IRF IR21366SPBF 3-phase bridge driver Datasheet

Data Sheet No. PD60166 revS
IR2136/IR21362/IR21363/IR21365/
IR21366/IR21367/IR21368 (J&S) & (PbF)
3-PHASE BRIDGE DRIVER
Features
•
•
•
•
•
•
•
•
•
•
•
•
Floating channel designed for bootstrap operation
Packages
Fully operational to +600V
Tolerant to negative transient voltage - dV/dt immune
Gate drive supply range from 10 to 20V (IR2136/IR21368),
11.5 to 20V (IR21362) or 12 to 20V (IR21363/IR21365/
IR21366/IR21367)
Undervoltage lockout for all channels
28-Lead SOIC
Over-current shutdown turns off all six drivers
Independent 3 half-bridge drivers
28-Lead PDIP
Matched propagation delay for all channels
Cross-conduction prevention logic
44-Lead PLCC w/o 12 leads
Lowside outputs out of phase with inputs. High side
outputs out of phase (IR2136/IR21363/IR21365/
Feature Comparison: IR2136/IR21362/IR21363/
IR21366/IR21367/IR21368) or in phase
IR21365/IR21366/IR21367/IR21368
(IR21362) with inputs.
3.3V logic compatible
Part
IR2136 IR21362 IR21363 IR21365 IR21366 IR21367 IR21368
Lower di/dt gate driver for
Input Logic HIN, LIN HIN/LIN HIN, LIN HIN, LIN HIN, LIN HIN, LIN HIN,LIN
better noise immunity
400ns
Ton (typ.)
400ns
250ns
400ns
400ns
400ns
250ns
Externally programmable
Toff (typ.)
380ns
380ns
180ns
380ns
380ns
380ns
180ns
delay for automatic fault
VIH (typ.)
2.7V
2.0V
2.0V
2.7V
2.7V
2.7V
2.0V
clear
VIL (typ.)
1.7V
1.3V
1.3V
1.7V
1.7V
1.7V
1.3V
Also available LEAD-FREE
Vitrip+
4.3V
4.3V
0.46V
0.46V
0.46V
0.46V
4.3V
UV CC/BS+ 8.9V
UV CC/BS- 8.2V
Description
10.4V
9.4V
11.2V
11.0V
11.2V
11.0V
11.2V
11.0V
11.2V
11.0V
8.9V
8.2V
The IR2136/IR21362/IR21363/IR21365/IR21366/IR21367/IR21368(J&S) are high votage, high speed power MOSFET
and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications.
Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS
or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from
an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An
open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred.
Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network
connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The
floating channel can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which
operates up to 600 volts.
Typical Connection
up to 600V
VCC
HIN1,2,3 / HIN1,2,3
LIN1,2,3
VCC
HIN1,2,3 / HIN1,2,3
VB1,2,3
LIN1,2,3
HO1,2,3
FAULT
(Refer to Lead Assignments for correct pin configuration). This/These
diagram(s) show electrical connections only.
Please refer to our Application
Notes
and
DesignTips for proper circuit board layout.
EN
FAULT
EN
VS1,2,3
TO
LOAD
RCIN
ITRIP
VSS
LO1,2,3
COM
IR2136(2)(3)(5)(6)(7)(8)
GND
www.irf.com
1
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters
are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board
mounted and still air conditions.
Symbol
VS
VBS
VHO
VCC
VSS
VLO1,2,3
VIN
VFLT
dV/dt
PD
RthJA
TJ
TS
TL
Definition
High side offset voltage
High side floating supply voltage
High side floating output voltage
Low side and logic fixed supply voltage
Logic ground
Low side output voltage
Input voltage LIN,HIN,ITRIP, EN, RCIN
FAULT output voltage
Allowable offset voltage slew rate
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
(28 lead PDIP)
(28 lead SOIC)
( 44leadPLCC)
(28 lead PDIP)
(28 lead SOIC)
(44 lead PLCC)
Junction temperature
Storage temperature
Lead temperature (soldering, 10 seconds)
Min.
Max.
VB1,2,3 - 25
-0.3
VS1,2,3 - 0.3
-0.3
VCC - 25
-0.3
VSS - 0.3
VB1,2,3 + 0.3
625
VB1,2,3 + 0.3
25
VCC + 0.3
VCC + 0.3
lower of
(VSS + 15) or
VCC + 0.3)
VCC + 0.3
50
1.5
1.6
2.0
83
78
63
150
150
300
VSS - 0.3
—
—
—
—
—
—
—
—
-55
—
Units
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
Symbol
VB1,2,3
VS1,2,3
VHO1,2,3
VLO1,2,3
VCC
VSS
VFLT
VRCIN
Definition
High side floating supply voltage
High side floating supply offset voltage
High side output voltage
Low side output voltage
Low side and logic fixed supply voltage
Logic ground
FAULT output voltage
RCIN input voltage
Min.
IR2136(8)
IR21362
IR2136(3)(5)(6)(7)
IR2136(8)
IR21362
IR2136(3)(5)(6)(7)
Max.
Units
VS1,2,3 +10 VS1,2,3 +20
VS1,2,3 +11.5 VS1,2,3 +20
VS1,2,3 +12 VS1,2,3 +20
Note 1
600
VS1,2,3
VB1,2,3
0
VCC
10
20
11.5
20
12
20
-5
5
VSS
VCC
VSS
VCC
V
Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS.
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Recommended Operating Conditions cont.
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies
biased at 15V differential.
Symbol
VITRIP
VIN
TA
Min.
Max.
ITRIP input voltage
Logic input voltage LIN , HIN (IR2136,IR21363(5)(6)(7)(8)),
HIN(IR21362), EN
Definition
VSS
VSS +5
VSS
VSS +5
Ambient temperature
-40
125
Units
V
o
C
Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
Static Electrical Characteristics
VBIAS (VCC, VBS 1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol
VIH
VIL
VEN,TH+
VEN,THVIT,TH+
VIT,HYS
VRCIN,TH+
VRCIN,HYS
VOH
VOL
VCCUV+
VBSUV+
www.irf.com
Definition
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR2136(3)(5)
Logic “1” input voltage HIN1,2,3
IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8)
Logic “1” input voltage LIN1,2,3, HIN1,2,3
IR2136(3)(5)
Logic “0” input voltage HIN1,2,3
IR21362
Logic “0” input voltage LIN1,2,3, HIN1,2,3
IR21366(7)(8)
EN positive going threshold
EN negative going threshold
ITRIP positive going threshold
IR2136(2)(3)(6)
IR21365(7)(8)
ITRIP input hysteresis
IR2136(2)(3)(6)
IR21365(7)(8)
RCIN positive going threshold
RCIN input hysteresis
High level output voltage, VBIAS - VO
Low level output voltage, VO
VCC and VBS supply undervoltage
IR2136(8)
positive going threshold
IR21362
IR21363(5)(6)(7)
Min. Typ. Max. Units Test Conditions
3.0
—
—
2.5
—
—
—
—
0.8
—
—
0.8
—
—
—
0.8
3
—
0.37
3.85
0.46
4.30
0.55
4.75
—
—
—
—
—
—
8.0
9.6
10.6
0.07
.15
8
3
0.9
0.4
8.9
10.4
11.1
—
—
—
—
1.4
0.6
9.8
11.2
11.6
V
IO = 20 mA
IO = 20 mA
3
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Static Electrical Characteristics cont.
VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and
are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3
and are applicable to the respective output leads: HO1,2,3 and LO1,2,3.
Symbol
VCCUVVBSUVVCCUVH
VBSUVH
Definition
Min. Typ. Max. Units Test Conditions
VCC and VBS supply undervoltage
negative going threshold
IR2136(8)
IR21362
IR21363(5)(6)(7)
VCC and VBS supply undervoltage
IR2136
7.4
8.6
10.4
0.3
8.2
9.4
10.9
0.7
9.0
10.2
11.4
—
lockout hysteresis
1.0
0.2
—
70
1.6
5.2
200
—
—
50
120
2.3
5.5
300
VIN, CLAMP
ILIN+
Input bias current (LOUT = HI)
IR2136(2)(3)(5)
0.5
—
—
—
—
4.9
—
0
1
Input bias current (LOUT = LO)
IR21366(7)(8)
IR2136(2)(3)(5)
—
ILIN-
—
100
220
IR21366(7)(8)
IR2136(3)(5)
—
0
1
—
200
300
30
100
ILK
IQBS
IQCC
IHIN+
IHIN-
IR21362
IR21363(5)
Offset supply leakage current
Quiescent VBS supply current
Quiescent VCC supply current
Input clamp voltage (HIN, LIN, ITRIP and EN)
Input bias current (HOUT = HI)
IR21362
—
IR21366(7)(8)
IR2136(3)(5)
—
0
1
—
100
220
IR21362(6)(7)(8)
—
0
1
Input bias current (HOUT = LO)
V
µA
mA
V
VB1,2,3=VS1,2,3=600V
VIN = 0V or 5V
IIN =100µA
VLIN = 5V
VLIN = 0V
VHIN = 5V
µA
VHIN = 0V
IITRIP+
“high” ITRIP input bias current
—
30
100
IITRIP-
“low” ITRIP input bias current
—
0
1
VITRIP = 0V
IEN+
“high” ENABLE input bias current
—
30
100
VENABLE= 5V
IEN-
“low” ENABLE input bias current
—
0
1
VENABLE = 0V
RCIN input bias current
—
0
1
VRCIN = 0V or 15V
IRCIN
IO+
Output high short circuit pulsed current
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
RON,RCIN
RCIN low on resistance
—
50
100
RON,FLT
FAULT low on resistance
—
50
100
4
VITRIP = 5V
mA
VO=0V, PW ≤ 10 µs
VO=15V, PW ≤10 µs
Ω
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Dynamic Electrical Characteristics
VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified.
Symbol
ton
Definition
Min.
Turn-on propagation delay
IR2136(2)(3)(5)(8)
IR21366(7)
toff
Turn-off propagation delay
IR2136(2)(3)(5)(8)
IR21366(7)
tr
Turn-on rise time
tf
tEN
Turn-off fall time
ENABLE low to output
Typ.
Max. Units Test Conditions
300
425
—
250
550
—
250
400
550
—
180
—
—
125
190
—
50
75
IR2136(2)(3)(5)(8)
300
450
600
IR21366(7)
shutdown propagation delay
VIN = 0 & 5V
nS
VIN, VEN = 0V or 5V
100
250
400
ITRIP to output shutdown propagation delay
500
750
1000
VITRIP = 5V
ITRIP blanking time
100
150
—
VIN = 0V or 5V
ITRIP to FAULT propagation delay
400
600
800
VIN = 0V or 5V
Input filter time (HIN, LIN, EN)
100
200
—
VIN = 0 & 5V
FAULT clear time RCIN: R=2meg, C=1nF
1.3
1.65
2
DT
Deadtime
220
290
360
MT
Matching delay ON and OFF
—
40
75
Matching delay, max (ton,toff) - min (ton,toff),
(ton,toff are applicable to all 3 channels)
—
25
70
Output pulse width matching, PWin -PWout (fig.2)
—
40
75
tITRIP
tbl
VITRIP = 5V
tFLT
VITRIP = 5V
tFILIN
(IR2136(2)(3)(5)(8) only)
tFLTCLR
mS
VIN = 0V or 5V
VITRIP = 0V
MDT
PM
VIN = 0 & 5V
nS
External dead
time
>400nsec
NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec
VCC
<UVCC
VBS
X
ITRIP
X
ENABLE
X
FAULT
0 (note 1)
LO1,2,3
0
HO1,2,3
0
15V
<UVBS
0V
5V
high imp
LIN1,2,3
0
15V
15V
0V
5V
high imp
LIN1,2,3
15V
15V
5V
0 (note 2)
0
0
15V
15V
>VITRIP
0V
0V
high imp
0
0
HIN1,2,3
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously.
Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.
Note 2: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)
www.irf.com
5
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Functional Block Diagram
INPUT
NOISE
FILTER
HIN1
LIN1
INPUT
NOISE
FILTER
HIN2
INPUT
NOISE
FILTER
LIN2
INPUT
NOISE
FILTER
HIN3
INPUT
NOISE
FILTER
IR2136/21363/21365
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
VB1
SET
RESET
LATCH
DRIVER
UV
DETECT
HO1
VS1
VB2
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
HO2
VS2
VB3
INPUT
NOISE
FILTER
LIN3
DEADTIME &
SHOOT-THROUGH
PREVENTION
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
VS3
VSS
VCC
INPUT
NOISE
FILTER
EN
ITRIP
HO3
+
-
0.5V
UV
DETECT
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO1
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO2
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO3
INPUT
NOISE
FILTER
S
Q
SET
R DOMINANT
LATCH
RCIN
FAULT
COM
6
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Functional Block Diagram
IR21362
INPUT
NOISE
FILTER
HIN1
LIN1
INPUT
NOISE
FILTER
HIN2
INPUT
NOISE
FILTER
VB1
VSS/COM
LEVEL
SHIFTER
DEADTIME &
SHOOT-THROUGH
PREVENTION
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
HO1
VS1
VB2
LIN2
INPUT
NOISE
FILTER
HIN3
INPUT
NOISE
FILTER
LIN3
INPUT
NOISE
FILTER
VSS/COM
LEVEL
SHIFTER
DEADTIME &
SHOOT-THROUGH
PREVENTION
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
HO2
VS2
VB3
VSS/COM
LEVEL
SHIFTER
DEADTIME &
SHOOT-THROUGH
PREVENTION
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
VS3
VSS
VCC
UV
DETECT
INPUT
NOISE
FILTER
EN
ITRIP
HO3
+
-
0.5V
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO1
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO2
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO3
INPUT
NOISE
FILTER
S
R
SET
DOMINANT
LATCH
Q
RCIN
FAULT
COM
www.irf.com
7
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Functional Black Diagram
IR21366/IR21367/IR21368
HIN1
DEADTIME &
SHOOT-THROUGH
PREVENTION
LIN1
VSS/COM
LEVEL
SHIFTER
VB1
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
HO1
VS1
VB2
HIN2
DEADTIME &
SHOOT-THROUGH
PREVENTION
LIN2
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
HO2
VS2
VB3
HIN3
DEADTIME &
SHOOT-THROUGH
PREVENTION
LIN3
VSS/COM
LEVEL
SHIFTER
HV
LEVEL
SHIFTER
SET
RESET
LATCH
DRIVER
UV
DETECT
VS3
VSS
VCC
INPUT
NOISE
FILTER
EN
ITRIP
HO3
+
-
UV
DETECT
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO1
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO2
VSS/COM
LEVEL
SHIFTER
DELAY
DRIVER
LO3
INPUT
NOISE
FILTER
S
Q
SET
R DOMINANT
LATCH
RCIN
FAULT
COM
8
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Lead Definitions
Symbol Description
VCC
Low side and logic fixed supply
VSS
Logic Ground
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8)
HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)
LIN1,2,3
FAULT
Logic inputs for low side gate driver outputs (LO1,2,3), out of phase
Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic,
open-drain output
EN
COM
Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is
high. No effect on FAULT and not latched
Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates
FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally
set time TFLTCLR, then automatically becomes inactive (open-drain high impedance).
External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal
to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance
Low side gate driver return
VB1,2,3
HO1,2,3
High side floating supply
High side gate driver outputs
VS1,2,3
LO1,2,3
High voltage floating supply returns
Low side gate driver output
ITRIP
RCIN
Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.
www.irf.com
9
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
VS1 26
HIN3
25
5
LIN1
VB2 24
6
LIN2
HO2 23
7
LIN3
8
FAULT
9
ITRIP
VB3 20
10
VS1
HIN2
4
HO1
3
VB1
HO1 27
VCC
VB1 28
HIN1
HIN1
VCC
HIN2
1
2
HIN3
Lead Assignments
6
5
4
3
43
42
41
7
LIN1
8
LIN2
9
37
VB2
LIN3
10
36
HO2
VS2 22
IR2136
11
21
EN
HO3 19
11
RCIN
VS3 18
12
VSS
13
COM
LO1 16
14
LO3
LO2 15
FAULT
35
13
ITRIP
EN
31
16
30
4
HIN3
25
5
LIN1
VB2 24
6
LIN2
HO2 23
7
LIN3
8
FAULT
9
ITRIP
LO2
LO1
HO1
VS1
6
5
4
3
43
42
41
VS1 26
HIN3
25
5
LIN1
VB2 24
6
LIN2
HO2 23
7
LIN3
8
FAULT
9
ITRIP
VB3 20
10
EN
HO3 19
11
RCIN
VS3 18
12
VSS
13
COM
LO1 16
14
LO3
LO2 15
VS2 22
21
17
28 lead SOIC (wide body)
IR2136/IR21363(5)(6)(7)(8) (S)
7
LIN1
8
LIN2
9
37
VB2
LIN3
10
36
HO2
11
35
VS2
VS2 22
FAULT
HIN2
4
VS3
IR2136/IR21363(5)(6)(7)(8) (J)
VB1
VS1 26
25
VCC
HIN2
24
HIN1
3
23
HIN2
HO1 27
22
HIN3
VB1 28
HIN1
21
3
HO3
44 Lead PLCC w/o 12 leads
IR2136/IR21363(5)(6)(7)(8)
1 VCC
20
VSS
28 Lead PDIP
2
19
LO3
29
18
COM
17
HO1 27
VB3
17
RCIN
VB1 28
HIN1
IR2136
14
15
VCC
VS2
IR2136
44 LEAD PLCC w/o 12 LEADS
12
1
2
1
VCC
VB1 28
2
HIN1
HO1 27
3
HIN2
VS1 26
4
HIN3
25
5
LIN1
VB2 24
6
LIN2
HO2 23
7
LIN3
VS2 22
8
FAULT
9
ITRIP
12
21
21
13
VB3 20
ITRIP
10 EN
HO3 19
11 RCIN
VS3 18
14
15
EN
14 LO3
LO2 15
17
29
19
VSS
18
IR21362
10
HO3 19
11 RCIN
VS3 18
HO3
12 VSS
RCIN
28 Lead PDIP
10 EN
VB3
20
21
22
23
24
13 COM
LO1 16
14 LO3
LO2 15
25
44 Lead PLCC w/o 12 leads
IR21362J
17
VS3
LO1
LO1 16
30
LO2
13 COM
16
LO3
17
31
COM
12 VSS
VB3 20
28 lead SOIC (wide body)
IR21362S
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
HIN1,2,3
HIN1,2,3
LIN1,2,3
EN
ITRIP
FAULT
RCIN
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram
LIN1,2,3
50%
50%
50%
HIN1,2,3
EN
PW IN
ten
LIN1,2,3
50%
50%
HIN1,2,3
90%
HO1,2,3
ton
tr
toff
tf
PW OUT
HO1,2,3
LO1,2,3
90%
10%
10%
Figure 2. Switching Time Waveforms
www.irf.com
LO1,2,3
90%
Figure 3. Output Enable Timing Waveform
11
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
LIN1,2,3
HIN1,2,3
LIN1,2,3
50%
50%
50%
50%
HIN1,2,3
50%
LO1,2,3
50%
DT
HO1,2,3
DT
50%
50%
Figure 4. Internal Deadtime Timing Waveforms
Vrcin,th+
RCIN
ITRIP
FAULT
50%
50%
50%
tflt
50%
90%
tfltclr
Any
output
titrip
Figure 5. ITRIP/RCIN Timing Waveforms
HIN/LIN
on off
t in,fil
on
off
U
t in,fil
on off
high
HO/LO
low
Figure 5.5 Input Filter Function
12
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1000
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
1000
800
600
M ax.
400
Typ.
M in.
200
0
800
M ax.
600
Typ.
400
M in.
200
0
-50
-25
0
25
50
75
100
10
125
12
14
Temperature ( C)
18
20
Figure 6B. Turn-on Propagation Delay vs.
Supply Voltage
Figure 6A. Turn-on Propagation Delay vs.
Temperature
1000
Turn-off Propagation Delay (ns)
1000
Turn-on Propagation Delay (ns)
16
Supply Voltage (V)
o
800
M ax.
600
Typ.
400
M in.
200
800
600
M ax.
400
Typ.
M in.
200
0
0
3
3.5
4
4.5
Input Voltage (V)
Figure 6C. Turn-on Propagation Delay vs.
Input Voltage
www.irf.com
5
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 7A. Turn-off Propagation Delay vs.
Temperature
13
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1000
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
1000
800
M ax.
600
Typ.
400
M in.
200
800
M ax.
600
Typ.
400
M in.
200
0
0
10
12
14
16
18
3
20
3.5
Figure 7B. Turn-off Propagation Delay vs.
Supply Voltage
4.5
5
Figure 7C. Turn-off Propagation Delay vs.
Input Voltage
400
400
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
4
Input Voltage (V)
Supply Voltage (V)
300
200
M ax.
100
300
M ax.
200
Typ.
100
Typ.
0
0
-50
-25
0
25
50
75
100
o
Temperature ( C)
Figure 8A. Turn-on Rise Time vs. Temperature
14
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 8B. Turn-on Rise Time vs. Supply Voltage
www.irf.com
200
200
150
150
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
100
M ax.
50
100
M ax.
Typ.
50
Typ.
0
0
-50
-25
0
25
50
75
100
10
125
12
16
18
20
Figure 9B. Turn-off Fall Time vs. Supply Voltage
Figure 9A. Turn-off Fall Time vs. Temperature
1000
EN to Output Shutdown Time (ns)
1000
EN to Output Shutdown Time (ns)
14
Supply Voltage (V)
Temperature (oC)
800
600
M ax.
Typ.
400
M in.
200
800
M ax.
600
Typ.
400
M in.
200
0
0
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 10A. EN to Output Shutdown Time
vs. Temperature
www.irf.com
125
10
12
14
16
18
20
Supply Voltage (V)
Figure 10B. EN to Output Shutdown Time vs.
Supply Voltage
15
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
1500
ITRIP to Output Shutdown Time (ns)
EN to Output Shutdown Time (ns)
1000
800
M ax.
600
Typ.
400
M in.
200
0
3
3.5
4
4.5
1200
M ax.
900
Typ.
600
M in.
300
0
-50
5
-25
0
ITRIP to FAULT Indication Time (ns)
ITRIP to Output Shutdown Time (ns)
1200
M ax.
600
M in.
300
0
100
125
1200
1000
800
M ax.
600
Typ.
400
M in.
200
0
10
12
14
16
18
Supply Voltage (V)
Figure 11B. ITRIP to Output Shutdown
Time vs. Supply Voltage
16
75
Figure 11A. ITRIP to Output Shutdown Time vs.
Temperature
1500
Typ.
50
Temperature ( C)
Figure 10C. EN to Output Shutdown Time
vs. EN Voltage
900
25
o
EN Voltage (V)
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 12A. ITRIP to FAULT Indication Time vs.
Temperature
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
3.0
1200
FAULT Clear Time (ms)
Fault Indication Time (ns)
1000
M ax.
800
Typ.
600
M in.
400
200
2.5
M ax.
2.0
Typ.
1.5
M in.
1.0
0.5
0
10
12
14
16
18
-50
20
-25
0
Figure 12B. ITRIP to FAULT Indication Time vs.
Supply Voltage
75
100
125
600
500
Dead Time (ns)
2.5
Fault Clear Time (ms)
50
Fig13A. FAULT Clear Time vs. Temperature
3.0
2.0
25
Temperature (oC)
Supply Voltage (V)
M ax.
Typ.
1.5
M in.
1.0
400
M ax.
300
Typ.
M in.
200
100
0
0.5
10
12
14
16
18
20
Supply Voltage (V)
Figure 13B. FAULT Clear Time vs. Supply Voltage
www.irf.com
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 14A. Dead Time vs. Temperature
17
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
600
Logic "0" Input Threshold (V)
6
500
Dead Time (ns)
M ax.
400
Typ.
300
M in.
200
100
5
4
M ax.
3
2
1
0
0
10
12
14
16
18
20
-50
-25
0
Supply Voltage (V)
100
125
Figure 15A. Logic "0" Input Threshold vs.
Temperature
6
Logic "1" Input Threshold (V)
Logic "0" Input Threshold (V)
75
Temperature ( C)
6
5
4
M ax.
2
1
0
5
4
3
2
M in.
1
0
10
12
14
16
18
Supply Voltage (V)
Figure 15B. Logic "0" Input Threshold vs.
Supply Voltage
18
50
o
Figure 14B. Dead Time Time vs. Supply Voltage
3
25
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 16A. Logic "1" Input Threshold vs.
Temperature
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
ITRIP Positive Going Threshold (mV
Logic "1" Input Threshold (V)
6
5
4
3
2
M in.
1
12
14
16
18
700
600
M ax.
500
Typ.
400
M in.
300
200
-50
0
10
800
20
-25
0
Supply Voltage (V)
ITRIP Positive Going Threshold (V
ITRIP Positive Going Threshold (mV
Typ.
400
M in.
300
200
10
12
14
16
18
Supply Voltage (V)
Figure 17B. ITRIP Positive Going Threshold vs.
Supply Voltage (IR2136/21362/21363/IR21366 Only)
www.irf.com
100
125
Figure 17A. ITRIP Positive Going Threshold vs.
Temperature (IR2136/21362/21363/IR21366 Only)
700
500
75
Temperature ( C)
800
M ax.
50
o
Figure 16B. Logic "1" Input Threshold vs.
Supply Voltage
600
25
20
5.5
5.0
M ax.
4.5
Typ.
4.0
M in.
3.5
3.0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 17C. ITRIP Positive Going Threshold vs.
Temperature (IR21365/IR21367/IR21368 Only)
19
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
3.0
High Level Output Voltage (V)
ITRIP Positive Going Threshold (V
5.5
5.0
M ax.
4.5
Typ.
4.0
M in.
3.5
3.0
2.5
2.0
1.5
M ax.
1.0
Typ.
0.5
0.0
12
14
16
18
20
-50
-25
0
75
100
125
Temperature ( C)
Figure 18A. High Level Output vs. Temperature
Figure 17D. ITRIP Positive Going Threshold vs.
Supply Voltage (IR21365/IR21367/IR21368 Only)
3.0
1.2
Low Level Output Voltage (V)
High Level Output Voltage (V)
50
o
Supply Voltage (V)
2.5
2.0
M ax.
1.5
Typ.
1.0
0.5
0.0
1.0
0.8
0.6
M ax.
0.4
Typ.
0.2
0.0
10
12
14
16
18
Supply Voltage (V)
Figure 18B. High Level Output vs. Supply Voltage
20
25
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 19A. Low Level Output vs. Temperature
www.irf.com
Low Level Output Voltage (V)
1.2
1.0
0.8
M ax.
0.6
0.4
Typ.
0.2
0.0
10
12
14
16
18
20
Supply Voltage (V)
V CC or V BS Undervoltage Lockout (+) (V
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
12
11
10
M ax.
9
Typ.
M in.
8
7
-50
9
M ax.
Typ.
8
M in.
7
6
-50
-25
0
25
50
75
100
Temperature (oC)
Figure 21. VCC or VBS Undervoltage (-)
vs. Temperature (IR2136/IR21368 Only)
www.irf.com
125
25
50
75
100
125
Figure 20. VCC or VBS Undervoltage (+)
vs. Temperature (IR2136/IR21368 Only)
VCC or VBS Undervoltage Lockout (+) (V)
V CC or V BS Undervoltage Lockout (-) (V)
10
0
Temperature (oC)
Figure 19B. Low Level Output vs. Supply Voltage
11
-25
13
12
M ax.
11
Typ.
10
M in.
9
8
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 22. VCC or VBS Undervoltage (+) vs.
Temperature (IR21362 Only)
21
12
11
M ax.
10
Typ.
9
M in.
8
7
-50
-25
0
25
50
75
100
125
Temperature (oC)
Offset Supply Leakage Current ( µA)
V CC or V BS Undervoltage Lockout (-) (V)
M ax.
Typ.
M in.
10
0
25
50
75
100
125
Temperature ( oC)
Figure 25. V CC or V BS Undervoltage (-) vs.
Temperature (IR21363/21365/IR21366/IR21367 Only)
22
M ax.
Typ.
11
M in.
10
-50
-25
0
25
50
75
100
125
Temperature ( C)
12
-25
12
Figure 24. V CC or V BS Undervoltage (+) vs.
Temperature (IR21363/21365/IR21366/IR21367 Only)
13
9
-50
13
o
Figure 23. VCC or VBS Undervoltage (-) vs.
Temperature (IR21362 Only)
11
V CC or V BS Undervoltage Lockout (+) (V)
VCC or V BS Undervoltage Lockout (-) (V)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
500
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 26A. Offset Supply Leakage Current vs.
Temperature
www.irf.com
500
250
400
200
VBS Supply Current (µA)
Offset Supply Leakage Current ( A)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
300
200
100
150
M ax.
100
50
Typ.
M ax.
0
0
100
200
300
400
500
-50
600
-25
0
75
100
125
Figure 27A. VBS Supply Current vs. Temperature
250
5
VCC Supply Current (mA)
VBS Supply Current ( A)
50
o
Figure 26B. Offset Supply Leakage Current vs.
VB Boost Voltage
200
150
100
25
Temperature ( C)
V B Boost Voltage (V)
M ax.
50
4
3
2
1
M ax.
Typ.
Typ.
0
0
10
12
14
16
18
VBS Floating Supply Voltage (V)
Figure 27B. VBS Supply Current vs.
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 28A. VCC Supply Current vs. Temperature
VBS Floating Supply Voltage
www.irf.com
23
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
800
Logic "1" Input Current ( µA)
VCC Supply Current (mA)
5
4
3
2
1
M ax.
Typ.
600
400
200
M ax.
Typ.
0
0
10
12
14
16
18
-50
20
-25
0
50
75
100
125
Temperature ( C)
Figure 28B. VCC Supply Current vs.
Figure 29A. Logic "1" Input Current vs. Temperature
(IR2136/21363/21365 and IR21362 Low Side Only)
VCC Supply Voltage
300
Logic "1" Input Current ( µA)
800
Logic "1" Input Current ( A)
25
o
Supply Voltage (V)
600
400
M ax.
200
250
200
150
100
50
M ax.
Typ.
Typ.
0
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 29B. Logic "1" Input Current vs. Supply Voltage
(IR2136/21363/21365 and IR21362 Low Side Only)
24
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 29C. Logic "1" Input Current vs.
Temperature (IR21362 High Side Only)
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
600
Logic "0" Input Current ( µA)
Logic "1" Input Current ( A)
300
250
200
150
M ax.
100
50
Typ.
500
400
300
200
M ax.
100
Typ.
0
0
10
12
14
16
18
-50
20
-25
0
50
75
100
125
Temperature ( C)
Figure 29D. Logic "1" Input Current vs.
Supply Voltage (IR21362 High Side Only)
Figure 30A. Logic "0" Input Current vs. Temperature
(IR2136/21363/21365 and IR21362 Low Side Only)
600
4
Logic "0" Input Current ( µA)
Logic "0" Input Current ( A)
25
o
Supply Voltage (V)
500
400
300
200
M ax.
100
3
2
M ax.
1
Typ.
Typ.
0
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 30B. Logic "0" Input Current vs. Supply
Voltage (IR2136/21363/21365 and IR21362 Low Side Only)
www.irf.com
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 30C. Logic "0" Input Current vs.
Temperature (IR21362 High Side Only)
25
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
250
"High" ITRIP Current ( µA)
Logic "0" Input Current ( A)
4
3
2
M ax.
1
200
150
100
50
Typ.
Typ.
0
0
10
M ax.
12
14
16
18
-50
20
-25
0
50
75
100
125
o
Temperature ( C)
Supply Voltage (V)
Figure 31A. "High" ITRIP Current vs. Temperature
Figure 30D. Logic "0" Input Current vs.
Supply Voltage (IR21362 High Side Only)
4
"Low" ITRIP Current (µA)
250
"High" ITRIP Current ( A)
25
200
150
M ax.
100
50
Typ.
3
2
M ax.
1
Typ.
0
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 31B. "High" ITRIP Current vs. Supply Voltage
26
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 32A. "Low" ITRIP Current vs. Temperature
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
200
"High" IEN Current (µA)
"Low" ITRIP Current ( A)
4
3
2
M ax.
1
150
M ax.
100
50
Typ.
Typ.
0
0
10
12
14
16
18
20
-50
-25
0
Supply Voltage (V)
50
75
100
125
o
Figure 32B. "Low" ITRIP Current vs. Supply Voltage
Figure 33A. "High" IEN Current vs. Temperature
4
250
200
"Low" IEN Current (µA)
"High" IEN Current ( A)
25
Temperature ( C)
150
M ax.
100
50
3
2
M ax.
1
Typ.
Typ.
0
0
10
12
14
16
18
20
Supply Voltage (V)
Figure 33B. "High" IEN Current vs. Supply Voltage
www.irf.com
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 34A. "Low" IEN Current vs. Temperature
27
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
4
RCIN Input Bias Current ( A)
"Low" IEN Current ( A)
4
3
2
1
0
M ax.
3
2
M ax.
1
Typ.
Typ.
10
12
14
16
18
0
20
-50
-25
0
25
Supply Voltage (V)
50
75
100
125
Temperature (oC)
Figure 35A. RCIN Input Bias Current
vs. Temperature
Figure 34B. "Low" IEN Current vs. Supply Voltage
Figure 34B. “Low” IEN Current vs. Supply Voltage
400
Output Source Current (mA)
RCIN Input Bias Current ( A)
4
3
2
M ax.
1
300
Typ.
200
M in.
100
Typ.
0
0
10
12
14
16
18
Supply Voltage (V)
Figure 35B. RCIN Input Bias Current vs.
Supply Voltage
28
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 36A. Output Source Current vs.
Temperature
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
500
Output Sink Current (mA)
Output Source Current (mA)
500
400
300
200
Typ.
100
400
Typ.
300
M in.
200
100
M in.
0
0
10
12
14
16
18
20
-50
-25
0
Supply Voltage (V)
50
75
100
125
o
Temperature ( C)
Figure 36B. Output Source Current vs.
Supply Voltage
Figure 37A. Output Sink Current vs.
Temperature
250
RCIN Low On-resistance ( Ω )
600
500
Output Sink Current (mA)
25
400
300
Typ.
200
M in.
100
200
150
100
M ax.
50
Typ.
0
0
10
12
14
16
18
Supply Voltage (V)
Figure 37B. Output Sink Current vs.
Supply Voltage
www.irf.com
20
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 38A. RCIN Low On-resistance vs.
Temperature
29
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
250
FAULT Low On-resistance ( Ω )
RCIN Low On-resistance ( )
250
200
150
M ax.
100
Typ.
50
200
150
100
M ax.
50
Typ.
0
0
10
12
14
16
18
20
-50
-25
Supply Voltage (V)
50
75
100
125
Temperature ( C)
Figure 39A. FAULT Low On-resistance vs.
Temperature
0
VS Offset Supply Voltage (V)
)
250
FAULT Low On-resistance (
25
o
Figure 38B. RCIN Low On-resistance vs.
Supply Voltage
200
150
M ax.
100
Typ.
50
0
-3
Typ.
-6
-9
-12
-15
10
12
14
16
18
Supply Voltage (V)
Figure 39B. FAULT Low On-resistance vs.
Supply Voltage
30
0
20
10
12
14
16
18
20
Supply Voltage (V)
Figure 40. Maximum VS Negative Offset vs. VBS
Supply Voltage
www.irf.com
120
120
100
100
80
60
40
300V
200V
100V
0V
Junction Temperature (oC)
Junction Temperature o(C)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
20
60
300V
200V
100
V
0V
40
20
0.1
1
10
Frequency (KHz)
100
0.1
Figure 41. IR2136/IR21362(3)(5)(6)(7)(8)
Ω, Vcc=15V
vs. Frequency (IRG4BC20W), Rgate=33Ω
120
120
100
100
80
60
300V
200V
100
0V
V
40
1
10
Frequency (KHz)
100
Figure 42. IR2136/IR21362(3)(5)(6)(7)(8)
Ω, Vcc=15V
vs. Frequency (IRG4BC30W), Rgate=15Ω
Junction Temperature (oC)
Junction Temperature (oC)
80
80
300V
60
200V
100
V
0V
40
20
20
0.1
1
10
Frequency (KHz)
100
Figure 43. IR2136/IR21362(3)(5)(6)(7)(8)
Ω, Vcc=15V
vs. Frequency (IRG4BC40W), Rgate=10Ω
www.irf.com
0.1
1
10
Frequency (KHz)
100
Figure 44. IR2136/IR21362(3)(5)(6)(7)(8)
Ω, Vcc=15V
vs. Frequency (IRG4PC50W), Rgate=5Ω
31
120
120
100
100
80
60
300V
200V
100V
0V
40
Junction Temperature (oC)
Junction Temperature (oC)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
20
60
300V
200V
100V
0V
40
20
0.1
1
10
Frequency (KHz)
100
Figure 45. IR2136/IR21362(3)(5)(6)(7)(8) (J)
Ω, Vcc=15V
vs. Frequency (IRG4BC20W), Rgate=33Ω
0.1
120
120
100
100
80
60
300V
200V
100V
0V
40
10
Frequency (KHz)
100
80
60
300V
200V
100V
40
0V
20
20
0.1
1
10
Frequency (KHz)
100
Figure 47. IR2136/IR21362(3)(5)(6)(7)(8) (J)
Ω, Vcc=15V
vs. Frequency (IRG4BC40W), Rgate=10Ω
32
1
Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J)
Ω, Vcc=15V
vs. Frequency (IRG4BC30W), Rgate=15Ω
Junction Temperature (oC)
Junction Temperature (oC)
80
0.1
1
10
Frequency (KHz)
100
Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J)
Ω, Vcc=15V
vs. Frequency (IRG4PC50W), Rgate=5Ω
www.irf.com
120
120
100
100
80
60
300V
200V
100
V0V
40
Junction Temperature (oC)
Junction Temperature (oC)
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
80
60
300V
200V
100
0V
V
40
20
20
0.1
1
10
Frequency (KHz)
0.1
100
Figure 49. IR2136/IR21362(3)(5)(6)(7)(8) (S)
Ω, Vcc=15V
vs. Frequency (IRG4BC20W), Rgate=33Ω
1
10
Frequency (KHz)
100
Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S)
Ω, Vcc=15V
vs. Frequency (IRG4BC30W), Rgate=15Ω
120
120
100
100
80
60
300V
200V
100
V0V
40
Junction Temperature ( oC)
Junction Temperature (oC)
300V
200V
80
100
V
60
0V
40
20
20
0.1
1
10
Frequency (KHz)
100
Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S)
Ω, Vcc=15V
vs. Frequency (IRG4BC40W), Rgate=10Ω
www.irf.com
0.1
1
10
Frequency (KHz)
100
Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S)
Ω, Vcc=15V
vs. Frequency (IRG4PC50W), Rgate=5Ω
33
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
Case outlines
28-Lead PDIP (wide body)
28-Lead SOIC (wide body)
34
01-6011
01-3024 02 (MS-011AB)
01-6013
01-3040 02 (MS-013AE)
www.irf.com
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
NOTES
44-Lead PLCC w/o 12 leads
www.irf.com
01-6009 00
01-3004 02(mod.) (MS-018AC)
35
IR2136(2)(3)(5)(6)(7)(8)(J&S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
MARKING CODE
Lead Free Released
Non-Lead Free
Released
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part
28-Lead PDIP IR2136/IR21363(5)(6)(7)(8)
28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S)
44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J))
28-Lead PDIP IR21362
28-Lead SOIC IR21362S
44-Lead PLCC IR21362J
order
order
order
order
order
order
IR2136/IR21363(5)(6)(7)(8)
IR2136/IR21363(5)(6)(7)(8) (S)
IR2136/IR21363(5)(6)(7)(8) (J)
IR21362
IR21362S
IR21362J
Leadfree Part
28-Lead PDIP IR2136/IR21363(5)(6)(7)(8)
28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S)
44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J))
28-Lead PDIP IR21362
28-Lead SOIC IR21362S
44-Lead PLCC IR21362J
order
order
order
order
order
order
IR2136/IR21363(5)(6)(7)(8)PbF
IR2136/IR21363(5)(6)(7)(8) (S)PbF
IR2136/IR21363(5)(6)(7)(8) (J)PbF
IR21362PbF
IR21362SPbF
IR21362JPbF
WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
http://www.irf.com/ Data and specifications subject to change without notice.
4/13/2004
36
www.irf.com
Similar pages