IRF IRF6618TR1 Hexfetpower mosfet Datasheet

PD - 95823A
IRF6620
HEXFET® Power MOSFET
l
Application Specific MOSFETs
l Ideal for CPU Core DC-DC Converters
l Low Conduction Losses
l Low Switching Losses
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Compatible with Existing Surface Mount
Techniques
VDSS
RDS(on) max
Qg(typ.)
20V
2.7mΩ@VGS = 10V
3.6mΩ@VGS = 4.5V
28nC
DirectFET™ ISOMETRIC
MX
Applicable DirectFET Outline and Substrate Outline (see p.8,9 for details)
SQ
SX
ST
MQ
MX
MT
Description
The IRF6620 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with
existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual
sided cooling to maximize thermal transfer in power systems, IMPROVING previous best thermal resistance by 80%.
The IRF6620 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6620 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
buss converters including Rds(on), gate charge and Cdv/dt-induced turn on immunity. The IRF6620 offers particularly low Rds(on) and high
Cdv/dt immunity for synchronous FET applications.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TA = 25°C
ID @ TA = 70°C
IDM
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
EAS
IAR
TJ
TSTG
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
c
Pulsed Drain Current
Power Dissipation
Power Dissipation
Power Dissipation
Single Pulse Avalanche Energy
Avalanche Current
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
g
c
d
Max.
Units
20
±20
150
27
22
220
2.8
1.8
89
39
22
0.017
-40 to + 150
V
A
W
mJ
A
W/°C
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
fj
gj
hj
ij
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
Units
–––
12.5
20
–––
1.0
45
–––
–––
1.4
–––
°C/W
Notes  through ˆ are on page 2
www.irf.com
1
4/2/04
IRF6620
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
–––
20
Typ. Max. Units
–––
–––
–––
16
–––
–––
2.1
2.7
2.8
3.6
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 27A e
VGS = 4.5V, ID = 22A e
VGS(th)
Gate Threshold Voltage
1.55
–––
2.45
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-5.8
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
gfs
Qg
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
110
–––
–––
Total Gate Charge
–––
28
42
Conditions
VGS = 0V, ID = 250µA
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V
VDS = 16V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 22A
Qgs1
Pre-Vth Gate-to-Source Charge
–––
9.5
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
3.5
–––
Qgd
Gate-to-Drain Charge
–––
8.8
–––
ID = 22A
Qgodr
–––
6.2
–––
See Fig. 17
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
12
–––
Qoss
Output Charge
–––
16
–––
td(on)
Turn-On Delay Time
–––
18
–––
tr
Rise Time
–––
80
–––
td(off)
Turn-Off Delay Time
–––
20
–––
tf
Fall Time
–––
6.6
–––
Ciss
Input Capacitance
–––
4130
–––
Coss
Output Capacitance
–––
1160
–––
Crss
Reverse Transfer Capacitance
–––
560
–––
VDS = 10V
nC
nC
VGS = 4.5V
VDS = 10V, VGS = 0V
VDD = 16V, VGS = 4.5Ve
ID = 22A
ns
Clamped Inductive Load
pF
VDS = 10V
VGS = 0V
ƒ = 1.0MHz
Diode Characteristics
Min.
Typ. Max. Units
IS
Continuous Source Current
Parameter
–––
–––
3.5
Conditions
ISM
(Body Diode)
Pulsed Source Current
–––
–––
220
showing the
integral reverse
VSD
(Body Diode)c
Diode Forward Voltage
–––
0.8
1.0
V
p-n junction diode.
TJ = 25°C, IS = 22A, VGS = 0V e
trr
Reverse Recovery Time
–––
23
35
ns
Qrr
Reverse Recovery Charge
–––
13
20
nC
MOSFET symbol
A
D
G
S
TJ = 25°C, IF = 22A
di/dt = 100A/µs e
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.16mH,
RG = 25Ω, IAS = 22A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Surface mounted on 1 in. square Cu board.
2
Used double sided cooling, mounting pad.
† Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
‡ TC measured with thermal couple mounted to top (Drain) of
part.
ˆ Rθ is measured at TJ of approximately 90°C.
www.irf.com
IRF6620
1000
1000
100
BOTTOM
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
2.7V
1
≤ 60µs PULSE WIDTH
Tj = 25°C
100
BOTTOM
2.7V
10
≤ 60µs PULSE WIDTH
Tj = 150°C
0.1
1
0.1
1
10
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1.5
100.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000.0
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 150°C
10.0
T J = 25°C
1.0
VDS = 10V
≤ 60µs PULSE WIDTH
0.1
2.5
3.0
3.5
4.0
4.5
5.0
ID = 27A
VGS = 10V
1.0
0.5
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
100000
20
40
60
80 100 120 140 160
Fig 4. Normalized On-Resistance vs. Temperature
12
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 20A
C oss = C ds + C gd
10000
Ciss
Coss
1000
0
T J , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
10V
7.0V
4.5V
4.0V
3.5V
3.2V
2.9V
2.7V
Crss
VDS= 20V
VDS= 10V
10
8
6
4
2
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRF6620
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000.0
100.0
T J = 150°C
10.0
1.0
T J = 25°C
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
100µsec
1
VGS = 0V
10msec
0.1
0.1
0.2
0.4
0.6
0.8
1.0
0
1.2
1
10
100
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
150
VGS(th) Gate threshold Voltage (V)
2.5
120
ID , Drain Current (A)
1msec
Tc = 25°C
Tj = 150°C
Single Pulse
90
60
30
2.0
ID = 250µA
1.5
0
1.0
25
50
75
100
125
150
-75
-50
-25
T J , Junction Temperature (°C)
0
25
50
75
100
125
150
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
100
Thermal Response ( Z thJA )
D = 0.50
0.20
10
0.10
0.05
1
0.02
0.01
τJ
0.1
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τC
τ
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
R4
R4
SINGLE PULSE
( THERMAL RESPONSE )
τi (sec)
1.28011
0.000322
8.72556
0.164798
21.75
2.2576
13.251
69
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
4
www.irf.com
12
160
EAS, Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance ( mΩ)
IRF6620
ID = 27A
10
8
6
T J = 125°C
4
2
T J = 25°C
0
2.0
4.0
6.0
8.0
ID
7.2A
8.4A
BOTTOM 22A
TOP
120
80
40
0
10.0
25
50
VGS, Gate-to-Source Voltage (V)
75
100
125
150
Starting T J, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13c. Maximum Avalanche Energy Vs. Drain Current
15V
LD
VDS
DRIVER
L
VDS
+
VDD -
D.U.T
RG
+
V
- DD
IAS
VGS
20V
tp
D.U.T
A
VGS
0.01Ω
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 13a. Unclamped Inductive Test Circuit
V(BR)DSS
Fig 14a. Switching Time Test Circuit
VDS
tp
90%
10%
VGS
td(on)
I AS
Fig 13b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
tr
td(off)
Fig 14b. Switching Time Waveforms
Id
Vds
50KΩ
12V
tf
Vgs
.2µF
.3µF
D.U.T.
+
V
- DS
VGS
Vgs(th)
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 15. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 16. Gate Charge Waveform
5
IRF6620
D.U.T
Driver Gate Drive
+
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
VDD
+
Re-Applied
Voltage
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
InductorCurent
Current
Inductor
VDD
Forward Drop
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
1- Drain
2- Drain
3- Source
4- Source
5- Gate
6- Drain
7- Drain
6
1
3
5
4
7
6
2
www.irf.com
IRF6620
DirectFET™ Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
DIMENSIONS
Note: Controlling dimensions
are in mm
METRIC
MAX
CODE MIN
6.35
A
6.25
5.05
B
4.80
3.95
C
3.85
0.45
D
0.35
0.72
E
0.68
0.72
F
0.68
1.42
G
1.38
0.84
H
0.80
0.42
J
0.38
K
0.88 1.01
2.41
L
2.28
0.70
M
0.59
0.08
N
0.03
IMPERIAL
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.023
0.001
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.028
0.003
DirectFET™ Part Marking
www.irf.com
7
IRF6620
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6618). For 1000 parts on 7" reel,
order IRF6618TR1
REEL DIMENSIONS
TR1 OPTION (QTY 1000)
STANDARD OPTION (QTY 4800)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MIN
MAX
CODE
MAX
MIN
MIN
MAX
MAX
A
12.992
6.9
N.C
330.0
177.77 N.C
N.C
N.C
B
0.795
0.75
N.C
20.2
19.06
N.C
N.C
N.C
C
0.504
0.53
0.50
12.8
13.5
0.520
12.8
13.2
D
0.059
0.059
N.C
1.5
1.5
N.C
N.C
N.C
E
3.937
2.31
100.0
58.72
N.C
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
13.50
18.4
G
0.488
0.47
12.4
11.9
N.C
0.567
12.01
14.4
H
0.469
0.47
11.9
11.9
N.C
0.606
12.01
15.4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.4/04
8
www.irf.com
Similar pages