NJRC NJU6645CJ 16-character 6-line lcd driver with japanese kanji rom Datasheet

Preliminary
NJU6645
16-CHARACTER 6-LINE LCD
DRIVER with JAPANESE KANJI ROM
! GENERAL DESCRIPTION
The NJU6645 is a 16-character 6-line (16x16dots size
Japanese Kanji) or 96 x 256 dots LCD driver with
Japanese Kanji ROM.
It contains 8-bit parallel or serial interface, instruction
decoder, character generator ROM/RAM, common and
segment drivers, bleeder resistor and voltage booster.
The NJU6645 supports the character font of JIS level-1
and level-2, non-kanji and half-size character and symbol.
It is suitable for the low operation voltage and low power
applications by low operating voltage 2.4 to 3.6V.
! PACKAGE OUTLINE
NJU6645CJ
! FEATURES
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
16-character 6-line Kanji Character Display or 96 x 256 dots Graphic Display LCD controller driver
LCD Driver Output : 96-common x 256-segment + 2-icon com
8-bit Parallel Interface
Serial Interface
Display Data RAM
1,536 bits
at Full-size 96 Characters
Character Generator ROM
:JIS Level-1 Kanji 16 x 16 dots 2,965 fonts
:JIS Level-2 Kanji 16 x 16 dots 3,388 fonts
:JIS Non-Kanji
16 x 16 dots 524 fonts
:Half Size Display
8 x 16 dots 256 fonts
Character Generator RAM
24,576 bits
8 x 16 dots 192 fonts
Icon Display RAM
512 bits
Maximum 512 icons
Duty Ratio
1/18, 1/34, 1/50, 1/66, 1/82, 1/98 (Programmable)
Bias Ratio
1/4 ~ 1/11 (Programmable)
Common and Segment driver Location order Select Function (Programmable)
Common Wiring Select Function
Useful Instruction Set
RE Flag Set, Status Read, Display Clear, Cursor Home, Display Control,
Stand-by, Cursor Control, Display / Entry Mode, Scroll Start Line,
Scroll Start Row, Display Start Line, Display Duty Ratio, N-line inversion,
Driver Output Control, Oscillation Control, Discharge, Boost Level,
Bias Ratio, Electrical Volume, Power Control, RAM Address Set,
Address Shift, RAM Data Writing / Reading
Built-in Voltage Boost
2 to 6-time
Built-in Electrical Volume
128-step
Oscillation Circuit
External Resistor Required
Built-in Bleeder Resistor
Operating Voltage
+2.4 to 3.6V
LCD Driving Voltage
+4.5 to 17.0V
Operation Temperature Range
-40 to +85°C
C-MOS Technology (P-sub )
Package Outline
Bump Chip
Ver.2009-05-20
-1-
261:DUMMY85
262:DUMMY86
263:DUMMY87
264:COM48
265:COM49
311:COM95
312:COMMK1
313:DUMMY88
315:DUMMY90
! PAD ALIGNMENT
314:DUMMY89
Preliminary
NJU6645
ALI_B1
ALI_A2
316:DUMMY91
260:DUMMY84
317:DUMMY92
259:DUMMY83
318:DUMMY93
258:DUMMY82
319:SEG255
257:C5-
320:SEG254
256:C5-
X
Y
TOP VIEW
NJU6645
Chip Size
Chip Thickness
Bump Size
Bump Material
-2-
: 14.16mm x 3.16mm (T.B.D.)
: 625µm±25µm
: 31µm x 130µm
: Au
632:DUMMY102
631:DUMMY101
630:DUMMY100
628:COM0
Chip Center
Pad Pitch
Bump Height
629:COMMK0
1:DUMMY1
ALI_A1
582:COM46
2:DUMMY2
577:DUMMY96
ALI_B2
581:COM47
3:DUMMY3
576:DUMMY95
580:DUMMY99
4:TESTOUT
575:DUMMY94
579:DUMMY98
5:DUMMY4
574:SEG0
578:DUMMY97
573:SEG1
: X=0µm, Y=0µm
: 50µm pitch
: 17.5µm(Typ.)
Ver.2009-05-20
Preliminary
NJU6645
Alignment Mark
70µm
- Type A
Center Coordinates : ALI_A1 (X, Y) = (-6682, -1447)
: ALI_A2 (X, Y) = (6682, -1447)
70µm
- Type B
110µm
Center Coordinates : ALI_B1 (X, Y) = (6710, 1427)
: ALI_B2 (X, Y) = (-6710, 1427)
70µm
Ver.2009-05-20
-3-
NJU6645
Preliminary
! PAD COORDINATES 1
PAD No.
PAD name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DUMMY1
DUMMY2
DUMMY3
TESTOUT
DUMMY4
DUMMY5
SEL68
DUMMY6
VPUP
DUMMY7
PS
DUMMY8
VPUP
DUMMY9
CSEL
DUMMY10
DUMMY11
RSTb
RSTb
DUMMY12
DUMMY13
CSb
CSb
DUMMY14
DUMMY15
RS
RS
DUMMY16
VPDN
DUMMY17
WRb/RW
WRb/RW
DUMMY18
DUMMY19
RDb/E
RDb/E
DUMMY20
VPUP
DUMMY21
D0
D0
DUMMY22
DUMMY23
D1
D1
DUMMY24
DUMMY25
D2
D2
DUMMY26
-4-
X= µm
-6475
-6425
-6375
-6325
-6275
-6225
-6175
-6125
-6075
-6025
-5975
-5925
-5875
-5825
-5775
-5725
-5675
-5625
-5575
-5525
-5475
-5425
-5375
-5325
-5275
-5225
-5175
-5125
-5075
-5025
-4975
-4925
-4875
-4825
-4775
-4725
-4675
-4625
-4575
-4525
-4475
-4425
-4375
-4325
-4275
-4225
-4175
-4125
-4075
-4025
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
DUMMY27
D3
D3
DUMMY28
DUMMY29
D4
D4
DUMMY30
DUMMY31
D5
D5
DUMMY32
DUMMY33
D6/SCL
D6/SCL
DUMMY34
DUMMY35
D7/SDA
D7/SDA
DUMMY36
OSC2
OSC2
DUMMY37
VDD
VDD
VDD
VDD
VDD
VDD
DUMMY38
OSC1
OSC1
DUMMY39
VSS
VSS
VSS
VSS
VSS
VSS
DUMMY40
DUMMY41
VLCD
VLCD
VLCD
VLCD
VLCD
VLCD
DUMMY42
DUMMY43
V1
-3975
-3925
-3875
-3825
-3775
-3725
-3675
-3625
-3575
-3525
-3475
-3425
-3375
-3325
-3275
-3225
-3175
-3125
-3075
-3025
-2975
-2925
-2875
-2825
-2775
-2725
-2675
-2625
-2575
-2525
-2475
-2425
-2375
-2325
-2275
-2225
-2175
-2125
-2075
-2025
-1975
-1925
-1875
-1825
-1775
-1725
-1675
-1625
-1575
-1525
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
Ver.2009-05-20
Preliminary
NJU6645
! PAD COORDINATES 2
PAD No.
PAD name
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
V1
V1
V1
V1
DUMMY44
DUMMY45
V2
V2
V2
V2
V2
DUMMY46
DUMMY47
V3
V3
V3
V3
V3
DUMMY48
DUMMY49
V4
V4
V4
V4
V4
DUMMY50
DUMMY51
VREG
VREG
VREG
VREG
VREG
DUMMY52
DUMMY53
VREF
VREF
VREF
VREF
DUMMY54
DUMMY55
VBA
VBA
VBA
VBA
DUMMY56
DUMMY57
VSS
VSS
VSS
VSS
Ver.2009-05-20
X= µm
-1475
-1425
-1375
-1325
-1275
-1225
-1175
-1125
-1075
-1025
-975
-925
-875
-825
-775
-725
-675
-625
-575
-525
-475
-425
-375
-325
-275
-225
-175
-125
-75
-25
25
75
125
175
225
275
325
375
425
475
525
575
625
675
725
775
825
875
925
975
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
VSS
VSS
DUMMY58
DUMMY59
VOUT
VOUT
VOUT
VOUT
VOUT
VOUT
DUMMY103
DUMMY104
VDCOUT
VDCOUT
VDCOUT
VDCOUT
VDCOUT
VDCOUT
VDCOUT
DUMMY60
DUMMY61
VEE
VEE
VEE
VEE
VEE
VEE
DUMMY62
DUMMY63
C1+
C1+
C1+
C1+
C1+
C1+
DUMMY64
DUMMY65
C1C1C1C1C1C1DUMMY66
DUMMY67
C2+
C2+
C2+
C2+
C2+
1025
1075
1125
1175
1225
1275
1325
1375
1425
1475
1525
1575
1625
1675
1725
1775
1825
1875
1925
1975
2025
2075
2125
2175
2225
2275
2325
2375
2425
2475
2525
2575
2625
2675
2725
2775
2825
2875
2925
2975
3025
3075
3125
3175
3225
3275
3325
3375
3425
3475
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-5-
NJU6645
Preliminary
! PAD COORDINATES 3
PAD No.
PAD name
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
C2+
DUMMY68
DUMMY69
C2C2C2C2C2C2DUMMY70
DUMMY71
C3+
C3+
C3+
C3+
C3+
C3+
DUMMY72
DUMMY73
C3C3C3C3C3C3DUMMY74
DUMMY75
C4+
C4+
C4+
C4+
C4+
C4+
DUMMY76
DUMMY77
C4C4C4C4C4C4DUMMY78
DUMMY79
C5+
C5+
C5+
C5+
C5+
C5+
DUMMY80
-6-
X= µm
3525
3575
3625
3675
3725
3775
3825
3875
3925
3975
4025
4075
4125
4175
4225
4275
4325
4375
4425
4475
4525
4575
4625
4675
4725
4775
4825
4875
4925
4975
5025
5075
5125
5175
5225
5275
5325
5375
5425
5475
5525
5575
5625
5675
5725
5775
5825
5875
5925
5975
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
DUMMY81
C5C5C5C5C5C5DUMMY82
DUMMY83
DUMMY84
DUMMY85
DUMMY86
DUMMY87
COM48
COM49
COM50
COM51
COM52
COM53
COM54
COM55
COM56
COM57
COM58
COM59
COM60
COM61
COM62
COM63
COM64
COM65
COM66
COM67
COM68
COM69
COM70
COM71
COM72
COM73
COM74
COM75
COM76
COM77
COM78
COM79
COM80
COM81
COM82
COM83
COM84
6025
6075
6125
6175
6225
6275
6325
6375
6425
6475
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1412.5
-1352
-1302
-1252
-1202
-1152
-1102
-1052
-1002
-952
-902
-852
-802
-752
-702
-652
-602
-552
-502
-452
-402
-352
-302
-252
-202
-152
-102
-52
-2
48
98
148
198
248
298
348
398
448
498
548
598
Ver.2009-05-20
Preliminary
NJU6645
! PAD COORDINATES 4
PAD No.
PAD name
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
COM85
COM86
COM87
COM88
COM89
COM90
COM91
COM92
COM93
COM94
COM95
COMMK1
DUMMY88
DUMMY89
DUMMY90
DUMMY91
DUMMY92
DUMMY93
SEG255
SEG254
SEG253
SEG252
SEG251
SEG250
SEG249
SEG248
SEG247
SEG246
SEG245
SEG244
SEG243
SEG242
SEG241
SEG240
SEG239
SEG238
SEG237
SEG236
SEG235
SEG234
SEG233
SEG232
SEG231
SEG230
SEG229
SEG228
SEG227
SEG226
SEG225
SEG224
Ver.2009-05-20
X= µm
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6918.5
6525
6475
6425
6375
6325
6275
6225
6175
6125
6075
6025
5975
5925
5875
5825
5775
5725
5675
5625
5575
5525
5475
5425
5375
5325
5275
5225
5175
5125
5075
5025
4975
4925
4875
4825
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
648
698
748
798
848
898
948
998
1048
1098
1148
1198
1248
1298
1348
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
SEG223
SEG222
SEG221
SEG220
SEG219
SEG218
SEG217
SEG216
SEG215
SEG214
SEG213
SEG212
SEG211
SEG210
SEG209
SEG208
SEG207
SEG206
SEG205
SEG204
SEG203
SEG202
SEG201
SEG200
SEG199
SEG198
SEG197
SEG196
SEG195
SEG194
SEG193
SEG192
SEG191
SEG190
SEG189
SEG188
SEG187
SEG186
SEG185
SEG184
SEG183
SEG182
SEG181
SEG180
SEG179
SEG178
SEG177
SEG176
SEG175
SEG174
4775
4725
4675
4625
4575
4525
4475
4425
4375
4325
4275
4225
4175
4125
4075
4025
3975
3925
3875
3825
3775
3725
3675
3625
3575
3525
3475
3425
3375
3325
3275
3225
3175
3125
3075
3025
2975
2925
2875
2825
2775
2725
2675
2625
2575
2525
2475
2425
2375
2325
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
-7-
NJU6645
Preliminary
! PAD COORDINATES 5
PAD No.
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
-8-
PAD name
SEG173
SEG172
SEG171
SEG170
SEG169
SEG168
SEG167
SEG166
SEG165
SEG164
SEG163
SEG162
SEG161
SEG160
SEG159
SEG158
SEG157
SEG156
SEG155
SEG154
SEG153
SEG152
SEG151
SEG150
SEG149
SEG148
SEG147
SEG146
SEG145
SEG144
SEG143
SEG142
SEG141
SEG140
SEG139
SEG138
SEG137
SEG136
SEG135
SEG134
SEG133
SEG132
SEG131
SEG130
SEG129
SEG128
SEG127
SEG126
SEG125
SEG124
X= µm
2275
2225
2175
2125
2075
2025
1975
1925
1875
1825
1775
1725
1675
1625
1575
1525
1475
1425
1375
1325
1275
1225
1175
1125
1075
1025
975
925
875
825
775
725
675
625
575
525
475
425
375
325
275
225
175
125
75
25
-25
-75
-125
-175
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
SEG123
SEG122
SEG121
SEG120
SEG119
SEG118
SEG117
SEG116
SEG115
SEG114
SEG113
SEG112
SEG111
SEG110
SEG109
SEG108
SEG107
SEG106
SEG105
SEG104
SEG103
SEG102
SEG101
SEG100
SEG99
SEG98
SEG97
SEG96
SEG95
SEG94
SEG93
SEG92
SEG91
SEG90
SEG89
SEG88
SEG87
SEG86
SEG85
SEG84
SEG83
SEG82
SEG81
SEG80
SEG79
SEG78
SEG77
SEG76
SEG75
SEG74
-225
-275
-325
-375
-425
-475
-525
-575
-625
-675
-725
-775
-825
-875
-925
-975
-1025
-1075
-1125
-1175
-1225
-1275
-1325
-1375
-1425
-1475
-1525
-1575
-1625
-1675
-1725
-1775
-1825
-1875
-1925
-1975
-2025
-2075
-2125
-2175
-2225
-2275
-2325
-2375
-2425
-2475
-2525
-2575
-2625
-2675
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
Ver.2009-05-20
Preliminary
NJU6645
! PAD COORDINATES 6
PAD No.
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
Ver.2009-05-20
PAD name
SEG73
SEG72
SEG71
SEG70
SEG69
SEG68
SEG67
SEG66
SEG65
SEG64
SEG63
SEG62
SEG61
SEG60
SEG59
SEG58
SEG57
SEG56
SEG55
SEG54
SEG53
SEG52
SEG51
SEG50
SEG49
SEG48
SEG47
SEG46
SEG45
SEG44
SEG43
SEG42
SEG41
SEG40
SEG39
SEG38
SEG37
SEG36
SEG35
SEG34
SEG33
SEG32
SEG31
SEG30
SEG29
SEG28
SEG27
SEG26
SEG25
SEG24
X= µm
-2725
-2775
-2825
-2875
-2925
-2975
-3025
-3075
-3125
-3175
-3225
-3275
-3325
-3375
-3425
-3475
-3525
-3575
-3625
-3675
-3725
-3775
-3825
-3875
-3925
-3975
-4025
-4075
-4125
-4175
-4225
-4275
-4325
-4375
-4425
-4475
-4525
-4575
-4625
-4675
-4725
-4775
-4825
-4875
-4925
-4975
-5025
-5075
-5125
-5175
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
SEG23
SEG22
SEG21
SEG20
SEG19
SEG18
SEG17
SEG16
SEG15
SEG14
SEG13
SEG12
SEG11
SEG10
SEG9
SEG8
SEG7
SEG6
SEG5
SEG4
SEG3
SEG2
SEG1
SEG0
DUMMY94
DUMMY95
DUMMY96
DUMMY97
DUMMY98
DUMMY99
COM47
COM46
COM45
COM44
COM43
COM42
COM41
COM40
COM39
COM38
COM37
COM36
COM35
COM34
COM33
COM32
COM31
COM30
COM29
COM28
-5225
-5275
-5325
-5375
-5425
-5475
-5525
-5575
-5625
-5675
-5725
-5775
-5825
-5875
-5925
-5975
-6025
-6075
-6125
-6175
-6225
-6275
-6325
-6375
-6425
-6475
-6525
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1412.5
1348
1298
1248
1198
1148
1098
1048
998
948
898
848
798
748
698
648
598
548
498
448
398
348
298
248
-9-
NJU6645
Preliminary
! PAD COORDINATES 7
PAD No.
PAD name
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
COM27
COM26
COM25
COM24
COM23
COM22
COM21
COM20
COM19
COM18
COM17
COM16
COM15
COM14
COM13
COM12
COM11
COM10
COM9
COM8
COM7
COM6
COM5
COM4
COM3
COM2
COM1
COM0
COMMK0
DUMMY100
DUMMY101
DUMMY102
- 10 -
X= µm
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
-6918.5
Chip Size 14.16mm x 3.16mm (Chip Center X=0µm, Y=0µm)
Y= µm
PAD No. PAD name
X= µm
Y= µm
198
148
98
48
-2
-52
-102
-152
-202
-252
-302
-352
-402
-452
-502
-552
-602
-652
-702
-752
-802
-852
-902
-952
-1002
-1052
-1102
-1152
-1202
-1252
-1302
-1352
Ver.2009-05-20
Preliminary
NJU6645
! LCD DISPLAY EXAMPLE
- Mix display (Full-size / Half-size / Graphics)
Ver.2009-05-20
- 11 -
Preliminary
NJU6645
! BLOCK DIAGRAM
Display
Counter
N-line
Inversion
Oscillator
Circuit
Timing
Generator
Character
Generator
RAM(CGRAM)
24,576-bit
Icon Display
RAM
(MKRAM)
512-bit
Common Driver
OSC1
OSC2
Character
Generator ROM
(Full-size FCGROM)
2M-bit
(Half-size HCGROM)
32k-bit
256-bit
Shift Register
RSTb
Reset
Circuit
Data Register
Full/Half/ODD/EVEN
Discrimination Circuit
Segment Driver
Graphics
Counter
98-bit
Shift Register
Display Data RAM(DD RAM)
1,536-bit
Data Register
Instruction Register
Interface
Instruction Decoder
Address
Counter
PS
SEL68
CSb
RS
WRb/RW
RDb/E
D7/SDA
D6/SCL
D5~D0
CSEL
TESTOUT
VDD
VSS
VPUP
VPDN
Attribute, Cursor,
Inversion
Reference
Voltage
VBA
VOUT
VREG
VREF
+
-
+
Gain
Control
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5VEE
E.V.R.
Boost Level
Register
+
-
VLCD
+
-
V1
+
-
V2
+
-
V3
+
-
V4
E.V.R. Register
Voltage
Booster
VDCOUT
- 12 -
Ver.2009-05-20
COM0~
COM95,
COMM0,
COMM1
SEG0~
SEG255
Preliminary
NJU6645
! TERMINAL DESCRIPTION
No.
SYMBOL
I/O
74 to 79
VDD
Power
84 to 89,
147 to 152
141 to 144
135 to 138
128 to 132
VSS
Power
VBA
VREF
VREG
Output
Input
Output
172 to 177
VEE
Power
155 to 160
VOUT
Power
163 to 169
VDCOUT
Output
92 to 97
100 to 104
107 to 111
114 to 118
VLCD
V1
V2
V3
121 to 125
V4
9,13,38
VPUP
Power/
Output
29
VPDN
Power/
Output
180 to 185
188 to 193
196 to 201
204 to 209
212 to 217
220 to 225
228 to 233
236 to 241
244 to 249
252 to 257
C1+
C1C2+
C2C3+
C3C4+
C4C5+
C5-
Output
81,82
OSC1
Input
71,72
OSC2
Input
18,19
RSTb
Input
15
CSEL
Input
Ver.2009-05-20
Power/
Output
FUNCTION
Power Supply (Logic, I/F)
VDD=2.4 to 3.6V
GND (Logic, I/F, High voltage)
VSS=0V
Reference-Voltage Generator Output
Voltage Regulator Input
Voltage Regulator Output
Voltage Booster Input
VEE is normally connected to VDD.
High Voltage Power Supply Input (External supply)
Input of LCD power supply circuit.
Voltage Booster Output
Output of voltage booster circuit.
LCD Bias Voltages
When the internal LCD power supply is used, internal LCD bias
voltages (VLCD and V1~V4) are activated by the “Power Control”
instruction. Stabilizing capacitors are required between each bias
voltage and VSS.
When the external LCD power supply is used, LCD bias voltages are
externally supplied on VLCD, V1, V2, V3 and V4 individually, with the
following relation maintained :
VSS<V4<V3<V2<V1<VDD
VPUP is internally connected to VDD to fix SEL68 or PS or CSEL to “H” if
necessary, and cannot be used as main power supply.
VPUP should be open if not used.
VPDN is internally connected to VSS to fix SEL68 or PS or CSEL to “L” if
necessary, and cannot be used as main GND.
VPDN should be open if not used.
Capacitor Connection for Voltage Booster
Resistor Connection for Oscillation Circuit
When the internal oscillator is used, connect OSC1 and VDD with an
external resistor. And fix OSC2 to “H” or “L”.
External Clock Input
When the internal oscillator is not used, input external clock to OSC2
and leave OSC1 open.
Reset
Active “L”
COM Output Select
“L” : Both sides wiring
“H” : Comb wiring
- 13 -
Preliminary
NJU6645
No.
SYMBOL
I/O
11
PS
Input
7
SEL68
Input
22,23
CSb
Input
26,27
RS
Input
31,32
WRb/RW
Input
35,36
RDb/E
Input
68,69
64,65
60,61
56,57
52,53
48,49
44,45
40,41
D7/SDA
D6/SCL
D5
D4
D3
D2
D1
D0
Input/
Output
- 14 -
FUNCTION
Parallel / Serial Interface Mode Select
“L” : Serial Interface
“H” : Parallel Interface
*In the serial interface mode (PS=”L”)
D5 to D0 should be fixed to “H” or “L”.
MPU Mode Select
Parallel Interface (PS=”H”)
“L” : 80-series
“H” : 68-series
Serial Interface (PS=”L”)
Not used. SEL68 should be fixed to “H” or “L”.
Chip Select
Active “L”
Register Select
This signal interprets transferred data as display data or instruction.
“L” : Instruction
“H” : Display Data
80-series MPU Interface (PS=”H”, SEL68=”L”)
Data Write (WRb) Signal
Active “L”
68-series MPU Interface (PS=”H”, SEL68=”H”)
Data Read or Write (RW) Signal
“L” : Write
“H” : Read
Serial Interface (PS=”L”)
Data Read or Write (RW) Signal
80-series MPU Interface (PS=”H”, SEL68=”L”)
Data Read (RDb) Signal
Active “L”
68-series MPU Interface (PS=”H”, SEL68=”H”)
Enable Signal
Active “H”
Serial Interface (PS=”L”)
Not used. RDb/E should be fixed to “H” or “L”.
Parallel Interface (PS=”H”)
In the parallel interface mode (PS=“H”), D7 to D0 are connected to 8-bit
bi-directional MPU bus.
D7 to D0 : 8-bit Bi-directional Bus
Serial Interface (PS=”L”)
D7 : Serial Data (SDA)
D6 : Serial Clock (SCL)
D5 to D0 should be fixed to “H” or “L”.
Ver.2009-05-20
Preliminary
No.
SYMBOL
SEG0~
319 to 574
SEG255
264 to 311, COM0~
581 to 628 COM95
COMMK0,
629,312
COMMK1
4
TESTOUT
-
Ver.2009-05-20
DUMMYx
I/O
Output
Output
Output
Output
-
NJU6645
FUNCTION
Segment Drivers
Segment drivers output an one level from VLCD, V2, V3 and VSS.
Common Drivers
Common drivers output an one level from VLCD, V1, V4 and VSS.
Common Drivers for Icons
For Testing
Dummy PAD
Dummy x is normally open.
- 15 -
Preliminary
NJU6645
! FUNCTION DESCRIPTION
(1) MPU INTERFACE
(1-1) Selection of Parallel / Serial Interface Mode
The PS selects a parallel or a serial interface mode, as shown in Table 1.
Table 1 Selection of Parallel / Serial Interface Mode
PS
I/F Mode
CSb
RS
RDb
CSb
RS
RDb
H
Parallel I/F
CSb
RS
L
Serial I/F
Note) “-“ : Fix to ”H” or ”L”
WRb
WRb
WRb
SEL68
SEL68
-
SDA
SCL
SDA
SCL
Data
D7~D0
-
(1-2) Data Recognition
The data from MPU is interpreted as display data or instruction according to the combination of the RS, RDb
and WRb(RW) signals, as shown in Table 2.
Table 2 Data Recognition
Function
Read Instruction
Write Instruction
Read Display Data
Write display Data
- 16 -
RS
0
0
1
1
68-series
RW
1
0
1
0
80-series
RDb
WRb
0
1
1
0
0
1
1
0
Serial
RW
1
0
1
0
Ver.2009-05-20
Preliminary
NJU6645
(1-3) Selection of MPU Mode
In the parallel interface mode, the SEL68 selects 68 or 80-series MPU mode, as shown in Table 3.
Table 3 Selection of MPU Mode
SEL68
MPU Mode
H
68-series MPU
L
80-series MPU
CSb
CSb
CSb
RS
RS
RS
RDb
E
RDb
WRb
RW
WRb
Data
D7~D0
D7~D0
When the CSb signal is “H”, the interface is reset. The data of one character is processed by writing two times.
In the DDRAM data writing, CSb is required to change to “H” once every two times. Because, it is
recognized as upper 1-byte after CSb is changed from “H” to “L”.
The data is latched at the rising edge of the WRb signal in the 80-series MPU mode, or at the falling edge of
the E signal in the 68-series MPU mode.
In the DDRAM read sequence, be sure to execute a dummy read right after setting an address or right after
writing display data or instruction. Therefore a dummy data is read out by the 1st “Display Data Read”
instruction. After that, the display data is read out from a specified address by the 2nd instruction. When the
RS switches, it should be CSb="H".
• 80-series parallel data transmission (PS=”H”, SEL68=”L”)
<Write>
RS
(Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte.
CSb
WRb
D7~D0
(Data bus direction)
<Read>
Input
RS
CSb
RDb
D7~D0
1st reading out is dummy.
(Data bus direction)
Input
Output
Input
Output
Input
Output
Input
The data bus is output at CSb=”L” and RDb=”L”.
Ver.2009-05-20
- 17 -
Preliminary
NJU6645
• 68-series parallel data transmission (PS=”H”, SEL68=”H”)
<Write>
RS
RW
(Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte.
CSb
E
D7~D0
(Data bus direction)
<Read>
Input
RS
RW
CSb
E
D7~D0
1st reading out is dummy.
(Data bus direction)
Input
Output
Input
Output
Input
Output
Input
The data bus is output at RW=”H”, CSb=”L” and E=”H”.
- 18 -
Ver.2009-05-20
Preliminary
NJU6645
(1-4) Serial Interface
The serial interface is transmitted with 5-line. While the chip select is active (CSb=“L”), the SDA and SCL
are enabled. While the chip select is inactive (CSb=“H”), the SDA and SCL are disabled, and the internal shift
register and the internal counter are being initialized. The data is interpreted as writes or reads according to
the RS.
8-bit serial data on the SDA is latched at the rising edge of the SCL signal in order of D7, D6,…, and D0, and
converted into 8-bit parallel data at the timing of the internal signal produced from the 8th SCL signal. The
data on the SDA is interpreted as display data or instruction according to the RS.
When the CSb signal is “H”, the interface is reset. The data of 1-character is processed by writing 2-byte. In
the DDRAM data writing, CSb is required to change to “H” once every 2-bytes. Because, it is recognized as
1-byte after CSb is changed from “H” to “L”.
Note that the SCL should be set to “L” right after data transmission or during non-access because the serial
interface is susceptible to external noises which may cause malfunctions.
In the read mode, selected address RAM data is read out after 1-dummy as for parallel interface. When the
RS and RW switches, it should be CSb="H".
Ver.2009-05-20
- 19 -
Preliminary
NJU6645
• Serial data transmission (PS=”L”)
<Write>
RW
(Data bus direction)
Input
The data bus is Input at RW=”L”.
RS
(Note) When the DDRAM data writing, CSb should be changed to "H" once every 2-byte.
CSb
SCL
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
SDA
<Read>
RW
(Data bus direction)
Output
Input
The data bus is output at RW=”H” and CSb=”L”.
RS
CSb
SCL
- 20 -
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
SDA
Ver.2009-05-20
Preliminary
NJU6645
(2) ADDRESS COUNTER
The NJU6645 has the address counter of 12-bit for read/write of RAM data. The address is set by "RAM
address set" instruction. In case of the RDM=”0”, the address is incremented after the RAM data writing and
reading. In case of the RDM=”1”, the address is incremented only after the RAM data writing. The address
doesn't change after the RAM data reading.
The address shifts as follows within range of the address DDRAM, MKRAM, and CGRAM. The DDRAM
address shifts in each line.
DDRAM (1-line)
DDRAM (2-line)
DDRAM (3-line)
DDRAM (4-line)
DDRAM (5-line)
DDRAM (6-line)
MKRAM
CGRAM
: (000)H → (001)H → --- → (01F)H → (000)H
: (020)H → (021)H → --- → (03F)H → (020)H
: (040)H → (041)H → --- → (05F)H → (040)H
: (060)H → (061)H → --- → (07F)H → (060)H
: (080)H → (081)H → --- → (09F)H → (080)H
: (0A0)H → (0A1)H → --- → (0BF)H → (0A0)H
: (100)H → (101)H → --- → (13F)H → (100)H
: (200)H → (201)H → --- → (DFF)H → (200)H
The address is shifted to +1 or -1 by "address shift (ARL)" instruction. When ARL="0" is input, whenever it
is input the address is shifted -1. When ARL="1" is input, whenever it is input the address is shifted +1. The
address shifts as follows within range of the address DDRAM, MKRAM and CGRAM.
DDRAM (1-line)
DDRAM (2-line)
DDRAM (3-line)
DDRAM (4-line)
DDRAM (5-line)
DDRAM (6-line)
MKRAM
CGRAM
Ver.2009-05-20
: (000)H ↔ (001)H ↔ --- ↔ (01F)H ↔ (000)H
: (020)H ↔ (021)H ↔ --- ↔ (03F)H ↔ (020)H
: (040)H ↔ (041)H ↔ --- ↔ (05F)H ↔ (040)H
: (060)H ↔ (061)H ↔ --- ↔ (07F)H ↔ (060)H
: (080)H ↔ (081)H ↔ --- ↔ (09F)H ↔ (080)H
: (0A0)H ↔ (0A1)H ↔ --- ↔ (0BF)H ↔ (0A0)H
: (100)H ↔ (101)H ↔ --- ↔ (13F)H ↔ (100)H
: (200)H ↔ (201)H ↔ --- ↔ (DFF)H ↔ (200)H
- 21 -
Preliminary
NJU6645
(3) DATA RAM
(3-1) RAM Address Map
Display Data RAM (DDRAM), Character Generator RAM(CGRAM), and Icon Data RAM(MKRAM) are
stored at the following addresses. The address is set in the address counter by "RAM address set" instruction.
RAM Address Map
BEH
BFH
C0H
FEH
FFH
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
DDRAM address
(1 address = 11-bit)
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
MKRAM address
(1 address = 7-bit)
D0
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
-----
3EH
3FH
40H
---
RAM ADDRESS – LOWER 8bit
00H
01H
02H
03H
EH FH
D2
D1
DH
D4
D3
-----
D7
D6
D5
D1
D0
D3
D2
D6
D5
D4
D0
D7
D5
D4
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D8
D10
D9
D3
D2
D1
RAM ADDRESS – UPPER 4bit
1H
2H
0H
*
*
*
*
*
*
*
*
*
*
*
*
*
*
CGRAM address
(1 address = 8-bit)
--- DDRAM (Display Data RAM)
--- MKRAM (Icon RAM)
--- CGRAM (Character Generator RAM)
* : Invalid Data
- 22 -
Ver.2009-05-20
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
Preliminary
NJU6645
(3-2) DDRAM
Display Data RAM (DDRAM) is RAM that memorizes the attribute display data, data for the capital letters
and small letters distinction, and the character-code data. RAM address uses "000H" ~ "0BFH ". The RAM
Capacity has 192 addresses of 11-bit/address. At this time, the full-size data is using 2 addresses for a
character, and the half-size data is using one address for a character. In the DDRAM address and the position
where the panel is displayed, there are relations of the following.
Correspondence of display position on panel and DDRAM address (SEL1=”0", SEL2=”0")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
000
020
040
060
080
0A0
001
021
041
061
081
0A1
2-digit
002
022
042
062
082
0A2
003
023
043
063
083
0A3
3-digit
004
024
044
064
084
0A4
005
025
045
065
085
0A5
4-digit
006
026
046
066
086
0A6
007
027
047
067
087
0A7
5-digit
008
028
048
068
088
0A8
6-digit
7-digit
8-digit
009 00A 00B 00C 00D 00E
029 02A 02B 02C 02D 02E
049 04A 04B 04C 04D 04E
069 06A 06B 06C 06D 06E
089 08A 08B 08C 08D 08E
0A9 0AA 0AB 0AC 0AD 0AE
00F
02F
04F
06F
08F
0AF
9-digit
010
030
050
070
090
0B0
011
031
051
071
091
0B1
10-digit
012
032
052
072
092
0B2
013
033
053
073
093
0B3
11-digit
014
034
054
074
094
0B4
015
035
055
075
095
0B5
12-digit
016
036
056
076
096
0B6
017
037
057
077
097
0B7
13-digit
018
038
058
078
098
0B8
019
039
059
079
099
0B9
14-digit
01A 01B
03A 03B
05A 05B
07A 07B
09A 09B
0BA 0BB
15-digit
01C
03C
05C
07C
09C
0BC
01D
03D
05D
07D
09D
0BD
16-digit
01E
03E
05E
07E
09E
0BE
01F
03F
05F
07F
09F
0BF
Correspondence of display position on panel and DDRAM address (SEL1=”1", SEL2=”0")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
0A0
080
060
040
020
000
0A1
081
061
041
021
001
2-digit
0A2
082
062
042
022
002
0A3
083
063
043
023
003
3-digit
0A4
084
064
044
024
004
0A5
085
065
045
025
005
4-digit
0A6
086
066
046
026
006
0A7
087
067
047
027
007
5-digit
0A8
088
068
048
028
008
6-digit
7-digit
8-digit
0A9 0AA 0AB 0AC 0AD 0AE
089 08A 08B 08C 08D 08E
069 06A 06B 06C 06D 06E
049 04A 04B 04C 04D 04E
029 02A 02B 02C 02D 02E
009 00A 00B 00C 00D 00E
0AF
08F
06F
04F
02F
00F
9-digit
0B0
090
070
050
030
010
0B1
091
071
051
031
011
10-digit
0B2
092
072
052
032
012
0B3
093
073
053
033
013
11-digit
0B4
094
074
054
034
014
0B5
095
075
055
035
015
12-digit
0B6
096
076
056
036
016
0B7
097
077
057
037
017
13-digit
0B8
098
078
058
038
018
0B9
099
079
059
039
019
14-digit
0BA 0BB
09A 09B
07A 07B
05A 05B
03A 03B
01A 01B
15-digit
0BC
09C
07C
05C
03C
01C
0BD
09D
07D
05D
03D
01D
16-digit
0BE
09E
07E
05E
03E
01E
0BF
09F
07F
05F
03F
01F
Correspondence of display position on panel and DDRAM address (SEL1=”0", SEL2=”1")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
01F
03F
05F
07F
09F
0BF
2-digit
3-digit
4-digit
01E 01D 01C 01B 01A 019
03E 03D 03C 03B 03A 039
05E 05D 05C 05B 05A 059
07E 07D 07C 07B 07A 079
09E 09D 09C 09B 09A 099
0BE 0BD 0BC 0BB 0BA 0B9
018
038
058
078
098
0B8
5-digit
017
037
057
077
097
0B7
016
036
056
076
096
0B6
6-digit
015
035
055
075
095
0B5
014
034
054
074
094
0B4
7-digit
013
033
053
073
093
0B3
012
032
052
072
092
0B2
8-digit
011
031
051
071
091
0B1
010
030
050
070
090
0B0
9-digit
10-digit
11-digit
12-digit
00F 00E 00D 00C 00B 00A 009
02F 02E 02D 02C 02B 02A 029
04F 04E 04D 04C 04B 04A 049
06F 06E 06D 06C 06B 06A 069
08F 08E 08D 08C 08B 08A 089
0AF 0AE 0AD 0AC 0AB 0AA 0A9
008
028
048
068
088
0A8
13-digit
007
027
047
067
087
0A7
006
026
046
066
086
0A6
14-digit
005
025
045
065
085
0A5
004
024
044
064
084
0A4
15-digit
003
023
043
063
083
0A3
002
022
042
062
082
0A2
16-digit
001
021
041
061
081
0A1
000
020
040
060
080
0A0
Correspondence of display position on panel and DDRAM address (SEL1=”1", SEL2=”1")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
0BF
09F
07F
05F
03F
01F
2-digit
3-digit
4-digit
0BE 0BD 0BC 0BB 0BA 0B9
09E 09D 09C 09B 09A 099
07E 07D 07C 07B 07A 079
05E 05D 05C 05B 05A 059
03E 03D 03C 03B 03A 039
01E 01D 01C 01B 01A 019
0B8
098
078
058
038
018
5-digit
0B7
097
077
057
037
017
0B6
096
076
056
036
016
6-digit
0B5
095
075
055
035
015
0B4
094
074
054
034
014
7-digit
0B3
093
073
053
033
013
0B2
092
072
052
032
012
8-digit
0B1
091
071
051
031
011
0B0
090
070
050
030
010
9-digit
10-digit
11-digit
12-digit
0AF 0AE 0AD 0AC 0AB 0AA 0A9
08F 08E 08D 08C 08B 08A 089
06F 06E 06D 06C 06B 06A 069
04F 04E 04D 04C 04B 04A 049
02F 02E 02D 02C 02B 02A 029
00F 00E 00D 00C 00B 00A 009
0A8
088
068
048
028
008
13-digit
0A7
087
067
047
027
007
0A6
086
066
046
026
006
14-digit
0A5
085
065
045
025
005
0A4
084
064
044
024
004
15-digit
0A3
083
063
043
023
003
0A2
082
062
042
022
002
16-digit
0A1
081
061
041
021
001
0A0
080
060
040
020
000
Note) The DDRAM is not initialized after the power supply turns on, therefore it is necessary to execute the
"Display Clear instruction" at first.
Ver.2009-05-20
- 23 -
Preliminary
NJU6645
(3-3) CGRAM
The character generator RAM (CG RAM) stores any kinds of character pattern written by the user program to
display user’s original character pattern. RAM address uses "200H" to "DFFH". The CG RAM is able to store
character of 5 x 8 dot for 4 kinds. Data "1" correspond to selection as a display, and Data "0" correspond to
non-selection as a display. When the character pattern stored in CGRAM is displayed, "0100H" to “015FH"
of the character-code is written in DDRAM. The following tables show the relation between the CGRAM
address, data, and the displayed pattern.
Correspondence of character code and CGRAM address
“0100”
CG
Address
“0110”
CG
Address
CG
CG
CG
CG
- 24 -
“0105”
“0106”
“0107”
“0108”
“0109”
“010A”
“010B”
“010C”
“010D”
“010E”
“010F”
“0111”
“0112”
“0113”
“0114”
“0115”
“0116”
“0117”
“0118”
“0119”
“011A”
“011B”
“011C”
“011D”
“011E”
“011F”
“0121”
“0122”
“0123”
“0124”
“0125”
“0126”
“0127”
“0128”
“0129”
“012A”
“012B”
“012C”
“012D”
“012E”
“012F”
“0131”
“0132”
“0133”
“0134”
“0135”
“0136”
“0137”
“0138”
“0139”
“013A”
“013B”
“013C”
“013D”
“013E”
“013F”
“0141”
“0142”
“0143”
“0144”
“0145”
“0146”
“0147”
“0148”
“0149”
“014A”
“014B”
“014C”
“014D”
“014E”
“014F”
A00 A10 A20 A30 A40 A50 A60 A70 A80 A90 AA0 AB0 AC0 AD0 AE0 AF0 B00 B10 B20 B30 B40 B50 B60 B70 B80 B90 BA0 BB0 BC0 BD0 BE0 BF0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
A0F A1F A2F A3F A4F A5F A6F A7F A8F A9F AAF ABF ACF ADF AEF AFF B0F B1F B2F B3F B4F B5F B6F B7F B8F B9F BAF BBF BCF BDF BEF BFF
“0150”
Address
“0104”
800 810 820 830 840 850 860 870 880 890 8A0 8B0 8C0 8D0 8E0 8F0 900 910 920 930 940 950 960 970 980 990 9A0 9B0 9C0 9D0 9E0 9F0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
80F 81F 82F 83F 84F 85F 86F 87F 88F 89F 8AF 8BF 8CF 8DF 8EF 8FF 90F 91F 92F 93F 94F 95F 96F 97F 98F 99F 9AF 9BF 9CF 9DF 9EF 9FF
“0140”
Address
“0103”
600 610 620 630 640 650 660 670 680 690 6A0 6B0 6C0 6D0 6E0 6F0 700 710 720 730 740 750 760 770 780 790 7A0 7B0 7C0 7D0 7E0 7F0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
60F 61F 62F 63F 64F 65F 66F 67F 68F 69F 6AF 6BF 6CF 6DF 6EF 6FF 70F 71F 72F 73F 74F 75F 76F 77F 78F 79F 7AF 7BF 7CF 7DF 7EF 7FF
“0130”
Address
“0102”
400 410 420 430 440 450 460 470 480 490 4A0 4B0 4C0 4D0 4E0 4F0 500 510 520 530 540 550 560 570 580 590 5A0 5B0 5C0 5D0 5E0 5F0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
40F 41F 42F 43F 44F 45F 46F 47F 48F 49F 4AF 4BF 4CF 4DF 4EF 4FF 50F 51F 52F 53F 54F 55F 56F 57F 58F 59F 5AF 5BF 5CF 5DF 5EF 5FF
“0120”
Address
“0101”
200 210 220 230 240 250 260 270 280 290 2A0 2B0 2C0 2D0 2E0 2F0 300 310 320 330 340 350 360 370 380 390 3A0 3B0 3C0 3D0 3E0 3F0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
20F 21F 22F 23F 24F 25F 26F 27F 28F 29F 2AF 2BF 2CF 2DF 2EF 2FF 30F 31F 32F 33F 34F 35F 36F 37F 38F 39F 3AF 3BF 3CF 3DF 3EF 3FF
“0151”
“0152”
“0153”
“0154”
“0155”
“0156”
“0157”
“0158”
“0159”
“015A”
“015B”
“015C”
“015D”
“015E”
“015F”
C00 C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CE0 CF0 D00 D10 D20 D30 D40 D50 D60 D70 D80 D90 DA0 DB0 DC0 DD0 DE0 DF0
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
C0F C1F C2F C3F C4F C5F C6F C7F C8F C9F CAF CBF CCF CDF CEF CFF D0F D1F D2F D3F D4F D5F D6F D7F D8F D9F DAF DBF DCF DDF DEF DFF
Ver.2009-05-20
Preliminary
NJU6645
Relation between the CGRAM address, data, and the displayed pattern
Character Code =”0100” (DDRAM Data)
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
Upper Address 8bit=23H
D5
Upper Address 8bit=22H
D6
0H
1H
2H
3H
4H
5H
6H
7H
8H
9H
AH
BH
CH
DH
EH
FH
Character Code =”0101” (DDRAM Data)
Upper Address 8bit=21H
D7
Lower Address 4bit
Upper Address 8bit=20H
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
0
0
0
0
1
1
1
0
0
1
1
1
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
0
1
1
1
1
1
1
1
1
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
---
Character Code =”0110” (DDRAM Data)
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
---
---
D5
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
---
D6
0H
1H
2H
3H
4H
5H
6H
7H
8H
9H
AH
BH
CH
DH
EH
FH
Upper Address 8bit=41H
D7
Lower Address 4bit
Upper Address 8bit=40H
Note) The CGRAM is not initialized after the power supply turns on, therefore it is necessary to write data into
CGRAM before display on.
Ver.2009-05-20
- 25 -
NJU6645
Preliminary
(3-4) MKRAM
The icon display generator RAM (MK RAM) is RAM that stores 512 output ON/OFF settings. RAM address
uses "100H" to "13FH". By storing data in this RAM, ON/OFF of each icon is set. Data "1" correspond to
selection as a display, and Data "0" correspond to non-selection as a display.
Correspondence of SEG/COM terminals and MKRAM address (SEL1=”0", SEL2=”0")
0
:
7
MK
COM0
MK
COM1
SEG
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
: : : :
: : : : :
:
:
:
:
:
:
: : : : : : :
: : :
:
:
:
:
:
:
15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255
100 101 102 103 104 105 106 107 108 109 10A 10B 10C 10D 10E 10F 110 111 112 113 114 115 116 117 118 119 11A 11B 11C 11D 11E 11F
120 121 122 123 124 125 126 127 128 129 12A 12B 12C 12D 12E 12F 130 131 132 133 134 135 136 137 138 139 13A 13B 13C 13D 13E 13F
SEG0
SEG1
SEG2
SEG3
SEG4
SEG5
SEG6
SEG7
SEG8
SEG9
SEG10
SEG11
SEG12
SEG13
SEG14
SEG15
SEG16
SEG17
SEG18
SEG19
SEG20
SEG21
SEG22
SEG23
SEG24
SEG25
SEG26
SEG27
SEG28
SEG29
SEG30
SEG31
---
SEG248
SEG249
SEG250
SEG251
SEG252
SEG253
SEG254
SEG255
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
---
D7
D6
D5
D4
D3
D2
D1
D0
Correspondence of SEG/COM terminals and each bit of MKRAM address (SEL1=”0", SEL2=”0”)
MK
COM0
Address=100H
Address=101H
Address=102H
Address=103H
---
Address=11FH
MK
COM1
Address=120H
Address=121H
Address=122H
Address=123H
---
Address=13FH
Note) The MKRAM is not initialized after the power supply turns on, therefore it is necessary to write data into
CGRAM before display on.
Note) Correspondence to the SEG/COM terminals are changed by the “Driver Output Control instruction” (SEL1,
SEL2). Refer to “(9) COMMON SHIFT DIRECTION / SEGMENT OUTPUT DIRECTION” for details.
Note) When the "Display Control instruction" is ALLON="1", display is all ON regardless of the content of RAM.
(3-5) FCGROM (Full-size font ROM)
Full-size font character generator ROM (FCGROM) generates 16 x 16 dots character pattern represented in
14-bit character codes. The NJU6645 has the Full-size font pattern of 8,128-font such as the JIS level-1,
level-2 and non-kanji. Refer to “(14) Full-size / Half-size Font Mix Display” for the correspondence of the
JIS code and the character code set to DDRAM.
(3-6) HCGROM (Half-size font ROM)
Half-size font character generator ROM (FCGROM) generates 8 x 16 dots character pattern represented in
8-bit character codes. The NJU6645 has the Half-size font pattern of 256-font. Refer to “(14) Full-size /
Half-size Font Mix Display” for the correspondence of the character code set to DDRAM.
- 26 -
Ver.2009-05-20
Preliminary
NJU6645
D5
D1
D0
D1
D0
D1
D2
D0
D0
D6
D1
D7
D2
D2
0
D3
D3
0
D4
D4
0
0
D6
Half-size character code 8bit
D5
0
0
D3
2nd byte
Half-size discrimination code
D7
P1
Input Data
Attribute
1
Attribute
P0
0
1st byte
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
(3-7) Correspondence of the JIS Code, Input Data, RAM Data and RAM Address
(3-7-1) Write Data to DDRAM
(i) Half-size font character
The half-size data becomes the data of one character by the input data of 2-byte, and it is stored at one RAM
address. When the lower 6-bit of 1st byte is all “0”, it is recognized as half-size data. The attribute data is
allocated in upper 2-bit in the 1st input byte. When the half-size font, “1” is stored in the MSB of RAM data
as full-size/half-size discrimination bit.
D2
D3
D4
D5
D6
Character code 8bit
D7
1
DDRAM
DDRAM address
Full/
D10
Half
Attribute
P1
D9
1
Attribute
D8
P0
0
ALL”0” → D10=”1”
n
Note) When the full-size character is overwritten by half-size character, the character is displayed unexpected.
Therefore, when the full-size character is overwritten by half-size character, it must write two character's
equivalent or rewrite all character.
- Prohibited matter
(1) In the 32nd half-size character of each line (right edge) prohibit overwriting the full-size character.
(2) In the only half left of full-size character prohibit overwriting the half-size character.
(3) In the only half right of full-size character prohibit overwriting the half-size (full-size) character.
Ver.2009-05-20
- 27 -
Preliminary
NJU6645
D0
D1
D2
D3
D1
D0
D1
D0
D1
D4
D8
D4
D2
D5
D5
D2
D6
D6
D2
D7
D7
D3
D8
D0
D3
D9
D1
1 ODD/EVEN D9
D12
D7
D3
D13
D8
D10
Attribute
1
Attribute
P0
0
2nd byte
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D4
D11
D10
D5
Full-size character code 14bit
D6
P1
D10
1st byte
Input data
D4
D5
D6
D7
D0
D1
D2
D3
D11
D12
D4
D10
D13
D5
JIS code lower 7bit
D2
D14
D6
0
D3
D15
JIS code upper 7bit
D7
0
JIS code
D4
D5
D6
D7
(ii) Full-size font character
The full-size data becomes the data of 1-character by the input data of 2-byte, and it is stored at two RAM
address. The attribute data is allocated in upper 2-bit in the 1st input byte. When the full-size font, “0” is
stored in the MSB of RAM data as Full-size/half-size discrimination bit. And, “0” or “1” is stored in the 2nd
bit of RAM as 1st byte/2nd byte discrimination data. (1st bit : “0”, 2nd bit : “1”)
The character code is 14-bit stuffed into the lower bit excluding 1-bit (code : ”0”) and 9-bit (code : ”0”) of JIS
codes (16-bit).
The relation between each bit allocation of JIS code and input data and the RAM is as follows.
In case of 2nd byte
→ D9=”1”
In case of 1st byte
→ D9=”0”
DDRAM address
- 28 -
n
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D4
D3
D5
D6
D7
Character code lower 8bit
0
Full/
Half
0
D8
D9
D10
D11
D12
D13
Character code upper 6bit
0
P0
Attribute
1
Attribute
0
P1
0 ODD/EVEN D9
DDRAM
0
Full/
Half
Except for ALL”0”
→ D10=”0”
n+1
Ver.2009-05-20
Preliminary
NJU6645
When the DDRAM is written, the address is incremented as follows once a 1-byte in case of the full-size data,
and once a 2-byte in case of the half-size data.
0
0
P1
P0
0
D13
D12
D11
D10
D9
D8
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
P1
P0
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
1
P1
P0
D7
D6
D5
D4
D3
D2
D1
D0
P1
P0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
---
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
DDRAM
Full-size character data
5th byte
6th byte
0
0
P1
P0
0
D13
D12
D11
D10
D9
D8
Input data
Half-size character data
3rd byte
4th byte
P1
P0
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Full-size character data
1st byte
2nd byte
n
n+1
n+2
n+3
n+4
DDRAM
address
---
The data is recognized without fail as the first byte, immediately after CSb becomes “L”. Therefore, when the
DDRAM data is written, it is necessary to make CSb = ”H” after it finishes writing the 2nd byte.
CSb
RS
WRb
D7~D0
n
n+1
n+2
mth character data
Address Set n
n+3
n+4
m+1th character data
n+5
m+2th character data
(3-7-2) Write Data to CGRAM
The CGRAM has 8-bit per an address, and the input value is stored in each bit as follows. The address is
incremented once a 1-byte at the data writing.
Relation between the interface, RAM data, and RAM address, in the CGRAM data writing
CGRAM
address
Ver.2009-05-20
D1
D2
D3
D4
D5
D6
D0
D0
D1
D2
D3
D4
D5
D6
D7
D7
D1
D0
D0
D2
3rd byte
D1
D3
D5
D4
201H
D2
D3
D4
D5
D7
D1
D6
D6
D7
D0
D0
2nd byte
D1
D2
D3
D4
200H
D2
D3
D4
D6
D5
D5
D6
RAM data
D7
Input data
D7
1st byte
---
---
202H
- 29 -
Preliminary
NJU6645
(3-7-3) Write Data to MKRAM
The CGRAM has 8-bit per an address, and the input value is stored in each bit as follows. The address is
incremented once a 1-byte at the data writing.
Relation between the interface, RAM data, and RAM address, in the MKRAM data writing
100H
D1
D2
D3
D4
D5
D6
D7
D0
D0
D1
D2
D3
D4
D5
D6
D7
D1
D0
D0
D2
3rd byte
D1
D3
D4
D5
D6
D7
101H
D2
D3
D4
D5
D6
D7
D1
D0
D0
D2
D3
D4
2nd byte
D1
D2
D3
D5
D6
MKRAM
address
D4
D5
D6
RAM data
D7
Input data
D7
1st byte
---
---
102H
(3-7-4) Write to Instruction Register
The instruction set is stored in the internal instruction register by the 8-bit input in the state of RS=”0”,
RW=”0”. The instruction code is applied to the item corresponding to the RE register set beforehand. Refer to
"(20) Instruction table" for the correspondence of input data and the instruction.
Write to instruction Register
D0
D1
D2
D3
D4
D5
D6
D7
Instruction data
- 30 -
D0
D3
D3
D0
D4
D4
D1
D5
D5
D1
D6
D6
Instruction
discrimination
D2
D7
Instruction
register
D2
Input data
D7
Instruction code
Instruction
register
Ver.2009-05-20
Preliminary
NJU6645
(3-8) Read Data from RAM
The data is read out from DDRAM, CGRAM, and MKRAM. When reading data from the RAM, it is
necessary to read after the address setting. The dummy reading is necessary right after the address setting.
After read out, the address is incremented automatically according to the entry mode.
(Note) When the DDRAM data reading, CSb should be changed to "H" once every 2-byte.
CSb
RS
WRb
RDb
D7~D0
n
Address Set n
n+1
n+2
Dummy read
n+3
n+4
Data read
(3-8-1) Read Data from DDRAM
The DDRAM reading discriminates whether the content of the DDRAM data is full-size/half-size, and is
output by an input and the same format. The data is recognized without fail as the 1st byte, immediately after
CSb becomes “L”. Therefore, when the DDRAM data is read, it is necessary to make CSb = ”H” after it
finishes reading the 2nd byte.
(i) Half-size font character
When the content of DDRAM data is half-size character code, the address data of one address is divided
2-byte. And after read the 2nd byte, the address is incremented according to the entry mode. The 3rd to 8th bit
in 1st byte is all output “0”.
DDRAM address
Ver.2009-05-20
D0
D1
D2
D3
D4
D5
D0
D3
0
D1
D4
0
D6
D5
0
D7
D6
0
1st byte
D2
P0
D7
P1
P0
0
1
Output data
0
DDRAM
P1
n
2nd byte
- 31 -
Preliminary
NJU6645
(ii) Full-size font character
When the content of DDRAM data is full-size character code, the address data of 1-address is read by 1-byte.
And after read, the address is incremented according to the entry mode.
D5
D4
D3
D2
D1
D0
D0
D6
D1
D7
0
D5
D3
1
D6
1st byte
D4
0
D7
D8
D9
D11
D8
D10
D12
D9
P0
D12
0
P1
D13
D13
0
P0
D11
0
Output data
n+1
D10
DDRAM
P1
n
D2
DDRAM address
2nd byte
(3-8-2) Read Data from CGRAM and MKRAM
The CGRAM and MKRAM read the address data of one address by 1-byte as follows. And after read, the
address is incremented according to the entry mode.
D0
D1
D2
D3
---
2nd byte
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
n+2
D2
D3
D5
D6
D7
D0
D1
1st byte
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
n+1
D2
D3
D4
D5
D6
D7
Output data
n
D4
CGRAM
address
D3
D4
D5
D6
RAM data
D7
Relation between the interface, RAM data, and RAM address, in the CGRAM and MKRAM data reading
---
3rd byte
(3-9) Status Read
The status reading is output to the following bits. The dummy reading is not necessary for the status reading.
However, the dummy reading is necessary for the status reading at the serial interface.
- 32 -
D0
D1
Display line
on now
D2
D3
D4
Display row
on now
D5
D6
Output data
D7
Busy flag
Status Read
Ver.2009-05-20
Preliminary
NJU6645
Correspondence Table of Character code and JIS code (ROM version “00”)
- 0000 ~ 00FF : Half-size character code (256-character)
- 0100 ~ 015F : CGRAM character code (96-character)
- 10A1 ~ 3A7F : Full-size character code (8064-character)
Note) Refer to "Correspondence Table of Half-size character code and Character pattern" for the half-size
character.
Ver.2009-05-20
- 33 -
NJU6645
- 34 -
Preliminary
Ver.2009-05-20
Preliminary
Ver.2009-05-20
NJU6645
- 35 -
NJU6645
- 36 -
Preliminary
Ver.2009-05-20
Preliminary
Ver.2009-05-20
NJU6645
- 37 -
NJU6645
- 38 -
Preliminary
Ver.2009-05-20
Preliminary
Ver.2009-05-20
NJU6645
- 39 -
NJU6645
- 40 -
Preliminary
Ver.2009-05-20
Preliminary
Ver.2009-05-20
NJU6645
- 41 -
NJU6645
- 42 -
Preliminary
Ver.2009-05-20
Preliminary
Ver.2009-05-20
NJU6645
- 43 -
NJU6645
Preliminary
Correspondence Table of Half-size character code and Character pattern (ROM version “00”)
- 44 -
Ver.2009-05-20
Preliminary
NJU6645
(4) FULL SCREEN REVERSE DISPLAY FUNCTION
This function reverses the full character and graphic display part except the icon display part. It is possible to
reverse display easily without the RAM rewriting by this function. The cursor and the attribute display part
are reversed too.
The icon part doesn't change.
Character/graphic part is reversed.
Ver.2009-05-20
- 45 -
NJU6645
Preliminary
(5) CURSOR CONTROL
The method of displaying the cursor has 3-kind that are the reversing blink (BW=”1”) and the underline
blinks of 16th row (C=”1”) and the black blink (B=”1"). The “LC” register is possible to switch the cursor
display of 1-character corresponding to the DDRAM address set in the address counter and the cursor display
of the entire line including the setting address.
(5-1) Character Cursor
(5-1-1) Underline <C=”1”, LC=”0”, B=”0”, BW=”0”>
The underline is displayed to the 16th row. When there is ON data in the 16th row, the data displays the
logical add with original data.
Cursor
(5-1-2) Reverse Blink <C=”1”, LC=”0”, B=”0”, BW=”1”>
The character at the cursor position is blinking with the reversing display. And then, the reversing switches at
every 32-frame cycle.
It alternately displays at
every 32-frame cycle.
(5-1-3) Black Blink <C=”1”, LC=”0”, B=”1”, BW=”0”>
The character at the cursor position is blinking with the black pattern display. The blinking switches the all
black pattern and the character pattern at every 32-frame cycle.
It alternately displays at
every 32-frame cycle.
- 46 -
Ver.2009-05-20
Preliminary
NJU6645
(5-2) Line Cursor
(5-2-1) Line Unit Underline <C=”1”, LC=”1”, B=”0”, BW=”0”>
The 16th row of the line including the DDRAM address setting in the address counter is all ON. When there
is character data, the data displays the logical add.
Line Unit Underline
(5-2-2) Line Unit Reverse <C=”1”, LC=”1”, B=”0”, BW=”1”>
The line including the DDRAM address setting in the address counter is reversed display.
Line Unit Reverse
(5-2-3) Line Unit White Blink <C=”1”, LC=”1”, B=”1”, BW=”0”>
The line including the DDRAM address setting in the address counter is blinking with the white pattern
display. The blinking switches the all white pattern and the character data at every 32-frame cycle.
Line Unit White Blink
Ver.2009-05-20
- 47 -
Preliminary
NJU6645
(6) DISPLAY ATTRIBUTE SETTING
NJU6645 is set the Reverse Display, the White Blink Display and the Reverse Blink Display by the display
attribute code of each character in 2-bit. This display is applied in matrix unit of the 16 x 16 dots in the
full-size data and the 8 x 16 dots in the half-size data. The White Blink Display and the Reverse Blink
Display are switching at every 32-frame cycle.
< Relation between the input data at the data writing to DDRAM and the bit >
The attribute code of full-size / half-size character is allocated the 1st bit and 2nd bit in the 1st byte. When the
DDRAM data is written, it is necessary to select the attribute code of this bit and to input the attribute of each
character.
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
Attribute 0
Half-size
attribute code
Half-size character
code 8bit
P1
P0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
Full-size character code 14bit
P1
P0
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Attribute 0
Attribute 1
2nd byte
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
2nd byte
[Half-size character data]
1st byte
Attribute 1
[Full-size character data]
1st byte
< Correspondence of the attribute code and the display status >
The display status changes according to the following tables.
P1
0
0
1
1
- 48 -
P0
0
1
0
1
Display Status
Normal
Reverse
White blink
Reverse blink
Ver.2009-05-20
Preliminary
NJU6645
< Example of display when the display attribute is selected >
(i) Reverse
<Full-size character display>
<Half-size character display>
(ii) White blink
It alternately displays at
every 32-frame cycle.
(iii) Reverse blink
It alternately displays at
every 32-frame cycle.
Ver.2009-05-20
- 49 -
Preliminary
NJU6645
(7) RELATION BETWEEN ATTRIBUTE, BLINK and FULL SCREEN REVERSE DISPLAY
The attribute display, the cursor display, and full screen reverse display are sequentially processed as shown
in the following figures. The period that the data of various blinks is converted is reversed in the attribute
display processing block and the cursor display processing block. Therefore, when the part where the attribute
of the blink was selected and the cursor position of the blink overlap, the attribute display and the cursor
display are alternately displayed. The full screen reverse display reverses the data after the attribute display
processing and the cursor display processing are done.
CGROM,CGRAM
Period A is
Active
32-flame
Counter
Setting
OFF
Reverse
Reverse blink
White blink
Attribute processing block
Processing Content
Reversing all bits. (INV)
Reversing all bits at period A. (INV)
Changing to the OFF data in all bits at period A. (NOR)
Setting
OFF
Underline
Black blink
Reverse blink
Underline(Line unit)
White blink(Line unit)
Reverse(Line unit)
Cursor processing block
Period B is
Active
Full screen reverse
processing block
Period B = Period A
Setting
OFF
Reverse
Display Data
Processing Content
Changing to the all ON data in 16th row. (OR)
Changing to the ON data in all bits at period B. (OR)
Reversing all bits at period B. (INV)
Changing to the all ON data in 16th row within the line. (OR)
Changing to the OFF data in all bits within the line at period B. (NOR)
Reversing all bits within the line. (INV)
Processing Content
Reversing all bits. (INV)
< Method of display when attribute selection overlaps with cursor display >
Attribute
Cursol
ABCDE FG
OFF
Underline
Black blink
Nomal
+
Reverse blink
Underline
(Line unit)
White blink
(Line unit)
Reverse
(Line unit)
- 50 -
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
Attribute + Cursol display
=
=
=
=
=
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
=
ABCDE FG
=
ABCDE FG
Ver.2009-05-20
Preliminary
Attribute
Cursol
ABCDE FG
OFF
Reverse attribute selection part
Underline
Black blink
+
Reverse
Reverse blink
Underline
(Line unit)
White blink
(Line unit)
Reverse
(Line unit)
Attribute
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
Attribute + Cursol display
=
=
=
=
=
OFF
ABCDE FG
=
ABCDE FG
=
ABCDE FG
Black blink
Reverse
blink
+
Reverse blink
Underline
(Line unit)
White blink
(Line unit)
Reverse (Line)
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
=
=
=
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
=
ABCDE FG
=
Ver.2009-05-20
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
=
Underline
ABC E FG
ABCDE FG
Attribute + Cursol display
ABCDE FG
ABCDE FG
Reverse blink attribute selection part
ABCDE FG
ABCDE FG
ABCDE FG
=
Cursol
ABCDE FG
NJU6645
ABCDE FG
ABCDE FG
ABCDE FG
- 51 -
Preliminary
NJU6645
Attribute
Cursol
ABCDE FG
AB
OFF
Attribute + Cursol display
ABCDE FG
ABCDE FG
=
FG
White blink attribute selection part
Underline
ABCDE FG
=
ABCDE FG
Black blink
White
blink
+
Reverse blink
Underline
(Line unit)
White blink
(Line unit)
Reverse (Line)
ABCDE FG
ABCDE FG
ABCDE FG
ABCDE FG
=
=
=
AB
FG
ABCDE FG
AB
FG
ABCDE FG
AB
FG
ABCDE FG
AB
FG
ABCDE FG
=
ABCDE FG
=
- 52 -
AB
FG
ABCDE FG
AB
FG
ABCDE FG
ABDDD F G
Ver.2009-05-20
Preliminary
NJU6645
(8) COMMON DRIVER OUTPUT SWITCHING
The common output order of NJU6645 is selected by CSEL terminal (Both sides wiring or Comb wiring).
When the CSEL="L", the COM0 to 47 connects on the upper half of the panel and the COM48 to 95 connects
on the lower half. When the CSEL="H", the COM is divided by 16, that is connected to the panel by the
comb pattern.
< Wiring image >
(i) CSEL=”L” Both sides wiring mode
COMMK0
COM0
:
:
:
COM47
Panel
(CSEL=”L”)
COM47
:
:
COM0
COMMK0
NJU6645
COM48
:
:
:
COM95
COMMK1
COMMK1
COM95
:
:
COM48
(ii) CSEL=”H” Comb wiring mode
COMMK0
COM0
:
COM15
COM16
:
COM31
COM32
:
COM47
Panel
(CSEL=”H”)
COM64
:
COM79
COM80
:
COM95
COMMK1
COM47
:
:
COM0
COMMK0
Ver.2009-05-20
COM48
:
COM63
NJU6645
COMMK1
COM95
:
:
COM48
- 53 -
NJU6645
Preliminary
(9) COMMON SHIFT DIRECTION / SEGMENT OUTPUT DIRECTION
The direction of COM scan and SEG output of the dot matrix part and icon part is changed by "Driver Output
Control" instruction (SEL1, SEL2). The output data of SEG and COM changes as follows.
COMMK0
COM0
COM1
COM data
COM output terminal
COM94
COM95
COMMK1
COMMK0
COM0
COM1
COM output terminal
COM94
COM95
COMMK1
COMMK0
COM0
COM1
COM data
COMMK0
COM0
COM1
COM output direction switching
< SEL1=”0" >
COM94
COM95
COMMK1
COM94
COM95
COMMK1
< SEL1=”1" >
SEG0
SEG1
SEG2
SEG output terminal
SEG253
SEG254
SEG255
SEG data
SEG253
SEG254
SEG255
SEG0
SEG1
SEG2
SEG output direction switching
< SEL2=”0" >
SEG0
SEG1
SEG2
SEG output terminal
- 54 -
SEG253
SEG254
SEG255
SEG data
SEG253
SEG254
SEG255
SEG0
SEG1
SEG2
< SEL2=”1" >
Ver.2009-05-20
Preliminary
NJU6645
The correspondence of the display position on the panel and the DDRAM address is changed as follows.
SEL1=”0”, SEL2=”0"
The correspondence of the display position on the panel and the DDRAM address (SEL1=”0", SEL2=”0")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
000
020
040
060
080
0A0
001
021
041
061
081
0A1
2-digit
002
022
042
062
082
0A2
003
023
043
063
083
0A3
3-digit
004
024
044
064
084
0A4
005
025
045
065
085
0A5
4-digit
006
026
046
066
086
0A6
007
027
047
067
087
0A7
5-digit
008
028
048
068
088
0A8
6-digit
7-digit
009 00A 00B 00C
029 02A 02B 02C
049 04A 04B 04C
069 06A 06B 06C
089 08A 08B 08C
0A9 0AA 0AB 0AC
00D
02D
04D
06D
08D
0AD
8-digit
00E
02E
04E
06E
08E
0AE
00F
02F
04F
06F
08F
0AF
9-digit
010
030
050
070
090
0B0
011
031
051
071
091
0B1
10-digit
012
032
052
072
092
0B2
013
033
053
073
093
0B3
11-digit
014
034
054
074
094
0B4
015
035
055
075
095
0B5
12-digit
016
036
056
076
096
0B6
017
037
057
077
097
0B7
13-digit
018
038
058
078
098
0B8
019
039
059
079
099
0B9
14-digit
01A 01B
03A 03B
05A 05B
07A 07B
09A 09B
0BA 0BB
15-digit
01C
03C
05C
07C
09C
0BC
01D
03D
05D
07D
09D
0BD
16-digit
01E
03E
05E
07E
09E
0BE
01F
03F
05F
07F
09F
0BF
COM0
COM1
SEG0
SEG1
SEG254
SEG255
COM94
COM95
SEL1=”1”, SEL2=”0"
The correspondence of the display position on the panel and the DDRAM address (SEL1=”1", SEL2=”0")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
0A0
080
060
040
020
000
0A1
081
061
041
021
001
2-digit
0A2
082
062
042
022
002
0A3
083
063
043
023
003
3-digit
0A4
084
064
044
024
004
0A5
085
065
045
025
005
4-digit
0A6
086
066
046
026
006
0A7
087
067
047
027
007
5-digit
0A8
088
068
048
028
008
6-digit
7-digit
0A9 0AA 0AB 0AC
089 08A 08B 08C
069 06A 06B 06C
049 04A 04B 04C
029 02A 02B 02C
009 00A 00B 00C
0AD
08D
06D
04D
02D
00D
8-digit
0AE
08E
06E
04E
02E
00E
0AF
08F
06F
04F
02F
00F
9-digit
0B0
090
070
050
030
010
0B1
091
071
051
031
011
10-digit
0B2
092
072
052
032
012
0B3
093
073
053
033
013
11-digit
0B4
094
074
054
034
014
0B5
095
075
055
035
015
12-digit
0B6
096
076
056
036
016
0B7
097
077
057
037
017
13-digit
0B8
098
078
058
038
018
0B9
099
079
059
039
019
14-digit
0BA 0BB
09A 09B
07A 07B
05A 05B
03A 03B
01A 01B
15-digit
0BC
09C
07C
05C
03C
01C
0BD
09D
07D
05D
03D
01D
16-digit
0BE
09E
07E
05E
03E
01E
0BF
09F
07F
05F
03F
01F
COM0
COM1
SEG0
SEG1
SEG254
SEG255
COM94
COM95
Ver.2009-05-20
- 55 -
Preliminary
NJU6645
SEL1=”0”, SEL2=”1"
The correspondence of the display position on the panel and the DDRAM address (SEL1=”0", SEL2=”1")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
01F
03F
05F
07F
09F
0BF
2-digit
3-digit
4-digit
01E 01D 01C 01B 01A 019
03E 03D 03C 03B 03A 039
05E 05D 05C 05B 05A 059
07E 07D 07C 07B 07A 079
09E 09D 09C 09B 09A 099
0BE 0BD 0BC 0BB 0BA 0B9
018
038
058
078
098
0B8
5-digit
017
037
057
077
097
0B7
016
036
056
076
096
0B6
6-digit
015
035
055
075
095
0B5
014
034
054
074
094
0B4
7-digit
013
033
053
073
093
0B3
012
032
052
072
092
0B2
8-digit
011
031
051
071
091
0B1
010
030
050
070
090
0B0
9-digit
10-digit
11-digit
12-digit
00F 00E 00D 00C 00B 00A 009
02F 02E 02D 02C 02B 02A 029
04F 04E 04D 04C 04B 04A 049
06F 06E 06D 06C 06B 06A 069
08F 08E 08D 08C 08B 08A 089
0AF 0AE 0AD 0AC 0AB 0AA 0A9
008
028
048
068
088
0A8
13-digit
007
027
047
067
087
0A7
006
026
046
066
086
0A6
14-digit
005
025
045
065
085
0A5
004
024
044
064
084
0A4
15-digit
003
023
043
063
083
0A3
002
022
042
062
082
0A2
16-digit
001
021
041
061
081
0A1
000
020
040
060
080
0A0
COM0
COM1
SEG0
SEG1
SEG254
SEG255
COM94
COM95
SEL1=”1”, SEL2=”1"
The correspondence of the display position on the panel and the DDRAM address (SEL1=”1", SEL2=”1")
1-digit
1-line
2-line
3-line
4-line
5-line
6-line
0BF
09F
07F
05F
03F
01F
2-digit
3-digit
4-digit
0BE 0BD 0BC 0BB 0BA 0B9
09E 09D 09C 09B 09A 099
07E 07D 07C 07B 07A 079
05E 05D 05C 05B 05A 059
03E 03D 03C 03B 03A 039
01E 01D 01C 01B 01A 019
0B8
098
078
058
038
018
5-digit
0B7
097
077
057
037
017
0B6
096
076
056
036
016
6-digit
0B5
095
075
055
035
015
0B4
094
074
054
034
014
7-digit
0B3
093
073
053
033
013
0B2
092
072
052
032
012
8-digit
0B1
091
071
051
031
011
0B0
090
070
050
030
010
9-digit
10-digit
11-digit
12-digit
0AF 0AE 0AD 0AC 0AB 0AA 0A9
08F 08E 08D 08C 08B 08A 089
06F 06E 06D 06C 06B 06A 069
04F 04E 04D 04C 04B 04A 049
02F 02E 02D 02C 02B 02A 029
00F 00E 00D 00C 00B 00A 009
0A8
088
068
048
028
008
13-digit
0A7
087
067
047
027
007
0A6
086
066
046
026
006
14-digit
0A5
085
065
045
025
005
0A4
084
064
044
024
004
15-digit
0A3
083
063
043
023
003
0A2
082
062
042
022
002
16-digit
0A1
081
061
041
021
001
0A0
080
060
040
020
000
COM0
COM1
- 56 -
SEG254
SEG255
SEG0
SEG1
COM94
COM95
Ver.2009-05-20
Preliminary
NJU6645
The correspondence of the SEG/COM terminals and the MKRAM address is changed as follows.
The correspondence of the SEG/COM terminals and MKRAM address (SEL1=”0", SEL2=”0")
0
:
7
MK
COM0
MK
COM1
SEG
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
:
15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255
100 101 102 103 104 105 106 107 108 109 10A 10B 10C 10D 10E 10F 110 111 112 113 114 115 116 117 118 119 11A 11B 11C 11D 11E 11F
120 121 122 123 124 125 126 127 128 129 12A 12B 12C 12D 12E 12F 130 131 132 133 134 135 136 137 138 139 13A 13B 13C 13D 13E 13F
The correspondence of the SEG/COM terminals and MKRAM address (SEL1=”1", SEL2=”0")
0
:
7
MK
COM0
MK
COM1
SEG
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
:
15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255
120 121 122 123 124 125 126 127 128 129 12A 12B 12C 12D 12E 12F 130 131 132 133 134 135 136 137 138 139 13A 13B 13C 13D 13E 13F
100 101 102 103 104 105 106 107 108 109 10A 10B 10C 10D 10E 10F 110 111 112 113 114 115 116 117 118 119 11A 11B 11C 11D 11E 11F
The correspondence of the SEG/COM terminals and MKRAM address (SEL1=”0", SEL2=”1")
0
:
7
MK
COM0
MK
COM1
SEG
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
:
15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255
11F 11E 11D 11C 11B 11A 119 118 117 116 115 114 113 112 111 110 10F 10E 10D 10C 10B 10A 109 108 107 106 105 104 103 102 101 100
13F 13E 13D 13C 13B 13A 139 138 137 136 135 134 133 132 131 130 12F 12E 12D 12C 12B 12A 129 128 127 126 125 124 123 122 121 120
The correspondence of the SEG/COM terminals and MKRAM address (SEL1=”1", SEL2=”1")
0
:
7
MK
COM0
MK
COM1
SEG
8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128 136 144 152 160 168 176 184 192 200 208 216 224 232 240 248
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
: :
:
:
:
:
:
:
:
:
:
:
:
:
:
:
15 23 31 39 47 55 63 71 79 87 95 103 111 119 127 135 143 151 159 167 175 183 191 199 207 215 223 231 239 247 255
13F 13E 13D 13C 13B 13A 139 138 137 136 135 134 133 132 131 130 12F 12E 12D 12C 12B 12A 129 128 127 126 125 124 123 122 121 120
11F 11E 11D 11C 11B 11A 119 118 117 116 115 114 113 112 111 110 10F 10E 10D 10C 10B 10A 109 108 107 106 105 104 103 102 101 100
Ver.2009-05-20
- 57 -
NJU6645
Preliminary
(10) PARTIAL DISPLAY
The partial display is executed by combining the Display Duty Ratio instruction "DN2, 1, 0" with the Display
Start Position instruction "DST2, 1, 0". This function reduces the LCD driving voltage and the power
consumption when the duty set low like the clock display of stand-by.
1
2
3
4
5
6
Display Duty Ratio = 6th line
Display
Area
1
2
3
4
5
6
Non-display
Area
Display
Area
1
2
Display Duty Ratio = 2nd line
Display Start Position = 3rd line
Non-display
Area
When the Display Start Position is set to the 3rd line, the character data of the first line of the DDRAM
address is displayed from the 3rd line (33 to 48 rows). When the Display Duty Ratio is set to the 2nd line, the
duty corresponds to 2-line (16 rows x 2 + 2 rows of icon part).
- 58 -
Ver.2009-05-20
Preliminary
NJU6645
(11) VERTICAL SMOOTH SCROLL
NJU6645 is executed to the vertical smooth scroll display of 1-dot unit by combining the Scroll Start Row
with the Scroll Start Line. The display scroll is set by the “Scroll Start Line” instruction (0,1,2,3,4, and 5-line
scroll) at the unit of line (16-dot units). The display scroll is set by the “Scroll Start Row” instruction (0,1,2,
--- 14, and 15-dot scroll) at the 1 dot unit. The display shifts to the upside only the amount of “Scroll Start
Line” + “Scroll Start Row”. When it is made to scroll by Display Duty Ratio = 6-line, the display that pushed
outside the screen appears from the other side.
< Example of smooth scroll display >
(i) Scroll Start Line = ”0-line”
Scroll Start Row = “0-dot”
(ii) Scroll Start Line = ”0-line”
Scroll Start Row = “8-dot”
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(iii) Scroll Start Line = ”1-line”
Scroll Start Row = “0-dot”
(iv) Scroll Start Line = ”2-line”
Scroll Start Row = “8-dot”
Ver.2009-05-20
- 59 -
NJU6645
Preliminary
< Example of 4-dot smooth scroll display >
When the scroll operation to above by 4-dot of the 5-line display, the sequence and the panel image are
shown below.
Display Duty Ratio = 5-line
(RE, DB7~0) =
(0 1001 0001)
No scroll
Display ON
(0 0010 0001)
4-dot Scroll
(0 0111 0100)
4-dot Scroll
8-dot Scroll
(0 0111 1000)
8-dot Scroll
12-dot Scroll
(0 0111 1100)
12-dot Scroll
0-dot Scroll
(0 0111 0000)
1-line Scroll
(0 0110 0001)
16-dot Scroll
(1-line Scroll)
It is necessary to update the display data
in DDRAM or CGRAM of 6th line.
4-dot Scroll
(0 0111 0100)
20-dot Scroll
(1-line + 4-dot Scroll)
8-dot Scroll
(0 0111 1000)
24-dot Scroll
(1-line + 8-dot Scroll)
12-dot Scroll
(0 0111 1100)
28-dot Scroll
(1-line + 12-dot Scroll)
0-dot Scroll
(0 0111 0000)
32-dot Scroll
(2-line Scroll)
2-line Scroll
(0 0110 0010)
- 60 -
Ver.2009-05-20
Preliminary
NJU6645
(12) N-LINE INVERSION
NJU6645 sets the number of inversion line of the alternating signal for LCD to the optional values from 2 ~
98.
2nd line
--1st line
Icon 2nd line
Icon 1st line
96th line
95th line
3rd line
2nd line
--1st line
Icon 2nd line
Icon 1st line
95th line
3rd line
2nd line
1st line
---
96th line
< Setting example >
- N-line inversion = 98-line
Frame
Inversion
Inversion
Inversion
98-line
98-line
4th line
3rd line
2nd line
--1st line
Icon 2nd line
Icon 1st line
5th line
4th line
3rd line
2nd line
1st line
---
96th line
- N-line inversion = 2-line
Frame
Inversion Inversion Inversion
2-line
Ver.2009-05-20
2-line
2-line
Inversion Inversion Inversion
2-line
2-line
2-line
2-line
- 61 -
NJU6645
Preliminary
(13) DISPLAY MODE
NJU6645 sets the 3 kinds display mode by the SPR and GR instructions.
(13-1) Character Mode (SPR="0”, GR=”0”)
In the character mode, the font pattern that uses the CGROM and CGRAM is displayed. The font pattern is
displayed at the position that corresponds to the DDRAM address by the character code written in DDRAM.
- 62 -
Ver.2009-05-20
Preliminary
NJU6645
(13-2) Graphics Mode (SPR="0”, GR=”1”)
In the graphics mode, the graphics of maximum 256x96 dots is displayed by using only CGRAM. At this
time, the relation between the CGRAM address and the position of display is shown in the following tables.
Because all CGRAM is used for graphics, it is not possible to use it as a user font.
Besides, the setting of “Scroll Start Line” and “Scroll Start Row” instructions is not reflected in the graphics
mode.
Correspondence of display position on panel and CGRAM address. (In the graphics mode)
300 310 320 330 340 350 360 370 380 390 3A0 3B0 3C0 3D0 3E0 3F0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
30F 31F 32F 33F 34F 35F 36F 37F 38F 39F 3AF 3BF 3CF 3DF 3EF 3FF
500 510 520 530 540 550 560 570 580 590 5A0 5B0 5C0 5D0 5E0 5F0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
50F 51F 52F 53F 54F 55F 56F 57F 58F 59F 5AF 5BF 5CF 5DF 5EF 5FF
700 710 720 730 740 750 760 770 780 790 7A0 7B0 7C0 7D0 7E0 7F0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
70F 71F 72F 73F 74F 75F 76F 77F 78F 79F 7AF 7BF 7CF 7DF 7EF 7FF
900 910 920 930 940 950 960 970 980 990 9A0 9B0 9C0 9D0 9E0 9F0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
90F 91F 92F 93F 94F 95F 96F 97F 98F 99F 9AF 9BF 9CF 9DF 9EF 9FF
B00 B10 B20 B30 B40 B50 B60 B70 B80 B90 BA0 BB0 BC0 BD0 BE0 BF0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
B0F B1F B2F B3F B4F B5F B6F B7F B8F B9F BAF BBF BCF BDF BEF BFF
D00 D10 D20 D30 D40 D50 D60 D70 D80 D90 DA0 DB0 DC0 DD0 DE0 DF0
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
D0F D1F D2F D3F D4F D5F D6F D7F D8F D9F DAF DBF DCF DDF DEF DFF
---
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Address Lower 4bit
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
Address Lower 4bit
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
D7
D6
D5
D4
D3
D2
D1
D0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
200 210 220 230 240 250 260 270 280 290 2A0 2B0 2C0 2D0 2E0 2F0
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
~
20F 21F 22F 23F 24F 25F 26F 27F 28F 29F 2AF 2BF 2CF 2DF 2EF 2FF
400 410 420 430 440 450 460 470 480 490 4A0 4B0 4C0 4D0 4E0 4F0
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
~
40F 41F 42F 43F 44F 45F 46F 47F 48F 49F 4AF 4BF 4CF 4DF 4EF 4FF
600 610 620 630 640 650 660 670 680 690 6A0 6B0 6C0 6D0 6E0 6F0
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
~
60F 61F 62F 63F 64F 65F 66F 67F 68F 69F 6AF 6BF 6CF 6DF 6EF 6FF
800 810 820 830 840 850 860 870 880 890 8A0 8B0 8C0 8D0 8E0 8F0
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
~
80F 81F 82F 83F 84F 85F 86F 87F 88F 89F 8AF 8BF 8CF 8DF 8EF 8FF
A00 A10 A20 A30 A40 A50 A60 A70 A80 A90 AA0 AB0 AC0 AD0 AE0 AF0
~
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
A0F A1F A2F A3F A4F A5F A6F A7F A8F A9F AAF ABF ACF ADF AEF AFF
C00 C10 C20 C30 C40 C50 C60 C70 C80 C90 CA0 CB0 CC0 CD0 CE0 CF0
~
~
~
~
~
~ ~
~
~
~
~
~
~
~
~
~
C0F C1F C2F C3F C4F C5F C6F C7F C8F C9F CAF CBF CCF CDF CEF CFF
Address
Upper
8bit
Address
Upper
8bit
Address
Upper
8bit
Address
Upper
8bit
---
Address
Upper
8bit
Address
Upper
8bit
Address
Upper
8bit
Address
Upper
8bit
---
---
--Ver.2009-05-20
0h
1h
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
0h
1h
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
- 63 -
NJU6645
Preliminary
(13-3) Superimpose mode (SPR="1”, GR=”*”)
The superimpose mode overlaps and displays the character mode and the graphics mode. The displayed data
is a logical addition of the character mode data and the graphics mode data. Because all CGRAM is used for
graphics, it is not possible to use it as a user font.
Besides, the setting of “Scroll Start Line” and “Scroll Start Row” instructions is reflected only in the character
part, and not reflected in the graphics part.
- 64 -
Ver.2009-05-20
Preliminary
NJU6645
(14) FULL-SIZE and HALF-SIZE MIXED DISPLAY
NJU6645 displays from the left end of the screen with mixing the full-size character (16 x 16 dots) and the
half-size character (8 x 16 dots). The distinction between full-size and half-size is decided by 1st bit of
DDRAM data writing of the 2-byte format. In case of the “0”, it is the full-size character. In case of the “1”, it
is the half-size character. 1-character of the full-size character is composed of two DDRAM addresses, and
1-character of the half-size character is composed of one DDRAM address.
The corresponding example of that input data, DDRAM data, and display are shown below.
Half-size"1"
Full-size"
"
Half-size"2" (Attribute=Reverse)
Full-size"
"
Input Data
0 0 0 0 0 0 0 0
RAM Address
RAM Data
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 1 0 0
000
0 0 0 0 0 0 0 1
001
0 0 0 1 1 0 1 1
1 1 1 0 1 1 1 0
002
0 1 0 0 0 0 0 0
003
0 0 0 0 0 0 1 0
004
0 0 1 0 0 0 1 1
0 1 1 1 1 1 0 0
005
Panel Display
Note) When the Full-size character is written to the half-size address of the end of line, the character is displayed
unexpected. The number of writing characters must become just 32-character at half-size by 1-line.
Ver.2009-05-20
- 65 -
NJU6645
Preliminary
(15) RESET FUNCTION
The reset function initializes the LSI by setting the RSTb terminal to "L". The reset operation is always
required after the power supply is turned on.
The reset status is as follows.
Item
RE Flag : 1st page
Address Counter : DDRAM left end of the 1st line
Dot Matrix Display : OFF
Icon Display : OFF
Full Screen Reverse Display : OFF
Standby mode : OFF
Cursor Display : OFF
Line Cursor Setting : OFF
Blink Setting : OFF
Reverse Cursor Setting : OFF
Display Mode : Character Mode
Read Modify Write Mode : OFF
Scroll Start Line : 1st line
Scroll Start Row : 1st row
Display Start Line : 1st line
Display Duty Ratio : 6-line
N-line Inversion : 98
Driver Output Control : Forward Direction
Internal Oscillation / External Clock : Internal OSC
Internal Capacitance Adjust : Reference Value
Discharge : OFF
Voltage Boost Circuit : OFF
Internal Power Circuit : OFF
Boost Level : No Boost
Bias Ratio: 1/11 Bias
Electrical Volume : Low (Minimum value)
Register
RE
AC
D
M
REV
HALT
C
LC
B
BW
SPR / GR
RDM
SSN2,1,0
SSL3,2,1,0
DST2,1,0
DN2,1,0
NL6,5,4,3,2,1,0
SEL1,SEL2
INTCK
OC2,1,0
DIS
DCON
AMPON
VU2,1,0
BS3,2,1,0
EV6,5,4,3,2,1,0
Initial Value
0
000h
0
0
0
0
0
0
0
0
0/0
0
0,0,0
0,0,0,0
0,0,0
0,0,0
1,1,0,0,0,0,1
0,0
0
0,0,0
0
0
0
0,0,0
0,0,0,0
0,0,0,0,0,0,0
Note) After the resetting, the DDRAM, CGRAM, and MKRAM are not initialized. After the data is written, it is
necessary to turn on the display.
- 66 -
Ver.2009-05-20
Preliminary
NJU6645
(16) OSCILLATION CIRCUIT
NJU6645 is equipped with the CR oscillation circuit with the external resistor used, and generates internal
clocks used for the display timing. The generating method of the clock selects by the internal oscillation or
external clock. When the internal oscillation circuit is used, connect OSC1 and VDD with an external resistor.
At this time, it is necessary to fix the OSC2 to "H" or "L". The internal capacity value of the internal
oscillation circuit is set by the instruction (0.7/0.8/0.9/1/1.1/1.2/1/3 times.). The oscillation frequency is
adjusted by setting the internal capacity value.
When the external clock is used, INTCK=”1” and the external clock is supplied from the OSC2. At this time,
the OSC1 opens.
< Using Internal Oscillation >
< Using External Clock >
VDD
47kΩ
OSC1
OPEN
OSC2
“H” or “L”
External Clock
OSC1
OSC2
(17) POWER SUPPLY CIRCUIT
(17-1) LCD power supply
The internal LCD power supply is organized into the voltage converter and the voltage booster. The voltage
converter consists of the reference voltage generator, the voltage regulator with EVR and the LCD bias
voltage generator.
If the internal LCD power supply doesn't have enough capability to drive the particular LCD panel, use the
external LCD power supply. Otherwise, it may affect display quality.
The configuration of the LCD power supply is arranged by setting the D1 (AMPON) and D0 (DCON) bits of
the “Power Control” instruction. For this configuration, the internal LCD power supply can be partially used
in combination with an external supply voltage, as shown below.
DCON
AMPON
0
0
1
0
1
1
Voltage
Booster
Inactive
Inactive
Active
Voltage
Converter
Inactive
Active
Active
External Supply Voltage
Note
VOUT, VLCD, V1, V2, V3, V4
VOUT
VDCOUT is supplied to VOUT.
*1, 3
*2, 3
-
Note 1) No internal LCD power supply is used. The LCD bias voltages are externally supplied, and the C1+, C1-, C2+,
C2-, C3+, C3-, C4+, C4-, C5+, C5-, VREF, VREG and VEE are open.
Note 2) Only the voltage converter is used. The VOUT is externally supplied, and the C1+, C1-, C2+, C2-, C3+, C3-,
C4+, C4-, C5+, C5- and VEE are open. The reference voltage is supplied on the VREF.
Note 3) The following relation among each LCD bias voltages must be maintained.
VOUT ≥ VLCD ≥ V1 ≥ V2 ≥ V3 ≥ V4 ≥ VSS
Ver.2009-05-20
- 67 -
Preliminary
NJU6645
(17-2) Voltage booster
The internal voltage booster generates up to 6xVEE voltage. The boost level is selected from 2x, 3x, 4x, 5x or
6x by setting the D2 to D0 (VU2 to VU0) bits of the “Boost Level” instruction. VDCOUT terminal and
VOUT terminal are connected on the outside and used.
The boost voltage VDCOUT must not exceed 17.0V, otherwise the voltage stress may cause a permanent
damage to the LSI.
Boost Voltage VDCOUT = VEE x N [V]
( N : Boost Level =2~6 )
VDCOUT=16.8V
VDCOUT=9.9V
VEE=3.3V
VEE=2.8V
VSS=0V
VSS=0V
3-time Boost
6-time Boost
- External Capacitor Connection of Voltage Booster
6-time Boost
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5VOUT
VDCOUT
VSS
4-time Boost
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5VOUT
VDCOUT
VSS
- 68 -
5-time Boost
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5VOUT
+
+
+
+
+
VDCOUT
VSS
+
3-time Boost
+
+
+
+
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5VOUT
VDCOUT
VSS
+
+
+
+
+
2-time Boost
+
+
+
C 1+
C 1C 2+
C 2C 3+
C 3C 4+
C 4C 5+
C 5VOUT
VDCOUT
VSS
+
+
Ver.2009-05-20
Preliminary
NJU6645
(17-3) Reference voltage generator
The reference voltage generator produces the reference voltage.
Reference Voltage : VBA = 0.75 x VEE
When using the internal LCD power supply, connect the VBA and the VREF, or supply 0.75xVEE or lower
voltage on the VREF. When using an external LCD power supply, the VBA should be open.
(17-4) Voltage regulator
The voltage regulator consists of an operational amplifier with gain control and EVR. The VREF voltage is
multiplied to obtain the VREG voltage, and its multiple (boost level) is set by the D2 to D0 (VU2 to VU0)
bits of the “Boost Level” instruction. The formula is shown below.
VREG = VREF x N [V]
( N : Boost Level = 2~6 )
(17-5) Electrical variable Resistor (EVR)
The EVR is used to fine-tune the V LCD voltage to optimize display contrast. The EVR value is controlled in
128 steps by setting the D3 to D0 (DV6 to DV0) bits of the “EVR Control” instruction. The formula is shown
below.
VLCD = 0.5 x VREG + M(VREG –0.5VREG) / 127 [V]
( M : EVR Value = 0 to 127)
Ver.2009-05-20
- 69 -
Preliminary
NJU6645
(17-6) LCD bias circuit
The suitable bias is set by the bias register (BS3 to 0) according to the display duty. When the VLCD voltage
is close to minimum (nearly equal: 4.5V), it is recommended not to use it because there is a possibility of not
operating in 1/11 bias setting.
VLCD
R
+
-
VLCD
R
+
-
+
-
V1
R
+
-
V2
7R
V3
R
+
-
V4
R
+
-
+
-
V1
R
+
-
V2
6R
V3
R
+
-
V4
R
+
-
<1/11 Bias>
VLCD
R
+
+
-
V1
R
+
-
V2
5R
V3
R
+
-
V4
R
+
-
<1/10 Bias>
+
-
VLCD
R
+
-
V1
R
V2
3R
+
-
V3
R
+
+
-
V4
R
+
-
VLCD
+
-
V1
R
V2
2R
+
-
V3
R
+
+
-
V4
R
VLCD
R
+
-
V1
R
0.5R
+
-
V4
R
+
<1/8 Bias>
VLCD
+
-
V1
R
V2
1.5R
+
-
V3
R
+
+
-
V4
R
<1/5.5 Bias>
VLCD
R
+
-
V1
R
V2
+
-
V2
V3
R
+
-
V3
R
+
-
V4
R
+
-
V4
R
+
-
- 70 -
V3
R
+
-
+
-
+
-
<1/4.5 Bias>
+
-
V2
4R
R
<1/6 Bias>
+
-
+
-
V1
R
<1/9 Bias>
R
<1/7 Bias>
VLCD
R
+
-
<1/4 Bias>
LCD Bias Circuit
+
-
VLCD
R
+
-
V1
R
V2
R
+
-
V3
R
+
+
-
V4
R
<1/5 Bias>
Note) R = Reference resistor
Ver.2009-05-20
Preliminary
NJU6645
(17-7) Discharge circuit
The LSI incorporates a discharge circuit for the VLCD and V1 to V4 and for the VOUT. The VLCD and V1
to V4 are discharged by setting "1" at the D0 (DIS) bit of the "Discharge ON/OFF" instruction or the reset by
the RESb. Be sure to turned off the internal or external LCD power supply when this instruction is executed,
otherwise it may function as a current load and affect an operating current. Refer to “(r) Discharge ON/OFF”.
(17-8) Power ON/OFF
To protect the LSI from overcurrent, the following sequences must be maintained to turn on and off the power
supply. In addition to the following discussions, refer to “(21) TYPICAL INSTRUCTION SEQUENCES”.
(i) Power ON/OFF in using external LCD supply
-Power ON
First “VDD and VEE ON”, next “Reset by RSTb”, then “External LCD power supply ON”. When using only
external VOUT, first “VDD ON”, next “Reset by RSTb”, then “External VOUT ON”, as well.
-Power OFF
First “Reset by RSTb or “HALT” instruction” to isolate external LCD bias voltage, next “VDD OFF”. For
more safety, placing a resistor in series on the VLCD line (or the VOUT line in using only the external
VOUT) is recommended. That resistance is usually between 50Ω and 100Ω.
(ii) Power ON/OFF in using internal LCD supply
-Power ON
First “VDD and VEE ON”, next “Reset by RSTb”, then “Internal LCD power supply ON”. Be sure to execute
the “Display ON” instruction later than the completion of this power ON sequence. Otherwise, unexpected
pixels may be turned on instantly.
-Power OFF
First “Reset by RSTb or “HALT” instruction”, next “VDD and VEE OFF”. If using different power sources
for the VDD and the VEE individually, the VEE must be turned off after the reset or the “HALT”. After that,
the VDD can be turned off, waiting until the LCD bias voltages (VLCD, V1, V2, V3 and V4) drop below the
threshold level of LCD pixels.
Ver.2009-05-20
- 71 -
Preliminary
NJU6645
- External Components for LCD Power Supply
Using Only Internal LCD Power Supply (6x boost)
VDD
VDD
VDD
VEE
VSS
CA1
VBA
VSS
CA3
VSS
Using Only External LCD Power Supply
CA3
VSS
CA1
CA1
CA1
CA1
CA1
CA1
VDD
VEE
VSS
VBA
VREF
VREF
VREG
VREG
C1-
C1-
C1+
C1+
C2-
C2-
C2+
C2+
C3-
C3-
C3+
C3+
C4C4+
C4-
NJU6645
C4+
C5+
C5+
CA2
CA2
CA2
CA2
VSS
CA2
Reference Values
CA1
CA2
CA3
VDCOUT
VOUT
CA1
VLCD
V1
VLCD
VSS
VOUT
VLCD
V1
V3
V1
External
Power V2
Circuit
V3
V4
V4
V4
V2
NJU6645
C5-
C5-
VDCOUT
CA1
VSS
VSS
V2
V3
CA2 CA2 CA2 CA2
1.0 to 4.7µF
1.0 to 2.2µF
0.1µF
VSS
VSS
VSS
VSS
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the
particular application.
Note 2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VOUT, VLCD, V1, V2, V3 and V4) reduces
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.
To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as
possible.
- 72 -
Ver.2009-05-20
Preliminary
Using Internal LCD Power Supply Without
Reference Voltage Generator (2)
(6x boost)
Using Internal LCD Power Supply Without
Reference Voltage Generator (1)
(6x boost)
VDD
CA1
VDD
VDD
VEE
VSS
Thermistor
VREG
CA3
VSS
CA1
C1-
VSS
CA1
CA1
C2+
C3-
CA1
C3+
C4-
CA1
C4+
NJU6645
CA1
C5-
CA1
VREG
CA3
VSS
C2-
CA1
CA1
C5+
VDCOUT
CA1
VSS
CA2
CA2
CA2
CA2
VSS
CA2
Reference Values
CA1
CA2
CA3
VOUT
C1C1+
C2C2+
C3C3+
C4C4+
NJU6645
C5C5+
VDCOUT
CA1
VSS
VOUT
VLCD
CA2 VLCD
V1
CA2 V1
V2
CA2 V2
V3
CA2 V3
V4
VSS
VREF
C1+
CA1
VDD
VEE
VBA
VSS
VREF
VSS
CA1
VBA
VSS
NJU6645
VSS
CA2 V4
1.0 to 4.7µF
1.0 to 2.2µF
0.1µF
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the
particular application.
Note 2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VOUT, VLCD, V1, V2, V3 and V4) reduces
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.
To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as
possible.
Ver.2009-05-20
- 73 -
Preliminary
NJU6645
Using Internal LCD Power Supply Without
Voltage Booster
VDD
CA1
VDD
VEE
VSS
VBA
VSS
CA3
VREF
CA3
VREG
VSS
VSS
C1C1+
C2C2+
C3C3+
C4C4+
NJU6645
C5C5+
External
Power
Circuit
VDCOUT
CA1
CA2
CA2
CA2
CA2
VSS
Reference Values
CA1
CA2
CA3
VOUT
VLCD
V1
V2
V3
CA2 V4
1.0 to 4.7µF
1.0 to 2.2µF
0.1µF
Note 1) B grade capacitor is recommended for CA1 to CA3. Make sure what is the best capacitor value in the
particular application.
Note 2) Parasitic resistance on the power supply lines (VDD, VSS, VEE, VOUT, VLCD, V1, V2, V3 and V4) reduces
step-up efficiency of the voltage booster, and may have an impact on the LSI’s operation and display quality.
To minimize this impact, be sure to lay out the shortest wires and place capacitors as close to the LSI as
possible.
- 74 -
Ver.2009-05-20
Preliminary
NJU6645
(18) COMMON DRIVERS AND SEGMENT DRIVERS
The LSI includes 256-segment drivers and 98-common drivers. 2 out of 98-common drivers are assigned to
the COMMK0 and COMMK1 for an icon display. The common drivers generates LCD driving waveforms
formed on the VLCD, V1, V4 and VSS levels. The segment drivers generates waveforms formed on the
VLCD, V2, V3 and VSS levels.
(19) LCD DRIVING WAVEFORMS
98
COM0
Ver.2009-05-20
2
3
4
5
98
1
2
3
4
5
98
1
COM0
VLCD
V1
V2
V3
V4
VSS
COM1
VLCD
V1
V2
V3
V4
VSS
SEG0
VLCD
V1
V2
V3
V4
VSS
SEG1
VLCD
V1
V2
V3
V4
VSS
SEG2
SEG1
SEG0
COM1
1
- 75 -
Preliminary
NJU6645
(20) INSTRUCTION
Instruction Tables (1/2)
Instruction
Code
RE
RS
RW
a RAM Data Write
b RAM Data Read
*
*
1
1
0
1
c Status Read
*
0
1
D7
D6 D5 D4 D3 D2 D1
DDRAM, CGRAM, MKRAM Data
D0
NF2 NF1 NF0 LF3
LF2
LF1
Description
-
DDRAM, CGRAM, MKRAM Data
BF
Default
LF0
-
BF: Busy Flag
NF: Display Line at present
LF: Display Row at present
* : Don’t care
Instruction
Code
Default
RE
RS
RW
D7
D6
D5
D4
D3
D2
D1
D0
d Display Clear
0
0
0
0
0
0
0
0
0
0
1
-
e Cursor Home
0
0
0
0
0
0
1
0
0
0
1
-
f
0
0
0
0
0
1
0
M
D
000
0
0
0
0
0
1
1
Display Control
g Standby
ALL
REV
ON
*
*
h Cursor Display
0
0
0
0
1
0
0
BW
B
i
Display / Entry Mode
0
0
0
0
1
0
1
*
SPR
Scroll Start Line
Scroll Start Row
Display Start Line
Display Duty Ratio
N-line Inversion
(Upper)
n
N-line Inversion
(Lower)
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
0
0
0
1
0
1
0
0
0
0
1
0
1
1
o Driver Output Control
0
0
0
1
1
0
0
p Oscillation Control
0
0
0
1
1
0
1
q RE Flag
*
0
0
1
1
1
1
j
k
l
m
* HALT
LC
C
GR RDM
Description
Writing the half-size space code
“0020h” into all DDRAM.
Setting the DDRAM address “000h"
into address counter.
Setting the DDRAM address “000h"
into address counter.
Initialization the Scroll Start Line
and the Scroll Start Row.
ALLON: All pixels ON/OFF
REV: Full Screen Reverse Display
ON/OFF
M: Icon Display ON/OFF
D: Dot Matrix Display ON/OFF
0
0000
000
BW: Reverse Cursor
B: Blink
LC: Line Cursor
C: Cursor
SPR: Superimpose Mode
GR: Graphics Mode
RDM: Read Modify Write
* SSN2 SSN1 SSN0
000
0000
* DST2 DST1 DST0 000
* DN2 DN1 DN0 000
SSL3 SSL2 SSL1 SSL0
*
NL6 NL5 NL4
NL3 NL2 NL1 NL0
*
* SEL1 SEL2
INT
OC2 OC1 OC0
CK
*
*
*
RE
110
0001
00
0000
0
SEL1: COM Shift Direction Set
SEL2: SEG Output Direction Set
INTCK: Internal OSC /
External Clock
OC2,1,0: Internal Capacitance
Adjust
RE Flag Set
* : Don’t care
- 76 -
Ver.2009-05-20
Preliminary
NJU6645
Instruction Tables (2/2)
Instruction
r
s
t
Discharge
Boost Level
Bias Ratio
Electrical Volume
(Upper)
u
Electrical Volume
(Lower)
Code
RE
RS
RW
D7
D6
D5
D4
D3
D2
D1
*
*
D0
DIS
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
*
*
1
0
0
0
0
1
1
1
0
0
0
1
0
0
EV3 EV2 EV1 EV0
AMP DC
ON ON
VU2 VU1 VU0
BS3 BS2 BS1 BS0
*
*
EV6 EV5 EV4
0
000
0000
0
0
0
1
0
1
RAM Address Set 1
w RAM Address Set 2
RAM Address Set 3
1
1
1
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0 AD3 AD2 AD1 AD0
1 AD7 AD6 AD5 AD4
0 AD11 AD10 AD9 AD8
x Address Shift
1
0
0
1
0
0
1
ARL
-
Maker Test 1
Maker Test 2
y Maker Test 3
Maker Test 4
Maker Test 5
q RE Flag
1
1
1
1
1
*
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0 TS3 TS2 TS1 TS0
1 TS7 TS6 TS5 TS4
0 TS11 TS10 TS9 TS8
1
*
* TS13 TS12
0 TSM3TSM2TSM1 TSM0
1
*
*
* RE
0
*
VU2,1,0: Boost Level
0000
1
*
Description
000
v Power Control
*
*
Default
00
0000
0000
0000
AMPON: Internal Operational
Amplifier ON/OFF
DCON: Voltage Boost Circuit
ON/OFF
RAM Address 4bit (AD3 to AD0)
RAM Address 4bit (AD7 to AD4)
RAM Address 4bit (AD11 to AD8)
ARL=”0” Address -1
ARL=”1” Address +1
Maker Test Instruction
(Not used usually.)
RE Flag Set
* : Don’t care
Ver.2009-05-20
- 77 -
Preliminary
NJU6645
< Instruction Descriptions >
(a) RAM Data Write
The "RAM Data Write" instruction writes display data on a specified address. The address is incremented
automatically by "Display / Entry Mode” instruction.
RE
*
RS
1
RW
0
D7
D6
D5
D4
D3
WRITE DATA
D2
D1
D0
(b) RAM Data Read
The "RAM Data Read" instruction reads out display data from a specified address. The address is
incremented automatically by "Display / Entry Mode” instruction.
RE
*
- 78 -
RS
1
RW
1
D7
D6
D5
D4
D3
READ DATA
D2
D1
D0
Ver.2009-05-20
Preliminary
NJU6645
(c) Status Read
The "Status Read" instruction reads out the busy flag (BF) that indicates the internal operation and the line /
row that displayed at present. The BF="1" indicates that internal operation is in progress. When the BF="1",
the next instruction is disabled. Check the busy flag status (BF="0") before the next write operation.
RE
*
RS
0
- Busy Flag Read
BF
0
1
RW
1
D7
BF
D6
NF2
D5
NF1
D3
LF3
D2
LF2
D1
LF1
D0
LF0
Internal Operation
Instruction is enable
Operating (Instruction is disabled)
- Display Line Read
NF
000
001
010
011
100
101
110
111
Display Line
1st line
2nd line
3rd line
4th lint
5th line
6th line
-
- Display Row Read
LF
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
Display Row
1st row
2nd row
3rd row
4th row
5th row
6th row
7th row
8th row
9th row
10th row
11th row
12th row
13th row
14th row
15th row
16th row
Ver.2009-05-20
D4
NF0
- 79 -
Preliminary
NJU6645
(d) Display Clear
When the "Display Clear" instruction is executed, the Half-size space code "0020h" is written into every DD
RAM address, the DD RAM address "000h" is set into the address counter. The MK RAM / CG RAM data is
unchanged.
RE
0
RS
0
RW
0
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
1
(e) Cursor Home
When the "Cursor Home" instruction is executed, the DD RAM address "000h" is set into the address counter.
The Scroll Start Line and the Scroll Start Row are set to default. The DD RAM contents are unchanged.
RE
0
(f)
RS
0
RW
0
D7
0
D6
0
D5
0
D4
1
D3
0
D2
0
D1
0
D0
1
Display Control
The "Display Control" instruction controls the Dot Matrix Display ON/OFF, the Icon Display ON/OFF, the
Full Screen Reverse Display ON/OFF and All Pixels ON/OFF. The Icon Display ON/OFF and the Dot Matrix
Display ON/OFF are controlled separately. When the M=”0” and D=”0”, common / segment drivers are
turning OFF and output VSS level.
RE
0
RS
0
- All Pixels ON/OFF
ALLON
0
1
RW
0
D7
0
D6
0
D5
1
D4
0
D3
D2
ALLON REV
D1
M
D0
D
Display
Normal display
All ON display (Both dot matrix and Icon display)
- Full Screen Reverse Display ON/OFF
REV
Display
0
Normal display
1
Full screen reverse display
- Icon Display ON/OFF
M
0
1
- Dot Matrix Display ON/OFF
D
0
1
- 80 -
Icon Display
OFF
ON
Dot Matrix Display
OFF
ON
Ver.2009-05-20
Preliminary
NJU6645
(g) Standby
The "Standby" instruction controls the Standby mode ON/OFF.
RE
0
RS
0
RW
0
D7
0
HALT
0
1
D6
0
D5
1
D4
1
D3
*
D2
*
D1
*
D0
HALT
Function
OFF (Normal mode)
ON (Standby mode)
During the standby ON, operating current is down to the standby level. The internal state of the LSI in the
standby mode is listed below.
- Internal oscillator and internal LCD power supply are halted.
- All segment and common drivers are fixed at VSS level.
- External clock to the OSC2 cannot be accepted.
- Voltage booster is halted.
- Display data in the DDRAM and data in the instruction registers are being maintained.
- VLCD, V1, V2, V3 and V4 are in high impedance.
In the standby ON sequence, execute the "Display OFF" prior to the "Standby ON". In the standby OFF
sequence, execute the "Standby OFF" prior to the "Display ON". If the "Standby ON/OFF" instruction is
executed during the "Display ON", unexpected pixels may be turned on instantly.
(h) Cursor Display
The "Cursor Display" instruction controls the Cursor ON/OFF, the Line Cursor ON/OFF and display method.
RE
0
RS
0
BW
*
0
0
1
1
0
0
1
1
Ver.2009-05-20
RW
0
B
*
0
1
0
1
0
1
0
1
D7
0
LC
*
0
0
0
0
1
1
1
1
D6
1
D5
0
D4
0
D3
BW
D2
B
D1
LC
C
0
1
1
1
1
1
1
1
1
Display State
Cursor OFF
Underline cursor (Character unit)
Black blink cursor (Character unit)
Reverse blink cursor (Character unit)
Inhibited
Underline cursor (Line unit)
White blink cursor (Line unit)
Reverse cursor (Line unit)
Inhibited
D0
C
- 81 -
Preliminary
NJU6645
(i)
Display Mode / Entry Mode
The "Display Mode / Entry Mode" instruction controls the Display Mode and Entry Mode.
RE
0
RS
0
- Display Mode
SPR
0
0
1
RW
0
D6
1
GR
0
1
*
- Read Modify Write Mode
RDM
0
1
(j)
D7
0
D5
0
D4
1
D3
*
D2
SPR
D1
GR
D0
RDM
Display state
Character Mode
Graphics Mode
Superimpose Mode
Function
OFF (Auto increment in writing and reading display data)
ON (Auto increment in writing display data only)
Scroll Start Line
The "Scroll Start Line" instruction controls the Display Line from COM0 output.
RE
0
SSN2
0
0
0
0
1
1
1
- 82 -
RS
0
RW
0
SSN1
0
0
1
1
0
0
1
D7
0
SSN0
0
1
0
1
0
1
*
D6
1
D5
1
D4
0
D3
*
D2
SSN2
D1
SSN1
D0
SSN0
Scroll Start Line
1st line
2nd line
3rd line
4th line
5th line
6th line
Inhibited
Ver.2009-05-20
Preliminary
NJU6645
- Example of Display
Ver.2009-05-20
SSN=”000”
(Default)
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
SSN=”001”
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
SSN=”010”
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
SSN=”011”
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
SSN=”100”
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
SSN=”101”
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
- 83 -
Preliminary
NJU6645
(k) Scroll Start Row
The "Scroll Start Row" instruction controls number of the Scroll Start Row.
RE
0
RS
0
SSL3
0
0
0
0
RW
0
SSL2
0
0
0
0
D7
0
SSL1
0
0
1
1
D6
1
D5
1
SSL0
0
1
0
1
D4
1
D3
SSL3
1
D1
SSL1
D0
SSL0
Scroll Start Row
1st row
2nd row
3rd row
4th row
:
:
1
D2
SSL2
:
:
1
1
16th row
- Example of Display
SSL3 to 0=0
SSL3 to 0=1
SSL3 to 0=2
---
SSL3 to 0=14
SSL3 to 0=15
(Under Character)
---
(l)
Display Start Line
The "Display Start Line" instruction controls the Display Start Line. The displayed data of the 1st line shifts
to the setting line.
RE
0
DST2
0
0
0
0
1
1
1
- 84 -
RS
0
RW
0
DST1
0
0
1
1
0
0
1
D7
1
DST0
0
1
0
1
0
1
*
D6
0
D5
0
D4
0
D3
*
D2
DST2
D1
DST1
D0
DST0
Display Start Line
1st line
2nd line
3rd line
4th line
5th line
6th line
Inhibited
Ver.2009-05-20
Preliminary
NJU6645
- Example of Display
Ver.2009-05-20
DST=”000”
(Default)
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
DST=”001”
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
DST=”010”
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
DST=”011”
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
DST=”100”
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
DST=”101”
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
2
3
4
5
6
1
- 85 -
Preliminary
NJU6645
(m) Display Duty Ratio
The "Display Duty Ratio" instruction controls the number of display line, and is used to carry out the partial
display.
RE
0
RS
0
DN2
0
0
0
0
1
1
1
RW
0
DN1
0
0
1
1
0
0
1
D7
1
D6
0
DN0
0
1
0
1
0
1
*
D5
0
D4
1
D3
*
D2
DN2
D1
DN1
D0
DN0
Display Line (Duty)
6-line (1/98 Duty)
5-line (1/82 Duty)
4-line (1/66 Duty)
3-line (1/50 Duty)
2-line (1/34 Duty)
1-line (1/18 Duty)
Inhibited
(n) N-line Inversion
The "N-line Inversion" instruction controls the number of inversion line. The setting range are 2 to 98 lines,
and is alternated by setting (N+1).
RE
0
RS
0
RW
0
D7
1
D6
0
D5
1
D4
0
D3
*
D2
NL6
D1
NL5
D0
NL4
RE
0
RS
0
RW
0
D7
1
D6
0
D5
1
D4
1
D3
NL3
D2
NL2
D1
NL1
D0
NL0
NL3
0
0
0
0
NL2
0
0
0
0
NL6
0
0
0
0
NL5
0
0
0
0
NL4
0
0
0
0
NL1
0
0
1
1
NL0
0
1
0
1
:
1
1
1
1
0
0
0
0
:
0
0
0
0
0
1
1
1
1
:
1
- 86 -
1
1
1
Inversion Line
Inhibited
2
3
4
97
98
Inhibited
Ver.2009-05-20
Preliminary
NJU6645
(o) Driver Output Control
The "Driver Output Control" instruction controls the SEG / COM driver output direction.
RE
0
RS
0
RW
0
D7
1
D6
1
D5
0
D4
0
SEL1
0
1
Function
COM scan forward direction
COM scan backward direction
SEL2
0
1
Function
SEG output forward direction
SEG output backward direction
D3
*
D2
*
D1
SEL1
D0
SEL2
(p) Oscillation Control
The "Oscillation Control" instruction controls the system clock type and the internal capacitance of internal
oscillation circuits. The frame frequency is adjusted by internal capacitance setting. When the frame
frequency is set by this instruction, make sure what is the best setting in the particular application.
RE
0
RS
0
RW
0
D7
1
INTCK
0
1
OC2
0
0
0
0
1
1
1
1
D6
1
D5
0
D4
1
D3
INTCK
D2
OC2
D1
OC1
D0
OC0
Function
Internal oscillation circuit
External oscillation input
OC1
0
0
1
1
0
0
1
1
OC0
0
1
0
1
0
1
0
1
Internal Capacitance
Reference capacitance
0.7 x Reference capacitance
0.8 x Reference capacitance
0.9 x Reference capacitance
1.1 x Reference capacitance
1.2 x Reference capacitance
1.3 x Reference capacitance
Inhibited
(q) RE Flag Set
The "RE Flag Set" instruction controls the access to the expanded register. When it accesses each instruction,
it is necessary to set the RE flag in advance.
RE
*
Ver.2009-05-20
RS
0
RW
0
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
RE
- 87 -
Preliminary
NJU6645
(r)
Discharge
Discharge circuit is used to discharge out of the stabilizing capacitors placed on the VLCD, V1, V2, V3, V4
and VSS. This instruction prevents the unknown display at the power supply off.
RE
1
RS
0
RW
0
D7
0
DIS
0
1
(s)
D6
0
D5
0
D4
0
D3
*
D2
*
D1
*
D0
DIS
D3
*
D2
VU2
D1
VU1
D0
VU0
D3
BS3
D2
BS2
D1
BS1
D0
BS0
Function
Discharge OFF
Discharge ON
Boost Level
The "Boost Level" instruction controls the level of Voltage Boost Circuit..
RE
1
RS
0
VU2
0
0
0
0
1
1
1
1
(t)
RW
0
VU1
0
0
1
1
0
0
1
1
D7
0
D6
0
VU0
0
1
0
1
0
1
0
1
D5
0
D4
1
Boost Level
1 time (No boost)
2 times
3 times
4 times
5 times
6 times
Inhibited
Bias Ratio
The "Bias Ratio" instruction controls the Bias Ratio.
RE
1
RS
0
RW
0
BS3
0
0
0
0
0
0
0
0
1
1
1
BS2
0
0
0
0
1
1
1
1
0
0
0
1
1
D7
0
D6
0
BS1
0
0
1
1
0
0
1
1
0
0
1
BS0
0
1
0
1
0
1
0
1
0
1
0
1
1
D4
0
Bias Ratio
1/11
1/10
1/9
1/8
1/7
1/6
1/5.5
1/5
1/4.5
1/4
Inhibited
:
- 88 -
D5
1
Ver.2009-05-20
Preliminary
NJU6645
(u) Electrical Volume
The "Electrical Volume" instruction adjusts VLCD to optimize display contrast. The voltage divided into 127
is set. The setting order requires upper byte first.
RE
1
RS
0
RW
0
D7
0
D6
0
D5
1
D4
1
D3
*
D2
EV6
D1
EV5
D0
EV4
RE
1
RS
0
RW
0
D7
0
D6
1
D5
0
D4
0
D3
EV3
D2
EV2
D1
EV1
D0
EV0
EV3
0
0
EV2
0
0
EV6
0
0
EV5
0
0
EV4
0
0
EV1
0
0
EV0
0
1
Output Voltage
Low
:
:
:
1
1
1
1
1
1
1
1
1
1
1
1
0
1
High
This instruction is finally effective when both upper and lower bytes are transmitted in order to prevent high
VLCD. The setting order is upper byte first, then lower byte.
Note) When the electrical volume setting is changed to wide range at keeping display on, there is possibility that
the unknown display appears. In this case, add waiting time and change the electrical volume value gradually.
< Example of the changing from EV=80 to EV=110 at keeping display on >
EV=80 → Wait (~ms) → EV=90 → Wait (~ms) → EV=100 → Wait (~ms) → EV=110
*
The wait time and electrical volume setting range is different depending on the capacitance value of V1 to
V4 and the panel size. Please make sure what is the best setting in the particular application.
(v) Power Control
RE
1
RS
0
RW
0
D7
0
D6
1
D5
0
D4
1
D3
*
D2
*
D1
D0
AMPON DCON
AMPON : This instruction controls ON/OFF of the operational amplifier parts of the internal power supply
circuits (Voltage regulator, electrical variable resistor, and voltage converter).
AMPON
0
1
DCON
: This instruction controls Internal Voltage Booster ON/OFF,
DCON
0
1
Ver.2009-05-20
Function
Internal operational amplifier OFF
Internal operational amplifier ON
Function
Voltage booster OFF
Voltage booster ON
- 89 -
Preliminary
NJU6645
(w) RAM Address Set
The "RAM Address Set" instruction specifies the DDRAM, CGRAM, and MKRAM address.
The RAM address should set lower 4-bit (AD3 to AD0) at first. This instruction is finally effective when
upper 4-bit (AD11 to AD8) are transmitted.
RE
1
RS
0
RW
0
D7
0
D6
1
D5
1
D4
0
D3
AD3
D2
AD2
D1
AD1
D0
AD0
RE
1
RS
0
RW
0
D7
0
D6
1
D5
1
D4
1
D3
AD7
D2
AD6
D1
AD5
D0
AD4
RE
1
RS
0
RW
0
D7
1
D6
0
D5
0
D4
0
D3
AD11
D2
AD10
D1
AD9
D0
AD8
(x) Address Shift
The "Address Shift" instruction controls increment (+1) or decrement (-1) of the address. The address moves
whenever this instruction is executed.
RE
1
RS
0
RW
0
D7
1
ARL
0
1
D6
0
D5
0
D4
1
D3
*
D2
*
D1
*
D0
ARL
Function
Address –1
Address +1
(y) Maker Test
This instruction is using for device testing mode. Please do not use this instruction usually.
- 90 -
RE
1
RS
0
RW
0
D7
1
D6
0
D5
1
D4
0
D3
*
D2
*
D1
*
D0
*
RE
1
RS
0
RW
0
D7
1
D6
1
D5
1
D4
0
D3
*
D2
*
D1
*
D0
*
Ver.2009-05-20
Preliminary
NJU6645
(21) TYPICAL INSTRUCTION SEQUENCE
(21-1) Initialization Sequence in Using Internal LCD Power Supply
Power ON (VDD, VEE)
(*1)
WAIT(*2)
Reset (RSTb terminal)
WAIT(*3)
Refer to (15)RESET FUNCTION
-------------------- Instruction Code -------------------
----- Setting Example -----
Display Clear
D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
1
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
Boost Level
0
0
0
1
*
1
0
1
6 times boost
Bias Ratio
0
0
1
0
0
0
0
0
1/11 bias
Electrical Volume (Upper)
0
0
1
1
*
1
0
0
EV=“1,0,0,0,0,0,0”
Electrical Volume (Lower)
0
1
0
0
0
0
0
0
Power Control
0
1
0
1
*
*
0
1
Voltage booster ”ON”
0
1
0
1
*
*
1
1
Internal operational
amplifier ”ON”
Display clear
WAIT(*4)
Power Control
WAIT(*5)
End
*1
*2
*3
*4
*5
If different power sources are applied to the VDD and the VEE, turn ON the VDD first.
Wait until the VDD and VEE are stabilized.
Wait 1.5ms or more.
Wait until the VDCOUT (VOUT) is stabilized.
Wait until the VLCD and V1 to V4 are stabilized.
Ver.2009-05-20
- 91 -
NJU6645
Preliminary
(21-2) Initialization Sequence in Using External LCD Power Supply
Power ON (VDD)
WAIT(*1)
Reset (RSTb terminal)
Refer to (15)RESET FUNCTION
WAIT(*2)
External Power Supply ON
WAIT(*3)
Display Clear
-------------------- Instruction Code ------------------D7
0
D6
0
D5
0
D4
0
D3
0
D2
0
D1
0
D0
1
----- Setting Example -----
Display clear
End
*1
*2
*3
- 92 -
Wait until the VDD is stabilized.
Wait 1.5ms or more.
Wait until the external LCD power supply (VOUT, VLCD, V1 to V4) are stabilized.
Ver.2009-05-20
Preliminary
NJU6645
(21-3) Display Data Write Sequence
Operational Status
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
1
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1st line DDRAM
address Set (000h)
RAM Data Write
*
*
*
*
*
*
*
*
1st line
writing
RAM Data Write
*
*
*
*
*
*
*
*
RE=”1”
DDRAM
data
Repeating 2nd to 5th line
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
1
0
0
0
0
0
1
0
0
0
0
6th line DDRAM
address set (0A0h)
RAM Data Write
*
*
*
*
*
*
*
*
6th line DDRAM data
writing
RAM Data Write
*
*
*
*
*
*
*
*
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
1
MKRAM
address set (100h)
RAM Data Write
*
*
*
*
*
*
*
*
MKRAM data writing
RAM Data Write
*
*
*
*
*
*
*
*
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
CGRAM
address set (200h)
RAM Data Write
*
*
*
*
*
*
*
*
CGRAM Data Writing
RAM Data Write
*
*
*
*
*
*
*
*
RE Flag
1
1
1
1
*
*
*
0
RE=”0”
Display Control
0
0
1
0
0
0
1
1
Dot matrix display “ON”
Icon display ”ON”
Data Display
Ver.2009-05-20
- 93 -
NJU6645
Preliminary
(21-4) Power OFF Sequence in Using Internal LCD Power Supply
Operational Status
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
0
Display Control
0
0
1
0
0
0
0
0
Display ”OFF"
Standby
0
0
1
1
*
*
*
1
Standby ”ON”
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
Discharge
0
0
0
0
*
*
*
1
Discharge ”ON”
RE=”0”
WAIT(*1)
Power OFF (VEE)
Power OFF (VDD)
*1
Wait until the discharge is completed.
(21-5) Power OFF Sequence in Using External LCD Power Supply
Operational Status
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
0
Display Control
0
0
1
0
0
0
0
0
Display ”OFF"
Standby
0
0
1
1
*
*
*
1
Standby ”ON”
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
Discharge
0
0
0
0
*
*
*
1
Discharge ”ON”
RE=”0”
External Power OFF
WAIT(*1)
Power OFF (VEE)
Power OFF (VDD)
*1
- 94 -
Wait until the discharge is completed.
Ver.2009-05-20
Preliminary
NJU6645
(21-6) Partial Display Sequence [Example : Display Duty Ratio = 2-line (1/34 Duty), Display Start Line = 3rd line]
Operational Status
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
0
Display Control
0
0
1
0
0
0
0
0
Display ”OFF"
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
Power Control
0
1
0
1
*
*
0
0
Voltage booster ”OFF”
Internal operational
amplifier ”OFF”
Boost Level
0
0
0
1
*
0
1
0
3 times boost
Bias Ratio
0
0
1
0
0
1
0
1
1/6 bias
Electrical Volume (Upper)
0
0
1
1
*
1
0
0
EV=“1,0,0,0,0,0,0”
Electrical Volume (Lower)
0
1
0
0
0
0
0
0
Power Control
0
1
0
1
*
*
0
1
Voltage booster ”ON”
0
1
0
1
*
*
1
1
Internal operational
amplifier ”ON”
RE Flag
1
1
1
1
*
*
*
0
RE=”0”
Display Start line
1
0
0
0
*
0
1
0
3rd line
Display Duty Ratio
1
0
0
1
*
1
0
0
2-line (1/34Duty)
Display Control
0
0
1
0
0
0
1
1
Dot matrix display “ON”
Icon display ”ON”
RE=”0”
WAIT(*1)
WAIT(*2)
Power Control
WAIT(*3)
Partial Display
*1
*2
*3
Wait until the discharge is completed.
Wait until the VDCOUT (VOUT) is stabilized.
Wait until the external LCD power supply (VOUT, VLCD, V1 to V4) are stabilized.
Refer to (10) PARTIAL DISPLAY .
Ver.2009-05-20
- 95 -
NJU6645
Preliminary
(21-7) Smooth Scroll Display Sequence [Example : 5-line display, 4-dot scroll]
5-line display, Display ON
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
0
Scroll Start Row
0
1
1
1
0
1
0
0
4-row scroll
Scroll Start Row
0
1
1
1
1
0
0
0
8-row scroll
Scroll Start Row
0
1
1
1
1
1
0
0
12-row scroll
Scroll Start Row
Scroll Start Line
0
0
1
1
1
1
1
0
0
*
0
0
0
0
0
1
0-row scroll
1-line scroll
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1st line DDRAM
address set (000h)
RAM Data Write
*
*
*
*
*
*
*
*
1st line
writing
RAM Data Write
*
*
*
*
*
*
*
*
RE Flag
1
1
1
1
*
*
*
0
RE=”0”
Scroll Start Row
0
1
1
1
0
1
0
0
4-row scroll
Scroll Start Row
0
1
1
1
1
0
0
0
8-row scroll
Scroll Start Row
0
1
1
1
1
1
0
0
12-row scroll
Scroll Start Row
Scroll Start Line
0
0
1
1
1
1
1
0
0
*
0
0
0
1
0
0
0-row scroll
2-line scroll
RE=”0”
DDRAM
data
Refer to (11) VERTICAL SMOOTH S SCROLL.
- 96 -
Ver.2009-05-20
Preliminary
NJU6645
(21-8) Superimpose Mode Display Sequence [Example : Character display on 2nd ~ 5th line]
Operational Status
-------------------- Instruction Code -------------------
----- Setting Example -----
RE Flag
D7
1
D6
1
D5
1
D4
1
D3
*
D2
*
D1
*
D0
0
Display / Entry Mode
0
1
0
1
*
1
0
0
Superimpose mode
RE Flag
1
1
1
1
*
*
*
1
RE=”1”
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
1
0
0
0
0
2nd line DDRAM
address set (020h)
RAM Data Write
*
*
*
*
*
*
*
*
2nd line DDRAM data
writing
RAM Data Write
*
*
*
*
*
*
*
*
RE=”0”
Repeating 3rd to 4th line
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
5th line DDRAM
address set (080h)
RAM Data Write
*
*
*
*
*
*
*
*
5th line DDRAM data
writing
RAM Data Write
*
*
*
*
*
*
*
*
RAM Address Set 1
RAM Address Set 2
RAM Address Set 3
0
0
1
1
1
0
1
1
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
0
CGRAM
address set (200h)
RAM Data Write
*
*
*
*
*
*
*
*
CGRAM data writing
RAM Data Write
*
*
*
*
*
*
*
*
RE Flag
1
1
1
1
*
*
*
0
RE=”0”
Display Control
0
0
1
0
0
0
1
1
Dot matrix display “ON”
Icon display ”ON”
Data Display
Refer to (13-3) Superimpose Mode.
Ver.2009-05-20
- 97 -
NJU6645
Preliminary
! ABSOLUTE MAXIMUM RATINGS
PARAMETER
Supply Voltage (1)
Supply Voltage (2)
Supply Voltage (3)
Supply Voltage (4)
Supply Voltage (5)
Supply Voltage (6)
Input Voltage (1)
Operating
Temperature
Storage Temperature
*1
*2
SYMBOL
VDD
VEE
VOUT, VDCOUT
VREG
VLCD
V1, V2, V3, V4
VI
CONDITION
VSS=0V
Common
Ta=+25°C
TERMINAL
VDD
VEE
VOUT, VDCOUT
VREG
VLCD
V1, V2, V3, V4
Topr
Tstg
Bump Chip
RATING
-0.3 to +4.0
-0.3 to +4.0
-0.3 to +19.0
-0.3 to +19.0
-0.3 to +19.0
-0.3 to VLCD+0.3
-0.3 to VDD+0.3
UNIT
V
V
V
V
V
V
V
-40 to +85
°C
-55 to +125
°C
If the LSI is used on condition beyond the absolute maximum rating, the LSI may be destroyed. Using LSI
within electrical characteristics is strongly recommended for normal operation. Use beyond the electric
characteristics conditions will cause malfunction and poor reliability.
The order of turning on the power supply should turn on VDD earlier than other power supplies. When the
power supply is turned off, that requires turning off VDD at the last.
! RECOMMENDED OPERATING CONDITIONS
PARAMETER
Supply Voltage
Operating Voltage
*1
*2
*3
*4
*5
*6
*7
- 98 -
SYMBOL
VDD1
VDD2
VEE
VLCD
VOUT
VDCOUT
VREG
VREF
TERMINAL
VDD
VEE
VLCD
VOUT
VDCOUT
VREG
VREF
MIN
2.4
2.4
2.4
4.5
1.8
TYP
-
MAX
UNIT
3.6
V
3.6
V
3.6
V
17.0
V
17.0
V
17.0
V
VOUTx0.9
V
3.6
V
NOTE
*1
*2
*3
*4
*5
*6
Applied to the condition when the reference voltage generator (VBA) is not used. (VSS common)
Applied to the condition when the reference voltage generator (VBA) is used. (VSS common)
Applied to the condition when the voltage booster is used.
The following relation among the LCD bias voltages must be maintained.
VSS<V4<V3<V2<V1<VLCD≤VOUT
When the voltage booster is used, there is possibility that the VDCOUT is changing by the ITO resistance
and the panel load. The setting of the VREG voltage is recommended to become a voltage that is lower than
the lowest value of the changing VOUT.
Relation : VREF < VEE must be maintained.
To stabilize the LSI operation, place decoupling capacitors between VDD and VSS, between VEE and VSS,
between VBA and VSS, between VREF and VSS, between VREG and VSS, between VLCD and VSS, and
between V1 to V4 and VSS.
Ver.2009-05-20
Preliminary
NJU6645
! DC CHARACTERISTICS
VDD=+2.4 to 3.6V, VSS=0V, Ta=-40 to +85°C
SYM
PARAMETER
BOL
“H” Level Input Voltage
VIH
“L” Level Input Voltage
VIL
“H” Level Output Voltage VOH
“L” Level Output Voltage VOL
Input Leakage Current
ILI
Output Leakage Current
ILO
RON1
Driver ON-resistance
RON2
Oscillation Frequency
fOSC
Voltage Booster
VOUT
Output Voltage
Operating Current (1)
Operating Current (2)
Operating Current (3)
Operating Current (4)
VBA Output Voltage
VREG Output Voltage
LCD Bias Voltages
*1
*2
*3
*4
*5
*6
*7
*8
*9
CONDITION
IOH=-0.1mA
IOL= 0.1mA
VI=VSS or VDD
VI=VSS or VDD
|∆VON|=0.5V, VLCD=10V
|∆VON|=0.5V, VLCD=6V
VDD=3V, Ta=25°C, Rf=47kΩ
N-time boost (N=2 to 6)
RL=500kΩ (VDCOUT-VSS)
Ta=25°C, 6-time boost, All pixels ON,
IDD1
VEE=2.4V, VREF=1.8V
Ta=25°C, 5-time boost, All pixels ON,
IDD2
VEE=3.0V, VREF=2.25V
Ta=25°C, 4-time boost, All pixels ON,
IDD3
VEE=3.6V, VREF=2.7V
ISTB Ta=25°C, CSb=VDD, HALT="1”
VEE=2.4 to 3.6V
VBA
MIN
TYP
MAX
0.8VDD
VSS
VDD-0.2
-1
-1
0.82
NxVEE
x0.95
1
2
1
VDD
0.2VDD
0.2
1
1
2
4
1.18
V
V
V
V
µA
µA
kΩ
kΩ
MHz
*1
*1
*2
*2
*3
*4
-
-
V
*7
-
1.5
3.6
mA
-
1.5
3.6
mA
-
1.5
3.6
mA
10
(0.75VEE)x
(0.75VEE)x
0.75VEE
0.98
1.02
(VREFxN)x
VEE=2.4 to 3.6V
(VREFxN)x
(VREFxN)
VREG
1.05
N-time boost (N=2 to 6)
0.95
VLCD VEE=3.0V, VREF=2.25V,
-0.1
+0.1
VOUT=15V, Bias=1/4 to 1/11,
V1
-0.1
+0.1
Electrical Volume=MAX., DCON=”0”,
V2
-0.1
+0.1
Display OFF, No-load, AMPON=”1”,
V3
-0.1
+0.1
Boost Level=5-time
V4
-0.1
+0.1
UNIT NOTE
*5
*6
*8
µA
*9
V
*10
V
*11
V
V
V
V
V
D7 to D0, CSb, RS, WRb, RDb, SEL68, PS, CSEL, and RSTb terminals.
D7 to D0 terminals.
D7 to D0, CSb, RS, WRb, RDb, SEL68, PS, CSEL, RSTb, and OSC2 terminals.
D7 to D0 in high impedance.
SEG0 to SEG255, COM0 to COM95, and COMMK0 to COMMK1 terminals.
This parameter defines the resistance between each COM/SEG and each LCD bias (VLCD, V1, V2, V3, V4).
0.5V difference / 1/11 LCD bias
Oscillation frequency of using the internal oscillation circuit.
(OS2, OS1, OS0) = ”0, 0, 0”
VDCOUT terminal.
This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are
used. N-time boost (N=2 to 6).
VEE=2.4V to 3.6V / Electrical Volume : Max = “1, 1, 1, 1, 1, 1, 1” / 1/11 LCD Bias / 1/98 Duty / No-load on
COM/SEG / RL=500kΩ between VDCOUT and VSS / CA1=CA2=1.0uF / CA3=0.1uF / DCON=”1” /
AMPON=”1”
VSS terminal.
This parameter is applied to the condition that the internal LCD power supply and the internal oscillator are
used, and the no accessing from MPU.
Electrical Volume : Max = “1, 1, 1, 1, 1, 1, 1” / All pixels ON or Checker Flag Display / No-load on
COM/SEG / VDD=VEE / VREF=0.75VEE / CA1=CA2=1.0uF / CA3=0.1uF / DCON=”1” / AMPON=”1” /
NL6 to 0=”1, 1, 0, 0, 0, 0, 1” (98-line) / 1/98 Duty / Ta=25°C
VDD terminal.
Internal oscillator is halted. / CSb=VDD (No active) / No-load
Ver.2009-05-20
- 99 -
NJU6645
Preliminary
*10 VBA terminal.
VBA=VREF / Boost Level (N)=”1” / DCON=”0” / VOUT=13.5V
*11 VREG terminal.
VEE=2.4V to 3.6V / VOUT=17V / 1/11 LCD Bias / 1/98 Duty / Electrical Volume : Max = “1, 1, 1, 1, 1, 1,
1” / Checker Flag Display / No-load on COM/SEG / Boost Level (N)=”2 to 6” / CA1=CA2=1.0uF /
CA3=0.1uF / DCON=”0” / AMPON=”1” / NL6 to 0=”1, 1, 0, 0, 0, 0, 1” (98-line)
- 100 -
Ver.2009-05-20
Preliminary
NJU6645
! OSCILLATION FREQUENCY AND FRAME FREQUENCY
OSCILLATOR
/EXTERNAL
CLOCK
Using
Internal Oscillator
Using
External Clock
Ver.2009-05-20
DISPLAY DUTY (1/D)
98
82
66
50
34
18
fOSC/(128xD)
fOSC/(128xD)
fOSC/(128xD)
fOSC/((128xD)/2)
fOSC/((128xD)/3)
fOSC/((128xD)/6)
fCK/(128xD)
fCK/(128xD)
fCK/(128xD)
fCK/((128xD)/2)
fCK/((128xD)/3)
fCK/((128xD)/6)
- 101 -
NJU6645
Preliminary
! AC CHARACTERISTICS
(1) Write Operation (Parallel Interface / 80-series MPU)
tRSS8
tRSH8
RS
tWCS8
CSb
WRb
tCSH8
tCSS8
tWRLW8
tWRHW8
tDS8
tDH8
D7 to D0
tCYC8
PARAMETER
SYMBOL CONDITION
RS Hold Time
tRSH8
RS Setup Time
tRSS8
CSb Hold Time
tCSH8
CSb Setup Time
tCSS8
CSb ”H” Level Pulse Width
tWCS8
System Cycle Time
tCYC8
Enable ”L” Level Pulse Time
tWRLW8
Enable ”H” Level Pulse Time
tWRHW8
Data Setup Time
tDS8
Data Hold Time
tDH8
Note) Each timing is specified based on 20% and 80% of VDD.
- 102 -
MIN.
30
30
30
30
180
180
80
80
70
40
(VDD=2.4 to 3.6V, Ta=-40 to +85°C)
MAX.
UNIT
TERMINAL
ns
RS
ns
ns
CSb
ns
ns
ns
WRb
ns
ns
ns
D7 to D0
ns
Ver.2009-05-20
Preliminary
(2) Read Operation (Parallel Interface / 80-series MPU)
tRSS8
NJU6645
tRSH8
RS
tWCS8
CSb
tCSH8
tCSS8
tWRLR8
RDb
tWRHR8
tRDH8
D7 to D0
tRDD8
tCYC8
PARAMETER
SYMBOL CONDITION
RS Hold Time
tRSH8
RS Setup Time
tRSS8
CSb Hold Time
tCSH8
CSb Setup Time
tCSS8
CSb ”H” Level Pulse Width
tWCS8
System Cycle Time
tCYC8
Enable ”L” Level Pulse Time
tWRLR8
Enable ”H” Level Pulse Time
tWRHR8
Read Data Delay Time
tRDD8
CL=15pF
Read Data Hold Time
tRDH8
Note) Each timing is specified based on 20% and 80% of VDD.
Ver.2009-05-20
MIN.
40
40
40
40
140
250
120
120
0
(VDD=2.4 to 3.6V, Ta=-40 to +85°C)
MAX.
UNIT
TERMINAL
ns
RS
ns
ns
CSb
ns
ns
ns
RDb
ns
ns
110
ns
D7 to D0
ns
- 103 -
NJU6645
Preliminary
(3) Write Operation (Parallel Interface / 68-series MPU)
tRSS6
tRSH6
RS
tWCS6
CSb
tCSH6
tCSS6
RW
(WRb)
E
(RDb)
tEHW6
tELW6
tDS6
tDH6
D7 to D0
tCYC6
PARAMETER
SYMBOL CONDITION
RS Hold Time
tRSH6
RS Setup Time
tRSS6
CSb Hold Time
tCSH6
CSb Setup Time
tCSS6
CSb ”H” Level Pulse Width
tWCS6
System Cycle Time
tCYC6
Enable ”L” Level Pulse Time
tELW6
Enable ”H” Level Pulse Time
tEHW6
Data Setup Time
tDS6
Data Hold Time
tDH6
Note) Each timing is specified based on 20% and 80% of VDD.
- 104 -
MIN.
30
30
30
30
180
180
80
80
70
40
(VDD=2.4 to 3.6V, Ta=-40 to +85°C)
MAX.
UNIT
TERMINAL
ns
RS
ns
ns
CSb
ns
ns
ns
E
ns
ns
ns
D7 to D0
ns
Ver.2009-05-20
Preliminary
(4) Read Operation (Parallel Interface / 68-series MPU)
tRSS6
NJU6645
tRSH6
RS
tWCS6
CSb
tCSH6
tCSS6
RW
(WRb)
tEHR6
E
(RDb)
tELR6
tRDH6
D7 to D0
tRDD6
tCYC6
PARAMETER
SYMBOL CONDITION
RS Hold Time
tRSH6
RS Setup Time
tRSS6
CSb Hold Time
tCSH6
CSb Setup Time
tCSS6
CSb ”H” Level Pulse Width
tWCS6
System Cycle Time
tCYC6
Enable ”L” Level Pulse Time
tELR6
Enable ”H” Level Pulse Time
tEHR6
Read Data Delay Time
tRDD6
CL=15pF
Read Data Hold Time
tRDH6
Note) Each timing is specified based on 20% and 80% of VDD.
Ver.2009-05-20
MIN.
40
40
40
40
140
250
120
120
0
(VDD=2.4 to 3.6V, Ta=-40 to +85°C)
MAX.
UNIT
TERMINAL
ns
RS
ns
ns
CSb
ns
ns
ns
E
ns
ns
110
ns
D7 to D0
ns
- 105 -
Preliminary
NJU6645
(5) Serial Interface
RS
tAAS
tAHS
tAAS
tAHS
RW
CSb
tCSS
tCYCS
tSHW
SCL
tDSS
SDA
Input
Input or
Output
Input
Input or
Output
Output
tSLW
Input
Input
Input or
Output
Output
Output
Input or
Output
Input
tSOD
Output
PARAMETER
SYMBOL CONDITION
Serial Clock Cycle
tCYCS
SCL ”H” Level Pulse Width
tSHW
SCL ”L” Level Pulse Width
tSLW
Address Setup Time
tASS
Address Hold Time
tAHS
Data Setup Time
tDSS
Data Hold Time
tDHS
Serial Data Delay Time
tSOD
CSb – SCL Time
tCSS
CSb Hold Time
tCSH
CSb “H” Level Pulse Width
tWCSS
Note) Each timing is specified based on 20% and 80% of VDD.
- 106 -
tWCSS
tDHS
tSOD
SDA
Output
tCSH
MIN.
160
75
75
35
35
35
35
35
35
75
(VDD=2.4 to 3.6V, Ta=-40 to +85°C)
MAX.
UNIT
TERMINAL
ns
SCL
ns
ns
ns
RS / RW
ns
ns
SDA
ns
40
ns
SDA
ns
ns
CSb
ns
Ver.2009-05-20
Preliminary
NJU6645
! External Clock Input Timing
OSC2
0.5VDD
fCP
PARAMETER
SYMBOL
External Clock Operating Frequency
fCP
External Clock Duty
duty
MIN.
35
(VDD=2.4 to 3.6V, VSS=0V, Ta=-40 to +85°C)
MAX.
CONDITION
UNIT
1.18
OSC2
MHz
65
%
! Reset Input Timing
tRW
RSTb
tR
Internal circuit
status
PARAMETER
Reset Time
RSTb “L” Level Pulse Width
Ver.2009-05-20
During reset
SYMBOL
tR
tRW
MIN.
1.5
End of reset
(VDD=2.4 to 3.6V, VSS=0V, Ta=-40 to +85°C)
MAX.
CONDITION
UNIT
0.5
µs
ms
- 107 -
Preliminary
NJU6645
! APPLICATION CIRCUIT
(1) Microprocessor Interface Example
(i) 80 type MPU
2.4 to 3.6V
VCC
A0
A1~A7
(80 type MPU) IORQb
D0~D7
RDb
WRb
RESb
RS
7
Decoder
8
GND
VDD
CSb
NJU6645
D0~D7
RDb
WRb
RSTb
VSS
Reset input
(ii) 68 type MPU
2.4 to 3.6V
VCC
A0
A1~A15
15
(68 type MPU) VMA
D0~D7
E
R/W
RESb
GND
RS
Decoder
8
VDD
CSb
NJU6645
D0~D7
RDb(E)
WRb(R/W)
RSTb
VSS
Reset input
(iii) Serial Interface
2.4 to 3.6V
VCC
A0
A1~A7
(CPU)
RS
7
Decoder
- 108 -
NJU6645
SDA
SCL
RSTb
PORT1
PORT2
RESb
GND
CSb
VDD
Reset input
VSS
Ver.2009-05-20
Preliminary
NJU6645
(2) Connection with Panel Display
(i) SEL1=”0”, SEL2=”0”
SEG255
COM47
:
:
COM0
COMMK0
SEG0
ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ
NJU6645
TOP VIEW
COMMK1
COM95
:
:
COM48
(ii) SEL1=”1”, SEL2=”1”
SEG0
COMMK1
COMMK0
NJU6645
TOP VIEW
SEG255
COM48
:
:
COM95
COM0
:
:
COM47
ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ
Ver.2009-05-20
- 109 -
NJU6645
Preliminary
(iii) SEL1=”1”, SEL2=”0”
COMMK0
SEG255
NJU6645
BOTTOM VIEW
SEG0
COM0
:
:
COM47
COM48
:
:
COM95
COMMK1
ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ
(iv) SEL1=”0”, SEL2=”1”
COM95
:
:
COM48
- 110 -
SEG255
COMMK1
SEG0
ABCDEFG
HIJKLMN
OPQRSTU
VWXYZ
NJU6645
BOTTOM VIEW
COM47
:
:
COM0
COMMK0
Ver.2009-05-20
Preliminary
NJU6645
! COG WIRING EXAMPLE
COG
80type Parallel
CSEL="L"
Using Internal OSC
Using Voltage Boost
Using Internal OP-amp
NJU6645
C5N
C5P
C4N
C4P
C3N
C3P
C2N
C2P
C1N
C1P
VEE
VDCOUT
VOUT
*When the voltage booster is used,
VDCOUT terminal and VOUT terminal
should be not connect at ITO of inside panel,
and it requires to connect at outside of COG.
VSS
VBA
VREF
VREG
V4
V3
V2
V1
VLCD
VSS
OSC1
VDD
OSC2
D7
D6
D5
D4
D3
D2
D1
D0
VPUP
RDB
WRB
VPDN
RS
CSB
RSTB
CSEL
VPUP
PS
VPUP
SEL68
TESTOUT
Ver.2009-05-20
- 111 -
NJU6645
Preliminary
[CAUTION]
The specifications on this databook are only
given for information , without any guarantee
as regards either mistakes or omissions. The
application circuits in this databook are
described only to show representative usages
of the product and not intended for the
guarantee or permission of any right including
the industrial rights.
- 112 -
Ver.2009-05-20
Similar pages