NTR4003N, NVR4003N Small Signal MOSFET 30 V, 0.56 A, Single N−Channel, SOT−23 Features • Low Gate Voltage Threshold (VGS(TH)) to Facilitate Drive Circuit • • • • • • Design Low Gate Charge for Fast Switching ESD Protected Gate SOT−23 Package Provides Excellent Thermal Performance Minimum Breakdown Voltage Rating of 30 V NVR Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant www.onsemi.com V(BR)DSS RDS(on) TYP ID MAX 1.0 W @ 4.0 V 30 V 0.56 A 1.5 W @ 2.5 V N−Channel 3 Applications • Notebooks: ♦ Level Shifters Logic Switches ♦ Low Side Load Switches Portable Applications ♦ • 1 2 MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Parameter Drain−to−Source Voltage Gate−to−Source Voltage Continuous Drain Current (Note 1) Steady State Power Dissipation (Note 1) TA = 25°C t < 10 s Value Unit VDSS 30 V VGS ±20 V ID 0.5 A TA = 85°C Steady State Continuous Drain Current (Note 1) Symbol TA = 25°C 0.37 Power Dissipation (Note 1) Pulsed Drain Current 0.69 W ID 0.56 A 0.40 t<5s PD 0.83 W tp = 10 ms IDM 1.7 A TJ, Tstg −55 to 150 °C Operating Junction and Storage Temperature Source Current (Body Diode) IS 1.0 A Lead Temperature for Soldering Purposes (1/8” from case for 10 s) TL 260 °C THERMAL RESISTANCE RATINGS Symbol Max Unit Junction−to−Ambient − Steady State (Note 1) RqJA 180 °C/W Junction−to−Ambient − t < 10 s (Note 1) RqJA 150 Junction−to−Ambient − Steady State (Note 2) RqJA 300 1. Surface−mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces). 2. Surface−mounted on FR4 board using the minimum recommended pad size. © Semiconductor Components Industries, LLC, 2005 October, 2015 − Rev. 5 3 Drain 2 SOT−23 CASE 318 STYLE 21 TR8 M G TR8 M G G 1 Gate 2 Source = Specific Device Code = Date Code = Pb−Free Package (Note: Microdot may be in either location) *Date Code orientation and overbar may vary depending upon manufacturing location. ORDERING INFORMATION Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. Parameter 3 1 PD TA = 85°C MARKING DIAGRAM/ PIN ASSIGNMENT 1 Device Package Shipping† NTR4003NT1G SOT−23 (Pb−Free) 3000 / Tape & Reel NTR4003NT3G SOT−23 (Pb−Free) 10,000 / Tape & Reel NVR4003NT3G SOT−23 (Pb−Free) 10,000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Publication Order Number: NTR4003N/D NTR4003N, NVR4003N ELECTRICAL CHARACTERISTICS (TJ = 25°C unless otherwise specified) Parameter Symbol Test Condition Min Drain−to−Source Breakdown Voltage V(BR)DSS VGS = 0 V, ID = 100 mA 30 Drain−to−Source Breakdown Voltage Temperature Coefficient V(BR)DSS/TJ Typ Max Units OFF CHARACTERISTICS V 40 Zero Gate Voltage Drain Current IDSS VGS = 0 V, VDS = 30 V TJ = 25°C Gate−to−Source Leakage Current IGSS VDS = 0 V, VGS = ±10 V VGS(TH) VGS = VDS, ID = 250 mA mV/°C 1.0 mA ±1.0 mA 1.4 V ON CHARACTERISTICS (Note 3) Gate Threshold Voltage Negative Threshold Temperature Coefficient VGS(TH)/TJ Drain−to−Source On Resistance RDS(on) Forward Transconductance gFS 0.8 3.4 mV/°C VGS = 4.0 V, ID = 10 mA 1.0 1.5 VGS = 2.5 V, ID = 10 mA 1.5 2.0 VDS = 3.0 V, ID = 10 mA 0.33 W S CHARGES AND CAPACITANCES Ciss Input Capacitance VGS = 0 V, f = 1.0 MHz, VDS = 5.0 V 21 42 Output Capacitance Coss 19.7 40 Reverse Transfer Capacitance Crss 8.1 16 Total Gate Charge QG(TOT) 1.15 Threshold Gate Charge QG(TH) VGS = 5.0 V, VDS = 24 V, ID = 0.1 A pF 0.15 Gate−to−Source Gate Charge QGS Gate−to−Drain Charge QGD 0.23 td(on) 16.7 nC 0.32 SWITCHING CHARACTERISTICS (Note 4) Turn−On Delay Time Rise Time Turn−Off Delay Time Fall Time tr td(off) VGS = 4.5 V, VDD = 5.0 V, ID = 0.1 A, RG = 50 W tf 47.9 ns 65.1 64.2 SOURCE−DRAIN DIODE CHARACTERISTICS Forward Diode Voltage VSD VGS = 0 V, IS = 10 mA Reverse Recovery Time tRR VGS = 0 V, dIS/dt = 8A/ms, IS = 10 mA TJ = 25°C 0.65 TJ = 125°C 0.45 14 0.7 V ns Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: pulse width v 300 ms, duty cycle v 2%. 4. Switching characteristics are independent of operating junction temperatures. www.onsemi.com 2 NTR4003N, NVR4003N TYPICAL PERFORMANCE CURVES (TJ = 25°C unless otherwise noted) 1.6 1.6 VDS ≥ 10 V VGS = 10 V to 5 V 0.8 4V 0.4 3.5 V TJ = 25°C 0.8 TJ = 125°C 0.4 0 1 0 2 0 1 2 3 4 VGS, GATE−TO−SOURCE VOLTAGE (V) Figure 1. On−Region Characteristics Figure 2. Transfer Characteristics RDS(on), DRAIN−TO−SOURCE RESISTANCE (W) VDS, DRAIN−TO−SOURCE VOLTAGE (V) 10 ID = 0.2 A 8 6 4 2 0 2.4 2.8 3.2 3.6 VGS, GATE−TO−SOURCE VOLTAGE (V) 4 VGS = 10 V TJ = 125°C 0.8 0.6 TJ = 25°C 0.4 TJ = −55°C 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 ID, DRAIN CURRENT (AMPS) Figure 4. On−Resistance vs. Drain Current and Temperature 1000 1.80 VGS = 0 V ID = 0.3 A VGS = 4.5 V IDSS, LEAKAGE (nA) 1.60 5 1 Figure 3. On−Resistance vs. Gate−to−Source Voltage RDS(on), DRAIN−TO−SOURCE RESISTANCE (W) (NORMALIZED) TJ = −55°C 1.2 2.5 V 0 RDS(on), DRAIN−TO−SOURCE RESISTANCE (W) ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 4.5 V 1.2 1.40 1.20 1.00 TJ = 150°C 100 TJ = 125°C 0.80 0.60 −25 10 −50 0 25 50 75 100 125 150 0 5 10 15 20 25 VDS, DRAIN−TO−SOURCE VOLTAGE (VOLTS) TJ, JUNCTION TEMPERATURE (°C) Figure 5. On−Resistance Variation with Temperature Figure 6. Drain−to−Source Leakage Current vs. Voltage www.onsemi.com 3 30 NTR4003N, NVR4003N TYPICAL PERFORMANCE CURVES (TJ = 25°C unless otherwise noted) VGS, GATE−TO−SOURCE VOLTAGE (V) 50 40 30 Ciss 20 Coss 10 0 Crss 0 4 8 12 16 5 TJ = 25°C ID = 0.1 A 4 3 2 1 0 0.4 0 20 DRAIN−TO−SOURCE VOLTAGE (V) Figure 8. Gate−to−Source & Drain−to−Source Voltage vs. Total Charge 1 VGS = 0 V 0.1 0.01 0.8 QG, TOTAL GATE CHARGE (nC) Figure 7. Capacitance Variation IS, SOURCE CURRENT (A) C, CAPACITANCE (pF) TJ = 25°C VGS = 0 V TJ = 150°C TJ = 25°C 0.001 0.4 0.6 VSD, SOURCE−TO−DRAIN VOLTAGE (V) Figure 9. Diode Forward Voltage vs. Current www.onsemi.com 4 0.8 1.2 NTR4003N, NVR4003N PACKAGE DIMENSIONS SOT−23 (TO−236) CASE 318−08 ISSUE AR D NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. 0.25 3 E 1 2 T HE DIM A A1 b c D E e L L1 HE T L 3X b L1 VIEW C e TOP VIEW A A1 SIDE VIEW c SEE VIEW C MIN 0.89 0.01 0.37 0.08 2.80 1.20 1.78 0.30 0.35 2.10 0° MILLIMETERS NOM MAX 1.00 1.11 0.06 0.10 0.44 0.50 0.14 0.20 2.90 3.04 1.30 1.40 1.90 2.04 0.43 0.55 0.54 0.69 2.40 2.64 −−− 10 ° MIN 0.035 0.000 0.015 0.003 0.110 0.047 0.070 0.012 0.014 0.083 0° INCHES NOM 0.039 0.002 0.017 0.006 0.114 0.051 0.075 0.017 0.021 0.094 −−− MAX 0.044 0.004 0.020 0.008 0.120 0.055 0.080 0.022 0.027 0.104 10° STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN END VIEW RECOMMENDED SOLDERING FOOTPRINT* 3X 2.90 3X 0.90 0.95 PITCH 0.80 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] ◊ N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 5 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NTR4003N/D