Anaren MSK4351-1HS 50 amp, 500 volt igbt plus diode fully isolated smart power 3-phase motor drive power hybrid Datasheet

MIL-PRF-38534 AND 38535 CERTIFIED FACILITY
50 AMP, 500 VOLT IGBT PLUS DIODE
FULLY ISOLATED
SMART POWER 3-PHASE MOTOR
DRIVE POWER HYBRID
4351-1
FEATURES:
Identical to Obsolete MSK4351 Except the Sense Resistor Value is now 3.3mW
Replaces Obsolete MSK4351
500V, 50 Amp Capability at 110°C
Fully Isolated Bridge
Ultra Low Thermal Resistance
Integral Free Wheeling Fast Recovery Epitaxial Diode (FRED)
Self-Contained, Smart Lowside/Highside Drive Circuitry and Isolated Supply
Adjustable Deadtime
Capable of Switching Frequencies to 20KHz
Isolated Case Allows Direct Heat Sinking; On Board Temp Sensor
Bolt-down Design Allows Superior Heat Dissipation
DESCRIPTION:
The MSK4351-1 is a 50 Amp, 3 Phase Isolated Bridge Smart Power Motor Drive Hybrid with a 500 volt rating. The output switches
are Insulated Gate Bipolar Transistors (IGBT's) tailored for high switching speeds. The free-wheeling diodes are Fast Recovery Epitaxial
Diodes (FRED's) to provide matched current capabilities with the IGBT's and are specified with excellent reverse recovery times at high
current ratings. The bridge is optically isolated from the control circuitry. This new smart power motor drive hybrid is compatible with 5V
CMOS logic levels. The internal circuitry prevents simultaneous turn-on of the in-line half bridge transistors with adjustable deadtime to
prevent shoot-through. Undervoltage lockout shuts down the bridge when the supply voltage gets to a point of incomplete turn-on of
the output switches. The isolated internal high-side power supply derived from the +15 volt supply completely eliminates the need for 3
floating independent power supplies for the high-side drive. This device is Identical to obsolete MSK4351 except the sense resistor value
is now 3.3mW.
EQUIVALENT SCHEMATIC
TYPICAL APPLICATIONS
PIN-OUT INFORMATION
1
2
3
4
5
6
7
8
9
10
11
12
3 PHASE SIX STEP DC BRUSHLESS MOTOR DRIVE
OR 3 PHASE SINUSOIDAL INDUCTION MOTOR DRIVE
1
+15V
GND
AHI
ALO
BHI
BLO
+15V
GND
CHI
CLO
+15V
GND
13
14
15
16
17
18
19
20
21
22
23
24
RESET
R/C
+15V
N/C
OSCOUT
GND
N/C
N/C
N/C
N/C
N/C
TEMP SENSE
25
26
27
28
29
30
31
32
33
34
35
36
RKELVIN+
RKELVINRSENSERSENSERSENSE+
RSENSE+
CVCVCØ
CØ
CV+
CV+
37
38
39
40
41
42
43
44
45
46
47
48
BVBVBØ
BØ
BV+
BV+
AVAVAØ
AØ
AV+
AV+
8548-159 Rev. C 5/16
7
ABSOLUTE MAXIMUM RATING
V+
+15V
IOUT
IPK
θJC
High Voltage Supply 8
Logic Supply
Continuous Output Current
Peak Output Current (1 pulse, 10µSec)
Thermal Resistance
500V
18V
50A
100A
0.38°C/W
TST
TLD
Thermal Resistance
0.45°C/W
TJ
(IGBT - Junction to Case)
(Diode - Junction to Case)
9
Storage Temperature Range
Lead Temperature Range
(10 Seconds)
Case Operating Temperature
MSK4351-1
MSK4351-1H
Junction Temperature
TC
ELECTRICAL SPECIFICATIONS
OUTPUT CHARACTERISTICS
VC-E On Voltage (Each IGBT) 6
Instantaneous Forward Voltage 6
(FRED Flyback Diode)
1
Turn On Switching Energy
Turn Off Switching Energy
1
1
Reverse Recovery Time
Leakage Current (Each IGBT/Diode)
BIAS SUPPLY CHARACTERISTICS
Quiescent Bias Current
Supply Voltage 1
INPUT SIGNALS CHARACTERISTICS 1
Positive Trigger Threshold Voltage
Negative Trigger Threshold Voltage
SWITCHING CHARACTERISTICS 1
Upper Drive: Deadtime R/C=10K/47pF
Turn-On Propagation Delay
Turn-Off Propagation Delay
Turn-On
Turn-Off
Lower Drive: Deadtime R/C=10K/47pF
Turn-On Propagation Delay
Turn-Off Propagation Delay
Turn-On
Turn-Off
TEMPERATURE SENSOR
Initial Accuracy
1
Overall Accuracy
SENSE RESISTOR
Resistance
300°C
-40°C to +85°C
-55°C to +125°C
+150°C
All Ratings: Tc = +25°C Unless Otherwise Specified
Group A
Parameters
-65°C to +150°C
Test Conditions
MSK4351-1H
Subgroup
3
MSK4351-1
2
5
Min.
Typ.
Max.
Min.
Typ.
Max.
UNITS
1
2
3
1
2
3
1
2
3
-
1.95
2.0
2.3
1.4
1.3
1.7
25
1.6
15
2.5
2.4
2.75
1.8
1.5
2.2
4.1
2.3
180
150
2.5
150
-
1.95
1.4
25
-
2.6
1.9
4.5
2.5
180
150
-
V
V
V
V
V
V
mJ
mJ
nS
uA
mA
uA
1
2
3
-
14.75
230
170
230
15.00
300
250
300
15.25
14.75
230
15.00
330
15.25
mA
mA
mA
V
1,2,3
1,2,3
3.65
-
-
0.8
3.65
-
-
0.8
V
V
4
4
4
4
-
6.0
1.1
50
80
6.2
1.2
60
90
-
6.0
1.1
50
80
6.3
1.3
60
90
µS
µS
nS
nS
4
4
4
4
-
2.3
3.1
50
66
2.7
3.4
70
75
-
2.3
3.1
50
66
2.7
3.4
70
75
µS
µS
nS
nS
TC=25°C
TMIN≤TC≤TMAX
1
2,3
-
±2.0
±5.0
±5.0
±8.0
-
±3.0
-
±6.0
-
°C
°C
@2 Amps
1
2
3
3.0
3.0
3.0
3.30
3.3
3.3
3.6
3.6
3.6
3.0
-
3.3
-
3.6
-
mΩ
mΩ
mΩ
IC=45A
ID=45A
Vt=270V, 45Amps @125°C
L=100µH, R=0.2Ω
ID=45A, di/dt=400A/uS, Vr=350V
V+=500V
V+=400V
V+=500V 1
VCC=15V
V+=270V, IC=45A
V+=270V, IC=45A
NOTES:
1
2
3
4
5
6
7
8
9
Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
Industrial devices shall be tested to subgroups 1 and 4 unless otherwise specified.
Military grade devices ("H" suffix) shall be 100% tested to subgroups 1,2,3 and 4.
Subgroups 5 and 6 testing available upon request.
Subgroup 1,4 TA=TC=+25°C
2,5 TA=TC=+125°C
3,6 TA=TC=-55°C
Measurements are made by forcing current through one pin and measuring on the other for determining thermal dissipation on
the IGBT/diode. When measuring on the pins very close to the package, add approximately 0.3V to the limits to account for
pin resistance.
Continuous operation at or above absolute maximum ratings may adversely effect the device performance and/or life cycle.
When applying power to the device, apply the low voltage followed by the high voltage or alternatively, apply both at the same time.
Do not apply high voltage without low voltage present.
Internal solder reflow temperature is 180°C, do not exceed.
2
8548-159 Rev. C 5/16
APPLICATION NOTES
RSENSE+ - is the pin for connecting to the internal sense resistor. It
has a value of 0.0033 ohms, 20 watts. AV-,BV- and CV- should connect to this point for sensing the current at the bottom of the bridge.
MSK4351-1 PIN DESCRIPTION
+15V - is the low voltage supply for all the internal logic and isolated
supplies which provide power to the gate drivers. A 0.1µF ceramic
capacitor in parallel with a 22µF tantalum capacitor is recommended for bypassing the low voltage supply to GND.
RSENSE- - is the pin for connecting the internal sense resistor to
the high voltage return.
RKELVIN+ - is the pin for connecting to the sense resistor +KELVIN
connection. This is on the same side of the resistor as RSENSE+.
GND - is the low voltage supply return for the +15V. All bypassing of
the +15V should return here. Since the output section of the hybrid
is completely isolated, there are no restrictions for potential differences between this GND and any hi-voltage returns, up to 500V.
RKELVIN- - is the pin for connecting to the sense resistor -KELVIN
connection. This is on the same side of the resistor as RSENSE-.
AHI,BHI,CHI - are the logic inputs for controlling the switching of
the corresponding hi-side bridge outputs. A logic high will turn on
the corresponding hi-side output. The input levels are 5V CMOS
compatible. If one of these inputs are active at the same time as
the corresponding low-side bridge outputs, neither output will be
allowed to turn on until one of the inputs is switched low. There will
be a deadtime inserted before the corresponding bridge output is
switched in all cases. This prevents simultaneous conduction of
the output, shorting high voltage supply and destroying the bridge.
DEADTIME SELECTION
The amount of deadtime required is based on the propagation delay
of the input to actual completion of switching of the output transistors. Not taking all this into account can possibly allow the opposite
transistor in a half bridge to turn on before the active transistor can
turn off. Excessive current will flow through the half bridge because
this creates a momentary short across the power supply.
ALO,BLO,CLO - are the logic inputs for controlling the switching of
the corresponding low-side bridge outputs. A logic high will turn on
the corresponding low-side output. The input levels are 5V CMOS
compatible. If one of these inputs are active at the same time as
the corresponding hi-side bridge outputs, neither output will be
allowed to turn on until one of the inputs is switched low. There will
be a deadtime inserted before the corresponding bridge output is
switched in all cases. This prevents simultaneous conduction of the
output, shorting the high voltage supply and destroying the bridge.
Once all these factors are taken into account, the deadtime can be
determined. Allow sufficient safety factor for changes in components
over temperature, and variations from system to system in production.
Deadtime is exactly 8 R/C clock periods. Use the formula:
Max. Clock = 8/Min. Deadtime
RESET - is an active low logic input for causing all switching to
cease. The input level is 5V CMOS compatible. Upon releasing
RESET, the outputs will resume after the dead time.
R/C - is the input pin for setting the deadtime of the bridge. Connecting a resistor between this input and OSC OUT, and a capacitor
to ground will create the time for an internal oscillator.
OSC OUT - is a pin that brings the deadtime oscillator out to be
connected through the timing resistor to R/C. This is not an output
to be used externally, but just for the timing circuit.
For clock operation below 1MHz:
Clock Frequency =
AV+,BV+,CV+ - are pins for connecting the tops of each half bridge
to the high voltage supply. Each pin must be connected individually,
as there is no internal connection across the three half bridges.
Proper power supply bypassing must be connected to these pins
and the V- pins as close to the hybrid as possible for proper filtering.
0.95
COSC x ROSC
For clock operation above 1MHz:
Clock Frequency =
AV-,BV-,CV- - are pins for connecting the bottoms of each half
bridge to the high voltage supply return. Each pin must be connected individually, as there is no internal connection across the three
half bridges. Proper power supply bypassing must be connected
to these pins and the V+ pins as close to the hybrid as possible
for proper filtering.
0.95
COSC (ROSC + 30) + 3x 10 -8
As an alternative, the R/C pin can be driven directly with an HCMOS
compatible clock up to 24MHz.
AØ, BØ, CØ - are the pins connecting the 3 phase bridge switch
outputs.
TEMP SENSE - is a pin for measuring the output of a temperature
sensor IC. The case temperature is depicted as a voltage corresponding to 10mV/°C with 0 volts equating to absolute zero, 0°K or
-273°C. This temperature sensor IC is pulled up to +15V through a
10KΩ resistor internally. Buffering of the output will be necessary
if it needs to be connected to a low impedance load.
3
8548-159 Rev. C 5/16
TYPICAL PERFORMANCE CURVES
4
8548-159 Rev. C 5/16
TYPICAL SYSTEM OPERATION
Replacing the MSK4351 with MSK4351-1:
The MSK4351-1 is identical to the MSK4351 except the sense resistor has been changed from 3mW to 3.3mW.
The MSK4351-1 is designed to be used with a +270 volt high voltage bus, +15 volt low power bus, and +5 volt logic signals. Proper
derating should be applied when designing the MSK4351-1 into a system. High frequency layout techniques with ground planes on a
printed circuit board is the only method that should be used for circuit construction. This will prevent pulse jitter caused by excessive noise
pickup on the current sense signal or the error amp signal.
Ground planes for the low power circuitry and high power circuitry should be kept separate. The two sections of the hybrid are completely
isolated, and can float relative to each other without referencing one to the other. An RC filter will filter out the current spikes and keep the
detected noise for that circuit down to a minimum.
The logic signals coming from the typical motor controller IC are set up for driving N channel low side and P channel high side switches
5
8548-159 Rev. C 5/16
MECHANICAL SPECIFICATIONS
ESD TRIANGLE INDICATES PIN
WEIGHT=200 GRAMS TYPICAL
MSK4351-1 H U
ALL DIMENSIONS ARE SPECIFIED IN INCHES
ORDERING INFORMATION
LEAD CONFIGURATION
S=STRAIGHT, U=BENT UP, D=BENT DOWN
SCREENING
BLANK=INDUSTRIAL; H=CLASS H (MIL-PRF-38534) SEE NOTE
GENERAL PART NUMBER
NOTE: THE CENTRIFUGE LEVEL FOR THE CLASS H DEVICE IS 1000G'S
6
8548-159 Rev. C 5/16
REVISION HISTORY
MSK
www.anaren.com/msk
The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make
changes to its products or specifications without notice, however, and assumes no liability for the use of its products.
Please visit our website for the most recent revision of this datasheet.
7
8548-159 Rev. C 5/16
Similar pages