Microchip MCP1804T-5002I/MT 150 ma, 28v ldo regulator with shutdown Datasheet

MCP1804
150 mA, 28V LDO Regulator With Shutdown
Features
Description
• 150 mA Output Current
• Low Drop Out Voltage, 260 mV typical @ 20 mA,
VR = 3.3V
• 50 µA Typical Quiescent Current
• 0.01 µA Typical Shutdown Current
• Input Operating Voltage Range: 2.0V to 28.0V
• Standard Output Voltage Options
(1.8V, 2.5V, 3.0V, 3.3V, 5.0V, 10.0V, 12.0V)
• Output Voltage Accuracy: ±2%
• Output voltages from 1.8V to 18.0V in 0.1V
increments are available upon request
• Stable with Ceramic output capacitors
• Current Limit Protection With Current Foldback
• Shutdown pin
• High PSRR: 50 dB typical @ 1 kHz
The MCP1804 is a family of CMOS low dropout (LDO)
voltage regulators that can deliver up to 150 mA of
current while consuming only 50 µA of quiescent
current (typical, 1.8V ≤ VOUT ≤ 5.0V). The input
operating range is specified from 2.0V to 28.0V.
Applications
•
•
•
•
•
•
Cordless Phones, Wireless Communications
PDAs, Notebook and Netbook Computers
Digital Cameras
Microcontroller Power
Car Audio and Navigation Systems
Home Appliances
Related Literature
• AN765, “Using Microchip’s Micropower LDOs”,
DS00765, Microchip Technology Inc., ©2002
• AN766, “Pin-Compatible CMOS Upgrades to
BiPolar LDOs”, DS00766, Microchip Technology
Inc., ©2002
• AN792, “A Method to Determine How Much
Power a SOT23 Can Dissipate in an Application”,
DS00792, Microchip Technology Inc., ©2001
The MCP1804 is capable of delivering 100 mA with
only 1300 mV (typical) of input to output voltage
differential (VOUT = 3.3V). The output voltage tolerance
of the MCP1804 at +25°C is a maximum of ±2%. Line
regulation is ±0.15% typical at +25°C.
The LDO input and output is stable with 0.1 µF of input
and output capacitance. Ceramic, tantalum or
aluminum electrolytic capacitors can all be used for
input and output. Overcurrent limit with current foldback
to 40 mA (typical) provides short-circuit protection.
A shutdown (SHDN) function allows the output to be
enabled or disabled. When disabled, the MCP1804
draws only 0.01 µA of current (typical).
Package options include the SOT-23-5 (SOT-25), SOT89-3, SOT-89-5, and SOT-223-3.
Package Types
SOT-23-5
VOUT
SHDN
VIN
NC
5
4
5
4
(Top View)
1
2
3
VIN
GND
NC
1
1
2
3
VOUT GND SHDN
SOT-223
SOT-89-3
(Top View)
(Top View)
2
VOUT GND
© 2009 Microchip Technology Inc.
SOT-89-5
3
1
2
3
VIN
VOUT
VSS
VIN
DS22200A-page 1
MCP1804
Functional Block Diagram
VOUT
VIN
*
Thermal
Protection
SHDN
Shutdown
Control
Voltage
Reference
+
Current Limiter
Error Amplifier
*5-Pin Versions Only
GND
Typical Application Circuit
MCP1804
VIN
1
VIN VOUT
5
5.0V @ 30 mA
COUT
1 µF Ceramic
SOT-25
12V
Battery
GND
3
NC SHDN
+
CIN
1 µF
Ceramic
DS22200A-page 2
2
VOUT
4
© 2009 Microchip Technology Inc.
MCP1804
1.0
ELECTRICAL
CHARACTERISTICS
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at
those or any other conditions above those indicated in the
operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Absolute Maximum Ratings †
Input Voltage ...................................................... +30V
Output Current (Continuous)........... PD/(VIN-VOUT)mA
Output Current (Peak)...................................... 300 mA
Output Voltage ..................... (VSS-0.3V) to (VIN+0.3V)
SHDN Voltage ................................(VSS-0.3V) to +30V
Continuous Power Dissipation:
SOT-25......................................................... 250 mW
SOT-89......................................................... 500 mW
SOT-223....................................................... 300 mW
ELECTRICAL CHARACTERISTICS
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C
Parameters
Sym
Min
Typ
Max
Units
2.0
—
28.0
V
—
50
105
µA
Conditions
Input / Output Characteristics
Input Operating
Voltage
VIN
Input Quiescent
Current
Iq
Shutdown Current
ISHDN
Maximum Output
Current
IOUT_mA
Current Limiter
Output Short Circuit
Current
Output Voltage
Regulation
VOUT Temperature
Coefficient
Line Regulation
Note 1:
2:
3:
4:
5:
IL = 0 mA
1.8V ≤ VOUT ≤ 5.0V
—
60
115
µA
5.1V ≤ VOUT ≤ 12.0V
—
65
125
µA
12.1V ≤ VOUT ≤ 18.0V
—
0.01
0.10
µA
SHDN = 0V
VIN = VR + 3.0V
100
—
—
mA
VOUT < 3.0V
150
—
—
mA
VOUT ≥ 3.0V
ILIMIT
—
200
—
mA
IOUT_SC
—
40
—
mA
VOUT
VR-2.0%
VR
VR+2.0%
V
TCVOUT
—
±100
—
ppm/°C
ΔVOUT/
(VOUTXΔVIN)
Note 1
IOUT = 10 mA, Note 2
IOUT = 20 mA,
-40°C ≤ TA ≤ +85°C, Note 3
(VR + 2V) ≤ VIN ≤ 28V, Note 1
—
0.05
0.10
%/V
IOUT = 5 mA
—
0.15
0.30
%/V
IOUT = 13 mA
The minimum VIN must meet one condition: VIN ≥ (VR + 2.0V).
VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.
TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
Changes in output voltage due to heating effects are determined using thermal regulation specification
TCVOUT.
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its
measured value with an applied input voltage of VR + 2.0V.
© 2009 Microchip Technology Inc.
DS22200A-page 3
MCP1804
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C
Parameters
Load Regulation
Dropout Voltage
Note 1, Note 5
Sym
Min
Typ
Max
Units
—
50
90
mV
ΔVOUT/VOUT
Conditions
IL = 1.0 mA to 50 mA, Note 4
1.8V ≤ VOUT ≤ 5.0V
—
110
175
mV
5.1V ≤ VOUT ≤ 12.0V
—
180
275
mV
12.1V ≤ VOUT ≤ 18.0V
VDROPOUT
IL = 20 mA
—
550
710
V
1.8V ≤ VR ≤ 1.9V
—
450
600
V
2.0V ≤ VR ≤ 2.1V
—
390
520
V
2.2V ≤ VR ≤ 2.4V
—
310
450
V
2.5V ≤ VR ≤ 2.9V
—
260
360
V
3.0V ≤ VR ≤ 3.9V
—
220
320
V
4.0V ≤ VR ≤ 4.9V
—
190
280
V
5.0V ≤ VR ≤ 6.4V
—
170
230
V
6.5V ≤ VR ≤ 8.0V
—
130
190
V
8.1V ≤ VR ≤ 10.0V
—
120
170
V
10.1V ≤ VR ≤ 18.0V
IL = 100 mA
—
2200
2700
V
1.8V ≤ VR ≤ 1.9V
—
1900
2600
V
2.0V ≤ VR ≤ 2.1V
—
1700
2200
V
2.2V ≤ VR ≤ 2.4V
—
1500
1900
V
2.5V ≤ VR ≤ 2.9V
—
1300
1700
V
3.0V ≤ VR ≤ 3.9V
—
1100
1500
V
4.0V ≤ VR ≤ 4.9V
—
1000
1300
V
5.0V ≤ VR ≤ 6.4V
—
800
1150
V
6.5V ≤ VR ≤ 8.0V
—
700
950
V
8.1V ≤ VR ≤ 10.0V
—
650
850
V
10.1V ≤ VR ≤ 18.0V
SHDN “H” Voltage
VSHDN_H
1.1
—
VIN
V
VIN = 28V
SHDN “H” Voltage
VSHDN_L
0
—
0.35
V
VIN = 28V
ISHDN
-0.1
—
0.1
µA
VIN = 28V, VSHDN = GND or VIN
SHDN Current
Note 1:
2:
3:
4:
5:
The minimum VIN must meet one condition: VIN ≥ (VR + 2.0V).
VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.
TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
Changes in output voltage due to heating effects are determined using thermal regulation specification
TCVOUT.
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its
measured value with an applied input voltage of VR + 2.0V.
DS22200A-page 4
© 2009 Microchip Technology Inc.
MCP1804
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical Specifications: Unless otherwise specified, all limits are established for VIN = VR + 2.0V, Note 1,
COUT = 1 µF (X7R), CIN = 1 µF (X7R), VSHDN = VIN, TA = +25°C
Parameters
Sym
Min
Typ
Max
Units
Conditions
PSRR
—
50
—
dB
f = 1 kHz, IL = 20 mA,
VINAC = 0.5V pk-pk, CIN = 0 µF
Thermal Shutdown
Protection
TSD
—
150
—
°C
TJ
Thermal Shutdown
Hysteresis
ΔTSD
—
25
—
°C
Power Supply Ripple
Rejection Ratio
Note 1:
2:
3:
4:
5:
The minimum VIN must meet one condition: VIN ≥ (VR + 2.0V).
VR is the nominal regulator output voltage with an input voltage of VIN = VR + 2.0V.
For example: VR = 1.8V, 2.5V, 3.0V, 3.3V, etc.
TCVOUT = (VOUT-HIGH - VOUT-LOW) *106 / (VR * ΔTemperature), VOUT-HIGH = highest voltage measured
over the temperature range. VOUT-LOW = lowest voltage measured over the temperature range.
Load regulation is measured at a constant junction temperature using low duty cycle pulse testing.
Changes in output voltage due to heating effects are determined using thermal regulation specification
TCVOUT.
Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its
measured value with an applied input voltage of VR + 2.0V.
TEMPERATURE SPECIFICATIONS
Parameters
Sym
Min
Typ
Max
Units
Conditions
Temperature Ranges
Operating Temperature Range
TA
-40
+85
°C
Tstg
-55
+125
°C
Thermal Resistance, SOT-25
θJA
θJC
—
—
256
81
—
—
°C/W
EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
Thermal Resistance, SOT-89
θJA
θJC
—
—
180
100
—
—
°C/W
EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
Thermal Resistance, SOT-223
θJA
θJC
—
—
62
15
—
—
°C/W
EIA/JEDEC JESD51-7
FR-4 0.063 4-Layer Board
Storage Temperature Range
Thermal Package Resistance
© 2009 Microchip Technology Inc.
DS22200A-page 5
MCP1804
NOTES:
DS22200A-page 6
© 2009 Microchip Technology Inc.
MCP1804
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
VIN=SHDN=4.8V
VR=2.8V
Ta=-40℃
Output Voltage (V)
Output Voltage (V)
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
Ta=25℃
Ta=85℃
0
50
100
150
200
250
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
VR=1.8V
VIN=2.8V
VIN=3.8V
VIN=4.8V
0
300
50
FIGURE 2-1:
Current.
Output Voltage vs. Output
FIGURE 2-4:
Current.
VIN=SHDN=8.0V
200
250
300
Output Voltage vs. Output
VR=5V
5.0
4.0
3.0
2.0
Ta=-40℃
Ta=25℃
Ta=85℃
1.0
VR=5.0V
Output Voltage (V)
Output Voltage (V)
150
6.0
6.0
5.0
4.0
3.0
2.0
VIN=6V
VIN=7V
VIN=8V
1.0
0.0
0.0
0
50
100
150
200
250
300
0
50
14.0
Output Voltage vs. Output
FIGURE 2-5:
Current.
150
200
250
300
Output Voltage vs. Output
14.0
VIN=SHDN=15V
VR=12V
12.0
10.0
8.0
6.0
4.0
Ta=-40℃
Ta=25℃
Ta=85℃
2.0
0.0
VR=12V
Output Voltage (V)
FIGURE 2-2:
Current.
100
Output Current (mA)
Output Current (mA)
Output Voltage (V)
100
Output Current (mA)
Output Current (mA)
12.0
10.0
VIN=13V
VIN=14V
VIN=15V
8.0
6.0
4.0
2.0
0.0
0
50
100
150
200
250
300
0
Output Current (mA)
FIGURE 2-3:
Current.
Output Voltage vs. Output
© 2009 Microchip Technology Inc.
50
100
150
200
250
300
Output Current (mA)
FIGURE 2-6:
Current.
Output Voltage vs. Output
DS22200A-page 7
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
2.1
2.1
VR=1.8V
2.0
Output Voltage (V)
Output Voltage (V)
VR=1.8V
IOUT=1mA
IOUT=10mA
1.9
IOUT=30mA
1.8
1.7
2.0
1.9
1.8
1.7
1.6
1.6
1.5
1.5
IOUT=1mA
IOUT=10mA
IOUT=30mA
0.8
1.3
1.8
2.3
2.8
3.3
3.8
4
8
Input Voltage (V)
6.0
5.8
5.6
5.4
5.2
5.0
4.8
4.6
4.4
4.2
4.0
Output Voltage vs. Input
FIGURE 2-10:
Voltage.
VR=5V
Output Voltage (V)
Output Voltage (V)
FIGURE 2-7:
Voltage.
IOUT=1mA
IOUT=10mA
IOUT=30mA
4.0
4.5
5.0
16
20
24
5.5
6.0
5.8
5.6
5.4
5.2
5.0
4.8
4.6
4.4
4.2
4.0
VR=5V
IOUT=1mA
IOUT=10mA
IOUT=30mA
8
6.0
12
16
20
24
28
Input Voltage (V)
Output Voltage vs. Input
FIGURE 2-11:
Voltage.
Output Voltage vs. Input
15.0
15.0
VR=12V
VR=12V
14.0
Output Voltage (V)
Output Voltage (V)
28
Output Voltage vs. Input
Input Voltage (V)
FIGURE 2-8:
Voltage.
12
Input Voltage (V)
13.0
12.0
11.0
IOUT=1mA
IOUT=10mA
10.0
14.0
13.0
12.0
11.0
IOUT=1mA
IOUT=10mA
10.0
IOUT=30mA
IOUT=30mA
9.0
9.0
10
11
12
13
14
14
16
FIGURE 2-9:
Voltage.
DS22200A-page 8
Output Voltage vs. Input
18
20
22
24
26
28
Input Voltage (V)
Input Voltage (V)
FIGURE 2-12:
Voltage.
Output Voltage vs. Input
© 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
70
VR=1.8V
VR=1.8V
3.5
Supply Current (µA)
Dropout Voltage (V)
4.0
Ta=85℃
3.0
Ta=25℃
2.5
Ta=-40℃
2.0
1.5
1.0
0.5
0.0
60
50
40
30
20
Ta=85℃
Ta=25℃
Ta=-40℃
10
0
0
25
50
75
100
125
150
0
4
Output Current (mA)
FIGURE 2-13:
Current.
3.0
Ta=85℃
Ta=25℃
Ta=-40℃
2.0
20
24
28
1.5
1.0
Supply Current vs. Input
VR=5V
60
50
40
30
20
Ta=85℃
Ta=25℃
Ta=-40℃
10
0.5
0.0
0
0
25
50
75
100
125
150
0
4
Output Current (mA)
FIGURE 2-14:
Current.
FIGURE 2-17:
Voltage.
16
20
24
28
Ta=85℃
Ta=25℃
Ta=-40℃
1.5
1.0
0.5
0.0
Supply Current vs. Input
VR=12V
Supply Current (µA)
3.0
2.0
12
70
VR=12V
3.5
2.5
8
Input Voltage (V)
Dropout Voltage vs. Load
4.0
Dropout Voltage (V)
16
70
Supply Current (µA)
Dropout Voltage (V)
FIGURE 2-16:
Voltage.
VR=5V
3.5
2.5
12
Input Voltage (V)
Dropout Voltage vs. Load
4.0
8
60
50
40
30
20
Ta=85℃
Ta=25℃
Ta=-40℃
10
0
0
25
50
75
100
125
150
0
4
Output Current (mA)
FIGURE 2-15:
Current.
Dropout Voltage vs. Load
© 2009 Microchip Technology Inc.
8
12
16
20
24
28
Input Voltage (V)
FIGURE 2-18:
Voltage.
Supply Current vs. Input
DS22200A-page 9
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
2.00
70
50
40
30
20
1.90
1.85
1.80
1.75
1.70
10
1.65
0
1.60
-40
-20
0
20
40
60
80
VR=1.8V
1.95
60
Output Voltage (V)
Supply Current (µA)
VR=1.8V
IOUT=1mA
IOUT=10mA
IOUT=20mA
-50
100
-25
Ambient Temperature (°C)
FIGURE 2-19:
Voltage.
Supply Current vs. Input
FIGURE 2-22:
Temperature.
25
50
75
100
Output Voltage vs. Ambient
5.20
VR=5V
60
50
40
30
20
VR=5V
5.15
Output Voltage (V)
Supply Current (µA)
70
10
0
5.10
5.05
5.00
4.95
4.90
IOUT=1mA
4.85
IOUT=10mA
IOUT=20mA
4.80
-40
-20
0
20
40
60
80
100
-50
Ambient Temperature (°C)
FIGURE 2-20:
Voltage.
Supply Current vs. Input
VR=12V
Output Voltage (V)
60
50
40
30
20
10
0
-40
-20
0
20
40
60
80
100
DS22200A-page 10
Supply Current vs. Input
100
Output Voltage vs. Ambient
12.5
12.4
12.3
12.2
12.1
12.0
11.9
11.8
11.7
11.6
11.5
VR=12V
IOUT=1mA
IOUT=10mA
IOUT=20mA
-50
-25
0
25
50
75
100
Ambient Temperature (°C)
Ambient Temperature (°C)
FIGURE 2-21:
Voltage.
-25
0
25
50
75
Ambient Temperature (°C)
FIGURE 2-23:
Temperature.
70
Supply Current (µA)
0
Ambient Temperature (°C)
FIGURE 2-24:
Temperature.
Output Voltage vs. Ambient
© 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
3.34
4.3
3.32
VOUT
4.3
2.3
3.28
3.26
1.3
7
VIN
5.04
6
8
5.06
5.02
VOUT
Input Voltage (V)
Input Voltage (V)
VIN
7
6
4.98
4.96
3
FIGURE 2-29:
12.08
Dynamic Line Response.
16
VIN
15
12.06
12.04
12.02
VOUT
12
12.00
11
11.98
10
11.96
Input Voltage (V)
VR=12V
IOUT=1 mA
Output Voltage (V)
Input Voltage (V)
4.96
Time (1ms/div)
Dynamic Line Response.
14
Dynamic Line Response.
VR=12V
IOUT=30 mA
12.08
12.06
12.04
13
12.02
VOUT
12
12.00
11
11.98
10
11.96
Time (1ms/div)
Time (1ms/div)
© 2009 Microchip Technology Inc.
5.02
VOUT
Time (1ms/div)
FIGURE 2-27:
5.04
4
3
13
5.06
4.98
4
14
5.08
5.00
5.00
15
VR=5V
IOUT=30 mA
5
5
VIN
Dynamic Line Response.
9
5.08
VR=5V
IOUT 1 mA
Output Voltage (V)
9
FIGURE 2-28:
Output Voltage (V)
Dynamic Line Response.
16
3.26
Time (1ms/div)
Time (1ms/div)
FIGURE 2-26:
3.32
VOUT
3.28
2.3
8
3.34
3.30
3.30
FIGURE 2-25:
3.36
3.3
3.3
1.3
5.3
3.38
Output Voltage (V)
5.3
6.3
3.36
VR=3.3V
IOUT =30 mA
Output Voltage (V)
VIN
VIN
Input Voltage (V)
Input Voltage (V)
6.3
7.3
3.38
VR=3.3V
IOUT=1 mA
Output Voltage (V)
7.3
FIGURE 2-30:
Dynamic Line Response.
DS22200A-page 11
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
3.2
90
3.1
3.0
Output Current
2.8
30
2.6
2
0
VOUT
90
4.8
60
Output Current
4.6
30
Input Voltage (V)
120
4.9
4.4
0
6
2
5
0
2
VR=3.3V
IOUT=30 mA
90
11.6
60
IOUT
30
Input Voltage (V)
VOUT
11.0
Startup Response.
8
10.8
0
4
6
2
0
5
VOUT
4
-2
3
-4
2
VR=5.0V
IOUT=1 mA
-8
1
0
Time (1ms/div)
Time (1ms/div)
Dynamic Load Response.
7
VIN
-6
10.6
1
0
8
Output Current (mA)
Output Voltage (V)
3
-4
FIGURE 2-35:
150
120
11.4
4
VOUT
-2
6
11.8
7
Time (1ms/div)
VR = 12V
12.2
DS22200A-page 12
8
VIN
-8
Dynamic Load Response.
12.4
FIGURE 2-33:
Startup Response.
4
Time (1ms/div)
12.6
1
0
-6
4.5
11.2
2
VR=3.3V
IOUT=1 mA
8
150
Output Current (mA)
Output Voltage (V)
FIGURE 2-34:
6
5.0
12.0
3
-4
Output Voltage (V)
VR = 5V
5.2
FIGURE 2-32:
4
Time (1ms/div)
Dynamic Load Response.
5.3
4.7
5
VOUT
-2
Time (1ms/div)
5.1
6
-8
0
5.4
7
4
-6
2.7
FIGURE 2-31:
8
VIN
Output Voltage (V)
2.9
60
Input Voltage (V)
3.3
6
120
VOUT
Output Current (mA)
Output Voltage (V)
3.4
8
150
VR=3.3V
3.5
Output Voltage (V)
3.6
FIGURE 2-36:
Startup Response.
© 2009 Microchip Technology Inc.
MCP1804
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
8
7
6
2
5
VOUT
4
-2
3
-4
2
VR=5.0V
IOUT=30 mA
-8
6
2
5
VOUT
0
-2
3
-4
1
-6
0
-8
2
VR=3.3V
IOUT=1 mA
Time (1ms/div)
Startup Response.
15
VOUT
0
9
-5
6
VR=12V
IOUT=1 mA
-10
-15
SHDN Voltage (V)
12
8
6
15
5
3
4
6
2
5
VOUT
0
3
-4
2
VR=5V
IOUT=1 mA
0
Time (1ms/div)
15
10
12
0
9
-5
6
VR=12V
IOUT=30 mA
-15
SHDN Voltage (V)
15
VOUT
© 2009 Microchip Technology Inc.
18
SHDN
15
5
12
VOUT
0
9
-5
6
3
-10
0
-15
Time (1ms/div)
Startup Response.
SHDN Response.
15
Output Voltage (V)
Input Voltage (V)
FIGURE 2-41:
18
VIN
5
FIGURE 2-39:
1
-8
Startup Response.
-10
4
-2
-6
0
10
7
SHDN
Time (1ms/div)
FIGURE 2-38:
SHDN Response.
8
Output Voltage (V)
Input Voltage (V)
FIGURE 2-40:
18
VIN
10
1
0
Time (1ms/div)
FIGURE 2-37:
4
VOUT (V)
-6
7
4
VR=12V
IOUT=1 mA
VOUT (V)
0
8
SHDN
6
SHDN Voltage (V)
VIN
4
Output Voltage (V)
Input Voltage (V)
6
8
VOUT (V)
8
3
0
Time (1ms/div)
FIGURE 2-42:
SHDN Response.
DS22200A-page 13
MCP1804
8
8
SHDN
7
4
6
2
5
0
4
VOUT
-2
3
-4
VOUT (V)
SHDN Voltage (V)
6
2
VR=3.3V
IOUT=30 mA
-6
1
-8
Ripple Rejection Rate: PSRR
(dB)
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
90
70
60
50
40
30
20
10
0
0.01
0
Time (1ms/div)
FIGURE 2-46:
SHDN Response.
8
8
7
SHDN
4
6
2
5
VOUT
0
4
-2
3
-4
2
VR=5V
IOUT=30 mA
-6
VOUT (V)
SHDN Voltage (V)
6
1
-8
10
15
5
12
VOUT
0
9
-5
6
VR=12V
IOUT=30 mA
-15
3
0
Ripple Rejection Rate: PSRR
(dB)
18
VOUT (V)
SHDN Voltage (V)
VOUT=5V
CIN=0
IOUT=1 mA
VIN_AC=0.5Vp-p
70
60
50
40
30
20
10
0.1
FIGURE 2-47:
SHDN Response.
SHDN
1
10
100
SHDN Response.
PSRR 5.0V @ 1 mA.
90
VOUT=12V
CIN=0
IOUT=1 mA
VIN_AC=0.5Vp-p
80
70
60
50
40
30
20
10
0
0.01
Time (1ms/div)
DS22200A-page 14
100
Ripple Frequency: f (kHz)
15
FIGURE 2-45:
10
PSRR 3.3V @ 1 mA.
80
Time (1ms/div)
-10
1
90
0
0.01
0
FIGURE 2-44:
0.1
Ripple Frequency: f (kHz)
Ripple Rejection Rate: PSRR
(dB)
FIGURE 2-43:
VOUT=3.3V
CIN=0
IOUT=1 mA
VIN_AC=0.5Vp-p
80
0.1
1
10
100
Ripple Frequency: f (kHz)
FIGURE 2-48:
PSRR 12.0V @ 1 mA.
© 2009 Microchip Technology Inc.
MCP1804
90
Ripple Rejection Rate: PSRR
(dB)
Ripple Rejection Rate: PSRR
(dB)
Note: Unless otherwise indicated: COUT = 1 µF Ceramic (X7R), CIN = 1 µF Ceramic (X7R), TA = +25°C, VIN = VR + 2.0V.
VOUT=3.3V
CIN=0
IOUT=30 mA
VIN_AC=0.5Vp-p
80
70
60
50
40
30
20
10
0
0.01
0.1
1
10
100
90
70
60
50
40
30
20
10
0
0.01
Ripple Rejection Rate: PSRR
(dB)
0.1
1
10
100
Ripple Frequency: f (kHz)
Ripple Frequency: f (kHz)
FIGURE 2-49:
VOUT=12V
CIN=0
IOUT=30 mA
VIN_AC=0.5Vp-p
80
PSRR 3.3V @ 30 mA.
FIGURE 2-51:
PSRR 12.0V @ 30 mA.
90
VOUT=5V
CIN=0
IOUT=30 mA
VIN_AC=0.5Vp-p
80
70
60
50
40
30
20
10
0
0.01
0.1
1
10
100
Ripple Frequency: f (kHz)
FIGURE 2-50:
PSRR 5.0V @ 30 mA.
© 2009 Microchip Technology Inc.
DS22200A-page 15
MCP1804
NOTES:
DS22200A-page 16
© 2009 Microchip Technology Inc.
MCP1804
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
MCP1804 PIN FUNCTION TABLE
MCP1804
3.1
SOT-89-5
SOT-223-3,
SOT89-3
Symbol
SOT-25
1
5
3
VIN
2
2,TAB
2, TAB
GND
3
4
—
NC
4
3
—
SHDN
Shutdown
5
1
1
VOUT
Regulated Voltage Output
Unregulated Input Voltage (VIN)
3.3
Description
Unregulated Supply Voltage
Ground Terminal
No connection
Shutdown Input (SHDN)
Connect VIN to the input unregulated source voltage.
Like all low dropout linear regulators, low source
impedance is necessary for the stable operation of the
LDO. The amount of capacitance required to ensure
low source impedance will depend on the proximity of
the input source capacitors or battery type. For most
applications, 0.1 µF to 1.0 µF of capacitance will
ensure stable operation of the LDO circuit. The type of
capacitor used can be ceramic, tantalum or aluminum
electrolytic. The low ESR characteristics of the ceramic
will yield better noise and PSRR performance at
high-frequency.
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic-high
level, the LDO output voltage is enabled. When the
SHDN input is pulled to a logic-low level, the LDO
output voltage is disabled and the LDO enters a low
quiescent current shutdown state where the typical
quiescent current is 0.01 µA. The SHDN pin does not
have an internal pullup or pulldown resistor. The SHDN
pin must be connected to either VIN or GND to prevent
the device from becoming unstable.
3.2
Connect VOUT to the positive side of the load and the
positive terminal of the output capacitor. The positive
side of the output capacitor should be physically
located as close to the LDO VOUT pin as is practical.
The current flowing out of this pin is equal to the DC
load current. For most applications, 0.1 µF to 1.0 µF of
capacitance will ensure stable operation of the LDO
circuit. Larger values may be used to improve dynamic
load response. The type of capacitor used can be
ceramic, tantalum or aluminum electrolytic. The low
ESR characteristics of the ceramic will yield better
noise and PSRR performance at high-frequency.
Ground Terminal (GND)
Regulator ground. Tie GND to the negative side of the
output and the negative side of the input capacitor.
Only the LDO bias current (50 to 60 µA typical) flows
out of this pin; there is no high current. The LDO output
regulation is referenced to this pin. Minimize voltage
drops between this pin and the negative side of the
load.
© 2009 Microchip Technology Inc.
3.4
Regulated Output Voltage (VOUT)
DS22200A-page 17
MCP1804
NOTES:
DS22200A-page 18
© 2009 Microchip Technology Inc.
MCP1804
4.0
DETAILED DESCRIPTION
4.1
Output Regulation
A portion of the LDO output voltage is fed back to the
internal error amplifier and compared with the precision
internal bandgap reference. The error amplifier output
will adjust the amount of current that flows through the
P-Channel pass transistor, thus regulating the output
voltage to the desired value. Any changes in input
voltage or output current will cause the error amplifier
to respond and adjust the output voltage to the target
voltage (refer to Figure 4-1).
4.2
Overcurrent
The MCP1804 internal circuitry monitors the amount of
current flowing through the P-Channel pass transistor.
In the event that the load current reaches the current
limiter level of 200 mA (typical), the current limiter
circuit will operate and the output voltage will drop. As
the output voltage drops, the internal current foldback
circuit will further reduce the output voltage causing the
output current to decrease. When the output is shorted,
a typical output current of 50 mA flows.
4.3
Shutdown
The SHDN input is used to turn the LDO output voltage
on and off. When the SHDN input is at a logic-high
level, the LDO output voltage is enabled. When the
SHDN input is pulled to a logic-low level, the LDO
output voltage is disabled and the LDO enters a low
quiescent current shutdown state where the typical
quiescent current is 0.01 µA. The SHDN pin does not
have an internal pullup or pulldown resistor. Therefore
the SHDN pin must be pulled either high or low to
prevent the device from becoming unstable. The
internal device current will increase when the device is
operational and current flows through the pullup or
pull-down resistor to the SHDN pin internal logic. The
SHDN pin internal logic is equivalent to an inverter
input.
4.4
Output Capacitor
The MCP1804 requires a minimum output capacitance
of 0.1 µF to 1.0 µF for output voltage stability. Ceramic
capacitors are recommended because of their size,
cost and environmental robustness qualities.
Aluminum-electrolytic and tantalum capacitors can be
used on the LDO output as well. The output capacitor
should be located as close to the LDO output as is
practical. Ceramic materials X7R and X5R have low
temperature coefficients.
Larger LDO output capacitors can be used with the
MCP1804 to improve dynamic performance and power
supply ripple rejection performance. Aluminumelectrolytic capacitors are not recommended for low
temperature applications of < -25°C.
4.5
Input Capacitor
Low input source impedance is necessary for the LDO
output to operate properly. When operating from
batteries, or in applications with long lead length
(> 10 inches) between the input source and the LDO,
some input capacitance is recommended. A minimum
of 0.1 µF to 1.0 µF is recommended for most
applications.
For applications that have output step load
requirements, the input capacitance of the LDO is very
important. The input capacitance provides the LDO
with a good local low-impedance source to pull the
transient currents from in order to respond quickly to
the output load step. For good step response
performance, the input capacitor should be of
equivalent or higher value than the output capacitor.
The capacitor should be placed as close to the input of
the LDO as is practical. Larger input capacitors will also
help reduce any high-frequency noise on the input and
output of the LDO and reduce the effects of any
inductance that exists between the input source
voltage and the input capacitance of the LDO.
4.6
Thermal Shutdown
The MCP1804 thermal shutdown circuitry protects the
device when the internal junction temperature reaches
the typical thermal limit value of +150°C. The thermal
limit shuts off the output drive transistor. Device output
will resume when the internal junction temperature falls
below the thermal limit value by an amount equal to the
thermal limit hysteresis value of +25°C.
© 2009 Microchip Technology Inc.
DS22200A-page 19
MCP1804
VOUT
VIN
*
Thermal
Protection
SHDN
Shutdown
Control
Voltage
Reference
+
Current Limiter
Error Amplifier
*
5-Pin Versions Only
FIGURE 4-1:
DS22200A-page 20
GND
Block Diagram.
© 2009 Microchip Technology Inc.
MCP1804
5.0
FUNCTIONAL DESCRIPTION
The MCP1804 CMOS linear regulator is intended for
applications that need the low current consumption
while maintaining output voltage regulation. The
operating continuous load range of the MCP1804 is
from 0 mA to 150 mA. The input operating voltage
range is from 2.0V to 28.0V, making it capable of
operating from a single 12V battery or single and
multiple Li-Ion cell batteries.
5.1
5.2
Output
The maximum rated continuous output current for the
MCP1804 is 150 mA.
A minimum output capacitance of 0.1 µF to 1.0 µF is
required for small signal stability in applications that
have up to 150 mA output current capability. The
capacitor type can be ceramic, tantalum or aluminum
electrolytic.
Input
The input of the MCP1804 is connected to the source
of the P-Channel PMOS pass transistor. As with all
LDO circuits, a relatively low source impedance
(< 10Ω) is needed to prevent the input impedance from
causing the LDO to become unstable. The size and
type of the capacitor needed depends heavily on the
input source type (battery, power supply) and the
output current range of the application. For most
applications a 0.1 µF ceramic capacitor will be
sufficient to ensure circuit stability. Larger values can
be used to improve circuit AC performance.
© 2009 Microchip Technology Inc.
DS22200A-page 21
MCP1804
NOTES:
DS22200A-page 22
© 2009 Microchip Technology Inc.
MCP1804
6.0
APPLICATION CIRCUITS AND
ISSUES
6.1
Typical Application
The MCP1804 is most commonly used as a voltage
regulator. It’s low quiescent current and wide input voltage make it ideal for Li-Ion and 12V battery-powered
applications.
The maximum continuous operating temperature
specified for the MCP1804 is +85°C. To estimate the
internal junction temperature of the MCP1804, the total
internal power dissipation is multiplied by the thermal
resistance from junction to ambient (RθJA). The thermal
resistance from junction to ambient for the SOT-25 pin
package is estimated at 256°C/W.
EQUATION 6-2:
T J ( MAX ) = P TOTAL × R θ JA + T AMAX
Where:
VOUT
1.8V
VOUT
IOUT
50 mA
NC
TJ(MAX)
=
Maximum continuous junction
temperature.
PTOTAL
=
Total device power dissipation.
RqJA
=
Thermal resistance from junction to
ambient.
TAMAX
=
Maximum ambient temperature.
GND
VIN
COUT
1 µF Ceramic
FIGURE 6-1:
6.1.1
MCP1804
SHDN
VIN
4.2V
CIN
1 µF
Ceramic
Typical Application Circuit.
APPLICATION INPUT CONDITIONS
Package Type
= SOT25
Input Voltage Range
= 3.8V to 4.2V
VIN maximum
= 4.6V
VOUT typical
= 1.8V
IOUT
= 50 mA maximum
The maximum power dissipation capability for a
package can be calculated given the junctionto-ambient thermal resistance and the maximum
ambient temperature for the application. The following
equation can be used to determine the package
maximum internal power dissipation.
EQUATION 6-3:
( T J ( MAX ) – T A ( MAX ) )
P D ( MAX ) = --------------------------------------------------R θ JA
Where:
6.2
Power Calculations
6.2.1
POWER DISSIPATION
The internal power dissipation of the MCP1804 is a
function of input voltage, output voltage and output
current. The power dissipation, as a result of the
quiescent current draw, is so low, it is insignificant
(50.0 µA x VIN). The following equation can be used to
calculate the internal power dissipation of the LDO.
EQUATION 6-1:
P LDO = ( V IN ( MAX ) ) – V OUT ( MIN ) ) × I OUT ( MAX ) )
Where:
PLDO = LDO Pass device internal power
dissipation
VIN(MAX) = Maximum input voltage
VOUT(MIN) = LDO minimum output voltage
PD(MAX)
=
Maximum device power dissipation.
TJ(MAX)
=
Maximum continuous junction
temperature.
TA(MAX)
=
Maximum ambient temperature.
RqJA
=
Thermal resistance from junction to
ambient.
EQUATION 6-4:
T J ( RISE ) = P D ( MAX ) × R θ JA
Where:
TJ(RISE)
=
Rise in device junction temperature over
the ambient temperature.
PTOTAL
=
Maximum device power dissipation.
RqJA
=
Thermal resistance from junction to
ambient.
EQUATION 6-5:
T J = T J ( RISE ) + T A
Where:
© 2009 Microchip Technology Inc.
TJ
=
Junction Temperature.
TJ(RISE)
=
Rise in device junction temperature over
the ambient temperature.
TA
=
Ambient temperature.
DS22200A-page 23
MCP1804
6.3
Voltage Regulator
Internal power dissipation, junction temperature rise,
junction temperature and maximum power dissipation
are calculated in the following example. The power
dissipation, as a result of ground current, is small
enough to be neglected.
6.3.1
6.3.1.2
To estimate the internal junction temperature, the
calculated temperature rise is added to the ambient or
offset temperature. For this example, the worst-case
junction temperature is estimated below.
TJ = TJRISE + TA(MAX)
TJ = 76.3°C
POWER DISSIPATION EXAMPLE
Package:
Package Type = SOT-25
Junction Temperature Estimate
Maximum Package Power Dissipation at +25°C
Ambient Temperature (minimum PCB footprint)
Input Voltage:
VIN = 3.8V to 4.6V
SOT-25 (256°C/Watt = RθJA):
PD(MAX) = (85°C - 25°C) / 256°C/W
LDO Output Voltages and Currents:
PD(MAX) = 234 milli-Watts
VOUT = 1.8V
IOUT = 50 mA
SOT-89 (180°C/Watt = RθJA):
PD(MAX) = (85°C - 25°C) / 180°C/W
Maximum Ambient Temperature:
PD(MAX) = 333 milli-Watts
TA(MAX) = +40°C
Internal Power Dissipation:
Internal Power dissipation is the product of the LDO
output current times the voltage across the LDO
(VIN to VOUT).
PLDO(MAX) = (VIN(MAX) - VOUT(MIN)) x
IOUT(MAX)
PLDO = (4.6V - (0.98 x 1.8V)) x 50 mA
PLDO = 141.8 milli-Watts
6.3.1.1
Device Junction Temperature Rise
The internal junction temperature rise is a function of
internal power dissipation and the thermal resistance
from junction to ambient for the application. The thermal
resistance from junction to ambient (RθJA) is derived
from an EIA/JEDEC standard for measuring thermal
resistance for small surface mount packages. The EIA/
JEDEC specification is JESD51-7, “High Effective
Thermal Conductivity Test Board for Leaded Surface
Mount Packages”. The standard describes the test
method and board specifications for measuring the
thermal resistance from junction to ambient. The actual
thermal resistance for a particular application can vary
depending on many factors, such as copper area and
thickness. Refer to AN792, “A Method to Determine
How Much Power a SOT23 Can Dissipate in an
Application” (DS00792), for more information regarding
this subject.
6.4
Voltage Reference
The MCP1804 can be used not only as a regulator, but
also as a low quiescent current voltage reference. In
many microcontroller applications, the initial accuracy
of the reference can be calibrated using production test
equipment or by using a ratio measurement. When the
initial accuracy is calibrated, the thermal stability and
line regulation tolerance are the only errors introduced
by the MCP1804 LDO. The low cost, low quiescent
current and small ceramic output capacitor are all
advantages when using the MCP1804 as a voltage
reference.
Ratio Metric Reference
MCP1804
PICmicro®
Microcontroller
50 µA Bias
CIN
1 µF
VIN
VOUT
GND
COUT
1 µF
VREF
ADO
AD1
Bridge Sensor
FIGURE 6-2:
voltage reference.
Using the MCP1804 as a
TJ(RISE) = PTOTAL x RqJA
TJRISE = 141.8 milli-Watts x 256.0°C/Watt
TJRISE = 36.3°C
DS22200A-page 24
© 2009 Microchip Technology Inc.
MCP1804
6.5
Pulsed Load Applications
For some applications, there are pulsed load current
events that may exceed the specified 150 mA
maximum specification of the MCP1804. The internal
current limit of the MCP1804 will prevent high peak
load demands from causing non-recoverable damage.
The 150 mA rating is a maximum average continuous
rating. As long as the average current does not exceed
150 mA nor the max power dissipation of the packaged
device, pulsed higher load currents can be applied to
the MCP1804. The typical current limit for the
MCP1804 is 200 mA (TA = +25°C).
© 2009 Microchip Technology Inc.
DS22200A-page 25
MCP1804
NOTES:
DS22200A-page 26
© 2009 Microchip Technology Inc.
MCP1804
7.0
PACKAGING INFORMATION
7.1
Package Marking Information
5-Lead SOT-23
XXNN
3-Lead SOT-89
XXXYYWW
NNN
Part Number
Code
MCP1804T-1802I/OT
80KNN
MCP1804T-2502I/OT
80TNN
MCP1804T-3002I/OT
80ZNN
MCP1804T-3302I/OT
812NN
MCP1804T-5002I/OT
81MNN
MCP1804T-A002I/OT
839NN
MCP1804T-C002I/OT
83ZNN
Part Number
Code
MCP1804T-1802I/MB
84KNN
MCP1804T-2502I/MB
84TNN
MCP1804T-3002I/MB
84ZNN
MCP1804T-3302I/MB
852NN
MCP1804T-5002I/MB
85MNN
MCP1804T-A002I/MB
879NN
MCP1804T-C002I/MB
87ZNN
Part Number
Code
MCP1804T-1802I/MT
80KNN
MCP1804T-2502I/MT
80TNN
MCP1804T-3002I/MT
80ZNN
MCP1804T-3302I/MT
812NN
MCP1804T-5002I/MT
81MNN
5-Lead SOT-89
80K25
Example:
84K25
Example:
XXXYYWW
NNN
MCP1804T-A002I/MT
839NN
MCP1804T-C002I/MT
83ZNN
Part Number
Code
MCP1804T-1802I/DB
84KNN
MCP1804T-2502I/DB
84TNN
MCP1804T-3002I/DB
84ZNN
MCP1804T-3302I/DB
852NN
MCP1804T-5002I/DB
85MNN
80K25
Example:
3-Lead SOT-223
XXXXXXX
XXXYYWW
NNN
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
Example:
MCP1804T-A002I/DB
879NN
MCP1804T-C002I/DB
87ZNN
84K25
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
© 2009 Microchip Technology Inc.
DS22200A-page 27
MCP1804
.# #$ # /
## +22--- 2
! -
/ 0 # 1 /
% # # ! #
b
N
E
E1
3
2
1
e
e1
D
A2
A
c
φ
A1
L
L1
3#
4#
5$8 %1
4
44""
5
5
7
(
!1#
6$# ! 4
56
()*
!1#
6, 9 #
! !1 /
/
# !%%
6, <!#
! !1 /
6, 4 #
<!#
)*
:
;
:
(
:
(
"
:
"
:
;
:
.#4 #
4
:
=
.# #
4
(
:
;
.# >
:
>
4
;
:
=
!/
4 !<!#
8
:
(
!"!#$! !% #$ !% #$ # & !
!# "'(
)*+ ) # & #, $ --#$## ! - * )
DS22200A-page 28
© 2009 Microchip Technology Inc.
MCP1804
.# #$ # /
## +22--- 2
!"#
! -
/ 0 # 1 /
% # # ! #
D
D1
E
H
L
1
N
2
b
b1
b1
e
E1
e1
A
C
3#
4#
5$8 %4
44""
5
5
!1#
)*
1#
6$# ! 4
7
!
()*
6, 9 #
=
6, <!#
9
(
! !1 /
<!# #)
"
=
! !1 /
<!# #
"
6, 4 #
=
84 #
;
.#4 #
4
4
!/
(
4
!<!#
8
(=
4 ! ?<!#
8
=
;
!"!#$! !% #$ !% #$ # &
!# "'(
)*+ ) # & #, $ --#$## !
! - * )
© 2009 Microchip Technology Inc.
DS22200A-page 29
MCP1804
.# #$ # /
## +22--- 2
"#
! -
/ 0 # 1 /
% # # ! #
D1
b2
b1
b1
N
L
L
1
2
b
b1
b1
e
e1
H
E
D
A
C
3#
4#
5$8 %4
4
44""
5
5
(
!1#
)*
!1#
6$# ! 4
7
!
()*
6, 9 #
=
6, <!#
9
(
"
=
6, 4 #
=
8<!#
;
4
;
! !1 /
<!#
.#4 #
4
!/
(
4
!<!#
8
(=
4
! 00?(<!#
84
!<!#
8
=
;
8
;
!"!#$! !% #$ !% #$ # &
!# "'(
)*+ ) # & #, $ --#$## !
! - * )
DS22200A-page 30
© 2009 Microchip Technology Inc.
MCP1804
.# #$ # /
## +22--- 2
$!
! -
/ 0 # 1 /
% # # ! #
D
b2
E1
E
3
2
1
e
e1
A2
A
b
c
φ
L
A1
3#
4#
5$8 %4
4
!
5
!1#
44""
5
7
!1#
6$# ! 4
56
)*
=)*
6, 9 #
:
:
;
# !%%
:
! !1 /
9 #
(
=
"
=
"
(
6, 4 #
=
=(
=
4
!/
(
4
!<!#
8
=
=
;
6, <!#
! !1 /
84
!<!#
<!#
8
.#4 #
4
(
:
:
4
>
:
>
! !"!#$! !% #$ !% #$ # &
!# "'(
)*+ ) # & #, $ --#$## !
! - * )
© 2009 Microchip Technology Inc.
DS22200A-page 31
MCP1804
.# #$ # /
## +22--- 2
DS22200A-page 32
! -
/ $!
0 # 1 /
% # # ! #
© 2009 Microchip Technology Inc.
MCP1804
APPENDIX A:
REVISION HISTORY
Revision A (September 2009)
• Original Release of this Document.
© 2009 Microchip Technology Inc.
DS22200A-page 31
MCP1804
NOTES:
DS22200A-page 32
© 2009 Microchip Technology Inc.
MCP1804
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
T
-XX
XX
X
/XX
Device
Tape
and
Reel
Voltage
Output
Voltage
Tolerance
Temperature
Range
Package
Device
MCP1804T:
Voltage Options
18
25
30
33
50
A0
C0
=
=
=
=
=
=
=
LDO Voltage Regulator (Tape and Reel)
1.8V
2.5V
3.0V
3.3V
5.0V
10V
12V
Output Voltage
Tolerance
02 = ±2%
Temperature Range
I
Package
DB
MB
MT
OT
= -40°C to +85°C (Industrial)
=
=
=
=
3-lead Plastic Small OutlineTransistor (SOT-223)
3-lead Plastic Small OutlineTransistor (SOT-89)
5-lead Plastic Small OutlineTransistor (SOT-89)
5-lead Plastic Small OutlineTransistor (SOT-23)
© 2009 Microchip Technology Inc.
Examples:
a)
b)
c)
d)
e)
f)
g)
MCP1804T-1802I/OT:
MCP1804T-2502I/OT:
MCP1804T-3002I/OT:
MCP1804T-3302I/OT:
MCP1804T-5002I/OT:
MCP1804T-A002I/OT:
MCP1804T-C002I/OT:
1.8V, 5-LD SOT-23
2.5V, 5-LD SOT-23
3.0V, 5-LD SOT-23
3.3V, 5-LD SOT-23
5.0V, 5-LD SOT-23
10V, 5-LD SOT-23
12V, 5-LD SOT-23
a)
b)
c)
d)
e)
f)
g)
MCP1804T-1802I/MB:
MCP1804T-2502I/MB:
MCP1804T-3002I/MB:
MCP1804T-3302I/MB:
MCP1804T-5002I/MB:
MCP1804T-A002I/MB:
MCP1804T-C002I/MB:
1.8V, 5-LD SOT-89
2.5V, 5-LD SOT-89
3.0V, 5-LD SOT-89
3.3V, 5-LD SOT-89
5.0V, 5-LD SOT-89
10V, 5-LD SOT-89
12V, 5-LD SOT-89
a)
b)
c)
d)
e)
f)
g)
MCP1804T-1802I/MT:
MCP1804T-2502I/MT:
MCP1804T-3002I/MT:
MCP1804T-3302I/MT:
MCP1804T-5002I/MT:
MCP1804T-A002I/MT:
MCP1804T-C002I/MT:
1.8V, 5-LD SOT-89
2.5V, 5-LD SOT-89
3.0V, 5-LD SOT-89
3.3V, 5-LD SOT-89
5.0V, 5-LD SOT-89
10V, 5-LD SOT-89
12V, 5-LD SOT-89
a)
b)
c)
d)
e)
f)
g)
MCP1804T-1802I/DB:
MCP1804T-2502I/DB:
MCP1804T-3002I/DB:
MCP1804T-3302I/DB:
MCP1804T-5002I/DB:
MCP1804T-A002I/DB:
MCP1804T-C002I/DB:
1.8V, 3-LD SOT-223
2.5V, 3-LD SOT-223
3.0V, 3-LD SOT-223
3.3V, 3-LD SOT-223
5.0V, 3-LD SOT-223
10V, 3-LD SOT-223
12V, 3-LD SOT-223
DS22200A-page 33
MCP1804
NOTES:
DS22200A-page 34
© 2009 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, dsPIC,
KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART,
rfPIC and UNI/O are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor,
MXDEV, MXLAB, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip
Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial
Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified
logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code
Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit,
PICtail, PIC32 logo, REAL ICE, rfLAB, Select Mode, Total
Endurance, TSHARC, UniWinDriver, WiperLock and ZENA
are trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2009 Microchip Technology Inc.
DS22200A-page 35
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
Taiwan - Hsin Chu
Tel: 886-3-6578-300
Fax: 886-3-6578-370
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
03/26/09
DS22200A-page 36
© 2009 Microchip Technology Inc.
Similar pages