ESMT M12S16161A 512k x 16bit x 2banks synchronous dram Datasheet

ESMT
M12S16161A
SDRAM
512K x 16Bit x 2Banks
Synchronous DRAM
FEATURES
GENERAL DESCRIPTION
2.5V power supply
LVCMOS compatible with multiplexed address
Dual banks operation
MRS cycle with address key programs
CAS Latency (1, 2 & 3 )
Burst Length (1, 2, 4, 8 & full page)
Burst Type (Sequential & Interleave)
EMRS cycle with address key programs.
All inputs are sampled at the positive going edge of the
system clock
Burst Read Single-bit Write operation
Special Function Support.
PASR (Partial Array Self Refresh )
TCSR (Temperature compensated Self Refresh)
DS (Driver Strength)
DQM for masking
Auto & self refresh
32ms refresh period (2K cycle)
The M12S16161A is 16,777,216 bits synchronous high
data rate Dynamic RAM organized as 2 x 524,288 words by
16 bits, fabricated with high performance CMOS technology.
Synchronous design allows precise cycle control with the
use of system clock I/O transactions are possible on every
clock cycle. Range of operating frequencies, programmable
burst length and programmable latencies allow the same
device to be useful for a variety of high bandwidth, high
performance memory system applications.
ORDERING INFORMATION
Part NO.
MAX
Freq.
M12S16161A-10T
M12S16161A-15T
M12S16161A-10TG
M12S16161A-15TG
100MHz
66MHz
100MHz
66MHz
Interface Package Comments
LVCMOS
Non-Pb-free
50
Non-Pb-free
TSOP(II)
Pb-free
Pb-free
PIN CONFIGURATION (TOP VIEW)
VDD
1
50
VSS
DQ0
2
49
DQ15
DQ1
3
48
DQ14
VSSQ
4
47
VSSQ
DQ2
5
46
DQ13
DQ3
6
45
DQ12
VDDQ
7
44
VDDQ
DQ4
8
43
DQ11
DQ5
9
42
DQ10
VSSQ
10
41
VSSQ
DQ6
11
40
DQ9
DQ7
12
39
DQ8
VDDQ
13
38
VDDQ
LDQM
14
37
N.C/RFU
WE
15
36
UDQM
CAS
16
35
CLK
RAS
17
34
CKE
CS
18
33
N.C
BA
19
32
A9
A10/AP
20
31
A8
A0
21
30
A7
A1
22
29
A6
A2
23
28
A5
A3
24
27
A4
VDD
25
26
VSS
Elite Semiconductor Memory Technology Inc.
50PIN TSOP(II)
(400mil x 825mil)
(0.8 mm PIN PITCH)
Publication Date : Jun. 2005
Revision : 1.0
1/28
ESMT
M12S16161A
FUNCTIONAL BLOCK DIAGRAM
512K x 16
LWE
LDQM
Output Buffer
Col. Buffer
LCKE
512K x 16
Sense AMP
Row Decoder
LRAS
LCBR
ADD
Row Buffer
Refresh Counter
Address Register
CLK
Data Input Register
I/O Control
Bank Select
DQi
Column Decoder
Latency & Burst Length
Programming Register
LRAS
LCBR
LWE
LCAS
LWCBR
LDQM
Timing Register
CLK
CKE
CS
RAS
CAS
WE
L(U)DQM
PIN FUNCTION DESCRIPTION
CLK
Pin
Name
System Clock
CS
Chip Select
CKE
Clock Enable
A0 ~ A10/AP
Address
BA
Bank Select Address
RAS
Row Address Strobe
Latches row addresses on the positive going edge of the CLK with RAS low.
Enables row access & precharge.
Latches column addresses on the positive going edge of the CLK with
CAS
Column Address Strobe
WE
Write Enable
CAS low.
Enables column access.
Enables write operation and row precharge.
L(U)DQM
Data Input / Output Mask
Elite Semiconductor Memory Technology Inc.
Input Function
Active on the positive going edge to sample all inputs.
Disables or enables device operation by masking or enabling all inputs except
CLK, CKE and L(U)DQM.
Masks system clock to freeze operation from the next clock cycle.
CKE should be enabled at least one cycle prior to new command.
Disable input buffers for power down in standby.
Row / column addresses are multiplexed on the same pins.
Row address : RA0 ~ RA10, column address : CA0 ~ CA7
Selects bank to be activated during row address latch time.
Selects bank for read/write during column address latch time.
Latches data in starting from CAS , WE active.
Makes data output Hi-Z, tSHZ after the clock and masks the output.
Blocks data input when L(U)DQM active.
Publication Date : Jun. 2005
Revision : 1.0
2/28
ESMT
M12S16161A
DQ0 ~ 15
VDD/VSS
Data Input / Output
Power Supply/Ground
VDDQ/VSSQ
Data Output Power/Ground
N.C/RFU
No Connection/
Reserved for Future Use
Data inputs/outputs are multiplexed on the same pins.
Power and ground for the input buffers and the core logic.
Isolated power supply and ground for the output buffers to provide improved
noise immunity.
This pin is recommended to be left No Connection on the device.
ABSOLUTE MAXIMUM RATINGS
Parameter
Voltage on any pin relative to VSS
Voltage on VDD supply relative to VSS
Storage temperature
Power dissipation
Short circuit current
Symbol
Value
Unit
VIN,VOUT
VDD,VDDQ
TSTG
PD
IOS
-1.0 ~ 4.6
-1.0 ~ 4.6
-55 ~ + 150
0.7
50
V
V
°C
W
MA
Note: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.
DC OPERATING CONDITIONS
Recommended operating conditions (Voltage referenced to VSS = 0V, TA= 0 °C ~ 70 °C )
Parameter
Supply voltage
Symbol
Min
Typ
Max
Unit
VDD
2.3
2.3
2.5
2.5
2.7
2.7
V
V
VDDQ
Note
1.65
2.7
V
1
Input logic high voltage
VIH
0.8 x VDDQ
VDDQ+0.3
V
1
Input logic low voltage
VIL
-0.3
0
0.3
V
2
Output logic high voltage
VOH
VDDQ – 0.2
V
IOH =-0.1mA
Output logic low voltage
VOL
0.2
V
IOL = 0.1mA
Input leakage current
IIL
-10
10
uA
3
Output leakage current
IOL
-10
10
uA
4
Note : 1. ESMT can support VDDQ 2.5V (in general case) and 1.8V (in specific case) for VDD 2.5V products. Please contact
to sales. Dept. when condisering the use fo VDDQ 1.8V (min 1.65V).
2.VIH (max) = 4.6V AC for pulse width ≤ 3ns acceptable.
3.VIL (min) = -1.0V AC for pulse width ≤ 3ns acceptable.
4.Any input 0V ≤ VIN ≤ VDDQ, all other pins are not under test = 0V.
5.Dout is disabled, 0V ≤ VOUT ≤ VDDQ.
CAPACITANCE (VDD = 2.5V, TA = 25 °C , f = 1MHz)
Pin
Symbol
Min
Max
Unit
CLOCK
CCLK
-
4.0
pF
CIN
-
4.0
pF
CADD
COUT
-
4.0
6.0
pF
pF
RAS , CAS , WE , CS , CKE, LDQM,
UDQM
ADDRESS
DQ0 ~DQ15
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
3/28
ESMT
M12S16161A
DC CHARACTERISTICS
(Recommended operating condition unless otherwise noted, TA = 0 °C ~ 70 °C )
Parameter
Operating Current
(One Bank Active)
Precharge Standby
Current in power-down
mode
Precharge Standby
Current in non
power-down mode
Symbol
CAS
Latency
Test Condition
ICC1
Burst Length = 1
tRC ≥ tRC (min), tCC ≥ tCC (min), IOL= 0mA
ICC2P
CKE ≤ VIL(max), tCC =15ns
ICC2PS
CKE ≤ VIL(max), CLK ≤ VIL(max), tCC = ∞
ICC2N
Version
-10
-15
35
25
CKE ≥ VIH(min), CS ≥ VIH(min), tCC =15ns
Input signals are changed one time during 30ns
Unit Note
mA
-
mA
0.2
mA
-
mA
ICC2NS
CKE ≥ VIH(min), CLK ≤ VIL(max), tCC = ∞
Input signals are stable
-
mA
ICC3P
CKE ≤ VIL(max), tCC =15ns
-
mA
ICC3PS
CKE ≤ VIL(max), CLK ≤ VIL(max), tCC = ∞
-
ICC3N
CKE ≥ VIH(min), CS ≥ VIH(min), tCC=15ns
Input signals are changed one time during 30ns
ICC3NS
CKE ≥ VIH (min), CLK ≤ VIL(max), tCC= ∞
Input signals are stable
Operating Current
(Burst Mode)
ICC4
IOL= 0Ma, Page Burst
All Band Activated, tCCD = tCCD (min)
35
25
Refresh Current
ICC5
tRC ≥ tRC(min)
35
TCSR range
Active Standby Current
in power-down mode
Active Standby Current
in non power-down
mode
(One Bank Active)
Self Refresh Current
Deep Power Down
Current
ICC6
ICC7
CKE ≤ 0.2V
15
mA
-
mA
1
mA
1
25
mA
2
45
70
°C
2 Banks
100
120
1 Bank
95
110
1/2 Bank
90
100
1/4 Bank
85
90
CKE ≤ 0.2V
10
uA
uA
Note: 1.Measured with outputs open. Addresses are changed only one time during tCC(min).
2.Refresh period is 32ms. Addresses are changed only one time during tCC(min).
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
4/28
ESMT
M12S16161A
AC OPERATING TEST CONDITIONS (VDD=2.5V ± 0.2V,TA= 0 °C ~ 70 °C )
Parameter
Input levels (Vih/Vil)
Input timing measurement reference level
Input rise and fall time
Output timing measurement reference level
Output load condition
Value
0.9 x VDDQ / 0.2
0.5 x VDDQ
tr / tf = 1 / 1
0.5 x VDDQ
See Fig.2
Unit
V
V
ns
V
VDDQ
Vtt =0.5x VDDQ
500
50
Output
VOH(DC) = VDDQ-0.2V, IOH = -0.1mA
VOL(DC) = 0.2V, IOL = 0.1mA
Output
Z0=50
500
20 pF
30 pF
(Fig.2) AC Output Load Circuit
(Fig.1) DC Output Load circuit
OPERATING AC PARAMETER
(AC operating conditions unless otherwise noted)
Parameter
Symbol
Version
-10
-15
Unit
Note
Row active to row active delay
tRRD(min)
20
30
ns
1
RAS to CAS delay
tRCD(min)
30
30
ns
1
Row precharge time
tRP(min)
20
30
ns
1
tRAS(min)
50
60
ns
1
Row active time
tRAS(max)
Row cycle time
tRC(min)
Last data in to new col. Address delay
tCDL(min)
Last data in to row precharge
100
ns
1
1
CLK
2
tRDL(min)
2
CLK
2
Last data in to burst stop
tBDL(min)
1
CLK
2
Col. Address to col. Address delay
tCCD(min)
1
CLK
3
ea
4
Number of valid output data
70
us
90
CAS latency=3
2
CAS latency=2
1
CAS latency=1
0
Note: 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and
then rounding off to the next higher integer.
2.
Minimum delay is required to complete write.
3. All parts allow every cycle column address change.
4. In case of row precharge interrupt, auto precharge and read burst stop.
The earliest a precharge command can be issued after a Read command without the loss of data is CL+BL-2 clocks.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
5/28
ESMT
M12S16161A
AC CHARACTERISTICS (AC operating conditions unless otherwise noted)
Parameter
CLK cycle time
CLK to valid
output delay
CAS Latency =3
Symbol
tCC
CAS Latency =2
-10
Max
10
15
CAS Latency =2
CAS Latency =3
Min
tSAC
1000
-15
Min
15
15
Max
Unit
Note
ns
1
ns
1
1000
-
9
-
12
-
12
-
12
Output data hold time
tOH
2.5
2.5
ns
2
CLK high pulse width
tCH
3
3
ns
3
CLK low pulse width
tCL
3
3
ns
3
Input setup time
tSS
3
4
ns
3
Input hold time
tSH
1
2
ns
3
CLK to output in Low-Z
tSLZ
1
1
ns
2
tSHZ
-
7
-
9
CAS Latency =2
-
8
-
9
CAS Latency =1
-
-
-
24
CLK to output in
Hi-Z
CAS Latency =3
ns
*All AC parameters are measured from half to half.
Note: 1.Parameters depend on programmed CAS latency.
2.If clock rising time is longer than 1ns,(tr/2-0.5)ns should be added to the parameter.
3.Assumed input rise and fall time (tr & tf)=1ns.
If tr & tf is longer than 1ns, transient time compensation should be considered, i.e., [(tr+ tf)/2-1]ns should be added to the
parameter.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
6/28
ESMT
M12S16161A
Mode Register
BA
x
A10
x
A9
1
A8
0
A7
0
0
0
0
0
0
A6
A5 A4 A3
LTMODE
WT
LTMODE
WT
A2
A1 A0
BL
BL
Address bus
Burst Read and Single Write (for Write
Through Cache)
Mode Register Set
x =Don’t care
Burst length
Wrap type
A2-A0
000
001
010
011
100
101
110
111
0
1
A6-A4
Latency mode
000
001
010
011
100
101
110
111
Mode Register Write Timing
WT=0
1
2
4
8
R
R
R
Full page
WT=1
1
2
4
8
R
R
R
R
Sequential
Interleave
CAS Latency
R
R
2
3
R
R
R
R
Remark R : Reserved
CLOCK
CKE
CS
RAS
CAS
WE
A0-A11
Mode Register W rite
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
7/28
ESMT
M12S16161A
Extended Mode Register
BA
1
A10
0
A9
0
A8
0
A7
0
A6
A5
DS
A4
X
A3
X
A2
A1 A0
PASR
Address bus
Extended Mode Register Set
PASR
DS
x =Don’t care
A2-A0
000
001
010
011
100
101
110
111
WT=0
2 Banks
1 Bank (Bank 0, BA=0)
1/2 Bank (BA=A10=0)
R
R
1/4 Bank (BA=A10=A9=0)
R
R
A6-A5
00
01
10
11
Driver Strength
Full Strength
1/2 Strength
1/4 Strength
R
Remark R : Reserved
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
8/28
ESMT
M12S16161A
Burst Length and Sequence
(Burst of Two)
Starting Address
(column address A0 binary)
0
1
Sequential Addressing
Sequence (decimal)
0,1
1,0
Interleave Addressing
Sequence (decimal)
0,1
1,0
Sequential Addressing
Sequence (decimal)
0,1,2,3
1,2,3,0
2,3,0,1
3,0,1,2
Interleave Addressing
Sequence (decimal)
0,1,2,3
1,0,3,2
2,3,0,1
3,2,1,0
(Burst of Four)
Starting Address
(column address A1-A0, binary)
00
01
10
11
(Burst of Eight)
Starting Address
(column address A2-A0, binary)
000
001
010
0 11
100
101
11 0
111
Sequential Addressing
Sequence (decimal)
0,1,2,3,4,5,6,7
1,2,3,4,5,6,7,0
2,3,4,5,6,7,0,1
3,4,5,6,7,0,1,2
4,5,6,7,0,1,2,3
5,6,7,0,1,2,3,4
6,7,0,1,2,3,4,5
7,0,1,2,3,4,5,6
Interleave Addressing
Sequence (decimal)
0,1,2,3,4,5,6,7
1,0,3,2,5,4,7,6
2,3,0,1,6,7,4,5
3,2,1,0,7,6,5,4
4,5,6,7,0,1,2,3
5,4,7,6,1,0,3,2
6,7,4,5,2,3,0,1
7,6,5,4,3,2,1,0
Full page burst is an extension of the above tables of Sequential Addressing, with the length being 256 for 1Mx16 divice.
POWER UP SEQUENCE
1.Apply power and start clock, attempt to maintain CKE= “H”, L(U)DQM = “H” and the other pin are NOP condition at the inputs.
2.Maintain stable power, stable clock and NOP input condition for a minimum of 200us.
3.Issue precharge commands for all banks of the devices.
4.Issue 2 or more auto-refresh commands.
5.Issue mode register set command to initialize the mode register.
Cf.)Sequence of 4 & 5 is regardless of the order.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
9/28
ESMT
M12S16161A
SIMPLIFIED TRUTH TABLE
COMMAND
CKEn-1 CKEn CS
Mode Register Set
H
X
L
Register
Extended Mode Register
H
X
L
Set
Auto Refresh
H
H
L
Entry
L
Refresh
Self Refresh
L
Exit
L
H
H
Bank Active & Row Addr.
H
X
L
Auto
Precharge
Disable
Read &
H
X
L
Column Address
Write & Column
Address
Auto Precharge Enable
Auto Precharge Disable
Auto Precharge Enable
Burst Stop
Bank Selection
Both Banks
Precharge
Clock Suspend or
Active Power Down
Precharge Power Down Mode
Deep Power Down Mode
WE
L
L
L
L
H
H
X
L
H
X
H
H
X
H
X
V
H
L
H
X
V
X
X
3
3
X
X
3
3
H
X
L
H
L
L
X
H
X
L
H
H
L
X
X
Entry
H
L
Exit
L
H
Entry
H
L
Exit
L
H
Entry
Exit
H
H
H
H
L
No Operation Command
CAS
L
L
Row Address
Column
L
X
L
H
L
L
H
L
H
L
X
H
L
H
L
X
V
X
X
H
X
V
X
X
H
H
X
X
V
X
X
H
X
V
X
V
X
X
H
X
V
X
H
H
X
X
H
L
X
H
L
L
X
X
X
X
V
L
H
V
X
L
H
4
Address
(A0~A7) 4,5
Column
4
Address
4,5
(A0~A7)
H
H
DQM
DQM BA A10/AP A9~A0 Note
X
OP CODE
1,2
X
OP CODE
1,2
RAS
L
L
X
X
6
4
4
X
X
X
X
V
X
X
X
X
X
X
7
(V= Valid, X= Don’t Care, H= Logic High , L = Logic Low)
Note:
1. OP Code: Operation Code
A0~ A10/AP, BA: Program keys.(@MRS). BA=0 for MRS and BA=1 for EMRS.
2.
MRS/EMRS can be issued only at both banks precharge state.
A new command can be issued after 2 clock cycle of MRS.
3.
Auto refresh functions are as same as CBR refresh of DRAM.
The automatical precharge without row precharge command is meant by “Auto”.
Auto / self refresh can be issued only at both banks idle state.
4.
BA: Bank select address.
If “Low”: at read, write, row active and precharge, bank A is selected.
If “High”: at read, write, row active and precharge, bank B is selected.
If A10/AP is “High” at row precharge, BA ignored and both banks are selected.
5. During burst read or write with auto precharge, new read/write command can not be issued.
Another bank read /write command can be issued after the end of burst.
New row active of the associated bank can be issued at tRP after the end of burst.
6. Burst stop command is valid at every burst length.
7. DQM sampled at positive going edge of a CLK masks the data-in at the very CLK (Write DQM latency is 0), but
makes
Hi-Z state the data-out of 2 CLK cycles after. (Read DQM latency is 2)
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
10/28
ESMT
M12S16161A
Single Bit Read-Write-Read Cycle (Same Page) @CAS Latency=3, Burst Length=1
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
tCL
tCC
HIGH
CKE
tRAS
tRC
*Note1
tSH
CS
tRP
tRCD
tSS
tSH
RAS
tSS
tCCD
tSH
CAS
tSS
tSS
tSH
ADDR
Ra
Ca
Cb
*Note2
Rb
Cc
tSH
tSS
*Note2,3
BA
BS
BS
A10 /A P
Ra
*Note 3
*Note2,3
*Note2,3
BS
BS
*Note 3
*Note 3
*Note4
*Note2
BS
BS
*Note4
Rb
tRAC
tSAC
tSH
DQ
tSLZ
Qc
Db
Qa
tSS
tOH
tSH
WE
tSS
tSS
tSH
DQM
Row Active
Read
W rite
Read
Row Active
Precharge
:D on' t Ca re
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
11/28
ESMT
M12S16161A
*Note: 1. All inputs expect CKE & DQM can be don’t care when CS is high at the CLK high going edge.
2. Bank active & read/write are controlled by BA.
BA
Active & Read/Write
0
Bank A
1
Bank B
3.Enable and disable auto precharge function are controlled by A10/AP in read/write command.
A10/AP
0
1
BA
Operation
0
Disable auto precharge, leave bank A active at end of burst.
1
Disable auto precharge, leave bank B active at end of burst.
0
Enable auto precharge, precharge bank A at end of burst.
1
Enable auto precharge, precharge bank B at end of burst.
4.A10/AP and BA control bank precharge when precharge command is asserted.
A10/AP
BA
precharge
0
0
Bank A
0
1
Bank B
1
X
Both Banks
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
12/28
ESMT
M12S16161A
Power Up Sequence
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
High l evel i s n ec es sar y
CS
tRC
tRC
tRP
RAS
CAS
ADDR
RAa
Key
BA
Key
A10 /AP
Key
RAa
High-Z
DQ
WE
DQM
High level is necessary
Precharge
All Banks
Auto Ref resh
Auto Ref res h
Mode R egis ter Set
( A- Ban k )
Row Active
: Don't care
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
13/28
ESMT
M12S16161A
Read & Write Cycle at Same Bank @Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
t RC
*Note1
CS
tRCD
RAS
*Note2
CAS
ADDR
Ra
Rb
Ca0
Cb0
BA
A10/AP
Ra
Rb
tOH
CL=2
Qa0
t R AC
QC
Qa2
Qa1
t S AC
*Note3
CL=3
Qa1
Db0
tS H Z
tO H
Qa0
t
R AC
*Note3
Qa3
Qa2
Db2
Db3
tRDL
Qa3
t S AC
Db1
*Note4
Db0
tS H Z
*Note4
Db1
Db2
Db3
tRDL
WE
DQ M
Row Active
(A- Bank)
Read
(A- Ban k)
Precharge
Row Active
(A- Bank)
(A- Bank)
W r ite
(A- Ban k)
Precharge
(A- Bank)
: Don't care
*Note: 1.Minimum row cycle times is required to complete internal DRAM operation.
2.Row precharge can interrupt burst on any cycle. [CAS Latency-1] number of valid output data is available after Row
precharge. Last valid output will be Hi-Z(tSHZ) after the clock.
3.Access time from Row active command. tcc*(tRCD +CAS latency-1)+tSAC
4.Ouput will be Hi-Z after the end of burst.(1,2,4,8 bit burst)
Burst can’t end in Full Page Mode.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
14/28
ESMT
M12S16161A
Page Read & Write Cycle at Same Bank @ Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
CS
tRCD
RAS
*Note2
CAS
ADDR
Ra
Ca0
Cb0
Cc0
Cd0
BA
A10/AP
Ra
tRDL
CL=2
Qa0
Qa1
Qb0
Qb1
Qb2
Dc0
Qa0
Qa1
Qb0
Qb1
Dc0
Dc1
Dd0
Dd1
DQ
CL=3
Dc1
Dd0
Dd2
tCDL
WE
*Note3
*Note1
DQM
Row Active
(A-Bank)
Read
(A-Bank)
Read
(A-Bank)
Write
(A-Bank)
Write
(A-Bank)
Precharge
(A-Bank)
: Don't care
*Note :1.To write data before burst read ends, DQM should be asserted three cycle prior to write command to avoid bus
contention.
2.Row precharge will interrupt writing. Last data input, tRDL before Row precharge, will be written.
3.DQM should mask invalid input data on precharge command cycle when asserting precharge before end of burst.
Input data after Row precharge cycle will be masked internally.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
15/28
ESMT
M12S16161A
Page Read Cycle at Different Bank @ Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
HIGH
*Note1
CS
RAS
*Note2
CAS
ADDR
RAa
CAa
CAc
CBb
RBb
CBd
CAe
BA
A10/AP
RAa
RBb
CL=2
QAa0
QAa1
QAa2 QAa3
QBb0
QBb1
QBb2
QBb3
QAc0
QAc1
QBd0
QBd1
QAe0
QAe1
QAa0
QAa1
QAa3
QBb0
QBb1
QBb2
QBb3
QAc0
QAc1
QBd0
QBd1
QAe0
DQ
CL=3
QAa2
QAe1
WE
DQM
Row Active
(A-Bank)
Read
(A-Bank)
Read
(B-Bank)
Read
(A-Bank)
Read
(B-Bank)
Read
(A-Bank)
Precharge
(A-Bank)
Row Active
(B-Bank)
: Don't care
*Note: 1. CS can be don’t cared when RAS , CAS and WE are high at the clock high going dege.
2.To interrupt a burst read by row precharge, both the read and the precharge banks must be the same.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
16/28
ESMT
M12S16161A
Page Write Cycle at Different Bank @Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
CS
RAS
CAS
*Note2
ADDR
RAa
CAa
CBb
RBb
CAc
CBd
BA
A10/AP
RAa
DQ
RBb
DAa0
DAa1
DAa2
DAa3
DBb0
DBb1
DBb2 DBb3
DAc0
DAc1
DBd0
tCDL
DBd1
tRDL
WE
*Note1
DQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Write
(A-Bank)
Write
(B-Bank)
Precharge
(Both Banks)
Write
(A-Bank)
Write
(B-Bank)
: Don't care
*Note: 1.To interrupt burst write by Row precharge, DQM should be asserted to mask invalid input data.
2.To interrupt burst write by row precharge, both the write and the precharge banks must be the same.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
17/28
ESMT
M12S16161A
Read & Write Cycle at Different Bank @ Burst Length = 4
*Note: 1.tCDL should be met to complete write.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
18/28
ESMT
M12S16161A
Read & Write Cycle with auto Precharge @ Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
CS
RAS
CAS
ADDR
Ra
Rb
Ra
Rb
Cb
Ca
BA
A10 /A P
CL= 2
Qa0
Q a1
Qa2
Q a3
Q a1
Qa2
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
DQ
CL=3
Q a0
Qa3
WE
DQM
Row Active
( A - Bank )
Read with
Auto Precharge
( A - Bank )
Auto Precharge
Start Point
( A - Bank)
W rite with
Auto Pr echarge
( B- Bank )
Auto Pr echarge
Star t Poin t
( B- Bank )
Row Active
( B - Bank )
:D on' t Ca re
*Note: 1.tCDL Should be controlled to meet minimum tRAS before internal precharge start
(In the case of Burst Length=1 & 2 and BRSW mode)
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
19/28
ESMT
M12S16161A
Clock Suspension & DQM Operation Cycle @CAS Latency=2, Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
CKE
CS
RAS
CAS
ADDR
Ra
Ca
Cb
Cc
BA
A10 /AP
Ra
Qa0
DQ
Q a1
Q a2
Qb0
Qa3
tSHZ
Q b1
Dc2
Dc0
tSHZ
WE
*Note1
DQM
Row Active
Read
Clock
Su s pension
Rea d
Write
DQM
Read DQM
W rite
W rite
DQM
Clock
Suspension
:Don't Care
*Note:1.DQM is needed to prevent bus contention.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
20/28
ESMT
M12S16161A
Read Interrupted by Precharge Command & Read Burst Stop Cycle @Burst Length =Full page
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
CS
RAS
CAS
ADDR
RAa
CAa
CAb
BA
A10 /AP
RAa
*Note2
1
1
QAa0 QAa1 QAa2 QAa3 QAa4
CL=2
DQ
QAb0 QAb1 QAb2 QAb 3 QAb4 QAb5
2
2
CL=3
QAa0 QAa1 QAa2 QAa3 QAa4
WE
QAb0 QAb1 QAb2 QAb3 QAb4 QAb5
*Note1
DQM
Row Active
( A- B an k )
Read
(A- Ban k)
Burst Stop
Read
(A- Ban k)
Precharge
( A- B an k )
:Don't Care
*Note: 1.Burst can’t end in full page mode, so auto precharge can’t issue.
2.About the valid DQs after burst stop, it is same as the case of RAS interrupt.
Both cases are illustrated above timing diagram. See the label 1,2 on them.
But at burst write, burst stop and RAS interrupt should be compared carefully.
Refer the timing diagram of “Full page write burst stop cycle”.
3.Burst stop is valid at every burst length.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
21/28
ESMT
M12S16161A
Write Interrupted by Precharge Command & Write Burst stop Cycle @ Burst Length =Full page
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
HIGH
CKE
CS
RAS
CAS
ADDR
RAa
CAa
CAb
BA
A10 /AP
RAa
tBDL
tRDL
*Note2
DQ
DAa0 DAa1 DAa2 DAa3 DAa4
DAb0 DAb1 DAb2 DAb3 DAb4 DAb5
WE
DQM
Row Active
( A- B an k )
W rite
(A- Ban k )
Burst Stop
W rite
(A-Bank)
Precharge
( A- B an k )
:Don't Care
*Note: 1. Burst can’t end in full page mode, so auto precharge can’t issue.
2.Data-in at the cycle of interrupted by precharge can not be written into the corresponding memory cell. It is defined by
AC parameter of tRDL.
DQM at write interrupted by precharge command is needed to prevent invalid write.
Input data after Row precharge cycle will be masked internally.
3.Burst stop is valid at every burst length.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
22/28
ESMT
M12S16161A
Burst Read Single bit Write Cycle @Burst Length=2
CLOCK
*Note1
HIGH
CKE
CS
RAS
*Note2
CAS
RAa
ADDR
CAa
RBb
CAb
CBc
RAc
CAd
BA
A10 /AP
RAa
RAc
RBb
CL=2
DAa0
CL= 3
DAa0
QAb0 QAb1
QAd0 QAd1
DBc0
DQ
QAb0 QAb1
QAd0 QAd1
DBc 0
WE
DQM
Row Active
( A- B an k )
Row Active
(B-Bank)
W rite
(A- Bank )
Read with
Auto Precharge
(A-Bank)
Read
( A- B an k )
Row Active
( A- B an k )
Precharge
( A- B an k )
W rite wit h
Auto Pr echarge
( B- Bank )
:Don't Care
*Note:1.BRSW modes is enabled by setting A9 “High” at MRS(Mode Register Set).
At the BRSW Mode, the burst length at write is fixed to “1” regardless of programmed burst length.
2.When BRSW write command with auto precharge is executed, keep it in mind that tRAS should not be violated.
Auto precharge is executed at the next cycle of burst-end, so in the case of BRSW write command, the precharge
command will be issued after two clock cycles.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
23/28
ESMT
M12S16161A
Active/Precharge Power Down Mode @CAS Latency=2, Burst Length=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Q a0
Q a1
16
17
18
19
CLOCK
*Note2
tSS
CKE
tSS
*Note1
tS S
*Note3
CS
RAS
CAS
Ra
ADDR
Ca
BA
A10 /A P
Ra
tSHZ
DQ
Q a2
WE
DQM
Pr ech ar ge
Power - Down
Entry
Row Active
Precharge
Power-Down
Exit
Active
Power-down
Entry
Read
Precharge
Active
Power-down
Exit
: Don't care
*Note :1.Both banks should be in idle state prior to entering precharge power down mode.
2.CKE should be set high at least 1CLK+tss prior to Row active command.
3.Can not violate minimum refresh specification. (32ms)
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
24/28
ESMT
M12S16161A
Self Refresh Entry & Exit Cycle
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLOCK
*Note2
*Note4
tRCmin
*Note6
*Note1
*Note3
CKE
tSS
CS
*Note5
RAS
*Note7
CAS
ADDR
BA
A10 /AP
Hi-Z
DQ
Hi-Z
WE
DQM
Sel f R ef r esh En tr y
S e l f R ef r e s h E xi t
Auto Ref res h
: Don't care
*Note: TO ENTER SELF REFRESH MODE
1. CS , RAS & CAS with CKE should be low at the same clock cycle.
2. After 1 clock cycle, all the inputs including the system clock can be don’t care except for CKE.
3. The device remains in self refresh mode as long as CKE stays “Low”.
cf.) Once the device enters self refresh mode, minimum tRAS is required before exit from self refresh.
TO EXIT SELF REFRESH MODE
4. System clock restart and be stable before returning CKE high.
5. CS Starts from high.
6. Minimum tRC is required after CKE going high to complete self refresh exit.
7. 2K cycle of burst auto refresh is required before self refresh entry and after self refresh exit if the system uses burst
refresh.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
25/28
ESMT
M12S16161A
Mode Register Set Cycle
0
1
2
3
4
5
Auto Refresh Cycle
6
0
1
2
3
4
5
6
7
8
9
10
CLOCK
HIGH
CKE
HIGH
CS
*Note2
tRC
RAS
*Note1
CAS
*Note3
ADDR
Key
DQ
Ra
Hi-Z
Hi-Z
WE
DQM
MRS
New C om m an d
Au to Ref r es h
New C om m an d
:Don't Care
*Both banks precharge should be completed before Mode Register Set cycle and auto refresh cycle.
MODE REGISTER SET CYCLE
*Note: 1. CS , RAS , CAS & WE activation at the same clock cycle with address key will set internal mode register.
2.Minimum 2 clock cycles should be met before new RAS activation.
3.Please refer to Mode Register Set table.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
26/28
ESMT
M12S16161A
PACKAGE DIMENSIONS
50-LEAD TSOP(II) SDRAM(400mil)
Symbol
A
A1
A2
B
B1
C
C1
D
E
E1
L
L1
e
θ
Min
0.051
0.95
0.30
0.30
0.12
0.10
20.82
11.56
10.03
0.40
0
Dimension in mm
Nom
0.127
1.00
0.35
0.127
20.95
11.76
10.16
0.50
0.80 REF
0.80 BSC
-
Elite Semiconductor Memory Technology Inc.
Max
1.20
0.203
1.05
0.45
0.40
0.21
0.16
21.08
11.96
10.29
0.60
Min
0.002
0.037
0.012
0.012
0.005
0.004
0.820
0.455
0.394
0.016
8
0
Dimension in inch
Nom
0.005
0.039
0.014
0.005
0.825
0.463
0.400
0.020
0.031 REF
0.031 BSC
-
Max
0.047
0.008
0.041
0.018
0.016
0.008
0.006
0.830
0.471
0.405
0.024
8
Publication Date : Jun. 2005
Revision : 1.0
27/28
ESMT
M12S16161A
Important Notice
All rights reserved.
No part of this document may be reproduced or duplicated in any form or by
any means without the prior permission of ESMT.
The contents contained in this document are believed to be accurate at the
time of publication. ESMT assumes no responsibility for any error in this
document, and reserves the right to change the products or specification in
this document without notice.
The information contained herein is presented only as a guide or examples
for the application of our products. No responsibility is assumed by ESMT for
any infringement of patents, copyrights, or other intellectual property rights of
third parties which may result from its use. No license, either express ,
implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of ESMT or others.
Any semiconductor devices may have inherently a certain rate of failure. To
minimize risks associated with customer's application, adequate design and
operating safeguards against injury, damage, or loss from such failure,
should be provided by the customer when making application designs.
ESMT's products are not authorized for use in critical applications such as,
but not limited to, life support devices or system, where failure or abnormal
operation may directly affect human lives or cause physical injury or property
damage. If products described here are to be used for such kinds of
application, purchaser must do its own quality assurance testing appropriate
to such applications.
Elite Semiconductor Memory Technology Inc.
Publication Date : Jun. 2005
Revision : 1.0
28/28
Similar pages