TRENCHSTOP™ Series IHW40T60 q Low Loss DuoPack : IGBT in TRENCHSTOP™ technology with soft, fast recovery anti-parallel Emitter Controlled HE diode C Features: Very low VCE(sat) 1.5V (typ.) Maximum junction temperature 175°C Short circuit withstand time 5s TRENCHSTOP™ and fieldstop technology for 600V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior - low VCE(sat) and positive temperature coefficient Low EMI Low gate charge Qualified according to JEDEC1 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice models : http://www.infineon.com/igbt/ G E PG-TO247-3 Applications: Inductive Cooking Soft & Hard Switching Applications Type IHW40T60 VCE IC VCE(sat),Tj=25°C Tj,max Marking Package 600V 40A 1.55V 175C H40T60B PG-TO247-3 Maximum Ratings Parameter Symbol Value Collector-emitter voltage, Tj ≥ 25C VCE 600 IC 80 Unit V DC collector current, limited by Tjmax TC = 25C 40 TC = 100C Pulsed collector current, tp limited by Tjmax ICpuls 120 Turn off safe operating area, VCE = 600V, Tj = 175C, tp = 1µs - 120 IF 60 A Diode forward current, limited by Tjmax TC = 25C 30 TC = 100C Diode pulsed current, tp limited by Tjmax IFpuls 90 Gate-emitter voltage VGE 20 25 Transient Gate-emitter voltage (tp < 10 µs, D<0.01) V 2) Short circuit withstand time tSC 5 s Power dissipation TC = 25C Ptot 303 W Operating junction temperature Tj -40...+175 Storage temperature Tstg -55...+150 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - VGE = 15V, VCC 400V, Tj 150C 1 2) C 260 J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. IFAG IPC TD VLS 1 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.49 K/W RthJCD 1.05 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, RthJA 40 junction – ambient Electrical Characteristic, at Tj = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j =2 5 C - 1.55 2.05 T j =1 7 5 C - 1.90 - T j =2 5 C - 1.65 2.05 T j =1 7 5 C - 1.60 - 4.1 4.9 5.7 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 0 .5m A Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V V G E = 15 V , I C = 40 A V G E = 0V , I F = 3 0 A Gate-emitter threshold voltage VGE(th) I C = 0. 58m A , VCE=VGE Zero gate voltage collector current ICES V C E = 60 0 V , V G E = 0V µA T j =2 5 C - - 40 T j =1 7 5 C - - 3000 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 40 A - 22 - S Integrated gate resistor RGint Ω - Dynamic Characteristic Input capacitance Ciss V C E = 25 V , - 2423 - Output capacitance Coss V G E = 0V , - 113 - Reverse transfer capacitance Crss f= 1 MH z - 72 - Gate charge QGate V C C = 48 0 V, I C =4 0 A - 215 - nC - 13 - nH pF V G E = 15 V Internal emitter inductance LE measured 5mm (0.197 in.) from case IFAG IPC TD VLS 2 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q Switching Characteristic, Inductive Load, at Tj=25 C Parameter Symbol Conditions Value min. Typ. max. - - - - - - - 186 - - 66.3 - - - - - 0.92 - - 0.92 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j=25 C, VCC=400V,IC=40A, VGE=0/15V,rG=5.6 L =40nH, C=30pF L , C f rom Fig. E Energy losses include “tail” and diode reverse recovery. ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =2 5 C , - 143 - ns Diode reverse recovery charge Qrr V R = 4 00 V , I F = 3 0 A, - 0.92 - µC Diode peak reverse recovery current Irrm d i F / d t =9 1 0 A/ s - 16.3 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 603 - A/s Switching Characteristic, Inductive Load, at Tj=175 C Parameter Symbol Conditions Value min. Typ. max. - - - - - - - 196 - - 76.5 - - - - - 1.4 - - 1.4 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j=175 C, VCC=400V,IC=40A, VGE=0/15V,rG=5.6 L =40nH, C=30pF L , C f rom Fig. E Energy losses include “tail” and diode reverse recovery. ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time trr T j =1 7 5 C - 225 - ns Diode reverse recovery charge Qrr V R = 4 00 V , I F = 3 0 A, - 2.39 - µC Diode peak reverse recovery current Irrm d i F / d t =9 1 0 A/ s - 22.3 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 310 - A/s IFAG IPC TD VLS 3 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q 140A 100A 120A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT tp=1µs 100A TC=80°C 80A TC=110°C 60A 40A Ic 20A 2µs 10A 10µs 50µs DC 1A 1ms 10ms 0A 10Hz 100Hz 1kHz 10kHz 100kHz 1V f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency for triangular current (Eon = 0, hard turn-off) (Tj 175C, D = 0.5, VCE = 400V, VGE = 0/15V, rG = 5.6) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25C, Tj 175C; VGE=0/15V) 350W 300W IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 60A 250W 200W 150W 100W 40A 20A 50W 0W 25°C 50°C 75°C 100°C 125°C 0A 25°C 150°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj 175C) IFAG IPC TD VLS 4 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE 15V, Tj 175C) Rev. 2.1 10.12.2013 TRENCHSTOP™ Series 100A VGE=20V 15V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 100A 80A 13V 11V 60A 9V 7V 40A 80A 60A 0V 3V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 80A 60A 40A TJ =175°C 25°C 0A 0V 2V 4V 6V 8V 10V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) IFAG IPC TD VLS 1V 2V 3V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 175°C) 100A 20A 7V 40A 0A 2V 11V 9V 0A 1V 15V 13V 20A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT VGE=20V 20A 0V IHW40T60 q 2.5V IC=80A 2.0V IC=40A 1.5V IC=20A 1.0V 0.5V 0.0V 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Rev. 2.1 10.12.2013 IHW40T60 q TRENCHSTOP™ Series 100ns td(off) tf t, SWITCHING TIMES t, SWITCHING TIMES td(off) 100ns tf 10ns 10ns 0A 20A 40A 60A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=175°C, VCE = 400V, VGE = 0/15V, rG = 5.6Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ = 175°C, VCE= 400V, VGE = 0/15V, IC = 40A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 6V t, SWITCHING TIMES td(off) 100ns tf 10ns 25°C 50°C 75°C 100°C 125°C 150°C 5V typ. min. 4V 3V 25°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 40A, rG=5.6Ω, Dynamic test circuit in Figure E) IFAG IPC TD VLS max. 50°C 75°C 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.8mA) 6 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 2.5mJ Eoff 2.0mJ 1.5mJ 1.0mJ 0.5mJ IHW40T60 q 2.0mJ Eoff 1.5mJ 1.0mJ 0.5mJ 0.0mJ 0.0mJ 0A 10A 20A 30A 40A 50A 60A 70A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, rG = 5.6Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ = 175°C, VCE = 400V, VGE = 0/15V, IC = 40A, Dynamic test circuit in Figure E) 1.2mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.4mJ Eoff 1.0mJ 0.8mJ 0.6mJ 0.4mJ 0.2mJ 0.0mJ 25°C 50°C 75°C Eoff 1.0mJ 0.5mJ 0.0mJ 300V 100°C 125°C 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/15V, IC = 40A, rG = 5.6Ω, Dynamic test circuit in Figure E) IFAG IPC TD VLS 1.5mJ 350V 400V 450V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ = 175°C, VGE = 0/15V, IC = 40A, rG = 5.6Ω, Dynamic test circuit in Figure E) 7 Rev. 2.1 10.12.2013 IHW40T60 q TRENCHSTOP™ Series 1nF 120V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 12V 480V 9V 6V Coss 100pF 3V Crss 0V 0nC 30nC 60nC 90nC 120nC150nC180nC210nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC=40 A) 0V 10V 20V 30V 40V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) tSC, SHORT CIRCUIT WITHSTAND TIME 12µs 10µs 8µs 6µs 4µs 2µs 0µs 10V 11V 12V 13V 14V VGE, GATE-EMITTETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=400V, start at TJ=25°C, TJmax<150°C) IFAG IPC TD VLS 8 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q 0 D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 0.01 single pulse -2 10 K/W R,(K/W) 0.093 0.119 0.0828 0.0386 0.0221 R1 , (s) 8.74*10-2 1.07*10-2 7.49*10-4 8.85*10-5 7.39*10-6 R2 C 1 = 1 /R 1 C 2 = 2 /R 2 ZthJC, TRANSIENT THERMAL IMPEDANCE ZthJC, TRANSIENT THERMAL IMPEDANCE 10 K/W D=0.5 0.2 0.1 -1 10 K/W 0.02 R 1 10µs 100µs 1ms C 1 = 1 /R 1 C 2 = 2 /R 2 single pulse tP, PULSE WIDTH Figure 21. Diode transient thermal impedance as a function of pulse width (D=tP/T) TJ=175°C 200ns 150ns 100ns TJ=25°C 50ns 800A/µs 2.0µC 1.5µC 1.0µC T J =25°C 0.5µC 0.0µC 700A/µs 900A/µs 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery time as a function of diode current slope (VR=400V, IF=30A, Dynamic test circuit in Figure E) IFAG IPC TD VLS Qrr, REVERSE RECOVERY CHARGE T J =175°C 250ns trr, REVERSE RECOVERY TIME R2 10 K/W 100ns 1µs 10µs 100µs 1ms 10ms100ms 10ms 100ms tP, PULSE WIDTH Figure 20. IGBT transient thermal impedance (D = tp / T) 0ns 700A/µs , (s) 1.26*10-1 9.7*10-3 1.4*10-3 1.51*10-4 0.01 -2 1µs R,(K/W) 0.151 0.223 0.05 0.273 0.111 9 800A/µs 900A/µs 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery charge as a function of diode current slope (VR = 400V, IF = 30A, Dynamic test circuit in Figure E) Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q T J=25°C 20A T J =25°C 15A 10A 5A dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT T J =175°C 800A/µs 900A/µs 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery current as a function of diode current slope (VR = 400V, IF = 30A, Dynamic test circuit in Figure E) T J=175°C -300A/µs -150A/µs 800A/µs 900A/µs 1000A/µs diF/dt, DIODE CURRENT SLOPE Figure 25. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=400V, IF=30A, Dynamic test circuit in Figure E) TJ=25°C 70A 175°C 60A VF, FORWARD VOLTAGE IF, FORWARD CURRENT -450A/µs 0A/µs 700A/µs 0A 700A/µs -600A/µs 50A 40A 30A 20A 2.0V I F =60A 1.5V 30A 15A 1.0V 0.5V 10A 0.0V 0°C 0A 0V 1V 2V VF, FORWARD VOLTAGE Figure 26. Typical diode forward current as a function of forward voltage IFAG IPC TD VLS 10 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 27. Typical diode forward voltage as a function of junction temperature Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IFAG IPC TD VLS 11 IHW40T60 q Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics 1 2 r1 r2 n rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure B. Definition of switching losses IFAG IPC TD VLS 12 Rev. 2.1 10.12.2013 TRENCHSTOP™ Series IHW40T60 q Published by Infineon Technologies AG 81726 Munich, Germany © 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. IFAG IPC TD VLS 13 Rev. 2.1 10.12.2013