization interface. Port 4 controls the isolation of RxCLK0, RxCLK1, RxSYNC0, and RxSYNC1, and must be used to isolate the receive clock and synchronization interface. When 2x4 sectionalization is selected, TxCLK0, TxSNC0, RxCLK0, and TxCLK0 are used for Port 0 through Port 3 and TxCLK1, TxSYNC1, RxCLK1, and RxSYNC1 are used for Port 4 through Port 7. Port 0 must be isolated to isolate the receive clock and synchronization interface for Port 0 through Port 3. Port 4 must be isolated to isolate Port 4 through Port 7. 4.3.7 MDIO Management Interface The LXT9785/LXT9785E supports the IEEE 802.3 MII Management Interface, also known as the Management Data Input/Output (MDIO) Interface. This interface allows upper-layer devices to monitor and control the state of the LXT9785/LXT9785E. The MDIO interface consists of a Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 121 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers physical connection, a specific protocol that runs across the connection, and an internal set of addressable registers. Some registers are required and their functions are defined by the IEEE 802.3 specification. Additional registers allow for expanded functionality. Specific bits in the registers are referenced using an “X.Y” notation, where X is the register number (0-32) and Y is the bit number (0-15). The physical interface consists of a data line (MDIO) and clock line (MDC). Operation of this interface is controlled by the MDDIS input pin. When MDDIS is High, all the MDIOs are completely disabled. The Hardware Control Interface provides primary configuration control. When MDDIS is Low, the MDIO port is enabled for both read and write operations and the Hardware Control Interface is not used. Note: The BGA15 package does not support the MDDIS pin. The timing for the MDIO Interface is shown in Table 79, “Intel® LXT9785/LXT9785E MDIO Timing Parameters” on page 197. MDIO read and write cycles are shown in Figure 9, “Intel® LXT9785/LXT9785E Management Interface Read Frame Structure” on page 122 and Figure 10, “Intel® LXT9785/LXT9785E Management Interface Write Frame Structure” on page 122. Figure 9. Intel® LXT9785/LXT9785E Management Interface Read Frame Structure MDC MDIO (Read) High Z 32 "1"s 0 Preamble 1 ST 1 0 A4 Op Code A3 A0 R4 R3 R0 Z D15 D15D14 D14 D1 0 Turn Around Register Address PHY Address D1 D0 Data Write Idle Read Figure 10. Intel® LXT9785/LXT9785E Management Interface Write Frame Structure MDC MDIO (Write) 32 "1"s Idle Preamble 0 1 ST 0 1 Op Code A4 A3 A0 R4 R3 Register Address PHY Address R0 1 0 Turn Around D15 D14 D1 Data D0 Idle Write The protocol allows one controller to communicate with multiple LXT9785/LXT9785E chips. Pins ADD_<4:0> determine the base address. Each port adds its port number to the base address to obtain its port address as shown in Figure 11. The BGA15 package uses a similar scheme where the ADD_[2:0] bits internally set to 0 and the ADD_[4:3] bits are used to select from four base addresses (0x00000b, 0x01000b, 0x10000b, or 0x11000b. 122 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 11. Intel® LXT9785/LXT9785E Port Address Scheme BASE ADD_<4:0> (example ADD_<4:0> = 4) LXT9785 LXT9785/9785E Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6 Port 7 4.3.8 PHY ADD_<4:0> (BASE+0) ex. 4 PHY ADD_<4:0> (BASE+1) ex. 5 PHY ADD_<4:0> (BASE+2) ex. 6 PHY ADD_<4:0> (BASE+3) ex. 7 PHY ADD_<4:0> (BASE+4) ex. 8 PHY ADD_<4:0> (BASE+5) ex. 9 PHY ADD_<4:0> (BASE+6) ex. 10 PHY ADD_<4:0> (BASE+7) ex. 11 MII Sectionalization When sectionalized into two quad sections, the MDIO bus splits into two separate PHY access ports. Ports 0-3 of the MDIO section operate independently of ports 4-7. The MII isolate function is unaffected and operates normally. Sectionalization is selected by pulling pin 176 (Section) High on the initial power-up sequence (refer to Figure 13). In applications that need sectionalization, such as 1x8 and 2x4 and have a single MDIO bus structure, it is necessary that the addressing scheme be contiguous. For example, the first eight ports are addressed 0-7, so the next four ports must be addressed 8-11. Note: 4.3.9 The BGA15 package does not support the MII sectionalization feature. MII Interrupts The LXT9785/LXT9785E provides a single per-section interrupt pin that is available to all ports. Interrupt logic is shown in Figure 12. The LXT9785/LXT9785E also provides two dedicated interrupt registers for each port. Register 18 provides interrupt enable and mask functions and Register 19 provides interrupt status. Setting Register bit 18.1 = 1 enables a port to request interrupt via the MDINT pin. An active Low on this pin indicates a status change on the device. Because it is a shared interrupt, there is no indication which port is requesting interrupt service (see Figure 12). There are five conditions that may cause an interrupt: Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 123 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers • • • • • Auto-negotiation complete. Speed status change. Duplex status change. Link status change. Isolate status change. Figure 12. Intel® LXT9785/LXT9785E Interrupt Logic Event X Enable Reg AND Event X Status Reg .. . OR AND Per Event Force Interrupt Interrupt Enable ... Port Combine Logic Interrupt Pin Per port Interrupt (Event) Status Register is cleared on read. X = Any Interrupt capabi lity 4.3.10 Global Hardware Control Interface The LXT9785/LXT9785E provides a Hardware Control Interface for applications where the MDIO is not desired. Refer to “Initialization” on page 126 for additional details. 4.3.11 FIFO Initial Fill Values The FIFO initial fill value sets the number of bits required to be written into the FIFO before the process of reading the packet out of the FIFO is started. The read operation is aligned on nibble boundaries because the FIFO is one nibble wide. The read clock on the RMII and SMII interfaces may occur any time within the next available nibble. Therefore, the effective size of the FIFO is one nibble less than the selected size. Large initial fill FIFO settings alter both the data-path latency and the InterFrame Gap (IFG) output on the RMII and SMII interfaces. The latency values are increased or decreased depending on the number of bits the FIFO size is increased or decreased. The IFG may decrease up to twice the size of the initial fill FIFO setting. When the following three conditions are met, the IPG on the RMII and SMII interfaces may become nonexistent between packets, effectively concatenating the packets into one long corrupted packet: • The frequency difference between the link partner and the local LXT9895 device exceed 200 ppm (the IEEE standard requirement). • Jumbo packets (8192 byte packets or longer) are used. • Packets on the wire occur with minimum Inter-Packet Gap (IPG) of 96 bit times. The concatenation of the packets is flagged by the MAC as a CRC error and possibly an oversized packet depending upon the length indication capabilities of the MAC. The possibility of packet concatenation can be minimized on the RMII interface by setting the initial fill FIFO Register bits 18.15:14 to 01. The FIFO setting bits should be set to 10 for the SMII interfaces. 124 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.4 Operating Requirements 4.4.1 Power Requirements The LXT9785/LXT9785E requires four power supply inputs: VCCD, VCCA, VCCPECL and VCCIO. The digital and analog circuits require 2.5 V supplies (VCCD, VCCR, and VCCT). These inputs may be supplied from a single source although decoupling is required to each respective ground. The fiber VCCPECL supply can be connected to either 2.5 V or 3.3 V. A separate power supply may be used for the MII, JTAG and MDIO (VCCIO) interfaces. The power supply may be either +2.5 V or +3.3 V. VCCIO should be supplied from the same power source used to supply the controller on the other side of the interface. Refer to Table 53, “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/- 5%)” on page 174, Table 54, “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/- 5%)” on page 175, and Table 55, “Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins” on page 175 for I/O characteristics. As a matter of good practice, these supplies should be as clean as possible. Typical filtering and decoupling are shown in Figure 34 on page 168. The power supplies should be brought up as close to the same time as possible. However, there are no specific timing requirements. 4.4.2 Clock/SYNC Requirements 4.4.2.1 Reference Clock The LXT9785/LXT9785E requires a constant enabled reference clock (REFCLK). REFCLK’s frequency must be 50 MHz for RMII or 125 MHz for SMII/SS-SMII. The reference clock is used to generate transmit signals and recover receive signals. A crystal-based clock is recommended over a derived clock (that is, PLL-based) to minimize transmit jitter. Refer to Table 56, “Intel® LXT9785/LXT9785E Required Clock Characteristics” on page 175 for clock timing requirements. For applications that use a single 8-port sectionalization, REFCLK0 and REFCLK1 must always be tied together and to the source. In 2x4 applications, REFCLK0 and REFCLK1 are not tied together. 4.4.2.2 TxCLK Signal (SS-SMII only) The LXT9785/LXT9785E requires a 125 MHz input transmit clock synchronous with TxDatan and frequency locked to REFCLK. See Figure 22 on page 141. 4.4.2.3 TxSYNC Signal (SMII/SS-SMII) The LXT9785/LXT9785E requires a 12.5 MHz input pulse for SMII synchronization. See Figure 22 on page 141. 4.4.2.4 RxSYNC Signal (SS-SMII only) The LXT9785/LXT9785E provides a 12.5 MHz output pulse synchronous with the RxDatan outputs. See Figure 23 on page 141. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 125 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.4.2.5 RxCLK Signal (SS-SMII only) In SS-SMII mode, the LXT9785/LXT9785E provides a 125 MHz clock output in reference to the output RxDatan. RxCLK is referenced and synchronized to the REFCLK. See Figure 23 on page 141. 4.5 Initialization When the LXT9785/LXT9785E is first powered on, reset, or encounters a link failure state, it checks the MDIO register configuration bits to determine the line speed and operating conditions to use for the network link. The configuration bits may be set by the Hardware Control or MDIO interface as shown in Figure 13 on page 127. 4.5.1 MDIO Control Mode In the MDIO Control mode, the LXT9785/LXT9785E reads the Hardware Control Interface pins to set the initial (default) values of the MDIO registers. Once the initial values are set, bit control reverts to the MDIO interface. 4.5.2 Hardware Control Mode In the Hardware Control Mode, the LXT9785/LXT9785E disables direct write operations to the MDIO registers via the MDIO Interface. On power-up or hardware reset, the LXT9785/LXT9785E reads the Hardware Control Interface pins and sets the MDIO registers accordingly. The following modes are available using either Hardware Control or MDIO Control: • Force network link to 100BASE-FX (Fiber). • Force network link operation to: — 100BASE-TX, Full-Duplex — 100BASE-TX, Half-Duplex — 10BASE-T, Full-Duplex — 10BASE-T, Half-Duplex • • • • Allow auto-negotiation/parallel-detection. Auto/Manual MDIX enable/disable. Pause for full-duplex links operation. Global Output Slew Rate Control. When the network link is forced to a specific configuration, the LXT9785/LXT9785E immediately begins operating the network interface as commanded. When auto-negotiation is enabled, the LXT9785/LXT9785E begins the auto-negotiation/ parallel-detection operation. 126 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 13. Intel® LXT9785/LXT9785E Initialization Sequence Power-up or Reset Read H/W Control Interface Initialize MDIO Registers MDIO Control Mode Low MDDIS Voltage Level? Hardware Control Mode High Pass Control to MDIO Interface Disable MDIO Writes Software Reset? Hardware Reset? Yes Yes Reset MDIO Registers to values read at H/W Control Interface at last Hardware Reset 4.5.3 Power-Down Mode The LXT9785/LXT9785E incorporates numerous features to maintain the lowest power possible. The device can be put into a low-power state via Register 0 as well as a near-zero power state with the power down pin. When in power-down mode, the device is not capable of receiving or transmitting packets. The lowest power operation is achieved using the Global power-down pin, which is active High. This pin powers down every circuit in the device, including all clocks. All registers are unaltered and maintained when the Global PWRDWN pin is released. Note: The BGA15 package does not support the PWRDWN pin feature. Individual ports (software power down) can be powered down using Register bit 0.11. This bit powers down a significant portion of the port, but clocks to the register section remain active. This allows the management interface to remain active during register power-down. The power-down bit is active High. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 127 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Note: 4.5.3.1 Intel recommends that a minimum recovery time be allowed after bringing up a port from software or hardware power-down or link hold-off modes. The recovery times are specified in Table 80, “Intel® LXT9785/LXT9785E Power-Up Timing Parameters” on page 198 Global (Hardware) Power Down The global power-down mode is controlled by the PWRDWN pin. When PWRDWN is High, the following conditions are true: • • • • • 4.5.3.2 All LXT9785/LXT9785E ports and the clock are shut down. All outputs are three-stated. All weak pad pull-up and pull-down resistors are disabled. The MDIO registers are not accessible. Configuration pins are read upon release of the PWRDWN pin, and registers are loaded with the current values of the hardware configuration pins. Port (Software) Power Down Individual port power-down control is provided by Register bit 0.11 in the respective port Control Registers (refer to Table 83, “Control Register (Address 0)” on page 200). During individual port power-down, the following conditions are true: • • • • 4.5.4 The individual port is shut down. The MDIO registers remain accessible. Pull-up and pull-down resisters are not affected and the outputs are not three-stated. The register remains unchanged. Reset The LXT9785/LXT9785E provides both hardware and software resets. Configuration control of Auto-Negotiation, speed, and duplex mode selection is handled differently for each. During a hardware reset, settings for bits 0.13, 0.12, 0.8, and 4.8:5 are read in from the pins (refer to Table 42, “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129 for pin settings, and Table 83, “Control Register (Address 0)” on page 200 and Table 87, “AutoNegotiation Advertisement Register (Address 4)” on page 204 for register bit definitions). During a software reset (Register bit 0.15 = 1), the bit settings are not re-read from the pins and revert back to the values that were read in during the last hardware reset. Any changes to pin values from the last hardware reset are not detected during a software reset. During a hardware reset, register information is unavailable for 1 ms after de-assertion of the reset. All MII interface pins are disabled during a hardware reset and released to the bus on de-assertion of reset. During a software reset (0.15 = 1) the registers are available for reading. The reset bit should be polled to see when the part has completed reset (0.15 = 0). Pull up and pull down resisters are not affected. 128 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Intel recommends that a minimum recovery time be allowed after bringing up a port from software or hardware reset. The recovery times are specified in Table 80, “Intel® LXT9785/LXT9785E Power-Up Timing Parameters” on page 198 4.5.5 Hardware Configuration Settings The LXT9785/LXT9785E provides a hardware option to set the initial device configuration. The hardware option uses three Global CFG pins that provide control for all ports (see Table 42). Table 42. Intel® LXT9785/9785E Global Hardware Configuration Settings CFG Pin Settings1 Desired Mode AutoNeg Speed 10 Disabled 100 100 Enabled 10/100 Resulting Register Bit Values Duplex 1 2 3 Half Low Low Low Full Low Low High Half Low High Low Full Low High High Half High Low Low Full/Half High Low High Half High High Low Full/Half High High High 0.12 0.13 0 0 1 1 0.8 4.8 4.7 4.6 4.5 0 1 N/A 0 Auto-Negotiation Advertisement 1 1 0 0 1 1 0 1 1 1 0 0 1 0 1 0 0 1 0 1 1 1 1 1. Refer to Table 5, “Intel® LXT9785/LXT9785E RMII Signal Descriptions – PQFP” on page 36 through Table 17, “Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations” on page 50 Table 24, “Intel® LXT9785/LXT9785E RMII Signal Descriptions – BGA23” on page 82 through Table 36, “Intel® LXT9785/ LXT9785E Receive FIFO Depth Configurations” on page 97, and Table 39, “Intel® LXT9785 BGA15 Signal Descriptions” on page 109 for CFG pin assignments. 4.6 Link Establishment 4.6.1 Auto-Negotiation The LXT9785/LXT9785E attempts to auto-negotiate with its link partner by sending Fast Link Pulse (FLP) bursts. Each burst consists of 33 link pulses spaced 62.5 µs apart. Odd link pulses (clock pulses) are always present. Even link pulses (data pulses) may also be present or absent to indicate a “1” or a “0”. Each FLP burst exchanges 16 bits of data, referred to as a “page”. All devices that support auto-negotiation must implement the “Base Page”, defined by IEEE 802.3 (registers 4 and 5). The LXT9785/LXT9785E also supports the optional “Next Page” function (registers 7 and 8). 4.6.1.1 Base Page Exchange By exchanging Base Pages, the LXT9785/LXT9785E and its link partner communicate their capabilities to each other. Both sides must receive at least three identical base pages for negotiation to proceed. Each side finds their highest common capabilities, exchange more pages, and agree on the operating state of the line. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 129 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.6.1.2 Manual Next Page Exchange Additional information, exceeding that required by base page exchange, is also sent via “Next Pages.” The LXT9785/LXT9785E fully supports the IEEE 802.3 method of negotiation via Next Page exchange. The Next Page exchange uses Register 7 to send information and Register 8 to receive it. Next Page exchange occurs only if both ends of the link partners advertise their ability to exchange Next Pages. A special mode has been added to make manual next page exchange easier for software. When Register 6 “page” is received, it stays set until read. This bit is cleared when a new negotiation occurs, preventing the user from reading an old value in Register 6 and assuming there is valid information in Registers 5 and 8. The page received bit is cleared upon reading the “Auto-Negotiation Expansion Register (Address 6)” on page 206. 4.6.1.3 Controlling Auto-Negotiation The following steps are recommended when auto-negotiation is controlled by software: • After power-up, power-down, or reset, the power-down recovery time, as specified in Table 80, “Intel® LXT9785/LXT9785E Power-Up Timing Parameters” on page 198, must be exhausted before proceeding. • Set the auto-negotiation advertisement register bits in Register 4 as desired. • Enable auto-negotiation (set MDIO Register bit 0.12 = 1). • Enable or restart auto-negotiation as soon as possible after writing to Register 4 to ensure proper operation. 4.6.1.4 Link Criteria In 100 Mbps mode, link is established when the descrambler becomes locked and remains locked for approximately 50 ms. Link remains up unless the descrambler receives less than 12 consecutive idle symbols in any 2 ms period. This provides a robust operation, filtering out any small noise hits that may disrupt the link. MLT-3 idle waveforms, for short periods, meet all the criteria for 10BASE-T start delimiters. A working 10BASE-T receive may temporarily indicate link to 100BASE-TX waveforms. However, the PHY will not bring up a permanent 10 Mbps link. According to the IEEE standard 10 Mbps link state machine, the last condition that must be met before 10 Mbps link can come up is a period of transmit and receive idle time. TXEN and RXDV are inactive at the same time. This ensures that link is not brought up in the middle of transmitting or receiving a packet. To ensure link establishment, Intel recommends no packet transmission into the MII interface until link is established. The IEEE Standard references this requirement in Section 14.2.3 State Diagrams, Figure 14-6-Link Integrity Test Function State Diagram and in Section 28.3.4 State Diagrams, Figure 28-17-NLP Receive Link Integrity Test State Diagram. These diagrams illustrate that while the PHY is in the Link Test Fail Extend state, the last state before Link Pass state) Packet receive activity (RD) and Transmit Activity (DO) must be idle (RD = idle * D0 = idle) for link to establish. 130 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.6.1.5 Parallel Detection In parallel with auto-negotiation, the LXT9785/LXT9785E also monitors for 10 Mbps Normal Link Pulses (NLP) or 100 Mbps Idle symbols. If either symbol is detected, the device automatically reverts to the corresponding operating speed in half-duplex mode. Parallel detection allows the LXT9785/LXT9785E to communicate with devices that do not support autonegotiation. When parallel detection resolves a link, the link must be established in half-duplex mode. According to IEEE standards, the forced link partner cannot be configured to full-duplex. If the auto-negotiation link partner does not advertise half-duplex capability at the speed of the forced link partner, link is not established. The IEEE Standard prevents forced full-duplex-to-half-duplex link connections. Figure 14. Intel® LXT9785/LXT9785E Auto-Negotiation Operation Power-Up, Reset, Link Failure Start Disable Auto-Negotiation Go To Forced Settings Done 4.6.1.6 0.12 = 0 0.12 = 1 Check Value 0.12 Attempt AutoNegotiation YES Enable Auto-Neg/Parallel Detection Listen for 100TX Idle Symbols Link Set? Listen for 10T Link Pulses NO Reliable Link Establishment While Auto MDI/MDIX is Enabled in Forced Speed Mode With auto MDI/MDIX hardware enabled, end users experience reliable link establishment under all settings of auto MDI/MDIX and speed between the LXT9785/LXT9785E and its link partners. As stated in the IEEE clauses 40.4.5.1 (Auto MDI/MDIX) and 28.3.2 (Parallel Detect), when ports are forced to 10 Mbps or 100 Mbps and auto MDI/MDIX is enabled, and the port is connected to a partner with auto-negotiation enabled, an undefined condition exists between the IEEE auto MDIX and Parallel Detect specifications. Link may not occur according to the IEEE specification. During this undefined condition, when the LXT9785/LXT9785E is set to 10 Mbps or 100 Mbps and auto MDI/MDIX is enabled, the LXT9785/LXT9785E and the link partner auto-negotiation processes are expected to be skewed enough to establish link in all but the rarest cases. Auto MDI/ MDIX is configured through hardware and software. If auto MDI/MDIX operation is desired in forced modes, disabling auto MDI/MDIX using the software programming can aid link establishment. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 131 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.7 Serial MII Operation The LXT9785/LXT9785E exchanges transmit and receive data with the controller via the Serial MII (SMII). The SMII performs the following functions: • • • • Conveys complete MII information between a 10/100 PHY and MAC with two pins per port. Allows a multi-port MAC/PHY communication with one system clock. Operates in both half and full-duplex. Supports per-packet switching between 10 Mbps and 100 Mbps data rates. The Serial MII operates at 125 MHz using a global reference clock and frame synchronization signal (REFCLK and SYNC). Each port has an individual two-line data interface (TxDatan and RxDatan). All signals are synchronous to REFCLK. Table 43 summarizes the SMII signals. Data is exchanged in 10-bit serial words. Each word contains one data byte (two nibbles of 4B coded data) and two status bits. When the port is operating at 100 Mbps, each word contains a new data byte. When the port is operating at 10 Mbps, each data byte is repeated 10 times. Table 43. Intel® LXT9785/LXT9785E SMII Signal Summary Signal To From MAC Purpose TxData PHY Transmit data & control SYNC PHY MAC Synchronization RxData MAC PHY Receive data & control REFCLK MAC & PHY System Synchronization 1. Refer to Table 7, “Intel® LXT9785/LXT9785E SMII Specific Signal Descriptions – PQFP” on page 39 for detailed signal descriptions. 132 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 15. Intel® LXT9785/LXT9785E Typical SMII Interface Diagram Typical SMII Interface in a 16-Port System SECTION TxDatan RxDatan MDIO0 MDC0 MDINT0 RefCLK0 125 MHz Sourced Externally or from Switch ASIC Magnetics/Fiber Transceiver SYNC0 8 LXT9785/9785E 8-Port Phy 8-Port Media Access Controller ( MAC) 8 RefCLK1 SYSTEM CLK 8 RxDatan MDIO0 MDC0 MDINT0 Magnetics/Fiber Transceiver TxDatan SYNC0 LXT9785/9785E 8-Port Phy 8-Port Media Access Controller (MAC) RefCLK0 RefCLK1 8 SECTION Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 133 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 16. Intel® LXT9785/LXT9785E Typical SMII Quad Sectionalization Diagram Typical SMII Interface in a 24-Port System RefClk1 RefClk0 8 SYNC0 8 12-Port Media Access Controller ( MAC) RxDatan MDIO0 MDC0 MDINT0 4 SECTION TxDatan SYNC0 RxDatan MDIO0 MDC0 MDINT0 RefClk0 125 MHz Sourced Externally or from Switch ASIC RefClk1 TxDatan 4 SYNC1 4 RxDatan VCC SECTION 8 TxData n SYNC0 8 RxData n Magnetics/Fiber Transceiver MDINT0 MDIO0 MDC0 LXT9785/9785E 8-Port Phy 12-Port Media Access Controller ( MAC) MDINT1 MDIO1 MDC1 Magnetics/Fiber Transceiver LXT9785/9785E 4-Port (sec) 4-Port (sec) 4 Magnetics/Fiber Transceiver LXT9785/9785E 8-Port Phy TxDatan SECTION RefClk0 RefClk1 134 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 17. Intel® LXT9785/LXT9785E 100 Mbps Serial MII Data Flow Serial Data Stream To/From S0 S1 D0 D1 D2 MAC Strip TX_EN & TX_ER Status Bits 2 Nibbles Tx/Rx Data 2 Symbols Tx/Rx Data D0 D1 D2 D3 S0 S1 S2 S3 S4 S0 S1 S2 S3 S4 4B/5B D3 D4 D5 D6 D7 4.7.1 Insert CRS & RX_DV Status Bits D0 D1 D2 D3 To/From PMD Sublayer SMII Reference Clock The REFCLK operates at 125 MHz. The transmit and receive data and control streams must always be synchronized to the REFCLK by the MAC and PHY. The LXT9785/LXT9785E samples these signals on the rising edge of the REFCLK. 4.7.2 TxSYNC Pulse (SMII/SS-SMII) The TxSYNC pulse delimits segment boundaries and synchronizes with REFCLK. The MAC must continuously generate a TxSYNC pulse once every 10 REFCLK cycles. The TxSYNC pulse signals the start of each new segment (see Figure 21 on page 140). 4.7.3 Transmit Data Stream Transmit data and control information are signaled in ten- bit segments. In 100 Mbps mode, each segment contains a new byte of data. In 10 Mbps mode, the MAC must repeat a 10M serial word ten times on TxData. The LXT9785/LXT9785E may sample that serial word at any point. The TxSYNC pulse signals the start of a new segment as shown in Figure 18. 4.7.3.1 Transmit Enable The MAC must assert the TxEN bit in each segment of TxData, and de-assert TxENn after the last segment of the packet. 4.7.3.2 Transmit Error When the MAC asserts the TxER bit in 100BASE-X mode, the LXT9785/LXT9785E drives “H” symbols onto the network interface. TxER does not have any function in 10M operation. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 135 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 18. Intel® LXT9785/LXT9785E Serial MII Transmit Synchronization CLOCK TxSYNC TX 4.7.4 TxER TxEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TxER Receive Data Stream Receive data and control information are signalled in ten-bit segments. In 100 Mbps mode, each segment contains a new byte of data. In 10 Mbps mode, each segment is repeated ten times (except for the CRS bit), and the MAC can sample any of the ten segments. 4.7.4.1 Carrier Sense The CRS bit (slot 0) is generated when a packet is received from the network interface. The CRS bit is set in real time, even in 10 Mbps mode (all other bits are repeated in 10 sequential segments). 4.7.4.2 Receive Data Valid The LXT9785/LXT9785E asserts the RX_DV bit (slot 1) when it receives a valid packet. The assertion timing changes depending on line operating speed: • For 100BASE-TX and 100BASE-FX links, the RX_DV bit is asserted from the first nibble of preamble to the last nibble of the data packet. • For 10BASE-T links, the entire preamble is truncated. The RX_DV bit is asserted with the first nibble of the Start-of-Frame Delimiter (SFD) “5D” and remains asserted until the end of the packet. 4.7.4.3 Receive Error When the LXT9785/LXT9785E receives an invalid symbol from the network in 100BASE-TX mode, it drives “0101” on the associated RxData signals. 4.7.4.4 Receive Status Encoding The LXT9785/LXT9785E encodes status information onto the RxData line during IPG as seen in Table 44 on page 137. Status bit RxData<5> indicates the validity of the upper nibble (RxData<7:4> of the last byte of the previous frame). RxData and RX_DV are passed through the internal elasticity FIFO to smooth any clock rate differences between the recovered clock and the 125 MHz reference clock. 4.7.5 Collision The SMII interface does not provide a collision output and relies on the MAC to interpret COL conditions using CRS and TxEN. CRS is unaffected by the transmit path. 136 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 19. Intel® LXT9785/LXT9785E Serial MII Receive Synchronization CLOCK RxSYNC RX CRS RXD0 RX_DV RXER RXD1 Speed RXD2 Duplex RXD3 Link RXD4 J abber RXD5 Valid RXD6 FCE RXD7 RXD7 CRS Table 44. Intel® LXT9785/LXT9785E RX Status Encoding Bit Definitions Signal Definition CRS Carrier Sense - identical to MII, except that it is not an asynchronous signal. RxDV Receive Data Valid - identical to MII. When RX_DV = 0, status information is transmitted to the MAC. When RX_DV = 1, received data is transmitted to the MAC. 0 = Status Byte 1 = Valid Data Byte RxER (RxData0) Inter-frame status bit RxData0 indicates whether or not the PHY detected an error somewhere in the previous frame. 0 = No Error 1 = Error SPEED (RxData1) Inter-frame status bit RxData1 indicates port operating speed. 0 = 10 Mbps 1 = 100 Mbps DUPLEX (RxData2) Inter-frame status bit RxData2 indicates port duplex condition. 0 = Half-duplex 1 = Full-duplex LINK (RxData3) Inter-frame status bit RxData3 indicates port link status. 0 = Down 1 = Up JABBER (RxData4) Inter-frame status bit RxData4 indicates port jabber status. 0 = OK 1 = Error VALID (RxData5) Inter-frame status bit RxData5 conveys the validity of the upper nibble of the last byte of the previous frame 0 = Invalid 1 = Valid False Carrier (RxData6) Inter-frame status bit RxData6 indicates whether or not the PHY has detected a false carrier event. 0 = No FC detected 1 = FC detected RxData7 This bit is set to 1. 1 = Always 1. Both RxData0 and RxData5 bits are valid in the segment immediately following a frame, and remain valid until the first data segment of the next frame begins. 4.7.6 Source Synchronous-Serial Media Independent Interface Some system designs require the PHY to be placed between 3 to 12 inches away from the MAC. A new Source Synchronous-Serial Media Independent Interface (SS-SMII) definition has been added because of this requirement. To provide a source synchronous interface between the PHY and MAC, the PHY must drive the RxCLK and the RxSYNC signals to the MAC. Also, the MAC must drive the TxCLK and the TxSYNC signal to the PHY. The REFCLK is also needed to synchronize the data to the PHY’s core clock domain. TxData is clocked in using TxCLK and then synchronized to REFCLK and transmitted to the twisted-pair. The RxData is synchronized to the RxCLK. See Figure 23 on page 141. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 137 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 45. Intel® LXT9785/LXT9785E SS-SMII Signal 138 To From Purpose TxData PHY MAC Transmit data & control TxCLK PHY MAC Transmit clock TxSYNC PHY MAC Synchronization pulses RxData MAC PHY Receive data & control RxCLK MAC PHY Receive clock RxSYNC MAC PHY Receive Synchronization REFCLK MAC System Synchronization Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 20. Intel® LXT9785/LXT9785E Typical SS-SMII Interface Diagram Typical SS-SMII Interface in a 16-Port System SECTION TxDatan 8 RxDatan RxSYNC1 RxCLK1 MDIO0 MDC0 MDINT0 Magnetics/Fiber Transceiver TxSYNC0 TxCLK0 LXT9785/9785E 8-Port Phy 8-Port Media Access Controller ( MAC) 8 RefCLK0,1 125 MHz Sourced Externally or from Switch ASIC SYS_CLK RxDatan RxSYNC1 RxCLK1 MDIO0 MDC0 MDINT0 Magnetics/Fiber Transceiver 8 RefCLK0,1 TxDatan TxSYNC0 TxCLK0 LXT9785/9785E 8-Port Phy 8-Port Media Access Controller (MAC) 8 SECTION Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 139 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 21. Intel® LXT9785/LXT9785E Typical SS-SMII Quad Sectionalization Diagram Typical SS-SMII Interface in a 24-Port System RefClk1 RefClk0 8 RxSYNC1 12-Port Media Access Controller ( MAC) RxCLK1 MDIO0 MDC0 Magnetics/Fiber Transceiver TxCLK0 RxData n 8 LXT9785/9785E 8-Port Phy TxData n TxSYNC0 MDINT0 SECTION 4 MDINT0 RefClk0 125 MHz Sourced Externally or from Switch ASIC RefClk1 TxData n TxSYNC1 TxCLK1 4 4 RxData n RxSYNC1 RxCLK1 Magnetics/Fiber Transceiver MDC0 LXT9785/9785E 4-port (sec) MDIO0 4-port (sec) 4 TxData n TxSYNC0 TxCLK0 RxData n RxSYNC0 RxCLK0 VCC MDIO1 SECTION MDC1 MDINT0 MDIO0 MDC0 TxData n TxSYNC0 TxCLK0 8 RxData n RxSYNC1 RxCLK1 Magnetics/Fiber Transceiver 8 LXT9785/9785E 8-Port Phy 12-Port Media Access Controller ( MAC) MDINT1 SECTION RefClk0 RefClk1 140 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 22. Intel® LXT9785/LXT9785E SS-SMII Transmit Timing TxCLK TxSYNC TxData TXER TXEN TXD0 TXD1 TXD2 TXD3 TXD4 TXD5 TXD6 TXD7 TXER TxCLK TxSYNC TxData TXER TXEN Frcerr Speed Dplx LINK Jabr TXER All signals are synchronous to the clock Figure 23. Intel® LXT9785/LXT9785E SS-SMII Receive Timing RxCLK RxSYNC RxData CRS RXDV RXD0 RXD1 RXD2 RXD3 RXD4 RXD5 RXD6 RXD7 CRS RxCLK RxSYNC RxData CRS RXDV RXER Speed Dplx LINK Jabr UPnib FlsCar CRS All signals are synchronous to the clock 4.8 RMII Operation The LXT9785/LXT9785E provides an independent Reduced MII port for each network port. Each RMII uses four signals to pass received data to the MAC: RxDatan<1:0>, RxERn, and CRS_DVn (where n reflects the port number). Three signals are used to transmit data from the MAC: TxDatan_<1:0> and TxENn. Both receive and transmit signals are clocked by REFCLK. Data transmission across the RMII is implemented in di-bit pairs which equal a 4-bit wide nibble. Note: 4.8.1 The BGA15 package does not support the RMII interface. RMII Reference Clock The LXT9785/LXT9785E requires a 50 MHz reference clock (REFCLK). The device samples the RMII input signals on the rising edge of REFCLK and drives RMII output signals on the falling edge. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 141 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.8.2 Transmit Enable TxENn must be asserted and de-asserted synchronously with REFCLK. The MAC must assert TxENn at the same time as the first nibble of preamble. TxENn must be de-asserted after the last bit of the packet. 4.8.3 Carrier Sense & Data Valid The LXT9785/LXT9785E asserts CRS_DVn when it detects activity on the line. However, RxDatan outputs zeros until the received data is decoded and available for transfer to the controller. 4.8.4 Receive Error Whenever the LXT9785/LXT9785E receives an error symbol from the network, it asserts RxERn. When it detects a bad Start-of-Stream Delimiter (SSD) it drives a “10” jam pattern on the RxData pins to indicate a false carrier event. 4.8.5 Out-of-Band Signaling The LXT9785/LXT9785E has the capability of encoding status information in the RxData stream during IPG. See “Monitoring Operations” on page 157 for details. 4.8.6 4B/5B Coding Operations The 100BASE-X protocol specifies the use of a 5-bit symbol code on the network media. However, data is normally transmitted across the RMII interface in 2-bit nibblets or “di-bits”. The LXT9785/ LXT9785E incorporates a parallel/serial converter that translates between di-bit pairs and 4-bit nibbles, and a 4B/5B encoder/decoder circuit that translates between 4-bit nibbles and 5-bit symbols for the 100BASE-X connection. Figure 24 shows the data conversion flow from nibbles to symbols. Table 46 on page 147 shows 4B/5B symbol coding (not all symbols are valid). Figure 24. Intel® LXT9785/LXT9785E RMII Data Flow Reduced MII Mode Data Flow D0 D2 +1 Parallel to Serial Scramble D0 D1 D2 D3 D1 D3 di-bit pairs 142 Serial to Parallel 0 4-bit nibbles 4B/5B S0 S1 S2 5-bit symbols S3 S4 DeScramble MLT3 0 0 -1 Transition = 1. No Transition = 0. All transitions must follow pattern: 0, +1, 0, -1, 0, +1... Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 25. Intel® LXT9785/LXT9785E Typical RMII Interface Diagram Typical RMII Interface in a 16-Port System 8 8 8-Port Media Access Controller ( MAC) 8 8 8 TxENn RxD0n RxD1n CRS_DVn RxERn MDIO0 MDC0 Magnetics/Fiber Transceiver 8 TxD1n LXT9785/9785E 8-Port Phy 8 SECTION TxD0n MDINT0 RefClk0 RefClk1 50 Mhz Sourced Externally or from Switch ASIC RefClk0 RefClk1 MDINT0 MDIO0 8-Port Media Access Controller ( MAC) TxD0 n 8 TxD1 n 8 8 8 TxEN n RxD0 n RxD1n 8 CRS_DV n 8 RxER n Magnetics/Fiber Transceiver 8 LXT9785/9785E 8-Port Phy MDC0 SECTION Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 143 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 26. Intel® LXT9785/LXT9785E Typical RMII Quad Sectionalization Diagram Typical RMII Interface in a 24-Port System RefClk0 RefClk1 TxD0n TxD1n 8 TxENn 8 RxD0n 8 RxD1n 12-Port Media Access Controller ( MAC) 8 CRS_DVn 8 RxERn MDIO0 MDC0 MDINT0 4 4 4 4 4 TxD0n TxD1n TxENn RxD0n RxD1n CRS_DV n RxERn MDIO0 MDC0 MDINT0 RefClk0 50 MHz Sourced Externally or from Switch ASIC RefClk1 4 TxD0 n TxD1 n TxEN n RxD0 n RxD1n CRS_DVn RxER n 4 4 4 4 4 MDINT1 MDIO1 MDC1 MDINT0 MDIO0 8 TxD0 n TxD1 n 8 TxEN n 8 RxD0 n 8 8 8 RxD1n CRS_DV n RxER n Magnetics/Fiber Transceiver MDC0 8 VCC SECTION LXT9785/9785E 8-Port Phy 12-Port Media Access Controller ( MAC) 4 Magnetics/Fiber Transceiver 4 SECTION LXT9785/9785E 4-Port (sec) 4-Port (sec) 4 Magnetics/Fiber Transceiver 8 LXT9785/9785E 8-Port Phy 8 SECTION RefClk0 RefClk1 144 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.9 100 Mbps Operation 4.9.1 100BASE-X Network Operations During 100BASE-X operation, the LXT9785/LXT9785E transmits and receives 5-bit symbols across the network link. Figure 27 shows the structure of a standard frame packet. When the MAC is not actively transmitting data, the LXT9785/LXT9785E sends out Idle symbols on the line. In 100BASE-TX mode, the device scrambles the data and transmits it to the network using MLT-3 line code. The MLT-3 signals received from the network are de-scrambled and decoded, and sent across the RMII to the MAC. In 100BASE-FX mode, the LXT9785/LXT9785E transmits and receives NRZI signals across the LVPECL interface. An external 100BASE-FX transceiver module is required to complete the fiber connection. As shown in Figure 27, the MAC starts each transmission with a preamble pattern. As soon as the LXT9785/LXT9785E detects the start of preamble, it transmits a J/K Start-of-Stream Delimiter (SSD) symbol to the network. It then encodes and transmits the rest of the packet, including the balance of the preamble, the Start-of-Frame Delimiter (SFD), packet data, and CRC. Once the packet ends, the LXT9785/LXT9785E transmits the T/R End-of-Stream Delimiter (ESD) symbol and then returns to transmitting Idle symbols. Figure 27. Intel® LXT9785/LXT9785E 100BASE-X Frame Format 64-Bit Preamble (8 Octets) P0 P1 Replaced by /J/K/ code-groups Start-of-Stream Delimiter (SSD) 4.9.2 P6 Destination and Source Address (6 Octets each) SFD DA DA SA Packet Length (2 Octets) SA L1 L2 Data Field Frame Check Field InterFrame Gap / Idle Code (Pad to minimum packet size) (4 Octets) (> 12 Octets) D0 Start-of-Frame Delimiter (SFD) D1 Dn CRC I0 IFG Replaced by /T/R/ code-groups End-of-Stream Delimiter (ESD) 100BASE-X Protocol Sublayer Operations In a 7-layer communications model, the LXT9785/LXT9785E is a Physical Layer 1 (PHY) device. The LXT9785/LXT9785E implements the Physical Coding Sublayer (PCS), Physical Medium Attachment (PMA), and Physical Medium Dependent (PMD) sublayers of the reference model defined by the IEEE 802.3u specification. The following paragraphs discuss the LXT9785/ LXT9785E operation from the reference model point of view. 4.9.2.1 PCS Sublayer The Physical Coding Sublayer (PCS) provides the RMII interface, as well as the 4B/5B encoding/ decoding function. For 100BASE-TX and 100BASE-FX operation, the PCS layer provides IDLE symbols to the PMD-layer line driver as long as TxEN is de-asserted. For 10T operation, the PCS layer merely provides a bus interface and serialization/de-serialization function. 10T operation does not use the 4B/5B encoder. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 145 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.9.2.1.1 Preamble Handling When the MAC asserts TxEN, the PCS substitutes a /J/K/ symbol pair, also known as the Start-ofStream Delimiter (SSD), for the first two nibbles received across the RMII. The PCS layer continues to encode the remaining RMII data until TxEN is de-asserted (see Table 46 on page 147). It then returns to supplying IDLE symbols to the line driver. The PCS layer performs the opposite function in the receive direction by substituting two preamble nibbles for the SSD. Figure 28. Intel® LXT9785/LXT9785E Protocol Sublayers MII Interface PCS Sublayer PMA Sublayer PMD Sublayer LXT9785 Encoder/Decoder Serializer/De-serializer Link/Carrier Detect LVPECL Interface Scrambler/ De-scrambler 100BASE-TX 146 Fiber Transceiver 100BASE-FX Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.9.3 PMA Sublayer The 100BASE-X PMA protocol uses the 4B/5B data encoding scheme to encode/decode the data streams. The coding scheme is shown in Table 46. Table 46. 4B/5B Coding Code Type DATA IDLE CONTROL INVALID 1. 2. 3. 4. 4B Code 3210 Name 5B Code 43210 0000 0 11110 Data 0 0001 1 01001 Data 1 0010 2 10100 Data 2 0011 3 10101 Data 3 0100 4 01010 Data 4 0101 5 01011 Data 5 0110 6 01110 Data 6 0111 7 01111 Data 7 1000 8 10010 Data 8 1001 9 10011 Data 9 1010 A 10110 Data A 1011 B 10111 Data B 1100 C 11010 Data C 1101 D 11011 Data D 1110 E 11100 Data E 1111 F 11101 Data F I 1 1 1 1 11 Idle. Used as inter stream fill code. 0101 J 2 11000 Start-of-Stream Delimiter (SSD), part 1 of 2. 0101 K2 10001 Start-of-Stream Delimiter (SSD), part 2 of 2. undefined T3 01101 End-of-Stream Delimiter (ESD), part 1 of 2. undefined R3 00111 End-of-Stream Delimiter (ESD), part 2 of 2. undefined H4 00100 Transmit Error. Used to force signaling errors. undefined Invalid 00000 Invalid undefined Invalid 00001 Invalid undefined Invalid 00010 Invalid undefined Invalid 00011 Invalid undefined Invalid 00101 Invalid undefined Invalid 00110 Invalid undefined Invalid 01000 Invalid undefined Invalid 01100 Invalid undefined Invalid 10000 Invalid undefined Invalid 11001 Invalid undefined Interpretation The /I/ (Idle) code group is sent continuously between frames. The /J/ and /K/ (SSD) code groups are always sent in pairs; /K/ follows /J/. The /T/ and /R/ (ESD) code groups are always sent in pairs; /R/ follows /T/. An /H/ (Error) code group is used to signal an error condition. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 147 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.9.3.1 Link In 100 Mbps mode, the LXT9785/LXT9785E establishes a link whenever the descrambler becomes locked and remains locked for approximately 50 ms. Whenever the descrambler loses lock (<12 consecutive idle symbols during a 2 ms window), the link is taken down. This provides a robust link, filtering out any small noise hits that may otherwise disrupt the link. Furthermore, 100 Mbps idle patterns will not bring up a 10 Mbps link. The LXT9785/LXT9785E reports link failure via the Register status bits (1.2, 17.10, and 19.4) and interrupt functions. If auto-negotiate is enabled, link failure causes the device to re-negotiate. 4.9.3.2 Link Failure Override The LXT9785/LXT9785E normally transmits 100 Mbps data packets or Idle symbols only if it detects the link is up, and transmits only FLP bursts if the link is not up. Setting bit 16.14 = 1 overrides this function, allowing the LXT9785/LXT9785E to transmit data packets even when the link is down. This feature is provided as a diagnostic tool. Note: 4.9.3.3 Auto-negotiation must be disabled to transmit data packets in the absence of link. If autonegotiation is enabled, the LXT9785/LXT9785E automatically begins transmitting FLP bursts if the link goes down. Carrier Sense/Data Valid (RMII) The LXT9785/LXT9785E asserts CRS_DV whenever the respective port receiver is in a non-idle state (as defined by the RMII Specification Revision 1.2), including false carrier events. Assertion of CRS_DV is asynchronous with respect to REFCLK. In the event that signal decoding is not complete when CRS_DV is asserted, the LXT9785/LXT9785E outputs 00 on the RxData1:0 lines until the decoded data are available. When the line returns to an idle state, CRS_DV is de-asserted synchronously with respect to REFCLK. If the FIFO still contains data to be passed to the MAC via the RMII when CRS is deasserted, CRS_DV toggles on nibble boundaries until the FIFO is empty. For 100BASE-X signals, CRS_DV toggles at 25 MHz. For 10BASE-T signals, CRS_DV toggles at 2.5 MHz. 4.9.3.4 Carrier Sense (SMII) For 100BASE-TX and 100BASE-FX links, a Start-of-Stream Delimiter (SSD) or /J/K/ symbol pair causes assertion of carrier sense (CRS). An End-of-Stream Delimiter (ESD), or /T/R/ symbol pair causes de-assertion of CRS. The PMA layer also de-asserts CRS if IDLE symbols are received without /T/R/. In this event, receive error is indicated during the IPG until the next packet is received. For 10T links, CRS assertion is based on receipt of valid preamble, and de-assertion on receipt of an End-of-Frame (EOF) marker. 4.9.3.5 Receive Data Valid (SMII) The LXT9785/LXT9785E asserts the RX_DV bit when it receives a valid packet. However, RxData outputs zeros until the received data are decoded and available for transfer to the controller. 148 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.9.3.6 Twisted-Pair PMD Sublayer The twisted-pair Physical Medium Dependent (PMD) layer provides the signal scrambling and descrambling, line coding and decoding (MLT-3 for 100BASE-TX, Manchester for 10T), as well as receiving, polarity correction, and baseline wander correction functions. 4.9.3.6.1 Scrambler/Descrambler (100BASE-TX Only) The purpose of the scrambler is to spread the signal power spectrum and further reduce EMI using an 11-bit, non-data-dependent polynomial. The receiver automatically decodes the polynomial whenever IDLE symbols are received. The scrambler/descrambler can be bypassed by setting Register bit 16.12 = 1. The scrambler is automatically bypassed when the fiber port is enabled. Scrambler bypass is provided for diagnostic and test support. 4.9.3.6.2 Baseline Wander Correction The LXT9785/LXT9785E provides a baseline wander correction function which makes the device robust under all network operating conditions. The MLT3 coding scheme used in 100BASE-TX is, by definition, “unbalanced”. This means that the DC average value of the signal voltage can “wander” significantly over short time intervals (tenths of seconds). This wander may cause receiver errors, particularly in less robust designs, at long line lengths (100 meters). The exact characteristics of the wander are completely data dependent. The LXT9785/LXT9785E baseline wander correction characteristics allow the device to recover error-free data while receiving worst-case “killer” packets over all cable lengths. 4.9.3.6.3 Polarity Correction The LXT9785/LXT9785E automatically detects and corrects for the condition where the receive signal (TPFIP/N) is inverted. Reversed polarity is detected if eight inverted link pulses or four inverted End-of-Frame (EOF) markers are received consecutively. If link pulses or data are not received by the maximum receive time-out period, the polarity state is reset to a non-inverted state. Before the polarity switch occurs, every frame is inverted and causes RxER to assert. The specific number of RxER events observed depends on how many link pulses occur between packets. 4.9.3.7 Fiber PMD Sublayer The LXT9785/LXT9785E provides an LVPECL interface for connection to an external 3.3 V or 5 V fiber-optic transceiver. (The external transceiver provides the PMD function for the optical medium.) The LXT9785/LXT9785E uses a 125 Mbaud NRZI format for the fiber interface, and does not support 10BASE-FL applications. Note: The BGA15 package does not support fiber interface. 4.9.3.7.1 Far End Fault Indications The LXT9785/LXT9785E Signal Detect pins independently detect signal faults from the local fiber transceivers via the SD pins. The device also uses Register bit 1.4 to report Remote Fault indications received from its link partner. The device “ORs” both fault conditions to set bit 1.4. Register bit 1.4 is set once and clears when read. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 149 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers The far-end fault detection process in fiber operation requires idles to establish link. Link will not establish if a far-end fault pattern is the initial signal detected. Either fault condition causes the LXT9785/LXT9785E to drop the link unless Forced Link Pass is selected (16.14 = 1). Link down condition is then reported via interrupts and status bits. In response to locally detected signal faults (SD activated by the local fiber transceiver), the affected port can transmit the far end fault code if fault code transmission is enabled by Register bit 16.2. • When Register bit 16.2 = 1, transmission of the far end fault code is enabled. The LXT9785/ LXT9785E transmits far end fault code if fault conditions are detected by the Signal Detect pins. • When Register bit 16.2 = 0, the LXT9785/LXT9785E does not transmit far end fault code. It continues to transmit idle code and may or may not drop link depending on the setting for Register bit 16.14. The occurrence of a Far End Fault causes all transmission of data from the Reconciliation Sublayer to stop and the Far End fault code to begin. The Far End Fault code consists of 84 ones’s followed by a single “0” and is repeated until the Far End Fault condition is removed. 4.10 10 Mbps Operation The LXT9785/LXT9785E operates as a standard 10BASE-T transceiver and supports all the standard 10 Mbps functions. During 10BASE-T (10T) operation, the LXT9785/LXT9785E transmits and receives Manchester-encoded data across the network link. When the MAC is not actively transmitting data, the device sends out link pulses on the line. In 10T mode, the polynomial scrambler/descrambler is inactive. Manchester-encoded signals received from the network are decoded by the LXT9785/LXT9785E and sent across the MII to the MAC. Note: 4.10.1 The LXT9785/LXT9785E does not support fiber connections at 10 Mbps. Preamble Handling The LXT9785/9785E offers two options for preamble handling, which are selected by Register bit 16.5. In 10BASE-T mode, when Register bit 16.5 = 0, the device strips the preamble off the received packets. In RMII and the SMII modes, the CRS signal is asserted based upon receive activity. In the SMII modes, Out-of-Band (OOB) signaling is present until the SFD is output. The DV signal is initially asserted in the frame that the SFD is output. In RMII mode, zeros are output after receive activity is detected until the SFD is output. The packet is output following the SFD. When Register bit 16.5 = 1 in 10BASE-T mode, the LXT9785/LXT9785E passes the preamble through the RMII and the SMII interfaces. In RMII and the SMII modes, the CRS signal is asserted based upon receive activity. In the SMII modes, OOB signaling is continued until preamble is available from the receive FIFO. After the preamble, the SFD is output with the initial assertion of the DV signal. The RMII interface outputs zeros after receive activity is detected until preamble is available from the FIFO. The number of zero nibbles output before preamble is based upon the FIFO initial fill settings (Register bits 18.15:14). The preamble is followed by the SFD and the packet body. Register bit 16.5 has no effect in 100 Mbps operation. 150 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.10.2 Dribble Bits The LXT9785/LXT9785E device handles dribble bits in all modes. If one through four dribble bits are received, the nibble is passed across the RMII. If five through seven dribble bits are received, the second nibble is not sent onto the RMII bus. 4.10.3 Link Test The LXT9785/LXT9785E always transmits link pulses in 10T mode. When enabled, the link test function monitors the connection for link pulses. Once link pulses are detected, data transmission is enabled and remains enabled as long as either the link pulses or data transmission continue. If link pulses stop, the data transmission is disabled. If the link test function is disabled, the LXT9785/LXT9785E transmits to the connection regardless of detected link pulses. The link test function is disabled by setting Register bit 16.14 = 1. 4.10.3.1 Link Failure Link failure occurs if Link Test is enabled and link pulses or packets stop being received. If this condition occurs, the LXT9785/LXT9785E returns to the auto-negotiation phase if autonegotiation is enabled. 4.10.4 Jabber If a transmission exceeds the jabber timer, the LXT9785/LXT9785E disables the transmit and loopback functions and the Collision Status bit (Register bit 17.11) is set regardless of duplex. The jabber timer, according to the IEEE standard, must be between 20 ms to 150 ms. The RMII does not include a Jabber pin, but the MAC may read Register 1 to determine jabber status. The LXT9785/LXT9785E automatically exits jabber mode after the unjab time expires. This function is disabled by setting Register bit 16.10 = 1. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 151 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.11 DTE Discovery Process The DTE discovery process is port dependent and must be enabled through software. The process is implemented as a next page option to the auto-negotiation flow. When the process is enabled, manual control of auto-negotiation next pages is not allowed. This feature applies to the LXT9785E transceiver only. The process depends upon an IP phone, or any other DTE capable of being powered remotely, having a specific filter that passes NLPs and FLPs. This filter should be non-polarized to insure that the latest status of Auto-MDIX operation does not effect operation. This filter attenuates 100 Mbps MLT3 signals and 10 Mbps Manchester-encoded signals, and must be bypassed when power is applied to the IP phone. Figure 29 shows a typical IP telephone system connection. Figure 29. Typical IP Telephone System Connection VoIP-Enabled Switch SD Pr oCurve Switch 2424M HP J4122B 10/100Base -T Ports Module Status Self Test 1 2 3 6 13 14 1 5 16 17 18 8 9 10 11 12 4 5 19 20 2 1 22 23 24 Link 1X 2X 3X 4X 5X 6X 13X 14X 15X 16X 17X 18X 7X 8X 9X 10X 11X 12X 19X 20X 21X 22X 23X 24X Mode 7 Console Link Mode Power Fault Reset Clear Act Fdx 100 Mode Select Power cable Power and data over Category 5 cable Power Outlet UPS/ Generator Power cable 1 2 3 4 5 6 7 8 9 8 # * IP Telephone 4.11.1 Data only over Category 5 cable Computer Power Outlet Definitions The following terms are used throughout the DTE discovery sections: 152 Negotiation Process: This includes auto-negotiation and parallel detection processes System: The switch system using the LXT9785E for DTE Discovery Link Partner: A device connected to the LXT9785E through twisted pair cables DTE: Data Terminal Equipment; any end-of-link partner Standard Link Partner: A link partner that is not requiring power over a Category 5 cable; typically a PC Remote-Power DTE: Data Terminal Equipment requiring power over a Category 5 cable; typically an IP telephone Discovery: The process of identifying the type of link partner present Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.11.2 Interaction between Processor, MAC, and PHY The state machines that control the mechanics of the Discovery process reside within the LXT9785E device. However, control of the power supply and overall system control reside in the system processor. The processor communicates with the power supply unit (PSU) and switches it on and off dependant on the data that is supplied by the PHY. The PHY register data is read by the MAC using the MDIO interface. The required control bits are contained in the PHY device register map and are discussed in detail in the section labeled “Management Interface and Control” on page 153. Note: The details of the processor/MAC interface and the processor/PSU interface are implementation specific and therefore are out of the scope of this specification. The following is an overview of the system control for a successful Remote-Power DTE discovery: 1. The discovery process is enabled by the DTE Discovery Process Enable (Dis_EN) Register bit 27.6 and the Auto-Negotiation Enable Register bit 0.12. Writing Register bit 27.6 immediately affects the Auto-Negotiation Base Page. If already enabled, auto-negotiation should be restarted after this bit is written to ensure proper operation. Register bit 4.15 is used for manual control of auto-negotiation next pages and should be left in the default state (cleared). 2. The LXT9785E PHY then tests to see if a Remote-Power DTE is present as the link partner. If a Remote-Power DTE is found, the Power Enable (Power_EN) Register bit 27.4 is set. The processor polls this signal via the MAC. 3. Upon detecting a Remote-Power DTE, the processor instructs the power supply to switch on. Once power has been applied to the DTE, normal negotiation takes place. The processor must enable the required negotiation process by restarting auto-negotiation, or by setting forced speed mode after power has been applied. The processor must poll the link-up Register bit 1.2 for the corresponding LXT9785E port, or the link status change interrupt, to ensure that the link has been established. 4. A time-out must be connected with this feature so that if link is not established within a predetermined time period (system dependant), the processor instructs the power supply to switch off. If link is not established prior to the expiration of the “link fail inhibit timer”, the LXT9785E restarts negotiation with DTE detection if auto-negotiation mode was used to establish link with the phone, and the DTE process is still enabled. The LXT9785E restarts negotiation without DTE detection if either forced speed mode is used to establish link with the phone, or the DTE process is disabled. 5. If power is applied and link is established, the system must still poll the Link Status Register bit 1.2 for the corresponding LXT9785E port or the link status change interrupt. This is required since link status is the only way to know when the Remote-Power DTE is removed or unplugged. On seeing the Link_Down condition, the processor instructs the power supply to switch off, and the DTE Discovery begins again or is disabled. 4.11.3 Management Interface and Control The management and control of the DTE discovery process is via the MDIO port. Each port on the LXT9785E is capable of running the discovery process, thus each port is independently controlled. This is achieved by each port having a dedicated set of control and status bits. These bits are found in Register 27 as follows: Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 153 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers DTE DISCOVERY PROCESS ENABLE - Register Bit 27.6 (Dis_EN) R/W Default value = 0: Disabled. Register bit 27.6 controls the operation of the process. The discovery process is disabled when Register bit 27.6 = 0, and enabled when Register bit 27.6 = 1. The MAC controller sets Register bit 27.6 to a 1 when a port search for a DTE requiring power is desired. Once set, Register bit 27.6 remains = 1 until the MAC clears it, either by directly clearing it or by resetting the PHY. This allows the discovery process to continue to function if unsuccessful in detecting a DTE, without being continually re-enabled by the MAC. If Register bit 27.6 is set after link is established, no action is taken until after the link goes down. POWER ENABLE - Register Bit 27.4 (Power_EN) R Default value = 0: No Remote-Power DTE found. Register bit 27.4 contains the result of the discovery process. When Register bit 27.4 = 0, the discovery process has not found Remote-Power DTE, and when Register bit 27.4 = 1, the discovery process has potentially found a DTE requiring power. This indicates power should be applied to the Category 5 cable. Register bit 27.4 is polled by the MAC during the discovery process, and is cleared when the PHY is reset, when auto-negotiation is restarted, or when autonegotiation is disabled. In the event of a discovery process being interrupted due to detection of an already powered link partner (auto-negotiation completion or Parallel Detection), Register bit 27.4 = 0. STANDARD LINK PARTNER DETECTED - Register Bit 27.3 (SLP_Det) R/W Clear on Read Default value = 0: No link partner found. When Register bit 27.3 = 1, a standard link partner has been detected by the LXT9785E (NLPs, MLT3 data, FLPs without next page support, or FLPs with non-matching next pages). This indicates power should not be applied to the Category 5 cable. When Register bit 27.3 = 0, other bits are checked to determine overall status of the link partner. Register bit 27.3 is cleared on read, or DTE discovery is disabled, link is established, or auto-negotiation is either restarted or disabled. LINK FAIL TIMEOUT - Register Bit 27.2 (LFIT Expired) R/W Clear on Read Default value = 0 (Link Fail Inhibit timer has expired without establishment of link with a standard link partner). Valid only when Standard Link Partner Detected Register bit 27.3 = 1. Register bit 27.2 is set if link is not established prior to the Link Fail Inhibit Timer expiring. This indicates that the Discovery process has restarted and the Standard Link Partner Detected Register bit may no longer be valid. Register bit 27.2 is cleared on read, or DTE discovery is disabled, link is established, or auto-negotiation is either restarted or disabled. 4.11.4 DTE Discovery Process Flow The following section describes the DTE Discovery process.See Figure 30, “Intel® LXT9785E Negotiation Flow Chart” on page 156 for a flow chart of the discovery process.When DTE Discovery (27.6) and auto-negotiation (0.12) are enabled (auto-negotiation mode is required), the LXT9785E transmits the auto-negotiation base page with the next page ability bit set (“AutoNegotiation Advertisement Register (Address 4)” on page 204). System software polls Register 27 to determine if or when a Remote-Power DTE is detected. The receiver monitors the line to determine if NLPs, MLT3 data, or FLP bursts are being received. If the receive activity is FLP bursts, the status of the next page ability bit is checked. If the detected “link partner” also supports next page, then the LXT9785E transmits out the next page sequence 154 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers associated with message code #5 (Organizationally Unique Identifier (OUI) Tag Code). The definition for the next pages to be sent out for this message code include some user-defined code values. These values are loaded with randomly created data from an internal LSFR that is free running and seeded with the PHY address of the LXT9785E port. The Next Pages are hard coded in the logic (the LXT9785E ignores any data written into Register 7) and are outlined in Table 47. The receiver monitors the next pages to determine that the exact next page data (especially the random data) transmitted is received. As soon as the first non-matching next page is detected, the DTE Discovery process is stopped and the base page is used to determine the capability options. The Power-Enable Register bit 27.4 is set when a Remote-Power DTE is detected as the link partner, and the last next page is repeatedly transmitted until software restarts the required negotiation process (auto-negotiation or forced-speed mode). The software should be written so that the negotiation is not restarted until the DTE has been powered up over the Category 5 cable. The Power-Enable Register bit 27.4 is cleared upon restarting or disabling auto-negotiation (selecting forced mode). The system must be able to detect over-current conditions and be capable of disabling power in case the link partner is not a RemotePower DTE. Some examples of devices that would mistakenly set Power-Enable Register bit 27.4 are a token-ring balun and a loopback cable. Once link partner power has been stabilized and sufficient time has passed for the link partner to initialize, the auto-negotiation process may be restarted. The negotiation process establishes link if a compatible mode exists between the LXT9785E and the link partner. If a compatible mode does not exist (not compatible or not established within the Link Fail Inhibit Timer period), the LXT9785E either restarts auto-negotiation/DTE discovery (discovery is enabled (27.6=1) and auto-negotiation is enabled (0.12 = 1)), or normal negotiation (discovery is disabled (27.6=0) and auto-negotiation is enabled (0.12 = 1)), or either 10 Mbps or 100 Mbps forced-mode operation (auto-negotiation is disabled (0.12 = 0)). The software must detect this non-link state and disable power. Table 47. Next Page Message #5 Code Word Definitions Next Page Encoding D15 OUI Tagged Message 1 a 1 0 t User Page 1 1 a 0 0 t 3.10 3.11 3.12 3.13 3.14 3.15 User Page 2 1 a 0 0 t 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 2.14 2.15 User Page 3 1 a 0 0 t 0 0 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0 User Page 4 1 a 0 0 t L.10 L.9 L.8 L.7 L.6 L.5 L.4 L.3 L.2 L.1 L.0 D14 D13 D12 D11 D10 0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 0 0 0 0 1 0 1 2.0 2.1 2.2 2.3 2.4 1. a is the acknowledge bit; t is the toggle bit; L is the LFSR 4.11.5 DTE Discovery Behavior The device behavior checks the comparison bit after each next page is successfully autonegotiated. If the first next page or any subsequent next page does not match, the DTE Discovery process transmits one last null page with the next page bit cleared to stop the DTE Discovery Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 155 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers process. If each page is successfully auto-negotiated (it matches the transmitted page), DTE Discovery completes as previously described. The five Next Pages consist of a message page and four user pages. Figure 30. Intel® LXT9785E Negotiation Flow Chart Start Power Up or Link Down 1.2 = 0 and Dis_EN 27.6 = 0 or Link Down 1.2 = 0 and Forced Mode Default Mode Transmit based upon hardware configuration FLP, NLP or IDLE Symbols LFIT Expired 27.2 = 1 Dis_EN 27.6 = 0 Assumptions: Auto-Negotiation/Forced Speed Set by Pins Advertisement Requirements Set by Pins LFIT Expired 27.2 = 1 Link Fail Timeout = 1 Dis_EN Not Set 27.6 = 0 NLPs or IDLE Symbols Detected Software Intervention Auto-negotiation 0.12 = 1 (if needed) Power_EN 27.6 = 1 FLP Detected Link Down 1.2 = 0 and Dis_EN 27.6 = 1 and Auto-Neg 0.12 = 1 NLPs or IDLE Symbols Detected Discovery Base Transmit FLPs Base Page (Register 4) with Next Page 4.15 = 1 Parallel Detection Determine Compatibility on Speed and Duplex Check Advertisement LFIT Expired 27.2 = 1 Dis_EN 27.6 = 1 FLP Detected LFIT Expired 27.2 = 1 Dis_EN 27.6 = 1 Auto Negotiation Determine Compatibility Options No Next Page Set? No Yes Yes Nonmatching DTE Discovery NP Received AutoNegotiation? Next Page Transmission Use Random Data for User Defined Bits as Code Compatibility Power Applied No Compatibility Next Pages Received Power On Wait State for Proper Power Assertiion Pages = Code Transmitted? Set Mode Restart Auto-Negotiation Yes or DTE Discovered Transmit Last Page Continuously Power_EN 27.4 = 1 Software Intervention Software Polled Power_EN 27.4 = 1 Turn On Power Supply Force Speed Link Up 156 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.12 Monitoring Operations 4.12.1 Monitoring Auto-Negotiation Auto-negotiation may be monitored as follows: • Bits 1.2 and 17.10 = 1 once the link is established. • Additional bits in Register 1 (refer to Table 84, “Status Register (Address 1)” on page 201) and Register 17 (refer to Table 93, “Quick Status Register (Address 17, Hex 11)” on page 209) can be used to determine the link operating conditions and status. 4.12.2 Per-Port LED Driver Functions The LXT9785/LXT9785E incorporates three direct drive LEDs per port (LEDn_1, LEDn_2, and LEDn_3). Note: The BGA15 package only supports two LEDs per port (LEDn_1 and LEDn_2). On power up, all the LEDs lights up for approximately one second after reset de-asserts. Each LED may be programmed to one of several different display modes using the LED Configuration Register. Each per-port LED may be programmed (refer to Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213) to indicate one of the following conditions: • • • • • • • Operating Speed Transmit Activity Receive Activity Collision Condition Link Status Duplex Mode Isolate Condition The LEDs can also be programmed to display various combined status conditions. For example, setting bits 20.15:12 = 1101 produces the following combination of Link and Activity indications: • If Link is down, LED is off. • If Link is up, LED is on. • If Link is up AND activity is detected, the LED blinks at the stretch interval selected by bits 20.3:2 and continues to blink as long as activity is present. The LED driver pins are open drain circuits (10mA max current rating). Refer to “LED Circuit” on page 167 under the Application Information Section for LED circuit design details. The LED Configuration Register also provides optional LED pulse stretching to 30, 60, or 100 ms. If during this pulse stretch period, the event occurs again, the pulse stretch time is further extended (see Table 96, “LED Configuration Register (Address 20, Hex 14)” on page 213). When an event such as receiving a packet occurs, it is edge detected and starts the stretch timer. The LED driver remains asserted until the stretch timer expires. If another event occurs before the stretch timer expires, the stretch timer is reset and the stretch time extended. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 157 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers When a long event (such as duplex status) occurs, it is edge detected and starts the stretch timer. When the stretch timer expires, the edge detector is reset so that a long event causes another pulse to be generated from the edge detector. The edge detector resets the stretch timer, causing the LED driver to remain asserted. Figure 31 on page 158 shows how the stretch operation functions. Figure 31. Intel® LXT9785/LXT9785E LED Pulse Stretching Event LED stretch stretch stretch Note: The direct drive LED outputs in this diagram are shown as active L ow. 4.12.3 Out-of-Band Signaling The LXT9785/LXT9785E provides an out-of-band signaling option to transfer status information across the RMII receive interface. This feature is enabled when Register bit 25.0 = 1 and uses the RxData(1:0) data bus during the Inter-Packet Gap (IPG) time as shown in Figure 32. Out-of-Band signaling is disabled when Isolate mode is enabled by setting Register 0.10. Note: The BGA15 package does not support Out-of-Band Signaling nor the RMII interface. The two status bits transferred across the RxData bus are software selectable via Register 25 (see Table 98, “RMII Out-of-Band Signaling Register (Address 25, Hex 19)” on page 215). In normal operation, the LXT9785/LXT9785E stuffs the RxData bus with zeros during the IPG. A software-selectable bit enables the RMII out-of-band signaling feature. Once this bit is set, the LXT9785/LXT9785E replaces the zeros with selected status bits during the IPG. Figure 32. Intel® LXT9785/LXT9785E RMII Programmable Out-of-Band Signaling REFCLK CRS_DV RXD(1) sta tus 1 status 1 0s data data data data status 1 status 1 status 1 status 1 status 1 RXD(0) sta tus 0 status 0 0s data data data data status 0 status 0 status 0 status 0 status 0 1. When network activity is detected, the LXT9785/LXT9785E asserts CRS_DV asynchronously with respect to REFCLK. 2. After CRS_DV is asserted, the LXT9785/LXT9785E zero-stuffs the RxData bits until the received data has been processed through the FIFO. 3. When network activity ceases, the LXT9785/LXT9785E de-asserts CRS_DV synchronously with respect to REFCLK. CRS_DV toggles until all data in the FIFO has been processed through the RMII. Once the FIFO is empty, LXT9785/LXT9785E drives the status bits selected by the Out-of-Band Signaling Register (refer to Table 98, “RMII Out-of-Band Signaling Register (Address 25, Hex 19)” on page 215) on the 158 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers The LXT9785/LXT9785E includes an IEEE 1149.1 boundary scan test port for board level testing. All digital input, output, and input/output pins are accessible. 4.12.4 Boundary Scan Interface This interface consists of five pins (TMS, TDI, TDO, TCK and TRST). It includes a state machine, data register array, and instruction register. The TMS and TDI pins are internally pulled up and the TCK pin is internally pulled down. TDO does not have an internal pull-up or pull-down. 4.12.5 State Machine The TAP controller is a 16-state machine driven by the TCK and TMS pins. Upon reset, the TEST_LOGIC_RESET state is entered. The state machine is also reset when TMS and TDI are High for five TCK periods. 4.12.6 Instruction Register The IDCODE instruction is always invoked after the state machine resets. The decode logic ensures the correct data flow to the Data registers according to the current instruction. Valid instructions are listed in Table 49. 4.12.7 Boundary Scan Register Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the serial shift stage and the parallel output stage. There are four modes of operation as listed in Table 48. Refer to the Identification Information section in the LXT9785/LXT9785E Specification Update (document number 249357) for the JTAG ID numbers. Table 48. BSR Mode of Operation Mode Description 1 Capture 2 Shift 3 Update 4 System Function Table 49. Supported JTAG Instructions Name Code Description Data Register EXTEST 0000 Hex External Test BSR IDCODE FFFE Hex ID Code Inspection ID REG SAMPLE FFF8 Hex Sample Boundary BSR High Z FFCF Hex Force Float Bypass Clamp FFEF Hex Clamp BSR BYPASS FFFF Hex Bypass Scan Bypass Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 159 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.13 Cable Diagnostics Overview Debugging cable problems increases the overall cost of owning and operating a local area network. Cable Diagnostic tools were incorporated into the LXT9785 device to help customers debug network cable problems. The Cable Diagnostic tools provide the ability to detect severe cable problems, such as open and short circuits, and determine the distance to the discontinuity. 4.13.1 Features The following are three cases to consider for Cable Diagnostics: • Distance to a short circuit between wires of a single twisted-pair • An open circuit • Detection of an improperly terminated cable by the link partner. An improperly terminated cable will not meet IEEE 802.3 return loss requirements. Register 29 has been added to control cable testing and report cable testing results. Cable Diagnostics provides a method to determine the distance to opens and shorts when the link partner is inactive on the twisted-pair under test. The cable tests produce undefined results if the link partner is transmitting signals. Implementation methods may vary depending upon the system use requirements of Cable Diagnostics. 4.13.2 Operation Cable Diagnostics utilizes the PHY transmit drivers and receivers to test a single twisted-pair. A transmit pulse is driven down the twisted-pair under test and the reflected signal is analyzed. Link partners transmitting NLP, FLP, MLT3, or other TDR pulses may interfere with the ability of the LXT9785 to properly analyze the reflected Cable Diagnostic pulse. Implementation algorithms must take these potential situations into consideration. 4.13.2.1 Short and Long Cable Testing Requirements Implementing Cable Diagnostic tests, by enabling short and long cable tests sequentially, allows more accurate measurements to a detected fault. Both tests are necessary to reach full precision. The short and long cable tests can be run by writing 0x7400h and 0x6C00h to Register 29, respectively. See Section 4.13.4, “Basic Implementation” on page 161 for implementation details. 4.13.2.2 Precision Cable Diagnostics estimates the distance to a fault up to 150 m. Category 5 or better cable produces the most accurate test results. Less than Category 5 cable may produce less accurate results on long cable lengths. Cable Diagnostics returns the distance to the closest fault, if a fault is present. Cable Diagnostic tests report the distance to a cable fault based on the velocity of signal propagation, which is used to determine the electrical length to the fault. The electrical length may vary slightly from the physical cable length. The measurement accuracy may vary by +/- 2 m. The following basic equation is used to calculate the distance to a fault: Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16 160 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 4.13.3 Implementation Considerations Before performing Cable Diagnostics, the twisted-pair to be tested may be verified to be inactive. All applicable link configurations should be attempted. Cable Diagnostic tests may be started if the attempts indicate no link partners are active. If link partners are detected, additional tests and decisions as to next steps may need to be implemented in the cable testing algorithm to ensure the most accurate results. Intel recommends that a 100BASE-TX link be attempted with MDI and MDIX enabled sequentially, prior to performing Cable Diagnostic testing, to determine if a 100BASE-TX-only link partner is present. If a link partner is in forced 100BASE-TX operation, transmitting MLT3, the Cable Diagnostic test result will be undefined due to the interference MLT3 causes in attempting to process the reflected Cable Diagnostic pulse. Auto MDI/MDIX on the link partner should be accounted for in deriving the cable testing algorithm. Intel recommends auto MDI/MDIX be disabled when running the cable tests. The transmit and receive twisted-pairs must be tested one at a time with both short and long cable test suites. The MDI/MDIX control bits in Table 99, “Trim Enable Register (Address 27, Hex 1B)” on page 216 can be used to select the twisted-pair to be tested. This requirement creates a minimum of four test permutations that must be completed to determine if the fault exists, the distance to the fault. If Cable Diagnostics testing is completed using a powered down LXT9785 device as the link partner, specific results can be expected. The results will indicate an open connection when the PWRDWN hardware configuration pin is used. These power-down methods disable the internal termination resistors to create a high impedance connection equivalent to an open circuit. If Transmit Disable (Register bit 16.13) or software controlled Power-Down (Register bit 0.11) is used, the powered down device transmit logic will look like an open circuit and the receive circuit will look like a 100 Ω terminated connection. The Transmit Disable bit and the software PowerDown bit disable the transmit circuit but do not affect the receive circuit. The result of Cable Diagnostic tests using an IP Phone indicate an open or a short fault at a gross approximation of the distance to the IP Phone. The termination resistors are not powered and do not create a proper termination. The filter circuit used by some manufacturers adversely affects the test results. Transmission and reception of packets is disabled when Cable Diagnostics is enabled. Internal loopback must be disabled for Cable Diagnostics to operate properly. Internal loopback disables the analog interface. 4.13.4 Basic Implementation Register 29 is used to control and report the Cable Diagnostics test results. The function tests one pair of the twisted-pair cable at a time. The basic process flow is described as follows (see Table 100, “Cable Diagnostics Register (Address 29, Hex 1D)” on page 217 for Register 29 bit definitions): 1. Disable auto-negotiation by clearing Register bit 0.12, set to MDI by clearing Register bits 27.9:8, and ensure internal loopback is disabled, Register bit 0.14 = 0. 2. Write 0x7400h to Register 29. Setting these bits places the device in short cable Cable Diagnostics mode and forces link to drop. The device waits a specific amount of time (1.2 s to 1.5 s) to ensure link drops on any connected link partner, and initiates the Cable Diagnostics test on the selected twisted-pair. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 161 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 3. Poll Register bit 29.9. When this bit is set, the test is complete and Register bits 29.7:0 contain a value used to determine if a cable fault was found and the distance to that fault. A value of 0xFFh indicates no fault was found. Any other value indicates a fault was found, that value should be stored for later use. 4. Write 0x6C00h to Register 29. Setting these bits places the device in long cable Cable Diagnostics mode. 5. Poll Register bit 29.9. When set, record the value of Register bits 29.7:0 if a fault is found. 6. If a fault is present, a calculation is used to determine the distance to the fault. Insert the smallest value recorded from Register bits 29.7:0 in steps 3 and 5 above into the following formula: Distance_to_Fault = (Reg29[7:0] - 3.5) / 1.16 Register bit 29.8 is set if the fault is detected as a short circuit and is cleared if the fault is detected as an open circuit. Register bits 29.12:11 are cleared when read and are cleared during the same read cycle when Register bit 29.9 is read, indicating a fault condition exists. 7. Normal PHY operation can be resumed by writing 0x4000h to Register 29 or by software or hardware reset. The test suite can be run again by resuming at step 2 above. 4.14 Link Hold-Off Overview The PHY link is established as soon as the system platform powers-up. In many cases, the system platform is not capable of supporting network operation until configuration firmware is loaded. It is desirable in such cases to prevent the PHY from establishing a link until the system platform is fully configured and ready for network operation. Link Hold-Off was incorporated into the LXT9785 device to satisfy these requirements. Enabling Link Hold-Off disables the PHY Link capability until the system platform is fully capable of supporting network operation. The feature is enabled by hardware control at power-up or software control during normal operation. 4.14.1 Features Link Hold-Off prevents the LXT9785 from establishing a link by disabling the analog transmit and receive capability. The digital capabilities of the PHY are unaffected including register access and LED operation. Link Hold-Off can be enabled by an external hardware pin for all ports or by software register access for individual ports. When Link Hold-Off is enabled, the transmitter and receiver on the selected ports are forced into software power-down mode (see Section 4.5.3, “Power-Down Mode” on page 127) to block signal activity from establishing a link and passing packets through the PHY. The hardware enabled Link Hold-Off is controlled by the LINKHOLD pin. Internal pull-down resistors hold the pin in the inactive state. Connecting a 5k pull-up resistor to the pin enables the feature at power-up reset or external hardware pin Reset. Once a PHY port is programmed as desired, clearing Register bit 0.11 will re-enable that port. Each port must be individually reenabled. When a port is software reset, by setting Register 0.15, the state of the hardware configuration pin captured by the last hardware or power-up reset determines the default register values for the specific function for that port. Link Hold-Off, once enabled by hardware configuration, is reenabled on a port by issuing a software reset for that port. It is not necessary to reset the entire PHY or switch system to re-enable Link Hold-Off. 162 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Link Hold-Off software control is enabled or disabled on individual ports by respectively setting or clearing Register bit 0.11, the power-down bit, during normal operation. It is not required to have previously enabled Link Hold-Off by hardware configuration. Link Hold-Off is disabled if the external pin MDDIS is active. The MDDIS pin disables the MDIO interface required to re-enable normal transmit and receive link operation. MDDIS is intended to disable the MDIO management interface for unmanaged applications. Internal loopback circuitry is unaffected in Link Hold-Off mode. 4.14.2 Operation Link Hold-Off is implemented in one of the following two ways: • Using a hardware pin at power-up or hardware reset • Using software control through the MII Management (MDC/MDIO) interface. Link Hold-Off use by an external hardware pin is as follows: 1. Pull the LINKHOLD pin High with a pull-up resistor (approximately 5 k Ohms). 2. Power up the system or drive the reset pin active. 3. All ports are link disabled. 4. Program all ports to the desired configuration. 5. Clear Register Bit 0.11, power-down for each individual port. 6. Normal operation resumes on each port after Register bit 0.11 is cleared (see Table 83 for the recovery time). Link Hold-Off is enabled on a per port basis by software control using the following two methods: Method One: This method requires that Link Hold-Off is enabled by the LINKHOLD pin during the last powerup or hardware reset. 1. Set Register bit 0.15 to reset and re-enable Link Hold-Off for the desired port. 2. Program the PHY to the desired configuration. 3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off. 4. Normal operation resumes. Method Two: This method enables Link Hold-Off regardless of the LINKHOLD hardware configuration state. 1. Set Register bit 0.11(power-down) to enable Link Hold-Off for the desired port. 2. Program the PHY to the desired configuration. 3. Clear Register bit 0.11 (power-down) to disable Link Hold-Off. 4. Normal operation resumes. Note: High is defined by the IO voltage supply level selected (2.5V or 3.3V). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 163 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 5.0 Application Information 5.1 Design Recommendations The LXT9785/LXT9785E is designed to comply with IEEE 802.3 requirements to provide outstanding receive Bit Error Rate (BER), and long-line-length performance. To achieve maximum performance from the LXT9785/LXT9785E, attention to detail and good design practices are required. Refer to the LXT9785 Design and Layout Guide application note for detailed design and layout information. 5.2 General Design Guidelines Adherence to generally accepted design practices is essential to minimize noise levels on power and ground planes. Up to 50 mV maximum of noise is considered acceptable. High-frequency switching noise can be reduced, and its effects eliminated, by following these simple guidelines throughout the design: • Fill in unused areas of the signal planes with solid copper and attach them with vias to a VCC or ground plane that is not located adjacent to the signal layer. • Use ample bulk and decoupling capacitors throughout the design (a value of 0.01µF is recommended for decoupling caps). • • • • • • Provide ample power and ground planes. Provide termination on all high-speed switching signals and clock lines. Provide impedance matching on long traces to prevent reflections. Route high-speed signals next to a continuous, unbroken ground plane. Filter and shield DC-DC converters, oscillators, etc. Do not route any digital signals between the LXT9785/LXT9785E and the RJ-45 connectors at the edge of the board. • Do not extend any circuit power and ground plane past the center of the magnetics or to the edge of the board. Use this area for chassis ground, or leave it void. 5.2.1 Power Supply Filtering Power supply ripple and digital switching noise on the VCC plane may cause EMI problems and degrade line performance. The best approach to this problem is to minimize ground noise as much as possible using good general techniques and by filtering the VCC plane. It is generally difficult to predict in advance the performance of any design, although certain factors greatly increase the risk of having problems: • Poorly-regulated or over-burdened power supplies. • Wide data busses (32-bits+) running at a high clock rate. • DC-to-DC converters. 164 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Intel recommends filtering the power supply to the analog VCC pins of the LXT9785/LXT9785E. This has two benefits. First, it keeps digital switching noise out of the analog circuitry inside the LXT9785/LXT9785E, helping with line performance. Second, if the VCC planes are laid out correctly, digital switching noise is kept away from external connectors, reducing EMI problems. The recommended implementation is to break the VCC plane into two sections. The digital section supplies power to the VCCD and VCCIO pins of the LXT9785/LXT9785E. The analog section supplies power to the VCCA pins. The break between the two planes should run underneath the device. In designs with more than one the LXT9785/LXT9785E, a single continuous analog VCC plane can be used to supply them all. The digital and analog VCC planes should be joined at one or more points by ferrite beads. The beads should produce at least a 100 Ω impedance at 100 MHz. Beads should be placed so that current flow is evenly distributed. The maximum current rating of the beads should be at least 150% of the current that is actually expected to flow through them. A bulk cap (2.2 -10µF) should be placed on each side of each bead. In addition, a high-frequency bypass cap (0.01 µF) should be placed near each analog VCC pin. 5.2.2 Power and Ground Plane Layout Considerations Great care needs to be taken when laying out the power and ground planes. • Follow the guidelines in the LXT9785 Design and Layout Guide (formerly Application Note 151) for locating the split between the digital and analog VCC planes. • Keep the digital VCC plane away from the TPFOP/N and TPFIP/N signals, the magnetics, and the RJ-45 connectors. • Place the layers so that the TPFOP/N and TFPIP/N signals can be routed near or next to the ground plane. For EMI reasons, it is more important to shield TPFOP/N than TPFIP/N. 5.2.2.1 Chassis Ground For ESD reasons, it is a good design practice to create a separate chassis ground that encircles the board and is isolated via moats and keep-out areas from all circuit-ground planes and active signals. Chassis ground should extend from the RJ-45 connectors to the magnetics, and can be used to terminate unused signal pairs (Bob Smith termination). In single-point grounding applications, provide a single connection between chassis and circuit grounds with a 2 kV isolation capacitor. In multi-point grounding schemes (chassis and circuit grounds joined at multiple points), provide 2 kV isolation to the Bob Smith termination. 5.2.3 MII Terminations Series termination resistors are required on all the SS-SMII output signals driven by the LXT9785/ LXT9785E. Special trace layout consideration should be used when using the SMII interface. Keep all traces orthogonal and as short as possible. Whenever possible, route the clock and sync traces evenly between the longest and shortest data routes. This minimizes round-trip, clock-to-data delays and allows a larger margin to the setup and hold requirements. 5.2.4 Twisted-Pair Interface Use the following standard guidelines for a twisted-pair interface: Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 165 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers • • • • • Place the magnetics as close as possible to the LXT9785/LXT9785E. Keep transmit pair traces as short as possible; both traces should have the same length. Avoid vias and layer changes as much as possible. Keep the transmit and receive pairs apart to avoid cross-talk. Route the transmit pair adjacent to a ground plane. The optimum arrangement is to place the transmit traces two to three layers from the ground plane, with no intervening signals. • Improve EMI performance by filtering the TPO center tap. A single ferrite bead rated at 400 mA may be used to supply center tap current to all ports. 5.2.4.1 Magnetic Requirements The LXT9785/LXT9785E requires a 1:1 ratio for both the receive transformers and the transmit transformers. The transmit isolation voltage should be rated at 1.5 kV to protect the circuitry from static voltages across the connectors and cables. The LXT9785/LXT9785E is a current driven transceiver that requires an external voltage (center tap) to drive the transmit signal. In order to support the Auto-MDIX functionality of the LXT9785/LXT9785E, the magnetic must provide a center tap for both the transmit and receive magnetic winding, with both connected to VCCT. See the LXT9785/LXT9785E Design and Layout Guide (249509-001) for magnetic testing with the LXT9785/LXT9785E. Before committing to a specific component, designers should contact the manufacturer for current product specifications, and validate the magnetics for the specific application. Table 50 provides the magnetics requirements. Table 50. Intel® LXT9785/LXT9785E Magnetics Requirements Parameter Rx turns ratio Nom Max Units – 1:1 – – Test Condition Tx turns ratio – 1:1 – – Insertion loss 0.0 0.6 1.1 dB Primary inductance 350 – – µH Transformer isolation – 2 – kV Differential to common mode rejection 40 – – dB .1 to 60 MHz Return Loss 5.2.5 Min 35 – – dB 60 to 100 MHz -16 – – dB 30 MHz -10 – – dB 80 MHz The Fiber Interface The fiber interface consists of an LVPECL transmit and receive pair to an external fiber-optic transceiver. Both 3.3 V fiber-optic transceivers and 5 V fiber-optic transceivers can be used with the LXT9785/LXT9785E. See the 100BASE-FX Fiber Optic Transceivers-Connecting a PECL/ LVPECL Interface Application Note (document number 250781) for detailed information on fiber interface designs and recommendations for Intel PHYs. The following should occur in 3.3 V fiber transceiver applications as shown in Figure 36: • The transmit pair should be AC-coupled with 2.5 V supplies and re-biased to 3.3 V LVPECL levels 166 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers • The transmit pair should contain a balance offset in the pull-up resistors to prevent PHY-to- fiber transceiver crosstalk amplification in power-down, loopback, and reset states (see fiber interface application note) • The receive pair should be DC-coupled with an emitter current path for the fiber transceiver • The signal detect pin should be DC-coupled with an emitter current path for the fiber transceiver Refer to the fiber transceiver manufacturer’s recommendations for termination circuitry. Figure 36 shows a typical example of an LXT9785/LXT9785E-to-3.3 V fiber transceiver interface. The following occurs in 5 V fiber transceiver applications as shown in Figure 37: • The transmit pair should be AC-coupled and re-biased to 5 V PECL input levels • The transmit pair should contain a balance offset in the pull-up resistors to prevent PHY-to- fiber transceiver crosstalk amplification in power-down, loopback, and reset states (see fiber interface application note) • The receive pair should be AC-coupled with an emitter current path for the fiber transceiver and re-biased to 1.2 V • The signal detect pin on a 5 V fiber transceiver interface should use the logic translator circuitry as shown in Figure 38. Refer to the fiber transceiver manufacturer’s recommendations for termination circuitry. Figure 37 shows a typical example of an LXT9785/LXT9785E-to-5 V fiber transceiver interface, while Figure 38 shows the interface circuitry for the logic translator. 5.2.6 LED Circuit Each Direct Drive LED has a corresponding open-drain pin. The LEDs are connected through a current-limiting resistor to a positive-voltage rail. The LEDs are turned on when the output pin drives Low. The open-drain LED pins are 5 V tolerant, allowing use of either a 3.3 V or 5 V rail (a 2.5 V rail is unlikely to work with standard forward voltage LEDs). A 5 V rail eases LED component selection by allowing more common, high-forward voltage LEDs to be used. Refer to Figure 33 for a circuit illustration. Figure 33. LED Circuit VLED R LEDn_m Inside Outside IC IC VCCIO < VLED < 5 V + 5% Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 167 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 5.3 Typical Application Circuits Figure 34 through Figure 37 on page 171 show typical application circuits for the LXT9785/ LXT9785E. Figure 38 on page 172 shows the interface circuitry for the logic translator. Figure 34. Intel® LXT9785/LXT9785E Power and Ground Supply Connections SGND GNDR/GNDT 0.01µF VCCR/VCCT 10µF Analog Supply Plane LXT9785/9785E Ferrite Bead Digital Supply Plane VCCD + 10 µF +2.5 V 0.01 µF GNDD 0.01 µF VCCIO + 2.5 V or +3.3 V VCCPECL +2. 5 V or +3.3 V 0.1 µF GNDPECL 168 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 35. Intel® LXT9785/LXT9785E Typical Twisted-Pair Interface TPFOP 1:1 1 1 2 3 TPFON 50 Ω 50 Ω 4 TPFIP 50 Ω 1:1 LXT9785/9785E 5 6 50 Ω 2 50 Ω 50 Ω To Twisted-Pair Network RJ-45 7 8 TPFIN .01 µF * = 0.001 µF / 2.0 kV * = 0.001 µF / 2.0 kV VCCT 0.1µF .01µF GNDA 1. The 100 Ω transmit load termination resistor typically required is integrated in the LXT9785/ LXT9785E. 2. The 100 Ω receive load termination resistor typically required is integrated in the LXT9785/ Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 169 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 36. Recommended Intel® LXT9785/LXT9785E-to-3.3 V Fiber Transceiver Interface Circuitry +3.3V +2.5V 27Ω 0.01µF − 0.1µF 50Ω 50Ω 0.01µF − 0.1µF 1.4kΩ 1.3kΩ 0.01 µF TD - TPFONn TPFOPn TD + 0.01 µF 2kΩ 2kΩ LXT9785(E) 3.3V Fiber Txcvr +3.3V To Fiber Network +2.5V 130Ω SD SDn 82Ω 1 TPFINn RD - TPFIPn RD + 130Ω 130Ω SD_2P5V GNDPECL 3.3V VCCPECL 1. Refer to the transceiver manufacturers’ recommendations for termination circuitry. 170 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 37. Recommended Intel® LXT9785/LXT9785E-to-5 V Fiber Transceiver Interface Circuitry +2.5V +5V +2.5V 27Ω 0.01µF − 0.1µF 50Ω 50Ω 0.01µF − 0.1µF 1.15kΩ 1.1kΩ 0.01µF TD - TPFONn 0.01µF TD + 3.1kΩ LXT9785(E) 2 3.1kΩ ON Semiconductor* MC100LVEL92 PECL-to-LVPECL Logic Translator SDn 5V Fiber Txcvr To Fiber Network TPFOPn SD +2.5V 0.01µF − 0.1µF 127Ω 1 127Ω 0.01µF TPFINn RD - 0.01µF RD + TPFIPn 118Ω 118Ω 270Ω 270Ω SD_2P5V GNDPECL 3.3V VCCPECL 1. Refer to the transceiver manufacturers’ recommendations for termination circuitry. 2. See Figure 38 on page 172 for recommended logic translator interface circuitry. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 171 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 38. ON Semiconductor Triple PECL-to-LVPECL Translator 5V 0.01 µF 0.01 µF 5V 3.3V ON Semiconductor* PECL Input Signal (5V Fiber Txcvr) 82Ω 130Ω 1 Vcc Vcc 20 2 Q0 __ Q0 19 3 D0 __ D0 4 VBB PECL LVCC 17 5 D1 __ D1 Q1 __ Q1 16 6 7 VBB PECL LVCC 14 8 Q2 __ Q2 13 9 D2 __ D2 10 GND Vcc 11 18 130Ω LVPECL Output Signal (LXT9785) 82Ω 3.3V 15 12 0.01 µF 3.3V 130Ω MC100LVEL92 82Ω 172 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 6.0 Test Specifications Note: Table 51 through Table 81 and Figure 39 through Figure 62 represent the target specifications of the LXT9785/LXT9785E. These specifications are not guaranteed and are subject to change without notice. Minimum and maximum values listed in Table 53 through Table 81 apply over the recommended operating conditions specified in Table 52. Table 51. Intel® LXT9785/LXT9785E Absolute Maximum Ratings Parameter Supply voltage Sym Min Max Units VCCIO, VCCPECL -0.3 4.0 V VCCA, VCCD -0.3 3.0 V TST -65 +150 ºC Storage temperature Caution: Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 52. Intel® LXT9785/LXT9785E Operating Conditions (Sheet 1 of 2) Parameter Sym Min Typ1 (2.5 VCCIO) Typ1 (3.3 VCCIO) Max Units Commercial Operating Temperature Ambient TOPA 0 – – 70 ºC Case TOPC 0 – – 108 ºC Extended Operating Temperature Ambient TOPA -40 85 ºC Case TOPC -40 123 ºC Vcca, Vccd 2.38 2.5 2.5 2.63 V Vccio 2.38 2.5 3.3 3.46 V 3.14 N/A 3.3 3.46 V 2.38 2.5 N/A 2.63 V 810 mA 160 mA 410 mA 200 mA 765 mA 90 mA 20 mA 4 mA 540 mA 4 mA Analog & Digital Supply voltage2 I/O I/O (SD_2P5V = 0) I/O (SD_2P5V = 1) 100BASE-TX 100BASE-FX Operating Current - RMII3 10BASE-T Power-Down Mode Hardware Auto-Negotiation VCCPECL ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – 780 60 130 380 90 170 710 30 70 20 2 3 500 2 4 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Voltages with respect to ground unless otherwise specified. 3. Values are aggregated for all eight ports. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 173 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 52. Intel® LXT9785/LXT9785E Operating Conditions (Sheet 2 of 2) Parameter 100BASE-TX 100BASE-FX Operating Current - SMII3 10BASE-T Power-Down Mode Hardware Auto-Negotiation 100BASE-TX 100BASE-FX Operating Current SS-SMII3 10BASE-T Power-Down Mode Hardware Auto-Negotiation Sym Min ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – ICC – ICCIO – Typ1 (2.5 VCCIO) Typ1 (3.3 VCCIO) 800 70 130 380 90 170 740 60 110 50 3 5 520 20 160 mA 410 mA 200 mA 770 mA 130 mA 50 mA 5 mA mA 835 mA 170 200 mA 410 mA 170 200 mA 780 mA 180 mA 40 mA 5 mA 570 mA 80 mA 740 150 30 3 5 530 50 mA mA 380 90 830 30 800 90 Units 570 30 90 Max 70 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Voltages with respect to ground unless otherwise specified. 3. Values are aggregated for all eight ports. Table 53. Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 2.5 V +/5%) Sym Min Typ1 Max Units Test Conditions Input Low voltage VIL – – 0.75 V – Input High voltage VIH 1.75 – – V – II -100 – 100 µA 0.0 < VI < VCC Parameter Input current Output Low voltage Output Low voltage (LEDm_n pins) Output High voltage VOL – – 0.2 V IOL = 4 mA VOL-LED – – 0.5 V IOL = 10 mA VOH 2.07 – – V IOH = -4 mA 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 174 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 54. Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics (VCCIO = 3.3 V +/5%) Sym Min Typ1 Max Units Test Conditions Input Low voltage VIL – – 0.8 V – Input High voltage VIH 2.0 – – V – II -100 – 100 µA 0.0 < VI < VCC Parameter Input current Output Low voltage Output Low voltage (LEDm_n pins) VOL – – 0.2 V IOL = 4 mA VOL-LED – – 0.5 V IOL = 10 mA VOH 2.4 – – V IOH = -4 mA Output High voltage 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Table 55. Intel® LXT9785/LXT9785E Digital I/O DC Electrical Characteristics – SD Pins Parameter Sym Min Typ1 Max Units Test Conditions 2.5 V Operation Input Low voltage VIL 0.69 0.8 1.03 V VCCPECL = 2.5 V Input High voltage VIH 1.34 1.6 1.62 V VCCPECL = 2.5 V 3.3 V Operation Input Low voltage VIL 1.49 1.6 1.83 V VCCPECL = 3.3 V Input High voltage VIH 2.14 2.4 2.42 V VCCPECL = 3.3 V 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. For 2.5 V operation, SD_2P5V = VCCPECL and VCCPECL=2.5 V. 3. For 3.3 V operation, SD_2P5V = GNDPECL or Floating and VCCPECL=3.3 V. Table 56. Intel® LXT9785/LXT9785E Required Clock Characteristics Parameter SMII Input frequency RMII Input frequency Sym Min Typ2 Max Units Test Conditions f – 125 – MHz – f – 50 – MHz – ∆f – – ± 50 ppm – Input clock duty cycle Tdc 35 50 65 % RMII selection Input clock duty cycle - REFCLK, TxCLK1 Tdc 40 50 60 % SMII/SS-SMII selection Output RxCLK duty cycle Tdc 45 50 55 % SS-SMII only Input clock frequency tolerance1 1 1. Parameter is guaranteed by design; not subject to production testing. 2. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 175 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 57. Intel® LXT9785/LXT9785E 100BASE-TX Transceiver Characteristics Sym Min Typ1 Max Units Test Conditions Peak differential output voltage VP 0.95 – 1.05 V Note 2 Signal amplitude symmetry Parameter Vss 98 – 102 % Note 2 Signal rise/fall time trf 3 – 5 ns Note 2 Rise/fall time symmetry trfs – – 0.5 ns Note 2 – – – +/- 0.5 ns Offset from 16 ns pulse width at 50% of pulse peak Overshoot VO – – 5 % – Jitter magnitude (measured differentially) ttx-jit – – 1.4 ns – Duty cycle distortion 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Measured at the line side of the transformer, line replaced by 100Ω (+/-1%) resistor. Table 58. Intel® LXT9785/LXT9785E 100BASE-FX Transceiver Characteristics Parameter Sym Typ1 Min Max Units Test Conditions Transmitter Peak-to-peak differential output voltage Signal rise/fall time Jitter magnitude (measured differentially) VDIFFP-P 0.6 1.44 – V – trf – – 1.8 ns Note 2 ttx-jit – – 1.4 ns – Receiver Peak differential input voltage 0.55 – – V – VCMIR – – VCC - 0.5 V – Input Low Voltage (SD pins) VIL VCC -1.84 VCC -1.63 V – Input High Voltage (SD Pins) VIH VCC -1.04 VCC -0.88 V – Common mode input range VIP 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. 20 - 80 percent into 100 Ω equivalent load of a typical fiber transceiver. 176 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 59. Intel® LXT9785/LXT9785E 10BASE-T Transceiver Characteristics Parameter Sym Min Typ1 Max Units Test Conditions Transmitter Peak differential output voltage Link transmit period Jitter magnitude added by the MAU and PLS sections 3, 4 VOP 2.2 2.5 2.8 V Note 2 – 8 – 24 ms – ttx-jit – – 11 ns – – W Between TPFIP and TPFIN Receiver Receive input impedance3 ZIN – 100 Link min receive timer TLRmin 2 – 7 ms – Link max receive timer TLRmax 50 – 150 ms – VDS – 475 – mV Peak 5 MHz square wave input Differential squelch threshold 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Parameter is guaranteed by design; not subject to production testing. 3. IEEE 802.3 specifies maximum jitter addition at 1.5 ns for the AUI cable, 0.5 ns from the encoder, and 3.5 ns from the MAU. 4. After line model specified by IEEE 802.3 for 10BASE-T MAU. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 177 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 39. Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing REFCLK t5 t6 SYNC t1 t2 RxData t3 t4 TPFI Table 60. Intel® LXT9785/LXT9785E SMII - 100BASE-TX Receive Timing Parameters Sym Min Typ1 Max Units RxData output delay from REFCLK rising edge t1 1.5 – 5 ns RxData Rise/Fall Time t2 – 1.0 – ns Receive start of /J/ to CRS asserted t3 – 21 29 BT2 Synchronous sampling of SMII Receive start of /T/ to CRS deasserted t4 – 25 30 BT2 Synchronous sampling of SMII SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – Parameter Test Conditions Minimum CL = 5 pF Maximum CL = 20 pF – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 178 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 40. Intel® LXT9785/LXT9785E SMII - 100BASE-TX Transmit Timing REFCLK t1 t2 SYNC t1 t2 TxData t3 TPFO Table 61. Intel® LXT9785/LXT9785E SMII - 100BASE-TX Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TxData setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold from REFCLK rising edge and TxData hold from REFCLK rising edge t2 1.0 – – ns – TxEN sampled to start of /J/ t3 – 11 18 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 179 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 41. Intel® LXT9785/LXT9785E SMII - 100BASE-FX Receive Timing REFCLK t5 t6 SYNC t1 t2 RxData t3 t4 TPFI Table 62. Intel® LXT9785/LXT9785E SMII - 100BASE-FX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RxData output delay from REFCLK rising edge t1 1.5 – 5 ns Minimum CL = 5 pF Maximum CL = 20 pF RxData Rise/Fall Time t2 – 1 – ns – Receive start of /J/ to CRS asserted t3 – 18 26 BT2 Synchronous sampling of SMII Receive start of /T/ to CRS deasserted t4 – 23 27 BT2 Synchronous sampling of SMII SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 180 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 42. Intel® LXT9785/LXT9785E SMII - 100BASE-FX Transmit Timing REFCLK t1 t2 SYNC t1 t2 TxData t3 TPFO Table 63. Intel® LXT9785/LXT9785E SMII - 100BASE-FX Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TxData setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold from REFCLK rising edge and TxData hold from REFCLK rising edge t2 1.0 – – ns – TxEN sampled to start of /J/ t3 – 10 17 BT2 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 181 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 43. Intel® LXT9785/LXT9785E SMII - 10BASE-T Receive Timing REFCLK t5 t6 SYNC t1 t2 RxData t3 t4 TPFI Table 64. Intel® LXT9785/LXT9785E SMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units RxData output delay from REFCLK rising edge t1 1.5 – 5 ns RxData Rise/Fall Time t2 – 1 – ns Receive Start-of-Frame to CRS asserted t3 – 17 21 BT3 Synchronous sampling of SMII2 Receive Start-of-Idle to CRS de-asserted t4 – 17 18 BT3 Synchronous sampling of SMII2 SYNC setup to REFCLK rising edge t5 1.5 – – ns – SYNC hold from REFCLK rising edge t6 1.0 – – ns – Parameter Test Conditions Minimum CL = 5 pF Maximum CL = 20 pF – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Assumes each SMII segment is sampled for CRS. 3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 182 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 44. Intel® LXT9785/LXT9785E SMII - 10BASE-T Transmit Timing REFCLK t1 t2 SYNC t1 t2 TxData t3 TPFO Table 65. Intel® LXT9785/LXT9785E SMII-10BASE-T Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions SYNC setup to REFCLK rising edge and TxData setup to REFCLK rising edge t1 1.5 – – ns – SYNC hold to REFCLK rising edge and TxData hold from REFCLK rising edge t2 1.0 – – ns – TxEN sampled to start-of-frame t3 – 10 14 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 183 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 45. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing REFCLK t1 RxCLK t2 RxSYNC t3 t3 t3 RxData t4 t5 TPFI Table 66. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions REFCLK rising edge to RxCLK rising edge t1 – 1.5 – ns – RxData/RxSYNC output delay from RxCLK rising edge t2 1.5 – 5 ns Minimum CL = 5pF Maximum CL = 40pF RxData/RxSYNC Rise/Fall time t3 – 1.0 – ns – Receive start of /J/ to CRS asserted t4 – 21 27 BT2 – Receive start of /T/ to CRS de-asserted t5 – 25 30 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 184 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 46. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Transmit Timing TxCLK t1 t2 TxSYNC t1 t2 TxData t3 TPFO Table 67. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-TX Transmit Timing Sym Min Typ1 Max Units Test Conditions TxSYNC setup to TxCLK rising edge and TxData setup to TxCLK rising edge t1 1.5 – – ns – TxSYNC hold from TxCLK rising edge and TxData hold to TxCLK rising edge t2 1.0 – – ns – TxEN sampled to start of /J/ t3 – 11 18 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 185 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 47. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Receive Timing REFCLK t1 RxCLK t2 RxSYNC t3 t3 t3 RxData t4 t5 TPFI Table 68. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Receive Timing Parameters Parameter Sym Min Typ1 REFCLK rising edge to RxCLK rising edge t1 – 1.5 RxData/RxSYNC output delay from RxCLK rising edge t2 1.5 – Max 5 Units Test Conditions ns – ns Minimum CL = 5pF Maximum CL = 40pF RxData/RxSYNC Rise/Fall time t3 – 1 – ns – Receive start of /J/ to CRS asserted t4 – 18 23 BT2 – Receive start of /T/ to CRS de-asserted t5 – 21 26 BT2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 186 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 48. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Transmit Timing TxCLK t1 t2 TxSYNC t1 t2 TxData t3 TPFO Table 69. Intel® LXT9785/LXT9785E SS-SMII - 100BASE-FX Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions TxSYNC setup to TxCLK rising edge and TxData setup to TxCLK rising edge t1 1.5 – – ns – TxSYNC hold from TxCLK rising edge and TxData hold to TxCLK rising edge t2 1.0 – – ns – TxData to TPFO Latency t3 – 11 13 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 187 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 49. Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Receive Timing REFCLK t1 RxCLK t2 RxSYNC t3 RxData t4 t5 TPFI Table 70. Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions REFCLK rising edge to RxCLK rising edge t1 – 1.5 – ns – RxData/RxSYNC output delay from RxCLK rising edge t2 1.5 – 5 ns RxData/RxSYNC Rise/Fall time t3 – 1 – ns – Receive Start-of-Frame to CRS asserted t4 – 10 11 BT3 Synchronous sampling of SMII2 Receive Start-of-Idle to CRS de-asserted t5 – 18 21 BT3 Synchronous sampling of SMII2 Parameter Minimum CL = 5pF Maximum CL = 40pF 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. Assumes each SMII segment is sampled for CRS. 3. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 188 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 50. Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Transmit Timing TxCLK t1 t2 TxSYNC t1 t2 TxData t3 TPFO Table 71. Intel® LXT9785/LXT9785E SS-SMII - 10BASE-T Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions TxSYNC setup to TxCLK rising edge and TxData setup to TxCLK rising edge t1 1.5 – – ns – TxSYNC hold to TxCLK rising edge and TxData hold from TxCLK rising edge t2 1.0 – – ns – TxData to TPFO Latency t3 – 10 14 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 189 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 51. Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing REFCLK t1 t2 RxData[1:0] TPFI t3 t4 CRS_DV Table 72. Intel® LXT9785/LXT9785E RMII - 100BASE-TX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RxData<1:0>, CRS_DV, RXER setup to REFCLK rising edge3 t1 4 – 14 ns – RxData<1:0>, CRS_DV, RXER hold from REFCLK rising edge3 t2 2 – 14 ns – Receive start of /J/ to CRS_DV asserted t3 – 16 21 BT2 – 27 2 – Parameter Receive start of /T/ to CRS_DV de-asserted t4 – 20 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 190 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 52. Intel® LXT9785/LXT9785E RMII - 100BASE-TX Transmit Timing REFCLK t1 t2 TxData(1:0) TPFO t1 t3 t2 TxEN Table 73. Intel® LXT9785/LXT9785E RMII - 100BASE-TX Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 – – ns – TxData<1:0>/TxEN hold from REFCLK rising edge t2 2 – – ns – TxEN sampled to TPFO out (Tx latency) t3 – 12 17 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 191 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 53. Intel® LXT9785/LXT9785E RMII - 100BASE-FX Receive Timing REFCLK t1 t2 RxData[1:0] TPFI t3 t4 CRS_DV Table 74. Intel® LXT9785/LXT9785E RMII - 100BASE-FX Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RxData<1:0>, CRS_DV, RXER setup to REFCLK rising edge3 t1 4 – 14 ns – RxData<1:0>, CRS_DV, RXER hold from REFCLK rising edge3 t2 2 – 14 ns – Receive start of /J/ to CRS_DV asserted t3 – 14 18 BT2 – 25 2 – Parameter Receive start of /T/ to CRS_DV de-asserted t4 – 18 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 192 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 54. Intel® LXT9785/LXT9785E RMII - 100BASE-FX Transmit Timing REFCLK t1 t2 TxData(1:0) TPFO t1 t3 t2 TxEN Table 75. Intel® LXT9785/LXT9785E RMII - 100BASE-FX Transmit Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 – – ns – TxData<1:0>/TX-EN hold from REFCLK rising edge t2 2 – – ns – TxEN sampled to TPFO out (Tx latency) t3 – 10 12 BT2 – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 193 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 55. Intel® LXT9785/LXT9785E RMII - 10BASE-T Receive Timing REFCLK t1 t2 RxData[1:0] TPFI t3 t4 CRS_DV Table 76. Intel® LXT9785/LXT9785E RMII - 10BASE-T Receive Timing Parameters Sym Min Typ1 Max Units Test Conditions RxData<1:0>, CRS_DV setup to REFCLK rising edge3 t1 4 – 14 ns – RxData<1:0>, CRS_DV hold from REFCLK rising edge3 t2 2 – 14 ns – TPFI in to CRS_DV asserted t3 1.5 3 4 BT2 – 2 – Parameter TPFI quiet to CRS_DV de-asserted t4 12 15 16 BT 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). 3. Values and conditions from RMII Specification, Rev. 1.2. NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). 194 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 56. Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing REFCLK t1 t2 TxData(1:0) TPFO t1 t3 t2 TxEN Table 77. Intel® LXT9785/LXT9785E RMII - 10BASE-T Transmit Timing Parameters Sym Min Typ1 Max Units Test Conditions TxData<1:0>/TxEN setup to REFCLK rising edge t1 4 – – ns – TxData<1:0>/TxEN hold from REFCLK rising edge t2 2 – – ns – TxEN sampled to TPFO out (Tx latency) t3 – 8.5 14 BT2 – Parameter 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 2. “BT” signifies bit times at the line rate (that is, BT = 100 ns if using 10BASE-T, BT = 10 ns if using 100BASE-TX or 100BASE-FX). NOTE: The table latency values are derived with the hardware configuration pins FIFOSEL[1:0] set at a default configuration of 00 (32 bits of initial fill). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 195 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 57. Intel® LXT9785/LXT9785E Auto-Negotiation and Fast Link Pulse Timing Clock Pulse Data Pulse Clock Pulse TPFOP t1 t1 t2 t3 Figure 58. Intel® LXT9785/LXT9785E Fast Link Pulse Timing FLP Burst FLP Burst TPFOP t4 t5 Table 78. Intel® LXT9785/LXT9785E Auto-Negotiation and Fast Link Pulse Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions Clock/Data pulse width t1 – 100 – ns – Clock pulse to Data pulse t2 55.5 – 69.5 µs – Clock pulse to Clock pulse t3 111 – 139 µs – FLP burst width t4 – 2 – ms – FLP burst to FLP burst t5 8 – 24 ms – Clock/Data pulses per burst – 17 – 33 ea – 1. Typical values are at 25 °C and are for design aid only; not guaranteed and not subject to production testing. 196 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 59. Intel® LXT9785/LXT9785E MDIO Write Timing (MDIO Sourced by MAC) MDC t2 t1 MDIO Figure 60. Intel® LXT9785/LXT9785E MDIO Read Timing (MDIO Sourced by PHY) MDC t3 MDIO Table 79. Intel® LXT9785/LXT9785E MDIO Timing Parameters Parameter Sym Min Typ1 Max Units Test Conditions MDIO setup before MDC, sourced by STA t1 10 – – ns – MDIO hold after MDC, sourced by STA t2 10 – – ns – MDC to MDIO output delay, sourced by PHY t3 0 – 40 ns – 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 197 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 61. Intel® LXT9785/LXT9785E Power-Up Timing v1 VCC tPDR MDIO,etc Table 80. Intel® LXT9785/LXT9785E Power-Up Timing Parameters Sym Min Typ1 Max Units Test Conditions v1 2.1 – – V – Power-up recovery time tPDR 100 – – ms – Software power-down2 tSPDR 20 – – ms – Parameter Voltage Threshold 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. 2. The minimum time required between bringing up consecutive ports powered down by Register bit 0.11, or a software or hardware reset. Figure 62. Intel® LXT9785/LXT9785E Reset Recovery Timing tPW RESET tRcdly MDIO,etc Table 81. Intel® LXT9785/LXT9785E Reset Recovery Timing Parameters Parameter Reset pulse width Reset recovery delay Sym Min Typ1 Max Units Test Conditions tPW 10 – – ns – tRcdly 0.4 – – ms – 1. Typical values are at 25° C and are for design aid only; not guaranteed and not subject to production testing. 198 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 7.0 Register Definitions The LXT9785/LXT9785E register set includes multiple 16-bit registers, 18 registers per port. Table 82 presents a complete register listing. Table 83, “Control Register (Address 0)” on page 200 through Table 100, “Cable Diagnostics Register (Address 29, Hex 1D)” on page 217 define individual registers and Table 101, “Intel® LXT9785/LXT9785E Register Bit Map” on page 219 provides a consolidated memory map of all registers. Base registers (0 through 8) are defined in accordance with the “Reconciliation Sublayer and Media Independent Interface” and “Physical Layer Link Signaling for 10/100 Mbps AutoNegotiation” sections of the IEEE 802.3 standard. Additional registers (16 through 21, 25, 27, and 29) are defined in accordance with the IEEE 802.3 standard for adding unique chip functions. The BGA15 package on some registers has different default values. Some LXT9785 features are not available on the BGA15 package. These differences are called out in the register description and in the table notes in individual register tables. Table 82. Intel® LXT9785/LXT9785E Register Set (Sheet 1 of 2) Address Register Name Bit Assignments 0 “Control Register (Address 0)” Refer to Table 83 on page 200 1 “Status Register (Address 1)” Refer to Table 84 on page 201 2 “PHY Identification Register 1 (Address 2)” Refer to Table 85 on page 203 3 “PHY Identification Register 2 (Address 3)” Refer to Table 86 on page 203 4 “Auto-Negotiation Advertisement Register (Address 4)” Refer to Table 87 on page 204 5 “Auto-Negotiation Link Partner Base Page Ability Register (Address 5)” Refer to Table 88 on page 205 6 “Auto-Negotiation Expansion Register (Address 6)” Refer to Table 89 on page 206 7 “Auto-Negotiation Next Page Transmit Register (Address 7)” Refer to Table 90 on page 206 8 “Auto-Negotiation Link Partner Next Page Receive Register (Address 8)” Refer to Table 91 on page 207 9 1000BASE-T/100BASE-T2 Control Not Implemented 10 1000BASE-T/100BASE-T2 Status Not Implemented 15 Extended Status Not Implemented 16 “Port Configuration Register (Address 16, Hex 10)” Refer to Table 92 on page 207 17 “Quick Status Register (Address 17, Hex 11)” Refer to Table 93 on page 209 18 “Interrupt Enable Register (Address 18, Hex 12)” Refer to Table 94 on page 211 19 “Interrupt Status Register (Address 19, Hex 13)” Refer to Table 95 on page 212 20 “LED Configuration Register (Address 20, Hex 14)” Refer to Table 96 on page 213 21 “Receive Error Count Register (Address 21, Hex 15)” Refer to Table 97 on page 214 22-24 Reserved N/A 25 “RMII Out-of-Band Signaling Register (Address 25, Hex 19)” Refer to Table 98 on page 215 26 Reserved N/A Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 199 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 82. Intel® LXT9785/LXT9785E Register Set (Sheet 2 of 2) Address Register Name Bit Assignments 27 “Trim Enable Register (Address 27, Hex 1B)” Refer to Table 99 on page 216 28 Reserved N/A 29 “Cable Diagnostics Register (Address 29, Hex 1D)” Refer to Table 100 on page 217 Reserved N/A 30 - 31 Table 83. Control Register (Address 0) (Sheet 1 of 2) Bit Name Description 15 RESET 0 = Normal operation 1 = PHY reset Type1 R/W SC Default 02 0 = Disable loopback mode 1 = Enable loopback mode 14 Loopback Not recommended to enable auto-negotiation while in internal loopback operation. 0.6 1 1 0 0 1 = Reserved 0 = 1000 Mbps (not allowed) 1 = 100 Mbps 0 = 10 Mbps Speed Selection 12 Auto-Negotiation Enable 0 = Disable auto-negotiation process 1 = Enable auto-negotiation process 11 Power-Down 0 = Normal operation 1 = Power-down 10 Isolate 8 Restart Auto-Negotiation Duplex Mode 0 R/W LSHR3,4 R/W LSHR3,4 R/W LSHR3,5 R/W 0 0.13 13 9 R/W 0 = Normal operation 1 = Electrically isolate PHY from RMII/SMII/SSSMII interfaces 0 = Normal operation 1 = Restart auto-negotiation process 0 = Half-duplex 1 = Full-duplex R/W SC R/W 0 LSHR3,4 1. R/W = Read/Write, SC = Self Clearing when operation complete. 2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the LSHR information is not re-read from the pins. This information reverts back to the information that was read in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit should be polled to see when the part has completed reset. 3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42, “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129. 5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin. 200 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 83. Control Register (Address 0) (Sheet 2 of 2) Bit Name Description Type1 Default R/W 0 R/W 0 R/W 000000 This bit is ignored by the LXT9785/LXT9785E 7 Collision Test 6 Speed Selection 1000 Mbps 0 = Disable COL signal test 1 = Enable COL signal test 0.6 5:0 Reserved 1 1 0 0 0.13 1 = Reserved 0 = 1000 Mbps (not allowed) 1 = 100 Mbps 0 = 10 Mbps Write as 0, ignore on Read 1. R/W = Read/Write, SC = Self Clearing when operation complete. 2. During a hardware reset, all LHR information is latched in from the pins. During a software reset (0.15), the LSHR information is not re-read from the pins. This information reverts back to the information that was read in during the hardware reset. During a hardware rest, register information is unavailable from 1 ms after de-assertion of the reset. During a software reset (0.15) the registers are available for reading. The reset bit should be polled to see when the part has completed reset. 3. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 4. Default value of Register bits 0.12, 0.13, and 0.8 are determined by the CFG pins as described in Table 42, “Intel® LXT9785/9785E Global Hardware Configuration Settings” on page 129. 5. Default value of Register bit 0.11 is determined by the LINKHOLD configuration pin. Table 84. Status Register (Address 1) Type1,2 Default 0 = PHY not able to perform 100BASE-T4 1 = PHY able to perform 100BASE-T4 R 0 100BASE-X Full-Duplex 0 = PHY not able to perform full-duplex 100BASE-X 1 = PHY able to perform full-duplex 100BASE-X R 1 13 100BASE-X Half-Duplex 0 = PHY not able to perform half-duplex 100BASE-X 1 = PHY able to perform half-duplex 100BASE-X R 1 12 10 Mbps Full-Duplex 0 = PHY not able to operate at 10 Mbps in full-duplex mode 1 = PHY able to operate at 10 Mbps in full-duplex mode R 1 11 10 Mbps Half-Duplex 0 = PHY not able to operate at 10 Mbps in half-duplex 1 = PHY able to operate at 10 Mbps in half-duplex mode R 1 10 100BASE-T2 Full-Duplex 0 = PHY not able to perform full-duplex 100BASE-T2 1 = PHY able to perform full-duplex 100BASE-T2 R 0 9 100BASE-T2 Half-Duplex 0 = PHY not able to perform half-duplex 100BASE-T2 1 = PHY able to perform half-duplex 100BASE-T2 R 0 8 Extended Status 0 = No extended status information in Register 15 1 = Extended status information in Register 15 R 0 7 Reserved Write as 0, ignore on Read R 0 MF Preamble Suppression 0 = PHY will not accept management frames with preamble suppressed 1 = PHY accepts management frames with preamble suppressed R 0 Bit Name Description 15 100BASE-T4 14 6 1. R = Read Only 2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 201 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 84. Status Register (Address 1) Bit Type1,2 Default R 0 R/LL 0 R 1 0 = Link is down 1 = Link is up R/LL 0 Jabber Detect 0 = Jabber condition not detected 1 = Jabber condition detected R/LH 0 Extended Capability 0 = Basic register capabilities 1 = Extended register capabilities R 1 Name Description 5 Auto-Negotiation complete 0 = Auto-negotiation not complete 1 = Auto-negotiation complete 4 Remote Fault 0 = No remote fault condition detected 1 = Remote fault condition detected 3 Auto-Negotiation Ability 0 = PHY is not able to perform auto-negotiation 1 = PHY is able to perform auto-negotiation 2 Link Status 1 0 1. R = Read Only 2. Bits that Latch High (LH) or Latch Low (LL) automatically clear when read. 202 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 85. PHY Identification Register 1 (Address 2) Bit 15:0 Name Description PHY ID Number The PHY identifier composed of bits 3 through 18 of the OUI Type1 Default R 0013 hex 1. R = Read Only Table 86. PHY Identification Register 2 (Address 3) Type1 Default The PHY identifier composed of bits 19 through 24 of the OUI R 011110 Manufacturer’s Model Number 6 bits containing manufacturer’s part number R 001111 3:1 Manufacturer’s Revision Number 3 bits containing manufacturer’s revision number R XXX2 0 Model Variant 0 = LXT9785 1 = LXT9785/LXT9785E R X2 Bit Name Description 15:10 PHY ID Number 9:4 1. R = Read Only 2. Refer to the Identification Information section in the Intel® LXT9785/LXT9785E Specification Update. Figure 63. PHY Identifier Bit Mapping a b r c s x Organizationally Unique Identifier 1 2 18 19 3 0 I/G 0 1 24 3 15 15 0 10 PHY ID Register #1 (Address 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 9 4 0 2 1 0 1 1 1 B 1 1 0 X X X X X 0 20 The Intel OUI is 00207B hex. X X 0 3 X X X 1 0 7 5 00 3 PHY ID Register #2 (Address 3) 7B Manufacturer's Model Number Revision Number Model Variant Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 203 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 87. Auto-Negotiation Advertisement Register (Address 4) Bit Name Type1 Default R/W 0 R 0 0 = No remote fault 1 = Remote fault R/W 0 Write as 0, ignore on Read R/W 0 R/W 0 R/W LSHR2,3 R/W 0 Description 0 = Port has no ability to send manual next pages 1 = Port has ability to send manual next pages 15 Next Page Note: This bit should only be set to manually control the autonegotiation process. It is not needed and should be cleared for DTE Discovery. 14 Reserved Write as 0, ignore on Read 136 Remote Fault 12 Reserved 11 Asymmetric Pause 10 Pause5 Pause operation defined in Clause 40 and 27 0 = Port is not Pause capable 1 = Port can only send Pause 0 = Pause operation disabled 1 = Port can send and receive Pause NOTE: Default for the BGA15 package is 0. 0 = 100BASE-T4 capability is not available 1 = 100BASE-T4 capability is available (The LXT9785/LXT9785E does not support 100BASE-T4 but allows this bit to be set to advertise in the auto-negotiation sequence for 100BASE-T4 operation. An external 100BASE-T4 transceiver could be switched in if this capability is desired.) 9 100BASE-T4 8 100BASE-TX Full-Duplex 0 = Port is not 100BASE-TX full-duplex capable. 1 = Port is 100BASE-TX full-duplex capable R/W LSHR2,4 7 100BASE-TX Half-Duplex 0 = Port is not 100BASE-TX half-duplex capable 1 = Port is 100BASE-TX half-duplex capable R/W LSHR2,4 6 10BASE-T Full-Duplex 0 = Port is not 10BASE-T full-duplex capable 1 = Port is 10BASE-T full-duplex capable R/W LSHR2,4 5 10BASE-T Half-Duplex 0 = Port is not 10BASE-T half-duplex capable 1 = Port is 10BASE-T half-duplex capable R/W LSHR2,4 4:0 Selector Field, S<4:0> <00001> = IEEE 802.3 <00010> = IEEE 802.9 ISLAN-16T <00000> = Reserved for future auto-negotiation development <11111> = Reserved for future auto-negotiation development Unspecified or reserved combinations should not be transmitted R/W 00001 1. R/W = Read/Write, R = Read Only 2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 3. The default setting of Register bit 4.10 is determined by the PAUSE pin. The BGA15 package does not have a Pause hardware configuration pin and has a default of 0. 4. Default settings for bits 4.5:8 are determined by CFG pins as described in Table 42, “Intel® LXT9785/ 9785E Global Hardware Configuration Settings” on page 129. 5. Pause operation is only valid for full-duplex modes. 6. If Register bit 4.13 is set to advertise a fault, Register bit 1.4 will be set. NOTE: Restart the auto-negotiation process whenever Register 4 is written/modified. 204 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 88. Auto-Negotiation Link Partner Base Page Ability Register (Address 5) Type1 Default2 0 = Link partner has no ability to send multiple pages 1 = Link partner has ability to send multiple pages R 0 Acknowledge 0 = Link partner has not received Link Code Word from the the LXT9785/LXT9785E 1 = Link partner has received Link Code Word from the LXT9785/LXT9785E. R 0 13 Remote Fault 0 = No remote fault 1 = Remote fault R 0 12 Reserved Write as 0, ignore on Read R 0 11 Asymmetric Pause R 0 10 Pause 0 = Link partner is not Pause capable 1 = Link partner can send and receive Pause R 0 9 100BASE-T4 0 = Link partner is not 100BASE-T4 capable 1 = Link partner is 100BASE-T4 capable R 0 8 100BASE-TX Full-Duplex 0 = Link partner is not 100BASE-TX full-duplex capable 1 = Link partner is 100BASE-TX full-duplex capable R 0 7 100BASE-TX 0 = Link partner is not 100BASE-TX capable 1 = Link partner is 100BASE-TX capable R 0 0 = Link partner is not 10BASE-T full-duplex capable 1 = Link partner is 10BASE-T full-duplex capable R 0 10BASE-T 0 = Link partner is not 10BASE-T capable 1 = Link partner is 10BASE-T capable R 0 Selector Field S<4:0> <00001> = IEEE 802.3 <00010> = IEEE 802.9 ISLAN-16T <00000> = Reserved for future auto-negotiation development <11111> = Reserved for future auto-negotiation development Unspecified or reserved combinations shall not be transmitted R 00000 Bit Name Description 15 Next Page 14 6 5 4:0 10BASE-T Full-Duplex Pause operation defined in Clause 40 and 27 0 = Link partner is not Pause capable 1 = Link partner can only send Pause 1. R = Read Only 2. Default value at the start of auto-negotiation code word transmission. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 205 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 89. Auto-Negotiation Expansion Register (Address 6) Bit 15:5 Name Description Type1 Default Reserved Write as 0, ignore on Read R 0x000 4 Parallel Detection Fault 0 = Parallel detection fault has not occurred 1 = Parallel detection fault has occurred R/ LH 0 3 Link Partner Next Page Able 0 = Link partner is not next page able 1 = Link partner is next page able R 0 2 Next Page Able 0 = Local device is not next page able 1 = Local device is next page able R 1 R/ LH 0 R 0 Type1 Default R/W 0 R 0 Indicates that a new page has been received and the received code word has been loaded into Register 5 or Register 8 as specified in clause 28 of 802.3. 1 Page Received 0 = Three identical and consecutive link code words have not been received from link partner 1 = Three identical and consecutive link code words have been received from link partner 0 Link Partner A/N Able 0 = Link partner is not auto-negotiation able 1 = Link partner is auto-negotiation able 1. R = Read Only, LH = Latching High – cleared when read Table 90. Auto-Negotiation Next Page Transmit Register (Address 7) Bit 15 14 13 12 11 10:0 Name Description Next Page (NP) 0 = Last page 1 = Additional next pages follow Reserved Write as 0, ignore on Read. Message Page 0 = Unformatted page 1 = Message page R/W 1 0 = Cannot comply with message 1 = Complies with message R/W 0 R 0 R/W 0000000 0001 (MP) Acknowledge 2 (ACK2) Toggle (T) Message/ Unformatted Code Field 0 = Previous value of the transmitted link code word equalled logic one 1 = Previous value of the transmitted link code word equalled logic zero MP = 0: Code interpreted as “unformatted page” MP = 1: Code interpreted as “message page” 1. R/W = Read Write, R = Read Only 206 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 91. Auto-Negotiation Link Partner Next Page Receive Register (Address 8) Bit 15 14 13 12 11 10:0 Type1 Default2 0 = Link partner has no additional next pages to send 1 = Link partner has additional next pages to send R 0 0 = Link partner has not received Link Code Word from the LXT9785/LXT9785E 1 = Link partner has received Link Code Word from the LXT9785/LXT9785E R 0 0 = Page sent by the link partner is an unformatted page 1 = Page sent by the link partner is a message page R 0 0 = Link partner cannot comply with the message 1 = Link partner complies with the message R 0 0 = Previous value of the transmitted Link Code Word equalled logic one 1 = Previous value of the transmitted Link Code Word equalled logic zero R 0 MP = 1: Code interpreted as message page MP = 0: Code interpreted as unformatted page R 0x000 Type 1 Default R/W 0 R/W 0 Name Description Next Page (NP) Acknowledge (ACK) Message Page (MP) Acknowledge 2 (ACK2) Toggle (T) Message/ Unformatted Code Field 1. R = Read Only 2. Default value at the start of auto-negotiation code word transmission. Table 92. Port Configuration Register (Address 16, Hex 10) (Sheet 1 of 2) Bit Name Description 15 Reserved Write as 0, ignore on Read 0 = Normal operation 1 = Force link pass (sets appropriate registers and LEDs to pass) 14 Link Disable 13 Transmit Disable 0 = Normal operation 1 = Disable twisted-pair transmitter R/W 0 12 Bypass Scramble (100BASE-TX) 0 = Normal operation 1 = Bypass scrambler and descrambler R/W 0 11 Reserved Write as 0, ignore on Read R/W 0 10 Jabber (10BASE-T) 0 = Normal operation 1 = Jabber function is enabled; however, jabber status reporting to Register bit 1.1 is disabled R/W 0 Note: Setting this bit in 100 Mbps mode by-passes the descrambler lock requirement to establish link and forces the link to the link-good state. Setting this bit produces unreliable results if the descrambler is not locked, 1. R/W = Read/Write 2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 3. The default value of Register bit 16.0 is determined by the G_FX/TP pin. If G_FX/TP is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP is not tied Low, the default value of Register bit 16.0 = 1. The BGA15 package does not have a G_FX/TP hardware configuration pin. 4. The default value of Register bit 16.5 is determined by the PREASEL pin. The BGA15 package does not have a PREASEL hardware configuration pin and has a default of 0. 5. The BGA15 package does not support fiber. Default for the BGA15 package is 0. 6. NA means the bits do not have a default value and may initially contain any value. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 207 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 92. Port Configuration Register (Address 16, Hex 10) (Sheet 2 of 2) Bit 9 8 Name Description Type 1 Default Reserved Write as 0, ignore on Read. R/W 0 TP Loopback (10BASE-T) 0 = Normal operation 1 = Disable twisted-pair loopback during half-duplex operation R/W 1 Note: Valid function in SMII and S-SMII modes only. 7 Reserved Write as 1, ignore on Read R/W 1 6 Reserved Write as 0, ignore on Read R/W 0 10 Mbps 5 Preamble Enable 100 Mbps 0 = No preamble (default) 1 = Preamble enabled NOTE: Default for BGA15 package is 0. LSHR2,4 R/W No effect N/A 4 Reserved Write as 0, ignore on Read R/W 0 3 Reserved Write as 0, ignore on Read R/W 0 2 Far End Fault Transmission Enable 0 = Disable Far End Fault transmission 1 = Enable Far End Fault transmission R/W 1 Invalid for BGA15 Write as '0', ignore on Read (BGA15). Reserved Write as 0, ignore on Read. R/W 0 Fiber Select5 0 = Select twisted-pair mode for this port 1 = Select fiber mode for this port Reserved for BGA15 Write as '0', ignore on Read (BGA15). NOTE: Default for BGA15 is 0. R/W LSHR2,3 1 0 1. R/W = Read/Write 2. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 3. The default value of Register bit 16.0 is determined by the G_FX/TP pin. If G_FX/TP is tied Low, the default value of Register bit 16.0 = 0. If G_FX/TP is not tied Low, the default value of Register bit 16.0 = 1. The BGA15 package does not have a G_FX/TP hardware configuration pin. 4. The default value of Register bit 16.5 is determined by the PREASEL pin. The BGA15 package does not have a PREASEL hardware configuration pin and has a default of 0. 5. The BGA15 package does not support fiber. Default for the BGA15 package is 0. 6. NA means the bits do not have a default value and may initially contain any value. 208 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 93. Quick Status Register (Address 17, Hex 11) (Sheet 1 of 2) Type 1 Default2 Write as 0, ignore on Read R 0 0 = The LXT9785/LXT9785E is operating in 10 Mbps mode 1 = The LXT9785/LXT9785E is operating in 100 Mbps mode R 0 Bit Name Description 15 Reserved 10/100 Mode 14 NOTE: The status is valid for TX and FX operation. 13 Transmit Status 0 = The LXT9785/LXT9785E is not transmitting a packet 1 = The LXT9785/LXT9785E is transmitting a packet R LH 0 12 Receive Status 0 = Packet has not been received since last read 1 = Packet has been received since last read R LH 0 R LH 0 0 = A collision is not occurring 1 = A collision is occurring 11 Collision Status NOTE: This bit is set when jabber is detected, regardless of duplex. 10 Link 0 = Link is down 1 = Link is up R 0 9 Duplex Mode 0 = Half-duplex 1 = Full-duplex R 0 8 Auto-Negotiation R Note 3 0 = The LXT9785/LXT9785E is in manual mode 1 = The LXT9785/LXT9785E is in auto-negotiation mode This signal is based upon Register bit 0.12. 7 Auto-Negotiation Complete 0 = Auto-negotiation process is not complete 1 = Auto-negotiation process is complete R 0 6 FIFO Error 0 = No FIFO error occurred 1 = FIFO error occurred (overflow or underflow) R LH 0 R 0 0 = Polarity is not reversed 1 = Polarity is reversed 5 Polarity NOTE: During 100 Mbps operation, this bit is not valid and may vary. Auto MDIX activity may increase the variability. 1. R = Read Only, LH = Latching High – cleared when read. 2. The default values are updated on completion of reset and reflect the status or change in status at that time. Intel recommends that the register status be read on completion of reset. 3. The default value is determined by the default value of Register bit 0.12. 4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a Pause hardware configuration pin. The default for the BGA15 package is 0. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 209 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 93. Quick Status Register (Address 17, Hex 11) (Sheet 2 of 2) Bit Name Description Type 1 Default2 R LSHR4,5 R 0 R 0 0 = The LXT9785/LXT9785E is not Pause capable 1 = The LXT9785/LXT9785E is pause capable 4 Pause NOTE: This bit is not affected by Register bit 4.10. NOTE: The default for the BGA15 package is 0. 3 Error 0 = No error occurred 1 = Error Occurred (remote fault, RxERCntFUL, FIFO error, jabber, parallel detect fault) NOTE: The register is cleared when the registers that generated the error condition are read. 2:0 Reserved Write as 0, ignore on Read. 1. R = Read Only, LH = Latching High – cleared when read. 2. The default values are updated on completion of reset and reflect the status or change in status at that time. Intel recommends that the register status be read on completion of reset. 3. The default value is determined by the default value of Register bit 0.12. 4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 5. Default values are set by the hardware configuration PAUSE pin. The BGA15 package does not have a Pause hardware configuration pin. The default for the BGA15 package is 0. 210 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 94. Interrupt Enable Register (Address 18, Hex 12) Bit Name Description Type 1 Default R/W LSHR4,5 R/W 0 R/W 0 R/W 0000 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 00 = Reserved 2 15:14 RxFIFO Initial Fill 01 = Low, 16 bits 10 = Normal, 32 bits (default) 11 = Jumbo packets, 128 bits When Register bit 16.5 = 1, preamble is not suppressed. SFD Frame Alignment3 13 10 Mbps When Register bit 16.5 = 0, SFD is always aligned, and preamble is suppressed. (RxDV asserts with CRS when enabled) 100 Mbps 12:9 Reserved 0 = Disabled 1 = Enabled 0 = Disabled 1 = Enabled When enabled, all but one byte of preamble is suppressed. Write as 0, ignore on Read Mask for Counter Full 8 CNTRMSK 7 ANMSK 6 SPEEDMSK 5 DUPLEXMSK 4 LINKMSK 3 ISOLMSK 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt R/W 0 2 Reserved Write as 0, ignore on Read R/W 0 1 INTEN 0 = Disable interrupts on this port 1 = Enable interrupts on this port R/W 0 0 TINT 0 = Normal operation 1 = Test force interrupt on MDINT R/W 0 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt Mask for Auto-Negotiate Complete 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt Mask for Speed Interrupt 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt Mask for Duplex Interrupt 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt Mask for Link Status Interrupt 0 = Do not allow event to cause interrupt 1 = Enable event to cause interrupt Mask for Isolate Interrupt 1. R/W = Read/Write 2. In 10 Mbps operation, Register bit 18.13 = 1 cannot be used when Register bits 18.15:14 = “11” and in RMII mode, Registers bits 18.15:14 = “11” or “10” cannot be used because the minimum Inter Gap Packet becomes less than specified in the *IEEE 802.3 specification. 3. SFD Frame Alignment is applicable to SMII and SS-SMII only. 4. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset 5. Default values are set by hardware configuration pins FIFOSEL1 and FIFOSEL0 (see Table 17, “Intel® LXT9785/LXT9785E Receive FIFO Depth Considerations” on page 50). Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 211 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 95. Interrupt Status Register (Address 19, Hex 13) Bit 15:9 Name Reserved Description Write as 0, ignore on Read Type 1 Default2 R 0 R/LH 0 R/LH N/A R/LH 0 R/LH 0 R/LH 0 R/LH 0 R/LH 0 R 0 RxER Counter Full Status. 8 RxERCntFUL 7 ANDONE 0 = The internal counters have not reached maximum values 1 = One of the internal counters has reached its maximum value Auto-Negotiation Status. 0 = Auto-negotiation has not completed 1 = Auto-negotiation has completed Speed Change Status. 6 SPEEDCHG 0 = A speed change has not occurred since last reading this register 1 = A speed change has occurred since last reading this register Duplex Change Status. 5 DUPLEXCHG 0 = A duplex change has not occurred since last reading this register 1 = A duplex change has occurred since last reading this register Link Status Change Status. 4 LINKCHG 0 = A link change has not occurred since last reading this register 1 = A link change has occurred since last reading this register MII Isolate Change Status. 0 = An Isolate change has not occurred since last reading this register 1 = An Isolate change has occurred since last reading this register 3 Isolate 2 MDINT 0 = Interrupt not pending 1 = Interrupt pending Reserved Reserved 1:0 1. R = Read Only, LH = Latching High – cleared when read 2. The default values are updated on completion of reset and reflect the status or change in status at that time. Intel recommends that the register status be read on completion of reset. 212 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 96. LED Configuration Register (Address 20, Hex 14) (Sheet 1 of 2) Bit Name Description Type1 Default R/W 0000 R/W 1101 0000 = Display Speed Status (Continuous, Default) 0001 = Display Transmit Status (Stretched) 0010 = Display Receive Status (Stretched) 0011 = Display Collision Status (Stretched) 0100 = Display Link Status (Continuous) 0101 = Display Duplex Status (Continuous) 0110 = Display Isolate Status (Continuous) 0111= Display Receive or Transmit Activity (Stretched) 15:12 LED1 1000= est mode- turn LED on (Continuous) Programming bits 1001= Test mode- turn LED off (Continuous) 1010= Test mode- blink LED fast (Continuous) 1011= Test mode- blink LED slow (Continuous) 1100= Display Link and Receive Status combined2 (Stretched)3 1101= Display Link and Activity Status combined2 (Stretched)3 1110= Display Duplex and Collision Status combined4 (Stretched)3 1111 = Display Link and RxER Status combined2 (Blink) 0000 = Display Speed Status 0001 = Display Transmit Status 0010 = Display Receive Status 0011 = Display Collision Status 0100 = Display Link Status 0101 = Display Duplex Status 0110 = Display Isolate Status 0111= Display Receive or Transmit Activity 11:8 LED2 1000= Test mode- turn LED on Programming bits 1001= Test mode- turn LED off 1010= Test mode- blink LED fast 1011= Test mode- blink LED slow 1100= Display Link and Receive Status combined2 (Stretched)3 1101= Display Link and Activity Status combined2 (Default) (Stretched)3 1110= Display Duplex and Collision Status combined4 (Stretched)3 1111= Display Link and RxER Status combined 2 (Blink) 1. R/W = Read/Write 2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up. The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink). 3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings are stretched regardless of the value of 20.1. 4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex. Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 213 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 96. LED Configuration Register (Address 20, Hex 14) (Sheet 2 of 2) Bit Name Description LED3 0000 = Display Speed Status Programming bits 0001 = Display Transmit Status Type1 Default R/W 1110 R/W 00 R/W 1 R/W 0 0010 = Display Receive Status 0011 = Display Collision Status 0100 = Display Link Status 0101 = Display Duplex Status 0110 = Display Isolate Status 0111= Display Receive or Transmit Activity 1000= Test mode- turn LED on 1001= Test mode- turn LED off 7:4 1010= Test mode- blink LED fast 1011= Test mode- blink LED slow 1100= Display Link and Receive Status combined2 (Stretched)3 1101= Display Link and Activity Status combined2 (Stretched)3 1110= Display Duplex and Collision Status combined4 (Default) (Blink)3 1111 = Display Link and RxER Status combined 2 (Blink) Reserved for BGA15 Write as '1001', ignore on Read (BGA15) 00 = Stretch LED events to 30 ms 3:2 LEDFREQ 01 = Stretch LED events to 60 ms 10 = Stretch LED events to 100 ms 11 = Reserved 1 0 PULSESTRETCH Reserved 0 = Disable pulse stretching of all LEDs3 1 = Enable pulse stretching of all LEDs NOTE: Receive activity LEDs are initially active based upon carrier sense. Write as 0, ignore on Read 1. R/W = Read/Write 2. Link status is the primary LED driver. The LED is asserted (solid ON) when the link is up. The secondary LED driver (Receive, Activity, or Error) causes the LED to change state (blink). 3. Combined event LED settings are not affected by Pulse Stretch Register bit 20.1. These display settings are stretched regardless of the value of 20.1. 4. Duplex status is the primary LED driver. The LED is asserted (solid ON) when the link is full-duplex. Collision status is the secondary LED driver. The LED changes state (blinks) when a collision occurs. Table 97. Receive Error Count Register (Address 21, Hex 15) Bit 15:0 Type1 Name Description Receive Error Count A 16-bit counter value indicating the number of times a receive packet with errors occurred. Only one event gets counted per packet. When maximum count is reached, the 16-bit counter remains full until cleared. R/ LH Default 0x0000 1. R = Read Only, LH = Latching High – cleared when read NOTE: Intel recommends reading this register once every time link is established to clear the register. 214 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 98. RMII Out-of-Band Signaling Register (Address 25, Hex 19) Bit Name Description Type1 Default R/W 0x0000 R/W 0x000 R/W 000 R/W 000 R/W 0 BGA15 15:0 Reserved for BGA15 Write as 0, ignore on Read. PQFP and BGA23 15:7 Reserved Write as 0, ignore on Read These three bits select which status information is available on the RxData(1) bit of the RMII bus. 000 = Link 001 = Speed 6:4 BIT1 010 = Duplex 011 = Auto-negotiation complete 100 = Polarity reversed 101 = Jabber detected 110 = Interrupt pending 111 = Reserved These three bits select which status information is available on the RxData(0) bit of the RMII bus. 000 = Link 001 = Speed 3:1 BIT0 010 = Duplex 011 = Auto-negotiation complete 100 = Polarity reversed 101 = Jabber detected 110 = Interrupt pending 111 = Reserved 0 PROGRMII 0 = Disable Out-of-Band signaling. 1 = Enable programmable RMII Out-of-Band signaling. When enabled, Register bits 6:1 specify which status bits are available on the RMII RxData data bus. Note: Out-of-Band signaling is disabled when the Isolate mode is enabled by setting Register bit 0.10. 1. R/W = Read/Write NOTE: The BGA15 package does not support RMII operation. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 215 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 99. Trim Enable Register (Address 27, Hex 1B) (Sheet 1 of 2) Bit Type5 Default Write as 0, ignore on Read R N/A Write as 0, ignore on Read. R/W 0 R/W LSHR1,2 R/W LSHR1,3 R/W LSHR1,4 R/W 0 R/W 0 R/W 0 R 0 Name Description 15:13 Reserved 12 Reserved 00 = 3.3 ns 11:10 Per-Port Rise Time Control 01 = 3.6 ns 10 = 3.9 ns 11 = 4.2 ns NOTE: Values represent nominal load conditions. 9 AMDIX_EN 0 = Disable auto MDI/MDIX 1 = Enable auto MDI/MDIX 0 = MDI, transmit on pair A (TPFINn/TPFIPn) and receive on pair B (TPFONn/TPFOPn) 1 = MDIX transmit on pair B (TPFONn/TPFOPn) and receive on pair A (TPFINn/TPFIPn) 8 MDIX NOTE: Manual MDI/MDIX selection (This bit is ignored when Register bit 27.9 = 1). NOTE: BGA15 does not support the MDIX hardware configuration. 7 Analog Loopback 0 = Disable analog loopback 1 = Enable analog loopback (twisted-pair transmit outputs are active) NOTE: In fiber mode, SD for the port must be asserted. DTE Discovery Process Enable. 6 Dis_EN 0 = Disable DTE discovery process 1 = Enable DTE discovery process Restart auto-negotiation after writing to this bit to ensure proper operation. 5 Reserved Write as 0, ignore on Read. Power Enable (Requires Auto-Negotiation Enable Register bit 0.12 = 1). 4 Power_EN 0 = Remote-Power DTE not discovered; process may not be complete. 1 = Potential Remote-Power DTE discovered; indication to turn on power over the cable. 1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins. 3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin. 4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX hardware configuration. The BGA15 default = 0. 5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read. 6. 216 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 99. Trim Enable Register (Address 27, Hex 1B) (Sheet 2 of 2) Bit Name Description Type5 Default R, LH 0 R, LH 0 R 00 Standard Link Partner Detected. 3 SLP_Det 0 = Standard link partner not discovered; process may not be complete. 1 = Standard link partner discovered; indication not to turn on power over the cable. Note: This bit is only valid while link is down. Link Fail Inhibit Timer expiration indicator. Valid only when SLP_Det = 1. 2 1:0 LFIT Expired 0 = Link Fail Inhibit Timer has not expired or standard link partner not discovered 1 = Link Fail Inhibit Timer expired with a standard link partner detected since last register read or link establishment Reserved Write as 0, ignore on Read. 1. LSHR = Default value is derived from a single device input pin state or a group of device input pin states as the pin(s) are latched at startup or hardware reset. 2. Default values for Register bits 27.11:10 are determined by the TxSLEW pins. 3. Default value for Register bit 27.9 is determined by the AMDIX_EN pin. 4. Default value for Register bit 27.8 is determined by the MDIX pin. BGA15 does not support the MDIX hardware configuration. The BGA15 default = 0. 5. R/W = Read/Write, R = Read Only, LH = Latching High – cleared when read. 6. Table 100. Cable Diagnostics Register (Address 29, Hex 1D) (Sheet 1 of 2) Bit 15:14 Name Reserved Description Write as 01, ignore on read Type1 Default2 R/W 01 R/W LH 000 R/W 0 000 = Do not perform cable fault test (Default) 101 = Perform long cable fault test only 110 = Perform short cable fault test only 13:11 Start-Test Once Register bit 29.9 is set, the Start-Test bits will clear when read. Any other combination of the Register bit settings are reserved and should not be used. 10 CD_EN 0 = Normal operation 1 = Enable cable diagnostic tests. Forces link to drop. 1. R/W = Read/Write, R = Read only, LH = Latching High, cleared when read 2. Recommended default value. Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 217 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 100. Cable Diagnostics Register (Address 29, Hex 1D) (Sheet 2 of 2) Bit Name 9 Test_Done 8 Fault_Type Description 0 = Testing is still in progress 1 = Testing is complete The Line Fault Counter and Fault_Type bits are valid. 0 = Open condition has been detected 1 = Short Condition has been detected Type1 Default2 R LH 0 R LH 0 R LH 0x00 “FF” if no line fault is found, or 7:0 Line Fault Counter Distance to fault, approximately 1 m * counter value (refer to Section 4.13, “Cable Diagnostics Overview” on page 160 for details). (Valid only when Test_Done bit is set.) 1. R/W = Read/Write, R = Read only, LH = Latching High, cleared when read 2. Recommended default value. 218 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Next Page A/N Link Ability Next Page Next Page A/N Next Page Txmit A/N Link Next Page A/N Expansion Next Page A/N Advertise PHY ID2 15 100Base-T4 Status PHY ID 1 Reset B15 Control Reg Title Ack Reserved Ack Reserved Message Page Message Page Remote Fault Remote Fault 12 10 B8 B7 Duplex Mode COL Test 100Base-T2 Half-Duplex Extended Status Reserved Speed Select B6 MF Preamble Suppress Status Register (Address 1) Re-start A/N Control Register (Address 0) B9 9 8 7 MFR Model No 6 PHY ID Registers (Address 2 and 3) 100BaseT2 FullDuplex Isolate B10 5 A/N Complete B5 Asymm Pause Pause 100Base-T4 100BaseTX FullDuplex 100BaseTX 10Base-T Full-Duplex 10Base-T Auto-Negotiation Advertisement Register (Address 4) 11 10 Mbps HalfDuplex Power Down B11 4 Remote Fault B4 Pause 100Base-T4 100BaseTX FullDuplex 100BaseTX 10Base-T Full-Duplex 10Base-T Toggle Parallel Detect Fault Message / Unformatted Code Field Auto-Negotiation Next Page Transmit Register (Address 7) Base Page Auto-Negotiation Expansion Register (Address 6) Reserved Asymm Pause Ack 2 Toggle Port Configuration Register (Address 16) Message / Unformatted Code Field Auto-Negotiation Link Partner Next Page Ability Register (Address 8) Ack 2 Reserved Auto-Negotiation Link Partner Base Page Ability Register (Address 5) Reserved PHY ID No 13 100Base-X Half-Duplex 100BaseX FullDuplex 14 A/N Enable Speed Select Loopback 10 Mbps FullDuplex B12 B13 B14 Bit Fields Table 101. Intel® LXT9785/LXT9785E Register Bit Map (Sheet 1 of 2) Link Partner Next Page Able 3 B2 Next Page Able IEEE Selector Field IEEE Selector Field MFR Rev No 2 Link Status Reserved A/N Ability B3 Page Received 1 Jabber Detect B1 Link Partner A/N Able 3 Model Variant 8 7 6 5 4 2 1 0 Addr 0 Extended Capability B0 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 219 220 LED1 Cable Diagnostics Trim Enable RMII OOB Signaling Rcv Error Count LED Config Reserved Receiver Status Reserved Collision Status SQE (10T) B9 TP Loopback (10T) B8 Reserved B7 Reserved B6 Duplex Mode Auto-Neg Auto-Neg Complete FIFO Error Auto-Neg Mask Speed Mask Auto-Neg Done Speed Change Receive Error Count B5 Duplex Change Duplex Mask Polarity PRE_EN LED3 Receive Error Count Register (Address 21) LED2 LED Configuration Register (Address 20) RxER Counter Full Interrupt Status Register (Address 19) Counter Mask Interrupt Enable Register (Address 18) Link Quick Status Register (Address 17) Jabber (10T) B10 Bit Fields MDIX Analog Loopback Dis_EN CD_EN Test-Done Fault_ Type Cable Diagnostics Register (Address 29) AMDIX_EN Trim Enable Register (Address 27) Per Port Rise Time Control Reserved Loop Back Speed Up Enable Bit 1 B4 Link Change Link Mask Pause Reserved SLP_Det B2 LFIT Expired Bit 0 MD Interrupt Reserved Reserved Far End Fault Enable LED Freq Isolate Change Isolate Mask Error Reserved B3 Line Fault Counter Power_EN Programmable RMII Out-of-Band Signaling Register (Register 25) Start-Test Reserved Transmit Status Bypass 4B/5B (100BASE -TX) Bypass Scrambler (100BASETX) Interrupt Status 10/100 Mode Txmit Disable Link Disable B11 B12 Reserved Reserved Quick Status B13 B14 Interrupt Enable Reserved B15 Port Config Reg Title Table 101. Intel® LXT9785/LXT9785E Register Bit Map (Sheet 2 of 2) Fiber Select B0 Program RMII Reserved Reserved Test Interrupt Reserved Reserved Pulse Stretch Reserved Interrupt Enable Reserved Reserved B1 29 27 25 21 20 19 18 17 16 Addr LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 Datasheet LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 8.0 Package Specifications Figure 64. Intel® LXT9785/LXT9785E 208-Pin PQFP Plastic Package Specification 208-Pin Plastic Quad Flat Package • Part Number LXT9785HC, LXT9785EHC, LXT9785HE • Commercial Temperature Range (0°C to 70°C) • Extended Temperature Range (-40°C to +85°C) D D1 Millimeters Dim A e E1 E e /2 θ2 Max - 4.10 A1 0.25 - A2 3.20 3.60 b 0.17 0.27 D 30.30 30.90 D1 27.70 28.30 E 30.30 30.90 E1 27.70 28.30 e L1 L A2 A θ A1 L Min b Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 θ3 .50 BASIC 0.50 L1 0.75 1.30 REF q 0° 7° θ2 5° 16° θ3 5° 16° 221 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 65. Intel® LXT9785/LXT9785E 241-Ball BGA23 Package Specs - Top/Side View (LXT9785BC) D D1 Pin A1 corner Pin A1 I.D. 14.70 REF E1 E 14.70 REF 45° Chamfer (4 places) Top View A2 A c 30° A1 Side View Seating Plane 241_pkg1.vsd 222 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 66. Intel® LXT9785/LXT9785E 241-Ball BGA23 Package Specs - Bottom View (LXT9785BC) Pin A1 corner 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 A B b C D E F G e H J K L M N P R T U J l Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 241 BGA Bottom View e 223 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Intel® LXT9785/LXT9785E 241-Ball BGA23 Package Dimensions Symbol Min Nominal Max Units A 2.19 2.38 2.57 mm A1 0.50 0.60 0.70 mm A2 1.12 1.17 1.22 mm D 22.90 23.00 23.10 mm D1 19.30 19.50 19.70 mm E 22.90 23.00 23.10 mm E1 19.30 19.50 19.70 mm e 1.27 (solder ball pitch) mm I 1.34 REF. mm J 1.34 REF. mm M 17 x 17 Matrix mm b 0.60 0.75 0.90 mm c 0.52 0.56 0.60 mm e 1.27 Note mm All dimensions and tolerances conform to ANSI Y14.5-1982. Dimension is measured at maximum solder ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined by the spherical crowns of the solder balls. 224 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 67. Intel® LXT9785MBC 196-Ball BGA15 Package Specs - Top/Side View (LXT9785MBC) Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 225 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Table 102. Intel® LXT9785MBC 196-Ball BGA15 Package Dimensions Symbol Min Nominal Max Units A 1.62 1.81 2.00 mm A1 0.30 0.40 0.50 mm A2 0.80 0.85 0.90 mm D 14.90 15.00 15.10 mm D1 12.80 13.00 13.20 mm E 14.90 15.00 15.10 mm E1 12.80 13.00 13.20 mm e 1.00 (solder ball pitch) mm I 1.00 REF. mm J 1.00 REF. mm M 14 x 14 Matrix mm b 0.40 0.50 0.60 mm c 0.52 0.56 0.60 mm e Note 1.00 mm NOTE: All dimensions and tolerances conform to ANSI Y14.5-1982.Dimension is measured at maximum solder ball diameter parallel to primary datum (-C-). Primary datum (-C-) and seating plane are defined by the spherical crowns of the solder balls. 226 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers 9.0 Ordering Information Table 103. Product Information Number Revision Qualification Tray MM Tape & Reel MM HBLXT9785HC.D0 853353 D0 S 853353 Tray HBLXT9785HC.D0 853355 D0 S 853355 Tape & reel FWLXT9785BC.D0 853308 D0 S 853308 Tray FWLXT9785BC.D0 853312 D0 S 853312 Tape & reel HBLXT9785EHC.D0 853334 D0 S 853334 Tray HBLXT9785EHC.D0 853335 D0 S 853335 Tape & reel FWLXT9785EBC.D0 853300 D0 S 853300 Tray FWLXT9785EBC.D0 853304 D0 S 853304 Tape & reel HBLXT9785HE.D0 853357 D0 S 853357 Tray HBLXT9785HE.D0 853363 D0 S 853363 Tape & reel GDLXT9785MBC.D0 D0 Q TBD TBD GDLXT9785MBC.D0 D0 Q TBD TBD Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003 227 LXT9785 and LXT9785E Advanced 8-Port 10/100 Mbps PHY Transceivers Figure 68. Ordering Information - Sample FW LXT 9785 B C D0 S E001 Build Format E000 = Tray E001 = Tape and reel Qualification = Pre-production material Q = Production material S Product Revision = 2 Alphanumeric characters xn Temperature Range = Ambient (0 - 55° C) A = Commercial (0 - 70° C) C = Extended (-40 - +85° C) E Internal Package Designator = LQFP L = PLCC P = DIP N = PQFP Q = QFP with heat spreader H = TQFP T = BGA B = CBGA C = TBGA E = HSBGA (BGA with heat slug) K xxxx = 3-5 Digit Alphanumeric Product Code IXA Product Prefix = PHY layer device LXT = Switching engine IXE = Formatting device (MAC) IXF = Network processor IXP Intel Package Designator DJ = LQFP FA = TQFP FL = PBGA (<1.0 mm pitch) FW = PBGA (1.27 mm pitch) HB = QFP with heat spreader HD = QFP with heat slug HF = CBGA HG = SOIC S = QFP GC = TBGA N = PLCC 228 Datasheet Document Number: 249241 Revision Number: 007 Revision Date: August 28, 2003