Rev: 072707 DS34T101/DS34T102/DS34T104/DS34T108 Single/Dual/Quad/Octal TDM-Over-Packet Chip General Description 3 The IETF PWE SAToP/CESoPSN/TDMoIP/HDLC draft-compliant DS34T108 allows up to eight T1/E1 links or frame-based serial HDLC links to be transported transparently through a switched IP or MPLS packet network. Jitter and wander of recovered clocks conform to G.823/G.824, G.8261, and TDM specifications. This eliminates the need for remote timing sources in cabinets and pedestals. The Ethernet side of the DS34T108 provides high QoS capabilities to its MII/RMII/SSMII port, while the WAN side supports full-featured T1/E1 framers and LIUs. This takes the solution all the way through analog, while preserving options to make use of TDM streams at key intermediate points. The high level of integration that the DS34T108 brings minimizes cost, board space, and time to market. Features ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ Applications ♦ ♦ ♦ TDM Circuit Extension Over PSN o Leased—Line Services Over PSN o TDM Over G/E—PON o TDM Over Cable o TDM Over WiMAX Cellular Backhaul Over PSN Multiservice Over Unified PSN HDLC—Based Traffic Transport Over PSN Functional Diagram ♦ ♦ ♦ ♦ Full-Featured T1/E1/J1 LIU/Framer/TDM-OverPacket Supports Adaptive Clock Recovery, Common Clock (Using RTP), External Clock, and Loopback Timing Modes Selectable 32-Bit or 16-Bit Processor Bus Clock Rate Adapter for T1/E1 Master Clock 10/100 Ethernet MAC That Supports MII/RMII/SSMII Fully Compatible with IEEE 802.3 Standard VLAN Support According to 802.1 p&Q Multiprotocol Encapsulation Supports IPv4, IPv6, UDP, RTP, L2TPv3, MPLS, and Metro Ethernet End-to-End TDM Synchronization Through the IP/MPLS Domain by Eight Independent On-Chip TDM Clock Recovery Mechanisms Single Serial Support for RS-530 and V.35 Single DS3/E3/STS-1 to Ethernet Packet Loss Compensation and Handling of Misordered Packets 64 Independent Bundle/Connections Glueless SDRAM Buffer Management 1.8V Core, 3.3V I/O Complies with IETF PWE3 RFCs and Drafts for CESoPSN, SAToP, TDMoIP, and HDLC Features continued in Section 7. CPU Bus Ordering Information DS34T108 Octal T1/E1/J1 Transceiver Emulation 10/100 Ethernet Framers Engine MAC Circuit PART xMII BERT & CAS LIUs TDM Access CLAD Clock Inputs Buffer Manager SDRAM Interface DS34T108GN DS34T108GN+ DS34T104GN* DS34T104GN+* DS34T102GN* DS34T102GN+* DS34T101GN* DS34T101GN+* PORTS TEMP RANGE 8 8 -40°C to +85°C -40°C to +85°C PINPACKAGE 484 HSBGA 484 HSBGA 4 4 -40°C to +85°C -40°C to +85°C 484 TEBGA 484 TEBGA 2 2 -40°C to +85°C -40°C to +85°C 484 TEBGA 484 TEBGA 1 1 -40°C to +85°C -40°C to +85°C 484 TEBGA 484 TEBGA +Denotes a lead-free package. *Future product—Contact factory for availability. Maxim Integrated Products 1 Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, go to: www.maxim-ic.com/errata. For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Table of Contents 1. INTRODUCTION ..............................................................................................................................6 2. ACRONYMS AND GLOSSARY .......................................................................................................7 3. STANDARDS COMPLIANCE ..........................................................................................................9 4. DETAILED DESCRIPTION ............................................................................................................12 5. APPLICATION EXAMPLES...........................................................................................................14 5.1.1 Other Possible Applications ................................................................................................................. 15 6. BLOCK DIAGRAM .........................................................................................................................16 7. FEATURE HIGHLIGHTS................................................................................................................17 7.1 7.2 7.3 7.4 7.5 7.6 7.7 GLOBAL FEATURES .......................................................................................................................17 LINE INTERFACE ............................................................................................................................17 CLOCK SYNTHESIZER ....................................................................................................................18 JITTER ATTENUATOR .....................................................................................................................18 FRAMER/FORMATTER ....................................................................................................................18 FRAMER SYSTEM PORTS ...............................................................................................................19 TDM-OVER-PACKET ENGINE .........................................................................................................19 7.7.1 7.7.2 7.7.3 7.7.4 7.7.5 7.7.6 7.8 7.9 8. TDM-over-Packet User Interfaces ....................................................................................................... 20 Network Port ........................................................................................................................................ 20 Bundles ................................................................................................................................................ 20 Clock Recovery .................................................................................................................................... 20 Delay Variation Compensation ............................................................................................................ 21 CAS Support ........................................................................................................................................ 21 TEST AND DIAGNOSTICS ................................................................................................................21 CONTROL PORT ............................................................................................................................22 OVERVIEW OF MAJOR OPERATIONAL MODES .......................................................................23 8.1 8.2 8.3 INTERNAL MODE CONFIGURED AS ONE-CLOCK MODE ....................................................................23 INTERNAL MODE CONFIGURED AS TWO-CLOCK MODE ....................................................................25 EXTERNAL MODE ..........................................................................................................................26 9. FUNCTIONAL DESCRIPTION AND DEVICE REGISTERS ..........................................................27 10. PIN DESCRIPTION ........................................................................................................................28 10.1 10.2 11. SHORT PIN DESCRIPTIONS .........................................................................................................28 DETAILED PIN DESCRIPTIONS .....................................................................................................35 JTAG INFORMATION ....................................................................................................................49 11.1 11.2 11.3 11.3.1 11.3.2 11.3.3 11.3.4 11.3.5 11.3.6 11.4 11.4.1 JTAG DESCRIPTION...................................................................................................................49 JTAG TAP CONTROLLER STATE MACHINE DESCRIPTION ...........................................................50 JTAG INSTRUCTION REGISTER AND INSTRUCTIONS ....................................................................52 SAMPLE/PRELOAD ............................................................................................................................ 52 EXTEST ............................................................................................................................................... 52 BYPASS............................................................................................................................................... 52 IDCODE ............................................................................................................................................... 53 HIGHZ .................................................................................................................................................. 53 CLAMP................................................................................................................................................. 53 JTAG TEST REGISTERS .............................................................................................................53 Bypass Register ................................................................................................................................... 53 2 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 11.4.2 11.4.3 Identification Register........................................................................................................................... 53 Boundary Scan Register ...................................................................................................................... 53 12. DC ELECTRICAL CHARACTERISTICS .......................................................................................54 13. AC TIMING CHARACTERISTICS..................................................................................................55 14. PIN ASSIGNMENTS ......................................................................................................................56 14.1 14.2 14.3 14.4 14.5 15. BOARD DESIGN FOR THE DS34T108 FAMILY OF PRODUCTS .......................................................56 DS34T108 PIN ASSIGNMENT .....................................................................................................67 DS34T104 PIN ASSIGNMENT .....................................................................................................68 DS34T102 PIN ASSIGNMENT .....................................................................................................69 DS34T101 PIN ASSIGNMENT .....................................................................................................70 PACKAGE INFORMATION ...........................................................................................................71 15.1 15.2 484-BALL HSBGA (56-G6038-002) ..........................................................................................71 484-BALL TEBGA (56-G6038-001) ...........................................................................................72 16. THERMAL INFORMATION ............................................................................................................73 17. DOCUMENT REVISION HISTORY ................................................................................................74 3 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 List of Figures Figure 1-1. Block Diagram ........................................................................................................................................... 6 Figure 5-1. Metropolitan Legacy Service Over Packet-Switched Network................................................................ 14 Figure 5-2. Cellular 2/3G Backhaul Over Packet-Switched Networks....................................................................... 15 Figure 6-1. DS34T108 Functional Block Diagram ..................................................................................................... 16 Figure 8-1. Internal Mode .......................................................................................................................................... 24 Figure 8-2. Internal One-Clock Mode ........................................................................................................................ 25 Figure 8-3. Internal Two-Clock Mode (Framed) ........................................................................................................ 26 Figure 8-4. Internal Two-Clock Mode (Unframed) ..................................................................................................... 26 Figure 11-1. JTAG Block Diagram............................................................................................................................. 49 Figure 11-2. JTAG TAP Controller State Machine .................................................................................................... 50 Figure 14-1. DS34T108 Pin Assignment (HSBGA Package).................................................................................... 67 Figure 14-2. DS34T104 Pin Assignment (TEBGA Package) .................................................................................... 68 Figure 14-3. DS34T102 Pin Assignment (TEBGA Package) .................................................................................... 69 Figure 14-4. DS34T101 Pin Assignment (TEBGA Package) .................................................................................... 70 4 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 List of Tables Table 3-1. T1-Related Telecommunications Specifications ........................................................................................ 9 Table 3-2. E1-Related Telecommunications Specifications ...................................................................................... 10 Table 3-3. TDM-over-Packet Related Specifications................................................................................................. 11 Table 10-1. DS34T108 Short Pin Descriptions.......................................................................................................... 28 Table 10-2. Detailed Pin Descriptions ....................................................................................................................... 35 Table 11-1. JTAG Instruction Codes ......................................................................................................................... 52 Table 11-2. JTAG ID Code ........................................................................................................................................ 52 Table 12-1. Recommended DC Operating Conditions .............................................................................................. 54 Table 12-2. DC Electrical Characteristics.................................................................................................................. 54 Table 14-1. Common Board Design Connections ..................................................................................................... 56 5 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 1. Introduction The DS34T108/DS34T104/DS34T102/DS34T101 (DS34T10x) family of products combines LIU, framer, and Pseudo Wire Emulation Edge-to-Edge (PWE3) circuit emulation technology into one die. Dedicated payload-type engines are included for TDMoIP (AAL1, AAL2), CESoPSN, SAToP, and HDLC. Products in the DS34T10x family provide a transport technology for simple conversion of T1/E1/J1/T3/E3/STS-1 serial TDM to IP, MPLS, or pure Ethernet Layer 2 networks. They carry from the line E1/T1/J1 or they provide a carrier for E3, T3, or STS1 services and serial data across a packet-switched network, transparent to all protocols and signaling. These products enable service providers to migrate to next-generation networks while continuing to provide all their revenue-generating legacy voice and data services. They also benefit data carriers by enabling them to offer lucrative leased-line services and increase revenues from their packet-switched infrastructure by selling voice as well as data services. Finally, they enable enterprises to run voice and video over the same IP/Ethernet-based network that is currently used to run only LAN traffic, thereby minimizing network maintenance and operating costs. Packet-switched networks, such as IP networks, were not designed to transport TDM data and have no inherent clock distribution mechanism. Hence, when transporting TDM over packet-switched networks, the receiver needs to reconstruct the transmitter's TDM clock. The DS34T10x family ensures that jitter and wander levels of the recovered clock conform to ITU-T G.823/824 and G.8261, even for networks that introduce significant packet delay variation and packet loss. The Circuit Emulation technology in the DS34T10x products that makes this possible is called TDM-over-Packet (TDMoP) and complements VoIP in those cases where VoIP is not applicable or where VoIP price/performance is not sufficient. Most importantly, TDMoP technology provides higher voice quality with lower latency than VoIP. Unlike VoIP, TDMoP can support all applications that run over E1/T1/J1 circuits, not just voice. TDMoP can provide traditional leased-line services over IP and is transparent to protocols and signaling. Because TDMoP provides an evolutionary, as opposed to revolutionary, approach, investment protection is maximized. Figure 1-1. Block Diagram CPU Bus 32 bit or 16 bit DS34T108 BERT Octal T1 E1 J1 (analog) T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer T1/E1/J1 LIU T1/E1/J1 Framer Control 10/100 Ethernet MAC Circuit Emulation Engine MII/RMII CLAD SDRAM Interface 32 bit SDRAM 6 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 2. Acronyms and Glossary Listed below are the terms used in this data sheet. 2.5G 2G 3G AAL1 AAL2 ATM BGA Bridge Bundle BW CAS CCS CE CESoP CESoPSN Circuit Switching CLAD CLEC CPE CSMA CSMA/CD DS0 DS1 DS3 HDLC IEEE 802.3 IEEE 802.X IETF ILEC IP IP Address IWF LAN LEC LIU MAC MAN Message Switching MII MPLS OC-3 OCXO OFE OSI OSI-RM PAD PBX PCI PCI Express PCI-X PDV PE 2.5 Generation Second Generation Third Generation ATM Adaptation Layer 1 ATM Adaptation Layer 2 Asynchronous Transfer Mode Ball Grid Array Bridge Bundle Bandwidth Channel Associated Signaling Common Channel Signaling Customer Edge Circuit Emulation Service over Packet Circuit Emulation Services over Packet Switched Network Circuit Switching Clock Rate Adapter Competitive Local Exchange Carrier Customer Premises Equipment Carrier Sense Multiple Access Carrier Sense Multiple Access with Collision Detection Digital Signal Level 0 Digital Signal 1 Digital Signal 3 High-Level Data Link Control Institute of Electrical and Electronics Engineers 802.3 Institute of Electrical and Electronics Engineers 802.X Internet Engineering Task Force Incumbent Local Exchange Carrier Internet Protocol Internet Protocol Address Interworking Function Local Area Network Local Exchange Carrier Line Interface Unit Media Access Control Metropolitan Area Network Message Switching Medium Independent Interface Multiprotocol Label Switching Optical Carrier Level 3 Oven-Controlled Crystal Oscillator Optical Front-End Open Systems Interconnection Open Systems Interconnection—Reference Model Packet Assembler/Disassembler Private Branch Exchange Peripheral Component Interconnect Peripheral Component Interconnect Express Peripheral Component Interconnect Extended Packet Delay Variation Provider Edge 7 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 PLCC PQFP PSN PSTN PWE3 QoS RMII RPR SAToP SDH SMII SONET SS7 SSMII STM-1 TDM TDMoIP TDMoP TLS UDP VoIP VPLS WAN Plastic Leaded Chip Carrier Plastic Quad Flat Pack Packet Switched Network Public Switched Telephone Network Pseudo-Wire Edge-to-Edge Emulation Quality of Service Reduced Medium Independent Interface Resilient Packet Ring Structure-Agnostic TDM over Packet Synchronous Digital Hierarchy Serial Media Independent Interface Synchronous Optical Network Signal System 7 Source Synchronous Serial Media Independent Interface Synchronous Transfer Module -1 Time Division Multiplexing Time Division Multiplexing over Internet Protocol Time Division Multiplexing over Packet Transport Layer Security User Datagram Protocol Voice over IP Virtual Private LAN Services Wide Area Network 8 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 3. Standards Compliance The DS34T108 meets all the latest relevant telecommunications specifications. Table 3-1 and Table 3-2 provide the T1 and E1 specifications and sections that are applicable to the DS34T108. The TDM-over-Packet specifications and sections relevant for the DS34T108 are described in Table 3-3. Table 3-1. T1-Related Telecommunications Specifications ANSI T1.102- Digital Hierarchy Electrical Interface. AMI Coding. B8ZS Substitution Definition. DS1 Electrical Interface. Line rate ±32ppm; pulse amplitude between 2.4V to 3.6V peak; power level between 12.6dBm to 17.9dBm; the T1 pulse mask is provided that we comply. DSX-1 for cross-connects the return loss is greater than -26dB. The DSX-1 cable is restricted up to 655 feet. This specification also provides cable characteristics of DSX-Cross Connect cable—22 AVG cables of 1000 feet. ANSI T1.231- Digital Hierarchy- Layer 1 in Service Performance Monitoring BPV Error Definition; Excessive Zero Definition; LOS description; AIS definition. ANSI T1.403- Network and Customer Installation Interface- DS1 Electrical Interface Description of the Measurement of the T1 Characteristics—100Ω. Pulse shape and template compliance according to T1.102; Power level 12.4dBm to 19.7dBm when all ones is transmitted. LBO for the Customer Interface (CI) is specified as 0dB, -7.5dB and -15dB. Line rate is ±32ppm. Pulse Amplitude is 2.4V to 3.6V. AIS generation as unframed all ones is defined. The total cable attenuation is defined as 22dB. The DS34T108 will function with up to -36dB cable loss. Note that the pulse template defined by T1.403 and T1.102 are different, specifically at times 0.61, -0.27, -34, and 0.77. The DS34T108 is complaint to both templates. Pub 62411 This specification has tighter jitter tolerance and transfer characteristics than other specifications. The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter than G.823. (ANSI) “Digital Hierarchy – Electrical Interfaces” (ANSI) “Digital Hierarchy – Formats Specification” (ANSI) “Digital Hierarchy – Layer 1 In-Service Digital Transmission Performance Monitoring” (ANSI) “Network and Customer Installation Interfaces – DS1 Electrical Interface” (AT&T) “Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Super frame Format” (AT&T) “High Capacity Digital Service Channel Interface Specification” (TTC) “Frame Structures on Primary and Secondary Hierarchical Digital Interfaces” (TTC) “ISDN Primary Rate User-Network Interface Layer 1 Specification” 9 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Table 3-2. E1-Related Telecommunications Specifications ITUT G.703 Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces Defines the 2048kbps bit rate—2048 ±50ppm; The transmission media are 75Ω coax or 120Ω twisted pair; peak to peak space voltage is ±0.237V; Nominal pulse width is 244ns. Return loss 51 to 102Hz is 6dB, 102 to 3072Hz is 8dB, 2048 to 3072Hz is 14dB. Nominal peak voltage is 2.37V for coax and 3V for twisted pair. The pulse template for E1 is defined in G.703. ITUT G.736 Characteristics of Synchronous Digital Multiplex Equipment operating at 2048Kbit/s The peak-to-peak jitter at 2048kbps must be less than 0.05UI at 20Hz to 100Hz. Jitter transfer between 2.048 synchronization signal and 2.048 transmission signal is provided. ITUT G.775 A LOS detection criterion is defined. ITUT G.823 The control of jitter and wander within digital networks which are based on 2.048Kbit/s hierarchy G.823 provides the jitter amplitude tolerance at different frequencies, specifically 20Hz, 2.4kHz, 18kHz, and 100kHz. ETSI 300 233 This specification provides LOS and AIS signal criteria for E1 mode. Pub 62411 This specification has tighter jitter tolerance and transfer characteristics than other specifications. The jitter transfer characteristics are tighter than G.736 and jitter tolerance is tighter than G.823. (ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels” (ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in Recommendation G.704” (ITU) “Characteristics of primary PCM Multiplex Equipment Operating at 2048Kbit/s” (ITU) Characteristics of a synchronous digital multiplex equipment operating at 2048Kbit/s” (ITU) “Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria” (ITU) “The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048Kbit/s Hierarchy” (ITU) “Primary Rate User-Network Interface – Layer 1 Specification” (ITU) “Error Performance Measuring Equipment Operating at the Primary Rate and Above” (ITU) “In-service code violation monitors for digital systems” (ETSI) “Integrated Services Digital Network (ISDN); Primary rate User-Network Interface (UNI); Part 1/ Layer 1 specification” (ETSI) “Transmission and multiplexing; Physical/electrical characteristics of hierarchical digital interfaces for equipment using the 2048Kbit/s-based plesiochronous or synchronous digital hierarchies” (ETSI) “Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate” (ETSI) “Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to an ISDN using ISDN primary rate access” (ETSI) “Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2048Kbit/s digital unstructured leased lines (D2048U) attachment requirements for terminal equipment interface” (ETSI) “Business Telecommunications (BTC); 2048Kbit/s digital structured leased lines (D2048S); Attachment requirements for terminal equipment interface” (ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels” (ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures Defined in Recommendation G.704” 10 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Table 3-3. TDM-over-Packet Related Specifications Y.1413 TDM-MPLS network interworking – User plane interworking TDMoMPLS will meet standards for network interworking that covers the Transport label, Interworking label, Common interworking indicators, and Optional timing information. The Common interworking indicators include a Control Field, a Fragmentation Field, Length Indicator and the Sequence number. TDMoMPLS shall meet standards for Structure Agnostic transport. TDMoMPLS shall meet standards for Structure Aware transport that contains Structure-locked encapsulation and Structureindicated encapsulation. Y.1414 Voice Service – MPLS network interworking The recommendation focuses on the required functions and procedures necessary for support of narrow-band voice services by MPLS networks. Details of the encapsulation of encoded audio streams in MPLS packets are specified. Clause 10 draft recommendation shall be met. Y.1452 (Y.VTOIP) Voice trunking over IP This recommendation specifies a method for transporting multiplexed voice services over UDP/IP. Y.1453 (Y.TDMIP) TDM-IP interworking – User plane interworking This recommendation specifies methods for transporting low-rate TDM (T1, E1, T3, E3) over UDP/IP. Y.1453 is a direct extension of Y.1413. PWE3-CESoPSN Structure-aware TDM Circuit Emulation Service over Packet Switched Network May 2006 ‘draft-ietf-pwe3-cesopsn-07.txt’ revision shall be supported. The TDM-over-Packet shall meet Basic NxDS0 service, and "Trunk-specific" NxDS0 service with CAS. The TDM-over-Packet shall meet CESoPSN packet format for an IPv4/IPv6 PSN, CESoPSN Packet Format for an MPLS PSN. Shall also meet CESoPSN Payload Layer. PWE3-SAToP Structure-Agnostic TDM over Packet June 2006 ‘rfc4553.txt’ revision shall be supported. The TDM-over-Packet shall meet Basic SAToP Packet format, SAToP Packet format for an IPv4/IPv6, SAToP Packet format for a MPLS PSN, and SAToP Payload Layer. SATop Control Word. PWE3-TDMoIP December 2006 ‘draft-ietf-pwe3-tdmoip-06.txt’ revision shall be supported. PWE3-HDLC September 2006 ‘rfc4618.txt’ revision shall be supported. (excluding clause 4.3 – PPP) IEEE 802.3 This standard covers the MAC interface to a PHY for MII. MPLS-Frame Relay Alliance Implementation Agreements 4.1 The purpose of this Implementation Agreement (IA) is to define network interworking between TDM circuits (n x 64 kbps, E1/T1/E3/T3) over MPLS Label Switched Paths (LSPs) by using AAL1 encapsulation. MPLS-Frame Relay Alliance Implementation Agreements 5.1 This specification defines MPLS support for the transport of AAL type 2 CPS-Packets. Frame formats and procedures required for this transport are described in this Implementation Agreement. This specification addresses the transport of any AAL type 2 CPS-Packets regardless of the application data that is transported. MPLS-Frame Relay Alliance Implementation Agreements 8.0.0 This document describes a method for encapsulating TDM signals belonging to the PDH hierarchy (T1, E1, T3, E3, Nx64kbps) as pseudo-wires over a MPLS network. MEF 8 – Metro Ethernet Forum 8 - Implementation Agreement for the Emulation of PDH Circuits over Metro Ethernet Networks This document provides an implementation agreement for the emulation of PDH services across a Metro Ethernet Network. Specifically it covers emulation of Nx64kbps, DS1, E1, DS3 and E3 circuits. Generically this is referred to as Circuit Emulation Services over Ethernet (CESoETH). G.823/G.824 Jitter & Wander Requirements G.8261/Y.1361 (G.pactiming) Timing and Synchronization Aspects in Packet Networks This recommendation defines synchronization aspects in packet networks and specifies the maximum network limits of jitter and wander that shall not be exceeded and the minimum equipment tolerance to jitter and wander than shall be provided at the boundary of these packet networks at TDM interfaces. It also outlines the minimum requirements for the synchronization function of network elements. 11 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 4. Detailed Description The DS34T108 is an 8-port device featuring independent transceivers that can be software configured for T1/J1 or E1. The DS34T104/DS34T102/DS34T101 have the same functionality as the DS34T108, the product reference throughout this document, but with fewer ports. Each transceiver, composed of an LIU, framer, HDLC controller, elastic store, connects to the TDM-over-Packet (TDMoP) block for a complete monolithic solution to IP or MPLS or Ethernet Layer 2 networks. The internal MAC supports connectivity to a single 10/100Mbps, MII//RMII/SSMII. The DS34T108 is controlled via a 16-bit or 32-bit parallel port or via an SPI serial port. The LIU is composed of a transmit interface, receive interface, and a jitter attenuator. Internal impedance matching is provided for both transmit and receive paths, reducing external component count. The transmit interface is responsible for generating the necessary waveshapes for driving the network and providing the correct source impedance depending on the type of media used. T1 waveform generation includes DSX-1 line build-outs as well as CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB. E1 waveform generation includes G.703 waveshapes for both 75Ω coax and 120Ω twisted cables. The receive interface provides network termination and recovers clock and data from the network. The receive sensitivity adjusts automatically to the incoming signal level and can be programmed for 0dB to -43dB or 0dB to -12dB for E1 applications and 0dB to -15dB or 0dB to -36dB for T1 applications. The jitter attenuator removes phase jitter from the transmitted or received signal. The crystal-less jitter attenuator can be placed in either the transmit or the receive data paths and requires only a T1/J1 or E1 clock rate, a SONET/SDH reference frequency of 19.44/38.88/77.76MHz, or a GPS reference frequency of 10MHz for both T1/J1 and E1 applications. On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane interface section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and inserts the CRC codes, and provides the B8ZS/HDB3 (zero code suppression) and AMI line coding. The receiveside framer decodes AMI, B8ZS, and HDB3 line coding, synchronizes to the data stream, reports alarm information, counts framing/coding/CRC errors, and provides clock, data, and frame-sync signals to the backplane interface section. Both transmit and receive paths have access to an HDLC controller. The HDLC controller transmits and receives data via the framer block. The HDLC controller can be assigned to any time slot, a portion of a time slot or to FDL (T1) or Sa bits (E1). Each controller has 64-byte FIFOs, reducing the amount of processor overhead required to manage the flow of data. The TDM-over-Packet (TDMoP) core is the building block for circuit emulation and other network applications. It performs transparent transport of legacy TDM traffic over Packet Switched Networks (PSNs). The TDMoP core implements payload methods such as AAL1 for circuit emulation, AAL2-like method for loop emulation, HDLC method, structure-agnostic SAToP method, and the structure-aware CESoPSN method. The AAL1 payload-type machine converts E1/T1/E3/T3/STS-1/serial data flows into IP, MPLS or Ethernet packets, and vice versa, according to ITU-T Y.1413, Y.1453, MEF 8, MFA 4.1, and the IETF PWE3 TDMoIP draft. It supports E1/T1 structured mode with/without CAS, using a time slot size of 8 bits, or unstructured mode (carrying serial interfaces, unframed E1/T1 or E3/T3/STS-1 traffic). The AAL2 payload-type machine converts E1/T1 data flows into IP, MPLS or Ethernet packets, and vice versa, implementing dynamic time slot allocation. It supports E1/T1 structured mode with/without CAS with 8-bit time slot resolution, according to ITU-T Y.1414 (clause 10), Y.1452, MFA 5.1 and the IETF PWE3 TDMoIP draft. The HDLC payload-type machine converts and terminates HDLC-based E1/T1/serial flow into IP/MPLS packets and vice versa, according to the IETF RFC 4618 (excluding clause 5.3—PPP) and TDMoIP draft. It supports 2-, 7and 8-bit time slot resolution (i.e., 16kbps, 56kbps, and 64kbps, respectively), as well as N × 64 kbps bundles (n = 1 to 32). Supported applications of this machine include trunking of HDLC-based traffic (such as frame relay) implementing dynamic bandwidth allocation over IP/MPLS networks, and HDLC-based signaling interpretation (such as ISDN D-channel signaling termination—BRI or PRI, V5.1/2, or GR-303). 12 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 The SAToP payload-type machine converts unframed E1/T1/E3/T3 data flows into IP, MPLS, or Ethernet packets, and vice versa, according to ITU-T Y.1413, Y.1453, MEF 8, MFA 8.0.0, and IETF RFC 4553. It supports E1/T1/E3/T3 with no regard for the TDM structure. If TDM structure exists it is ignored, allowing it to be the simplest way of making payload. The size of the payload is programmable for different services. This emulation suits applications where the provider edges have no need to interpret TDM data or to participate in the TDM signaling. The PSN network must have almost no packet loss and a very low PDV for this method. The CESoPSN payload-type machine converts structured E1/T1/E3/T3 data flows into IP, MPLS or Ethernet packets, and vice versa, with static assignment of time slots inside a bundle according to ITU-T Y.1413, Y.1453, MEF 8, MFA 8.0.0, and the IETF PWE3 CESoPSN draft. It supports E1/T1/E3/T3 while taking into account the TDM structure. The level of structure must be chosen for proper payload conversion such as the framing type (i.e., frame, multiframe). This method is less sensitive to PSN impairments, but lost packets could still cause service interruption. The payload is simply encapsulated into 24 bytes for T1 and 32 bytes for E1. 13 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 5. Application Examples In Figure 5-1, DS34T108 is used to allow TDM services over a packet-switched metropolitan network, using various access methods (G/E PON, fiber optic, wireless, cable). Figure 5-1. Metropolitan Legacy Service Over Packet-Switched Network 14 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Figure 5-2. Cellular 2/3G Backhaul Over Packet-Switched Networks 5.1.1 Other Possible Applications 5.1.1.1 Point-to-Multipoint TDM Connectivity over IP/Ethernet The TDM-over-Packet chip supports DS0-level multiple bundles/connections with and without CAS (Channel Associated Signaling). There is no need for an external TDM cross-connect, as the packet domain can be used as a virtual cross-connect; any bundle of time slots can be directed to another remote location on the packet domain. 5.1.1.2 HDLC Transport over IP/MPLS TDM traffic streams often contain HDLC-based control and data traffic. These data streams, when transported over a packet domain, should be treated differently than the time-sensitive TDM payload. The DS34T108 includes HDLC controller capability, which enables termination of the HDLC frames. HDLC-based control protocols, such as ISDN BRI and PRI, SS7, etc., and other frame-based traffic, can be managed and transported. 5.1.1.3 Using a Packet Backplane for Multiservice Concentrators A communications device with all the above-mentioned capabilities can use a packet-based backplane instead of the more expensive TDM bus option. This enables a cost-effective and future-proof design of communication platforms with full support for both legacy and next-generation services. 15 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 6. Block Diagram Figure 6-1. DS34T108 Functional Block Diagram TXEnable TTIPn TRINGn LIU & Framer # 1 of 8: TRANSMIT LIU Waveform Shaper / Line Driver RECEIVE LIU RESREF Clock/Data Recovery T1CLK RTIPn RRINGn RXTSEL E1CLK E1CLK T1CLK JITTER ATTENUATOR RCLKn/ RCLKFn RDATFn TDATFn TCLKOn TX BERT Elastic Store TX FORMATTER B8ZS / HDB3 Encoder I met sy S /F I met sy S /F RSYSCLKn TX HDLC FSYSCLK Elastic Store RX HDLC RX FRAMER B8ZS / HDB3 Decoder RX BERT RLOF/RLOSn TCLKFn BACKPLANE INTERFACE RSERn RSYNCn RF/ RMSYNCn TDMn_TCLK TDMn_TX_SYNC TDMn_TX_MF_CD TDMn_RX TDMn_RCLK TDMn_RX_SYNC TDMn_RSIG_RTS TSERn TSYNC/TSSYNCn TSYSCLKn /ECLKn TDMn_TX TDMn_ACLK TDMn_TSIG _CTS H_READY_N CPU Interface H_WR_BE3..0_N CLK_HIGH MCLK T1CLK E1CLK Data SDRAM Controller Byte Enable Mask Address Bank Select JTRST_EN Control CLAD 50 or 75MHz Ethernet MAC 10/100 SCAN/MBIST HIZ_EN SCEN STMD MBIST _EN MBIST_DONE MBIST_FAIL FSYSCLK TDMoPacket RAW JTDO SAToP Packet Classifier Queue Manager JTAG JTDI JITTER BUFFER CONTROL JTMS JTCLK CESoPSN AAL1 AAL2 HDLC Counters & Status Registers Reserved Payload Type Machines H_INT[1:0] DATA_31_16_N CLAD 38.88MHz 2.048/1.544MHz H_CS_N H_R_W_N Timeslot Assigner CAS Handler H_A[24:1] CLK_CMN Clock Recovery Machines H_D[31:0] SD_D[ 31: 0] SD_DQM[3:0] SD_A[11:0] SD_BA[1:0] SD_CLK SD_CS_N SD_WE_N SD_RAS_N SD_CAS_N RST_SYS_N CLK_SYS_S CLK_SYS MII_TX_ERR MII_TX_EN MII_TXD[3:0] CLK_SSMII_TX CLK_MII_TX MII_CRS MII_COL MII_RX_ERR MII_RX_DV MII_RXD[3:0] CLK_MII_RX MDIO MDC 16 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 7. Feature Highlights The following sections describe the features provided by the 8-port DS34T108. 7.1 • • • • • • • • • • • • • • • • The DS34T108 chip offers: Eight E1/T1 LIUs/framers/TDMoP interfaces or One E3/DS3/STS-1 TDMoP interface or One serial TDMoP interface for V.35 and RS530 Ethernet interface One 10/100Mbps, MII/RMII/SSMII Half/full duplex VLAN support according to 802.1 p&Q Fully compatible with IEEE 802.3 standard End-to-end TDM synchronization through the IP/MPLS domain by eight independent on-chip TDM clock recovery mechanisms, on a per-port basis 64 independent bundles/connections, each with its own: Transmit and receive queues Configurable jitter-buffer depth Connection level redundancy, with traffic duplication option 64 Internal bundle cross-connect capability, with DS0 resolution Any framer receiver port to any TDM interface receiver to maintain bundle connectivity Any transmit TDM interface to any framer transmit port to maintain bundle connectivity Packet loss compensation and handling of misordered packets Glueless SDRAM interface Complies with MPLS-Frame Relay Alliance Implementation Agreements 4.1, 5.1, and 8.0 Meets ITU standards Y.1413 and Y.1414 Complies with Metro Ethernet Forum 3 & 8 Conforms to drafts submitted to IETF 23mm x 23 mm, 484-pin HSBGA package (1mm pitch) IEEE 1146.1 JTAG boundary scan 1.8V and 3.3V Operation with 5.0V tolerant I/O 7.2 • • • • • • • • • • • Global Features Line Interface Requires a single 38.88Mz, 19.44MHz, 77.76MHz, or 10MHz clock high synthesis (CLK_HIGH) input for both E1 and T1 operation. Optionally, a 1.544MHz or 2.048MHz master clock (MCLK) also can be used for LIU clock recovery Fully software configurable Short- and long-haul applications Ranges include 0dB to -43dB, 0dB to -30dB, 0dB to 20dB, and 0dB to -12dB for E1; 0dB to -36dB, 0dB to 30dB, 0dB to 20dB, and 0dB to -15dB for T1 Receiver signal level indication from -2.5dB to -36dB in T1 mode and -2.5dB to -44dB in E1 mode in 2.5dB increments Internal receive termination option for 75Ω, 100Ω, 110Ω, and 120Ω lines Monitor application gain settings of 14dB, 20dB, 26dB, and 32dB G.703 receive synchronization signal mode Flexible transmit waveform generation T1 DSX-1 line build-outs T1 CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB 17 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 • • • • • • • • E1 waveforms include G.703 waveshapes for both 75Ω coax and 120Ω twisted cables Analog loss of signal detection AIS generation independent of loopbacks Alternating ones and zeros generation Receiver power-down Transmitter power-down Transmitter short-circuit limiter with current limit exceeded indication Transmit open-circuit-detected indication 7.3 • Clock Synthesizer Internal clock synthesis for the E1 and T1 from an input of 38.88Mz, 19.44MHz, 77.76MHz, or 10MHz clock source. 7.4 Jitter Attenuator • • 32-bit or 128-bit crystal-less jitter attenuator Can be placed in either the receive or transmit path or disabled • Limit trip indication 7.5 • • • • • • • • • • • • • • • • • • • • • • • • Framer/Formatter Fully independent transmit and receive functionality Full receive and transmit path transparency T1 framing formats D4 and ESF per T1.403, and expanded SLC-96 support (TR-TSY-008) E1 FAS framing and CRC-4 multiframe per G.704/G.706, and G.732 CAS multiframe Transmit side synchronizer Transmit midpath CRC recalculate (E1) Detailed alarm and status reporting with optional interrupt support Large path and line error counters T1: BPV, CV, CRC6, and framing bit errors E1: BPV, CV, CRC4, E-bit, and frame alignment errors Timed or manual update modes DS1 Idle Code Generation on a per-channel basis in both transmit and receive paths • User-defined code generation • Digital milliwatt code generation ANSI T1.403-1999 Support G.965 V5.2 link detect Ability to monitor one DS0 channel in both the transmit and receive paths In-band repeating pattern generators and detectors Three independent generators and detectors Patterns from 1 to 8 bits or 16 bits in Length Bit oriented code (BOC) support Software or hardware based signaling support Interrupt generated on change of signaling data Optional receive signaling freeze on loss of frame, loss of signal, or frame slip Hardware pins provided to indicate loss of frame (LOF), loss of signal (LOS), loss of transmit clock (LOTC), or signaling freeze condition Automatic RAI generation to ETS 300 011 specifications 18 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 • • • • • • • RAI-CI and AIS-CI support Expanded access to Sa and Si bits Option to extend carrier loss criteria to a 1ms period as per ETS 300 233 Japanese J1 support Ability to calculate and check CRC6 according to the Japanese standard Ability to generate Yellow Alarm according to the Japanese standard T1 to E1 conversion 7.6 • • • • • • • • • Framer System Ports Independent two-frame receive and transmit elastic stores Independent control and clocking Controlled slip capability with status Supports T1 to CEPT (E1) conversion Ability to pass the T1 F-bit position through the elastic stores in the 2.048MHz backplane mode Hardware signaling capability Receive signaling reinsertion to a backplane multiframe sync Availability of signaling in a separate PCM data stream BERT testing to the system interface 7.7 TDM-over-Packet Engine TDM-over-Packet enables transport of legacy TDM services – E1/T1, E3/T3, STS-1, or serial data (on the user side) over packet switched networks – IP, MPLS or Ethernet (on the network side). This module implements the following payload methods of TDM transfer over IP, MPLS or Ethernet networks: • SAToP (Structure-Agnostic TDM over Packet) • Structure-aware format for structured E1/T1 with or without CAS (CESoPSN) • AAL1 format (constant rate/static allocation of time slots) • AAL2 format (dynamic allocation of time slots) • HDLC termination for efficient transfer of frame-based traffic. A dedicated payload type engine implements each per the following method: • SAToP hardware engine converts unframed E1/T1/E3/T3/STS-1 or serial data flows into IP, MPLS, or Ethernet packets and vice versa according to ITU-T Y.1413, MEF 8, MFA 8.0.0 and the IETF PWE3 SAToP draft. • CESoPSN hardware engine converts structured E1/T1 data flows into IP, MPLS or Ethernet packets and vice versa with static assignment of time slots inside a bundle according to ITU-T Y.1413, MEF 8, MFA 8.0.0, and the IETF PWE3 CESoPSN draft. • AAL1 hardware engine converts E1/T1/E3/T3/STS-1 or serial data flows into IP, MPLS or Ethernet packets, and vice versa, according to ITU-T Y.1413, MEF 8, MFA 4.1 and the IETF PWE3 TDMoIP draft. For E1/T1 it supports structured mode with/without CAS using 8-bit time slot resolution, while implementing static time slot allocation. For E1/T1, E3/T3/STS-1 or serial interface it supports unstructured mode. • AAL2 hardware engine converts E1/T1 data flows into IP/MPLS/Ethernet packets, and vice versa, while implementing dynamic time slot allocation. It supports E1/T1 structured mode with/without CAS using 8-bit time slot resolution, according to ITU-T Y.1414 (clause 10), MFA 5.1 and the IETF PWE3 TDMoIP draft. • HDLC hardware engine converts and terminates HDLC-based E1/T1/serial flow into IP/MPLS/Ethernet packets and vice versa. It supports 2-, 7- and 8-bit time slot resolution (i.e., 16kbps, 56kbps, and 64kbps, respectively), as well as N x 64kbps bundles. This is useful in applications where HDLC-based signaling interpretation is required (such as ISDN D channel signaling termination, V.51/2, or GR-303), or for trunking packet-based applications (such as Frame Relay), according to the IETF PWE3 HDLC draft. 19 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 7.7.1 TDM-over-Packet User Interfaces The user side consists of either a single high-speed E3, T3 or STS-1, or eight I/Fs, each independently supporting E1, T1 or serial data transfer. For the E3/T3/STS-1 option, the AAL1 or SAToP method is used. For the E1/T1 option, the module supports the following operation modes: • • • Unframed—E1/T1 pass-through mode (AAL1, SAToP, or HDLC payload type method) Structured—fractional E1/T1 support (all payload type methods) Structured with CAS—fractional E1/T1 with CAS support (CESoPSN, AAL1, or AAL2 payload type method) The serial interface option supports synchronous data transfer (for interfaces such as V.35) over the IP/MPLS/Ethernet network for legacy data services (such as frame relay or arbitrary continuous bit stream). The serial port option supports the following synchronous serial data formats: • • Arbitrary continuous bit stream (using AAL1 or SAToP payload type method) In single-interface high-speed mode, the first interface operates at up to STS-1 rate (51.84Mbps) and the other interfaces are disabled. In this mode, the whole traffic is transferred using a single bundle/connection. • In eight-interface low-speed mode each interface can operate at the rate of N x 64kbps, where N = 1 to 63, with an aggregate rate of 18.6Mbps. • HDLC-based traffic (such as frame relay transferred using HDLC payload type method). Only the eightinterface low-speed mode is available (N x 64kbps, where N = 1 to 63, with an aggregate rate of 18.6Mbps). All serial interface modes can work with a gapped clock. 7.7.2 Network Port The chip features one 10/100 Ethernet port with the option of MII/RMII/SSMII. The port can work in half/full-duplex mode and supports VLAN tagging and priority labeling according to 802.1 p&Q, including VLAN stacking. 7.7.3 Bundles A bundle is defined as a stream of bits that have originated from the same physical interface and that are transmitted from a TDM-over-Packet source device to a TDM-over-Packet destination device. For example, bundles can comprise any number of 64kbps time slots originating from a single E1 or an entire T3 or E3. Bundles are single-direction streams, frequently coupled with bundles in the opposite direction to enable full-duplex communications. More than one bundle can be transmitted between two TDM-over-Packet edge devices. The chip supports up to 64 bundles; each can be assigned to any port. The bundles are configured independently, each with its own: • • • Transmit and receive queues Configurable receive-buffer depth Optional connection level redundancy (SAToP, AAL1, CESoPSN only) The bundles can be assigned to one of the payload type machines or to the CPU. For E1/T1, the chip provides internal bundle cross-connect functionality, with DS0 resolution. 7.7.4 Clock Recovery Sophisticated TDM clock recovery mechanisms, one for each E1/T1 interface, allow end-to-end TDM clock synchronization, despite packet delay variation of IP/MPLS/Ethernet network. 20 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 TDM-over-Packet supports the following clock recovery modes: • • • • Adaptive clock recovery Common clock (using RTP) External clock Loopback clock The clock recovery mechanisms provide both fast frequency acquisition and highly accurate phase tracking. • • • • • • • Jitter and wander of the recovered clock are maintained at levels that conform to G.823/G.824 traffic or synchronization interfaces. For adaptive clock recovery, the recovered clock performance depends on packet network characteristics. Short-term frequency accuracy (1 second) is better than 16ppb (using OCXO reference) or 100ppb (using TCXO reference) Capture range is ±90ppm Internal synthesizer resolution of 0.5ppb High resilience to the packet loss and misordering, up to 2% of packet loss/misordering without degradation of clock recovery performance Robust to sudden significant constant delay changes Automatic transition to hold-over is performed upon link-break events. 7.7.5 Delay Variation Compensation The TDM-over-Packet module provides large configurable jitter buffers, on a per-bundle basis, that compensate for the delay variation introduced by the IP/MPLS/Ethernet network, with the following depths: • • • • • • • E1: Up to 256ms T1 Unframed: Up to 340ms T1 Framed: Up to 256ms T1 Framed with CAS: Up to 192ms E3: Up to 60ms T3: Up to 45ms STS-1: Up to 40ms For the SAToP and CESoPSN bundles, TDM-over-Packet performs packet reordering within the range of the jitter buffer. Packet loss is compensated by inserting either a preconfigured conditioning value or the last received value. 7.7.6 CAS Support A CAS handler terminates the E1/T1 CAS when using AAL1/AAL2/CESoPSN in structured-with-CAS mode. This eliminates the need for CPU intervention. 7.8 • • • • • • • • Test and Diagnostics IEEE 1149.1 Support Per-channel programmable on-chip bit error-rate testing (BERT) Pseudorandom patterns including QRSS User-defined repetitive patterns Error insertion single and continuous Total-bit and errored-bit counts Payload error insertion Error insertion in the payload portion of the T1 & E1 frame in the transmit path 21 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 • • • • • Errors can be inserted over the entire frame or selected channels Insertion options include continuous and absolute number with selectable insertion rates F-bit corruption for line testing Loopbacks (remote, local, analog, and per-channel loopback) MBIST 7.9 Control Port The CPU interface provides a connection to a host with a 16/32-bit data bus. This allows configuration of chip control registers and statistics collection using the chip counters and status registers. It also provides access to the CPU transmit and received buffers allocated in the SDRAM, used for packets that are directed to/originate from the CPU (such as ARP, SNMP, etc.). • • • • 32- or 16-bit parallel control port Software reset supported Hardware reset pin Software access to device ID and silicon revision 22 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 8. Overview of Major Operational Modes This section provides a high-level overall description of the DS34T108 and its functional interfaces and capabilities. 8.1 Internal Mode Configured as One-Clock Mode The default mode of the DS34T108 is internal mode and one-clock mode. Internal mode is used to internally connect the framer and the TDM-over-Packet blocks. Internal mode additionally sets many unused output port/interface pins to drive low. Unused input port/interface pins become inactive. This is due to the signals now being connected internally. Figure 8-1 represents the block diagram of this mode. One-clock mode refers to both the transmit and the receive interfaces using a single recovery clock for the framer port and TDM-over-Packet interface. Transmit and the receiver are therefore synchronized together. This mode requires the elastic store of the receiver framer to be enabled. Registers additionally allow the selection of any one clock and transmit synchronization pulse to connect to any port. Figure 8-2 represents the internal connections for a single port/interface. 23 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Figure 8-1. Internal Mode TXEnable TTIPn TRINGn LIU & Framer # 1 of 8: TRANSMIT LIU Waveform Shaper / Line Driver TX BERT TX HDLC TX FORMATTER Elastic Store /F FSYSCLK RX FRAMER B8ZS / HDB3 Encoder I met sy S RTIPn CLAD 38.88MHz 2.048/1.544MHz Clock Recovery Machines Timeslot Assigner T1CLK E1CLK FSYSCLK TDMoPacket RAW Payload Type Machines SAToP CESoPSN AAL1 AAL2 HDLC SD_A[11:0] SD_DQM[3:0] SDRAM Controller JITTER BUFFER CONTROL Packet Classifier I met sy S Queue Manager JTAG Control JTRST_EN SD_D[ 31:0] Data JTMS SCAN/MBIST Ethernet MAC 10/100 CLAD 50 or 75MHz SD_CLK SD_CS_N SD_WE_N SD_RAS_N SD_CAS_N HIZ_EN SCEN STMD MBIST_EN MBIST_DONE MBIST_FAIL TCLKOn RCLKFn RDATFn SD_BA[1:0] Bank Select JTDO Elastic Store Reserved RECEIVE LIU H_INT[1:0] Address JTDI Counters & Status Registers DATA_31_16_N Byte Enable Mask JTCLK CPU Interface H_READY_N CAS Handler H_CS_N B8ZS / HDB3 Decoder RX HDLC H_WR_BE3..0_N CLK_HIGH H_A[24:1] T1CLK T1CLK Clock/Data Recovery RX BERT H_D[31:0] E1CLK E1CLK MCLK H_R_W_N RRINGn RXTSEL RESREF JITTER ATTENUATOR RCLKn TDATFn BACKPLANE INTERFACE RST_SYS_N CLK_SYS_S CLK_SYS MII_TX_ERR MII_TX_EN MII_TXD[3:0] CLK_SSMII_TX CLK_MII_TX MII_CRS MII_COL MII_RX_ERR MII_RX_DV MII_RXD[3:0] CLK_MII_RX MDIO MDC 24 of 74 /F _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Figure 8-2. Internal One-Clock Mode "One Clock Mode (Framed/Multiframed)" RCLK[8..1] ACLK[8.. 1] E1CLK T1CLK ECLK[8..1] pin Framer X 8 CLKCNTL bits TDMoPacket X 8 ACLKn RCLKn rclkn rposn rnegn Connected to LIU tclkon tposn tnegn TCLKn RSYSCLKn TSIGn RSIGn TSERn RSERn RSYNCn TSYNCn TDMn_ACLK TDMn_TCLK TDMn_RCLK TDMn_TSIG TDMn_RSIG TDMn_TX TDMn_RX TDMn_RX_SYNC TDMn_TX_SYNC TDMn_TX_MF* TSYNC SYNCNTL bits TSYNC [8.. 1] *Note: The internal signal input "TDMn_TX_MF" is a don 't care when configured in framer mode . 8.2 Internal Mode Configured as Two-Clock Mode Internal two-clock mode configures the port/interfaces to have separate clocking between transmit and receive port/interfaces. Figure 8-3 represent a single internal two-clock mode port/interface connection for framed and multiframed applications. In this mode, the elastic store should not be enabled. The receive frame synchronization pulse or receive multiframe synchronization are delivered from the framer to the TDM-over-Packet block based on RCLKFn. The transmit synchronization pulse also comes from the framer with TSYNC configured for framer pulses or multiframe pulses based on the TCLKF input. The user may not need to use the framer during particular applications. If this is the case, the user should set the GCR1.UNFRMMODE bit. This selects internal two-clock mode for unframed applications as shown in Figure 8-4. 25 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Figure 8-3. Internal Two-Clock Mode (Framed) "Two Clock Mode, (Framed)" RCLK[ 8..1] ACLK[8..1] ECLK[8.. 1] pin E1CLK T1CLK CLKCNTL bits TDMoPacket X 8 Framer X 8 ACLKn RCLKn TCLKFn RCLKn RCLKFn RPOSn RNEGn TSIGn RSIGn TSERn RSERn RF/RMSYNCn TCLKOn TSYNCn TPOSn TNEGn Connected to LIU TDMn_ACLK TDMn_TCLK TDMn_RCLK TDMn_TSIG TDMn_RSIG TDMn_TX TDMn_RX TDMn_RX_SYNC TDMn_TX_SYNC TDMn_TX_MF SYNCNTL bits SYNCNTL bits RF/RMSYNC[8..1] TSYNC[8..1] *Note: The internal signal input "TDMn_TX_MF" is a don 't care when configured in framer mode . Figure 8-4. Internal Two-Clock Mode (Unframed) "Two Clock Mode, (Unframmed)" RCLK[8.. 1] ACLK[8..1] ECLK[8..1] pin E1CLK T1CLK CLKCNTL bits Framer X 8 (Bypassed mode) RCLKn TCLKFn RCLKFn RPOSn RNEGn Connected to LIU TSERn RSERn TDMoPacket X 8 ACLKn RCLKn TDMn_ACLK TDMn_TCLK TDMn_RCLK TDMn_TX TDMn_RX TCLKOn TPOSn TNEGn 8.3 External Mode External mode activates all the port interface pins for utilization of when the user wants to custom wire the connections between the framer and TDM-over-Packet externally. Many applications that require a network processor would need wiring like this to be applied between these two points. Refer to the full data sheet for more information. 26 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 9. Functional Description and Device Registers Refer to the full data sheet for this information. 27 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 10. Pin Description 10.1 Short Pin Descriptions In the type column, of the short pin description, the following abbreviations are used: I (Input), Ipu (Input with Pullup), Ipd (Input with Pulldown), Ia (Analog Input), O (Output), Oz (Output Tri-Stateable), Oa (Analog Output), IO (Bidirectional Inout), IOpd (Bidirectional with Pulldown), and IOpu (Bidirectional with Pullup). Table 10-1. DS34T108 Short Pin Descriptions NAME TYPE FUNCTION SD_D[31:0] IO Synchronous DRAM Data Bus SD_DQM[3:0] O Byte Enable Mask SD_A[11:0] O SDRAM Address Bus SD_BA[1:0] O SDRAM Bank Select SD_CLK O SDRAM Clock SD_CS_N O SDRAM Chip Select (Active Low) SD_WE_N O SDRAM Write Enable (Active Low) SD_RAS_N O SDRAM Row Address Strobe Enable (Active Low) SD_CAS_N O SDRAM Column Address Strobe (Active Low) TDM1_TX O TDM1 Transmit TDM1_RX Ipu TDM1 Receive TDM1_TCLK Ipu TDM1 Transmit Clock TDM1_RCLK Ipu TDM1 Receive Clock TDM1_ACLK O TDM1_TX_SYNC Ipd TDM1_TX_MF_CD IOpd TDM1_RX_SYNC Ipd TDM1_TSIG_CTS O TDM1_RSIG_RTS Ipu TDM2_TX O TDM2 Transmit TDM2_RX Ipu TDM2 Receive TDM2_TCLK Ipu TDM2 Transmit Clock TDM2_RCLK Ipu TDM2 Receive Clock TDM2_ACLK O TDM2_TX_SYNC Ipd TDM2_TX_MF_CD IOpd TDM2_RX_SYNC Ipd TDM2_TSIG_CTS O TDM2_RSIG_RTS Ipu TDM3_TX O TDM1 Recovery Clock TDM1 Transmit/Receive Sync Pulse TDM1 Transmit Multiframe Sync Pulse/Carrier Detect TDM1 Receive Multiframe Sync Pulse/Sync Pulse TDM1 Transmit Signaling/Clear to Send TDM1 Receive Signaling/Request To Send TDM2 Recovery Clock TDM2 Transmit/Receive Sync Pulse TDM2 Transmit Multiframe Sync Pulse/Carrier Detect TDM2 Receive Multiframe Sync Pulse/Sync Pulse TDM2 Transmit Signaling/Clear to Send TDM2 Receive Signaling/Request To Send TDM3 Transmit 28 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION TDM3_RX Ipu TDM3 Receive TDM3_TCLK Ipu TDM3Transmit Clock TDM3_RCLK Ipu TDM3 Receive Clock TDM3_ACLK O TDM3_TX_SYNC Ipd TDM3_TX_MF_CD IOpd TDM3_RX_SYNC Ipd TDM3_TSIG_CTS O TDM3_RSIG_RTS Ipu TDM4_TX O TDM4 Transmit TDM4_RX Ipu TDM4 Receive TDM4_TCLK Ipu TDM4Transmit Clock TDM4_RCLK Ipu TDM4 Receive Clock TDM4_ACLK O TDM4_TX_SYNC Ipd TDM4_TX_MF_CD IOpd TDM4_RX_SYNC Ipd TDM4_TSIG_CTS O TDM4_RSIG_RTS Ipu TDM5_TX O TDM5 Transmit TDM5_RX Ipu TDM5 Receive TDM5_TCLK Ipu TDM5Transmit Clock TDM5_RCLK Ipu TDM5 Receive Clock TDM5_ACLK O TDM5_TX_SYNC Ipd TDM5_TX_MF_CD IOpd TDM5_RX_SYNC Ipd TDM5_TSIG_CTS O TDM5_RSIG_RTS Ipu TDM6_TX O TDM6 Transmit TDM6_RX Ipu TDM6 Receive TDM6_TCLK Ipu TDM6Transmit Clock TDM6_RCLK Ipu TDM6 Receive Clock TDM6_ACLK O TDM6_TX_SYNC Ipd TDM6_TX_MF_CD IOpd TDM6_RX_SYNC Ipd TDM6_TSIG_CTS O TDM6_RSIG_RTS Ipu TDM3 Recovery Clock TDM3 Transmit/Receive Sync Pulse TDM3 Transmit Multiframe Sync Pulse/Carrier Detect TDM3 Receive Multiframe Sync Pulse/Sync Pulse TDM3 Transmit Signaling/Clear to Send TDM3 Receive Signaling/Request To Send TDM4 Recovery Clock TDM4 Transmit/Receive Sync Pulse TDM4 Transmit Multiframe Sync Pulse/Carrier Detect TDM4 Receive Multiframe Sync Pulse/Sync Pulse TDM4 Transmit Signaling/Clear to Send TDM4 Receive Signaling/Request To Send TDM5 Recovery Clock TDM5 Transmit/Receive Sync Pulse TDM5 Transmit Multiframe Sync Pulse/Carrier Detect TDM5 Receive Multiframe Sync Pulse/Sync Pulse TDM5 Transmit Signaling/Clear to Send TDM5 Receive Signaling/Request To Send TDM6 Recovery Clock TDM6 Transmit/Receive Sync Pulse TDM6 Transmit Multiframe Sync Pulse/Carrier Detect TDM6 Receive Multiframe Sync Pulse/Sync Pulse TDM6 Transmit Signaling/Clear to Send TDM6 Receive Signaling/Request To Send 29 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION TDM7_TX O TDM7 Transmit TDM7_RX Ipu TDM7 Receive TDM7_TCLK Ipu TDM7Transmit Clock TDM7_RCLK Ipu TDM7 Receive Clock TDM7_ACLK O TDM7_TX_SYNC Ipd TDM7_TX_MF_CD IOpd TDM7_RX_SYNC Ipd TDM7_TSIG_CTS O TDM7_RSIG_RTS Ipu TDM8_TX O TDM8 Transmit TDM8_RX Ipu TDM8 Receive TDM8_TCLK Ipu TDM8Transmit Clock TDM8_RCLK Ipu TDM8 Receive Clock TDM8_ACLK O TDM8_SYNC Ipd TDM8_TX_MF_CD IOpd TDM8_RX_MF Ipd TDM8_TSIG_CTS O TDM8_RSIG_RTS Ipu TDM8 Receive Signaling/Request To Send CLK_MII_RX I Clock Media Independent Interface Receive MII_RXD[0] I Media Independent Interface Receive Data 0 MII_RXD[1] I Media Independent Interface Receive Data 1 MII_RXD[2] I Media Independent Interface Receive Data 2 MII_RXD[3] I Media Independent Interface Receive Data 3 MII_RX_DV I Media Independent Interface Receive Data Valid MII_RX_ERR I Media Independent Interface Receive Error MII_COL I Media Independent Interface Collision MII_CRS I Media Independent Interface carrier sense. CLK_MII_TX I Clock Media Independent Interface Transmit CLK_SSMII_TX O Clock Source Synchronous Serial Media Independent Interface Transmit MII_TXD[0] O Media Independent Interface Transmit Data 0 MII_TXD[1] O Media Independent Interface Transmit Data 1 MII_TXD[2] O Media Independent Interface Transmit Data 2 MII_TXD[3] O Media Independent Interface Transmit Data 3 MII_TX_EN O Media Independent Interface Transmit Enable MII_TX_ERR O Media Independent Interface Transmit Error MDIO IOpu MDC O TDM7 Recovery Clock TDM7 Transmit/Receive Sync Pulse TDM7 Transmit Multiframe Sync Pulse/Carrier Detect TDM7 Receive Multiframe Sync Pulse/Sync Pulse TDM7 Transmit Signaling/Clear to Send TDM7 Receive Signaling/Request To Send TDM8 Recovery Clock TDM8 Transmit/Receive Sync Pulse TDM8 Transmit Multiframe Sync Pulse/Carrier Detect TDM8 Receive Multiframe Sync Pulse TDM8 Transmit Signaling/Clear to Send Management Data Input/Output Management Data Clock 30 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TTIP1 TTIP2 TTIP3 TTIP4 TTIP5 TTIP6 TTIP7 TTIP8 TRING1 TRING2 TRING3 TRING4 TRING5 TRING6 TRING7 TRING8 TXENABLE RTIP1 RTIP2 RTIP3 RTIP4 RTIP5 RTIP6 RTIP7 RTIP8 RRING1 RRING2 RRING3 RRING4 RRING5 RRING6 RRING7 RRING8 RXTSEL RCLKF1/RCLK1 RCLKF2/RCLK2 RCLKF3/RCLK3 RCLKF4/RCLK4 RCLKF5/RCLK5 RCLKF6/RCLK6 RCLKF7/RCLK7 RCLKF8/RCLK8 TCLKF1 TCLKF2 TCLKF3 TCLKF4 TCLKF5 TCLKF6 TCLKF7 TCLKF8 TYPE FUNCTION Oa Transmit Bipolar Tip for Channels 1–8 Oa Transmit Bipolar Ring for Channels 1–8 I Transmit Enable for All Channels 1–8 Ia Receive Bipolar Tip for Channels 1–8 Ia Receive Bipolar Ring for Channels 1–8 I Receive Termination Selection IO Receive Framer Clock/Receive Clock I Transmit Clock Input for the Formatter 31 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TCLKO1 TCLKO2 TCLKO3 TCLKO4 TCLKO5 TCLKO6 TCLKO7 TCLKO8 RSER1 RSER2 RSER3 RSER4 RSER5 RSER6 RSER7 RSER8 TDATF1 TDATF2 TDATF3 TDATF4 TDATF5 TDATF6 TDATF7 TDATF8 RSYNC1 RSYNC2 RSYNC3 RSYNC4 RSYNC5 RSYNC6 RSYNC7 RSYNC8 RSYSCLK1 RSYSCLK2 RSYSCLK3 RSYSCLK4 RSYSCLK5 RSYSCLK6 RSYSCLK7 RSYSCLK8 RF/RMSYNC1 RF/RMSYNC2 RF/RMSYNC3 RF/RMSYNC4 RF/RMSYNC5 RF/RMSYNC6 RF/RMSYNC7 RF/RMSYNC8 TYPE FUNCTION O Transmit Clock Output O Receive Serial Data Output O Transmit Data Formatter Output IO Receive Sync I Receive System Clock O Frame Synchronization/Receive Multiframe Synchronization 32 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME RLOF/RLOS1 RLOF/RLOS2 RLOF/RLOS3 RLOF/RLOS4 RLOF/RLOS5 RLOF/RLOS6 RLOF/RLOS7 RLOF/RLOS8 TSER1 TSER2 TSER3 TSER4 TSER5 TSER6 TSER7 TSER8 RDATF1 RDATF2 RDATF3 RDATF4 RDATF5 RDATF6 RDATF7 RDATF8 TSYNC/TSSYNC1 TSYNC/TSSYNC2 TSYNC/TSSYNC3 TSYNC/TSSYNC4 TSYNC/TSSYNC5 TSYNC/TSSYNC6 TSYNC/TSSYNC7 TSYNC/TSSYNC8 TSYSCLK1/ECLK1 TSYSCLK2/ECLK2 TSYSCLK3/ECLK3 TSYSCLK4/ECLK4 TSYSCLK5/ECLK5 TSYSCLK6/ECLK6 TSYSCLK7/ECLK7 TSYSCLK8/ECLK8 CLK_SYS_S TYPE FUNCTION O Receive Loss of Frame/Receive Loss of Signal I Transmit Serial Data I Receive Data Framer Input/Transmit Signaling IO Transmit Synchronization/Transmit System Synchronization In I Transmit System Clock I System Clock Selection CLK_SYS I System Clock CLK_HIGH I Clock High Synthesis MCLK I Master Clock CLK_CMN I Common Clock H_D[31:1] IO Host Data Bus H_D[0]/SPI_MISO IO Host Data LSB H_AD[24:1] I Host Address Bus H_CS_N I Host Chip Select H_R_W_N/SPI_CP I Host Read/Write 33 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME H_WR_BE0_N/ SPI_CLK H_WR_BE1_N/ SPI_MOSI H_WR_BE2_N/ SPI_SEL_N H_WR_BE3_N/ SPI_CI TYPE FUNCTION I H_D[7:0] Write Enable, Active Low I H_D[15:8] Write Enable, Active Low I H_D[23:16] Write Enable, Active Low I H_D[31:24] Write Enable, Active Low H_READY_N Oz Host Ready H_INT[1] H_INT[0] O Host Interrupt DAT_32_16_N Ipu Data 32/16-Bit Select H_CPU_SPI_N Ipu CPU or SPI Mode RST_SYS_N Ipu System Reset RESREF I JTMS Ipu JTAG Test Mode Select JTCLK Ipd JTAG Test Clock JTDI Ipu JTAG Test data In JTDO Oz JTAG Test Data Out JTRST Ipu JTAG Test Reset SCEN Ipd Used for factory tests. STMD Ipd Used for factory tests. HIZ_N I Used for factory tests. MBIST_EN I Used for factory tests. MBIST_DONE O Used for factory tests. MBIST_FAIL O Used for factory tests TEST_CLK O Used for factory tests. TST_CLD I Used for factory tests. DS34T104 only. TST_TA O Used for factory tests. DS34T104 only. TST_TB O Used for factory tests. DS34T104 only. TST_TC O Used for factory tests. DS34T104 only. TST_RA O Used for factory tests. DS34T104 only. TST_RB O Used for factory tests. DS34T104 only. TST_RC O Used for factory tests. DS34T104 only. DVSS — Digital Core Ground for Framers and TDM-over-Packet (31 pins) DVDDC — 1.8V Core Supply Voltage for Framers and TDM-over-Packet (17 pins) DVDDIO — 3.3V Supply Voltage for I/O (16 pins) DVDDLIU — 3.3V Supply Voltage for LIUs (2 pins) DVSSLIU — Digital Ground for the LIUs (2 pins) ATVDDn — 3.3V Power Supply for the Transmitter (8 pins) Resistance Reference 34 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION ATVSSn — Analog Ground for Transmitters (8 pins) ARVDDn — 3.3V Analog Receive Power Supply (8 pins) ARVSSn — Analog Receive GND (8 pins) ACVDD2 — Analog CLAD 1.8V Supply 2 ACVSS2 — Analog CLAD GND 2 ACVDD1 — Analog CLAD 1.8V Supply 1 ACVSS1 — Analog CLAD GND 1 Note: Pins with names ending in an asterisk (*) or “_N” are active low. 10.2 Detailed Pin Descriptions In the detailed pin description table, the type column defines the drive current for any type of output pin. Also in the detailed pin description table, the type column uses the following abbreviations: I (Input), Ipu (Input with Pullup), Ipd (Input with Pulldown), Ia (Analog Input), O (Output), Oz (Output Tri-Stateable), Oa (Analog output), IO (Bidirectional Inout), IOpd (Bidirectional with Pulldown), and IOpu (Bidirectional with Pullup). Table 10-2. Detailed Pin Descriptions NAME TYPE FUNCTION SDRAM PINS SD_D[31:0] IO 8mA SD_DQM[3:0] O 8mA SD_A[11:0] O 8mA SD_BA[1:0] O 8mA SD_CLK SD_CS_N SD_WE_N SD_RAS_N SD_CAS_N O 8mA O 8mA O 8mA O 8mA O 8mA TDM1_TX O 8mA TDM1_RX Ipu Synchronous DRAM Data Bus SD_D[31:0]: Data bus towards SDRAM. MSB is SD_D[31]. Byte Enable Mask SD_DQM[3:0]: Byte enable towards SDRAM. Serves as a mask. SD_DQM[0] is connected to the least significant byte at SDRAM, while SD_DQM[3] is connected to the most significant byte at SDRAM. SDRAM Address Bus SD_A[11:0]: Address bus towards SDRAM. MSB is SD_A[11]. SDRAM Bank Select SD_BA[1:0]: SDRAM bank select. Selects one bank out of four banks at SDRAM. SDRAM Clock SD_CLK: Drives the SDRAM clock towards the SDRAM. SDRAM Chip Select (Active Low) SD_CS_N: SDRAM chip select towards SDRAM. SDRAM Write Enable (Active Low) SD_WE_N: Write enable towards SDRAM. SDRAM Row Address Strobe Enable (Active Low) SD_RAS_N: Row address strobe towards SDRAM. SDRAM Column Address Strobe (Active Low) SD_CAS_N: Column address strobe towards SDRAM. TDM-OVER-PACKET INTERFACE PINS TDM1 Transmit TDM1_TX: First interface serial transmit line. Also used in high-speed E3/T3/STS1 mode. TDM1 Receive TDM1_RX: First interface serial receive line. This pin is active in external mode only. Also used in high-speed E3/T3/STS1 mode. 35 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE TDM1_TCLK Ipu TDM1_RCLK Ipu TDM1_ACLK O 8mA TDM1_TX_SYNC Ipd TDM1_TX_MF_CD IOpd TDM1_RX_SYNC Ipd TDM1_TSIG_CTS O 8mA TDM1_RSIG_RTS Ipu TDM2_TX O 8mA TDM2_RX Ipu TDM2_TCLK Ipu TDM2_RCLK Ipu TDM2_ACLK O 8mA TDM2_TX_SYNC Ipd TDM2_TX_MF_CD IOpd FUNCTION TDM1 Transmit Clock TDM1_TCLK: Used for clocking TDM1_TX and TDM1_RX lines in one-clock mode, or TDM1_TX in two-clock mode. This pin is active in external mode only. Also used in high-speed E3/T3/STS1 mode. TDM1 Receive Clock TDM1_RCLK: Used for clocking TDM1_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. Also used in high-speed E3/T3/STS1 mode. TDM1 Recovery Clock TDM1_ACLK: First interface recovered clock. Also used in high-speed E3/T3/STS1 mode. TDM1 Transmit/Receive Sync Pulse TDM1_TX_SYNC: First interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM1 Transmit Multiframe Sync Pulse/Carrier Detect TDM1_TX_MF_CD: First interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. TDM1 Receive Multiframe Sync Pulse TDM1_RX_SYNC: First interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM1 Transmit Signaling/Clear to Send TDM1_TSIG_CTS: First interface transmit signaling, or Clear To Send in case of serial interface. TDM1 Receive Signaling/Request To Send TDM1_RSIG_RTS: First interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM2 Transmit TDM2_TX: Second Interface serial transmit line. TDM2 Receive TDM2_RX: Second interface serial receive line. This pin is active in external mode only. This pin is active in external mode only. TDM2 Transmit Clock TDM2_TCLK: Used for clocking TDM2_TX and TDM2_RX lines in one-clock mode, or TDM2_TX in two-clock mode. This pin is active in external mode only. This pin is active in external mode only. TDM2 Receive Clock TDM2_RCLK: Used for clocking TDM2_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM2 Recovery Clock TDM2_ACLK: Second interface recovered clock. TDM2 Transmit/Receive Sync Pulse TDM2_TX_SYNC: Second interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM2 Transmit Multiframe Sync Pulse/Carrier Detect TDM2_TX_MF_CD: Second interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. 36 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE TDM2_RX_SYNC Ipd TDM2_TSIG_CTS O 8mA TDM2_RSIG_RTS Ipu TDM3_TX O 8mA TDM3_RX Ipu TDM3_TCLK Ipu TDM3_RCLK Ipu TDM3_ACLK O 8mA TDM3_TX_SYNC Ipd TDM3_TX_MF_CD IOpd TDM3_RX_SYNC Ipd TDM3_TSIG_CTS O 8mA TDM3_RSIG_RTS Ipu TDM4_TX O 8mA TDM4_RX Ipu TDM4_TCLK Ipu TDM4_RCLK Ipu FUNCTION TDM2 Receive Multiframe Sync Pulse TDM2_RX_SYNC: Second interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM2 Transmit Signaling/Clear to Send TDM2_TSIG_CTS: Second interface transmit signaling, or Clear to Send in case of serial interface. TDM2 Receive Signaling/Request To Send TDM2_RSIG_RTS: Second interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM3 Transmit TDM3_TX: Third Interface serial transmit line. TDM3 Receive TDM3_RX: Third interface serial receive line. This pin is active in external mode only. TDM3 Transmit Clock TDM3_TCLK: Used for clocking TDM3_TX and TDM3_RX lines in one-clock mode, or TDM3_TX in two-clock mode. This pin is active in external mode only. TDM3 Receive Clock TDM3_RCLK: Used for clocking TDM3_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM3 Recovery Clock TDM3_ACLK: Third interface recovered clock. TDM3 Transmit/Receive Sync Pulse TDM3_TX_SYNC: First interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM3 Transmit Multiframe Sync Pulse/Carrier Detect TDM3_TX_MF_CD: Third interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. TDM3 Receive Multiframe Sync Pulse TDM3_RX_SYNC: Third interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM3 Transmit Signaling/Clear to Send TDM3_TSIG_CTS: Third interface transmit signaling, or Clear to Send in case of serial interface. TDM3 Receive Signaling/Request To Send TDM3_RSIG_RTS: Third interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM4 Transmit TDM4_TX: Fourth Interface serial transmit line. TDM4 Receive TDM4_RX: Fourth interface serial receive line. This pin is active in external mode only. TDM4Transmit Clock TDM4_TCLK: Used for clocking TDM4_TX and TDM4_RX lines in one-clock mode, or TDM4_TX in two-clock mode. This pin is active in external mode only. TDM4 Receive Clock TDM4_RCLK: Used for clocking TDM4_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. 37 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION TDM4_ACLK O 8mA TDM4_TX_SYNC Ipd TDM4_TX_MF_CD IOpd TDM4_RX_SYNC Ipd TDM4_TSIG_CTS O 8mA TDM4_RSIG_RTS Ipu TDM5_TX O 8mA TDM5_RX Ipu TDM5_TCLK Ipu TDM5_RCLK Ipu TDM5_ACLK O 8mA TDM5_TX_SYNC Ipd TDM5_TX_MF_CD IOpd TDM5_RX_SYNC Ipd TDM5_TSIG_CTS O 8mA TDM5_RSIG_RTS Ipu TDM4 Recovery Clock TDM4_ACLK: Fourth interface recovered clock. TDM4 Transmit/Receive Sync Pulse TDM4_TX_SYNC: Fourth interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM4 Transmit Multiframe Sync Pulse/Carrier Detect TDM4_TX_MF_CD: Fourth interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. TDM4 Receive Multiframe Sync Pulse TDM4_RX_SYNC: Fourth interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM4 Transmit Signaling/Clear to Send TDM4_TSIG_CTS_D2A4: Fourth interface transmit signaling, or Clear to Send in case of serial interface. TDM4 Receive Signaling/Request To Send TDM4_RSIG_RTS: Fourth interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM5 Transmit TDM5_TX: Fifth Interface serial transmit line. TDM5 Receive TDM5_RX: Fifth interface serial receive line. This pin is active in external mode only. TDM5Transmit Clock TDM5_TCLK: Used for clocking TDM5_TX and TDM5_RX lines in one-clock mode, or TDM5_TX in two-clock mode. This pin is active in external mode only. TDM5 Receive Clock TDM5_RCLK: Used for clocking TDM5_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM5 Recovery Clock TDM5_ACLK: Fifth interface recovered clock. TDM5 Transmit/Receive Sync Pulse TDM5_TX_SYNC: Fifth interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM5 Transmit Multiframe Sync Pulse/Carrier Detect TDM5_TX_MF_CD: Fifth interface transmit multiframe sync pulse input for framed interface (PCM), or Carrier Detect output in case of serial interface. This pin is active in external mode only. TDM5 Receive Multiframe Sync Pulse TDM5_RX_SYNC: First interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM5 Transmit Signaling/Clear to Send TDM5_TSIG_CTS: Fifth interface transmit signaling, or Clear to Send in case of serial interface. TDM5 Receive Signaling/Request To Send TDM5_RSIG_RTS: Fifth interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. 38 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION TDM6_TX O 8mA TDM6_RX Ipu TDM6_TCLK Ipu TDM6_RCLK Ipu TDM6_ACLK O 8mA TDM6_TX_SYNC Ipd TDM6_TX_MF_CD IOpd TDM6_RX_SYNC Ipd TDM6_TSIG_CTS O 8mA TDM6_RSIG_RTS Ipu TDM7_TX O 8mA TDM7_RX Ipu TDM7_TCLK Ipu TDM7_RCLK Ipu TDM7_ACLK O 8mA TDM7_TX_SYNC Ipd TDM7_TX_MF_CD IOpd TDM6 Transmit TDM6_TX: Sixth Interface serial transmit line. TDM6 Receive TDM6_RX: Sixth interface serial receive line. This pin is active in external mode only. TDM6Transmit Clock TDM6_TCLK: Used for clocking TDM6_TX and TDM6_RX lines in one-clock mode, or TDM6_TX in two-clock mode. This pin is active in external mode only. TDM6 Receive Clock TDM6_RCLK: Used for clocking TDM6_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM6 Recovery Clock TDM6_ACLK: Sixth interface recovered clock. TDM6 Transmit/Receive Sync Pulse TDM6_TX_SYNC: Sixth interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM6 Transmit Multiframe Sync Pulse/Carrier Detect TDM6_TX_MF_CD: Sixth interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. TDM6 Receive Multiframe Sync Pulse TDM6_RX_SYNC: Sixth interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM6 Transmit Signaling/Clear to Send TDM6_TSIG_CTS: Sixth interface transmit signaling, or Clear to Send in case of serial interface. TDM6 Receive Signaling/Request To Send TDM6_RSIG_RTS: Sixth interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM7 Transmit TDM7_TX: Seventh Interface serial transmit line. TDM7 Receive TDM7_RX: Seventh interface serial receive line. This pin is active in external mode only. TDM7Transmit Clock TDM7_TCLK: Used for clocking TDM7_TX and TDM7_RX lines in one-clock mode, or TDM7_TX in two-clock mode. This pin is active in external mode only. TDM7 Receive Clock TDM7_RCLK: Used for clocking TDM7_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM7 Recovery Clock TDM7_ACLK: Seventh interface recovered clock. TDM7 Transmit/Receive Sync Pulse TDM7_TX_SYNC: Seventh interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM7 Transmit Multiframe Sync Pulse/Carrier Detect TDM7_TX_MF_CD: Fifth interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. 39 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE TDM7_RX_SYNC Ipd TDM7_TSIG_CTS O 8mA TDM7_RSIG_RTS Ipu TDM8_TX O 8mA TDM8_RX Ipu TDM8_TCLK Ipu TDM8_RCLK Ipu TDM8_ACLK O 8mA TDM8_TX_SYNC Ipd TDM8_TX_MF_CD IOpd TDM8_RX_SYNC Ipd TDM8_TSIG_CTS O 8mA TDM8_RSIG_RTS Ipu CLK_MII_RX I MII_RXD[0] I MII_RXD[1] I MII_RXD[2] I MII_RXD[3] I FUNCTION TDM7 Receive Multiframe Sync Pulse TDM7_RX_SYNC: Seventh interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM7 Transmit Signaling/Clear to Send TDM7_TSIG_CTS: Seventh interface transmit signaling, or Clear to Send in case of serial interface. TDM7 Receive Signaling/Request To Send TDM7_RSIG_RTS: Seventh interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. TDM8 Transmit TDM8_TX: Eighth interface serial transmit line. TDM8 Receive TDM8_RX: Eighth interface serial receive line. This pin is active in external mode only. TDM8 Transmit Clock TDM8_TCLK: Used for clocking TDM8_TX and TDM8_RX lines in one-clock mode, or TDM8_TX in two-clock mode. This pin is active in external mode only. TDM8 Receive Clock TDM8_RCLK: Used for clocking TDM8_RX line in two-clock mode. Not used in one-clock mode. This pin is active in external mode only. TDM8 Recovery Clock TDM8_ACLK: Eighth interface recovered clock. TDM8 Transmit/Receive Sync Pulse TDM8_TX_SYNC: Eighth interface transmit frame sync pulse. Used as both transmit and receive frame sync pulse in one-clock mode. Used as transmit frame sync in two-clock mode. The pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM8 Transmit Multiframe Sync Pulse/Carrier Detect TDM8_TX_MF_CD: Eighth interface transmit multiframe sync pulse input for framed interface (PCM), or carrier detect output in case of serial interface. This pin is active in external mode only. TDM8 Receive Multiframe Sync Pulse TDM8_RX_SYNC: First interface receive multiframe sync pulse or frame sync pulse input. When used as frame sync pulse the pulse frequency can be once every N x 125μs, i.e., every 2ms. This pin is active in external mode only. TDM8 Transmit Signaling/Clear to Send TDM8_TSIG_CTS: Eighth interface transmit signaling, or Clear to Send in case of serial interface. This pin is active in external mode only. TDM8 Receive Signaling/Request To Send TDM8_RSIG_RTS: Eighth interface serial Rx signaling input or Request To Send input in case of serial interface. This pin is active in external mode only. MAC(10/100) PINS Clock Media Independent Interface Receive CLK_MII_RX: MII receive clock or SSMII receive clock. Media Independent Interface Receive Data 0 MII_RXD[0]: MII receive data ‘0’ or SSMII receive data. Media Independent Interface Receive Data 1 MII_RXD[1]: MII receive data ‘1’ or receive data SSMII sync. Media Independent Interface Receive Data 2 MII_RXD[2]: MII receive data ‘2’ or RMII receive data ‘0.’ Media Independent Interface Receive Data 3 MII_RXD[3]: MII receive data ‘3’ or RMII receive data ‘1.’ 40 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE MII_RX_DV I MII_RX_ERR I MII_COL I MII_CRS I CLK_MII_TX I CLK_SSMII_TX MII_TXD[0] MII_TXD[1] MII_TXD[2] MII_TXD[3] MII_TX_EN MII_TX_ERR MDIO MDC TTIP1 TTIP2 TTIP3 TTIP4 TTIP5 TTIP6 TTIP7 TTIP8 TRING1 TRING2 TRING3 TRING4 TRING5 TRING6 TRING7 TRING8 TXENABLE O 12mA O 8mA O 8mA O 8mA O 8mA O 8mA O 8mA IOpu 8mA O 8mA Oa FUNCTION Media Independent Interface Receive Data Valid MII_RX_DV: MII receive data valid, or RMII carrier sense/data valid. Media Independent Interface Receive Error MII_RX_ERR: MII receive error, or RMII receive error. Media Independent Interface Collision MII_COL: MII collision detection. Media Independent Interface carrier sense. MII_CRS: MII carrier sense. Clock Media Independent Interface Transmit CLK_MII_TX: MII transmit clock or RMII ref clock or SSMII ref clock. Clock Source Synchronous Serial Media Independent Interface Transmit CLK_SSMII_TX: SSMII transmit clock (125MHz). Media Independent Interface Transmit Data 0 MII_TXD[0]: MII transmit data ‘0’, or SSMII transmit data. Media Independent Interface Transmit Data 1 MII_TXD[1]: MII transmit data ‘0’, or SSMII transmit sync. Media Independent Interface Transmit Data 2 MII_TXD[2]: MII transmit data ‘2’ or RMII transmit data ‘0.’ Media Independent Interface Transmit Data 3 MII_TXD[3]: MII transmit data ‘3’, or RMII transmit data ‘1.’ Media Independent Interface Transmit Enable MII_TX_EN: MII transmit enable or RMII transmit enable. Media Independent Interface Transmit Error MII_TX_ERR: MII transmit error. Management Data Input/Output MDIO: Management data, synchronized to MDC. Management Data Clock MDC: Management data clock. FRAMER AND LIU PORT PINS Transmit Bipolar Tip for Channels 1–8 TTIPn: These pins are differential line driver tip outputs. The differential outputs of TTIPn and TRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. Note: All these pins can be tri-stated when the TXENABLE pin is low. Oa Transmit Bipolar Ring for Channels 1–8 TRINGn: These pins are differential line driver ring outputs. The differential outputs of TTIPn and TRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. Note: All these pins can be tri-stated when the TXENABLE pin is low. I Transmit Enable for all Channels 1–8 TXENABLE: If this pin is pulled low all the transmitter outputs (TTIP and TRING) are high impedance. In addition, the register settings for tri-state control of TTIP/TRING are ignored if TXENABLE is low. If TXENABLE is high, the particular driver can be tri-stated if the TXEN bit is set in the LMCR register. 41 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME RTIP1 RTIP2 RTIP3 RTIP4 RTIP5 RTIP6 RTIP7 RTIP8 RRING1 RRING2 RRING3 RRING4 RRING5 RRING6 RRING7 RRING8 TYPE FUNCTION Ia Receive Bipolar Tip for Channels 1–8 RTIPn: Receive analog input for differential receiver. Data and clock are recovered and output at RPOS/RNEG and RCLK pins, respectively. The differential inputs of RTIPn and RRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. Ia Receive Bipolar Ring for Channels 1–8 RRINGn: Receive analog input for differential receiver. Data and clock are recovered and output at RPOS/RNEG and RCLK pins, respectively. The differential inputs of RTIPn and RRINGn can provide internal matched impedance for E1 75Ω, E1 120Ω, T1 100Ω, or J1 110Ω. RXTSEL I RCLKF1/RCLK1 RCLKF2/RCLK2 RCLKF3/RCLK3 RCLKF4/RCLK4 RCLKF5/RCLK5 RCLKF6/RCLK6 RCLKF7/RCLK7 RCLKF8/RCLK8 IO 8mA TCLKF1 TCLKF2 TCLKF3 TCLKF4 TCLKF5 TCLKF6 TCLKF7 TCLKF8 TCLKO1 TCLKO2 TCLKO3 TCLKO4 TCLKO5 TCLKO6 TCLKO7 TCLKO8 Receive Termination Selection RXTSEL: The input selects internal termination when high and external termination when low for the all the receivers when the RHPM bit is set in the LTRCR register. Receive Framer Clock RCLKFn: When the LIUs are disabled (GCR2.LIUDn bits), RCLKFn can be 1.544MHz (T1) or 2.048MHz (E1) input clock that is used to clock data through the receive-side framer. RSER data is output on the rising edge of RCLKFn. RCLKFn is used to output RSER when the elastic store is not enabled. When the elastic store is enabled, the RSER is clocked by RSYSCLK. Receive Clock Out RCLKn: When the LIU is used RCLKn is the recovered output clock from the line. This clock is recovered from the signal at RTIP and RRING. The output is 1.544MHz for T1 and 2.048MHz for E1. This clock is used to clock data through the receive-side framer. RSER data is output on the rising edge of RCLKn. RCLKn is used to output RSER when the elastic store is not enabled. When the elastic store is enabled, the RSER is clocked by RSYSCLK. I Transmit Clock Input for the Formatter TCLKFn: A 1.544MHz or a 2.048MHz primary clock. Used to clock data through the transmit-side formatter. This pin is active in external mode. O 8mA Transmit Clock Output TCLKOn: This signal is used to register the TDATFn output and is typically synchronous with the TCLKFn input. However, in framer and payload loopback applications this signal becomes synchronous with RCLKFn. 42 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME RSER1 RSER2 RSER3 RSER4 RSER5 RSER6 RSER7 RSER8 TDATF1 TDATF2 TDATF3 TDATF4 TDATF5 TDATF6 TDATF7 TDATF8 RSYNC1 RSYNC2 RSYNC3 RSYNC4 RSYNC5 RSYNC6 RSYNC7 RSYNC8 RSYSCLK1 RSYSCLK2 RSYSCLK3 RSYSCLK4 RSYSCLK5 RSYSCLK6 RSYSCLK7 RSYSCLK8 RF/RMSYNC1 RF/RMSYNC2 RF/RMSYNC3 RF/RMSYNC4 RF/RMSYNC5 RF/RMSYNC6 RF/RMSYNC7 RF/RMSYNC8 RLOF/RLOS1 RLOF/RLOS2 RLOF/RLOS3 RLOF/RLOS4 RLOF/RLOS5 RLOF/RLOS6 RLOF/RLOS7 RLOF/RLOS8 TYPE FUNCTION O 8mA Receive Serial Data Output RSERn: Received NRZ serial data. Updated on rising edges of RCLKFn when the receive-side elastic store is disabled. Updated on the rising edges of RSYSCLKn when the receive-side elastic store is enabled. This output is low when in internal mode. O 8mA Transmit Data Formatter Output TDATFn: Can be programmed to source NRZ data via a configuration register. This pin is low when the internal LIU is enabled. This is active when the internal LIUn is disabled (GCR2.LIUD bit). IO 8mA Receive Sync RSYNCn: If the receive-side elastic store is enabled, then this signal is used to input a frame or multiframe boundary pulse. If set to output frame boundaries then RSYNC can be programmed to output double-wide pulses on signaling frames in T1 mode. In E1 Mode RSYNC out can be used to indicate CAS and CRC4 multiframe. I Receive System Clock RSYSCLKn: 1.544MHz, or 2.048MHz receive backplane clock. Only used when the receive side elastic store function is enabled. Should be tied low in applications that do not use the receive side elastic store. This pin is active in external mode only. Frame Synchronization RFSYNCn: RFSYNC is an extracted 8kHz pulse, one RCLKF or RCLK wide that identifies frame boundaries. O 8mA O 8mA Receive Multiframe Synchronization RMSYNCn: RMSYNC is an extracted pulse, one RCLKF or RCLK wide (elastic store disabled) or one RSYSCLK wide (elastic store enabled), which identifies multiframe boundaries. When the receive elastic store is enabled, the RMSYNC signal indicates the multiframe sync on the system (backplane) side of the elastic store. In E1 mode, will indicate either the CRC4 or CAS multiframe as determined by a configuration register. Receive Loss of Frame RLOFn: This pin can toggle high when the synchronizer is searching for the frame and multiframe. Receive Loss of Signal RLOSn: This pin can toggle high when the framer detects a loss of signal condition. 43 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TSER1 TSER2 TSER3 TSER4 TSER5 TSER6 TSER7 TSER8 RDATF1 RDATF2 RDATF3 RDATF4 RDATF5 RDATF6 RDATF7 RDATF8 TSYNC/TSSYNC1 TSYNC/TSSYNC2 TSYNC/TSSYNC3 TSYNC/TSSYNC4 TSYNC/TSSYNC5 TSYNC/TSSYNC6 TSYNC/TSSYNC7 TSYNC/TSSYNC8 TSYSCLK/ECLK1 TSYSCLK/ECLK2 TSYSCLK/ECLK3 TSYSCLK/ECLK4 TSYSCLK/ECLK5 TSYSCLK/ECLK6 TSYSCLK/ECLK7 TSYSCLK/ECLK8 TYPE FUNCTION I Transmit Serial Data TSERn: Sampled on the falling edge of TCLKF when the transmit side elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled. This pin is active in external mode only. I Receive Data Framer input RDATFn: RDATFn can be used for unipolar (NRZ) data if enabled. This is active when the internal LIUn is disabled (GCR2.LIUD bit). IO 8mA Transmit Synchronization In/Out TSYNCn: A pulse at this pin establishes either frame or multiframe boundaries for the transmit side. This signal can additionally be programmed to output either a frame or multiframe pulse. If this pin is set to output pulses at frame boundaries, it can additionally be set to output doublewide pulses at signaling frames in T1 mode. The operation of this signal is synchronous with TCLKF. Only used when elastic store is disabled. Transmit System Synchronization In TSSYNCn: Only used when the transmit-side elastic store is enabled. A pulse at this pin will establish either frame or multiframe boundaries for the transmit side. The operation of this signal is synchronous with TSYSCLK. Transmit System Clock TSYSCLKn: 1.544MHz or 2.048MHz clock. Only used when the transmit-side elastic store function is enabled. This pin is active in external mode. I External Clock ECLK: This pin is an external clock input for the receive and transmit. The pins is configured by register FMRTOPISM. CLK_SYS_S Ipd CLK_SYS I CLOCK PINS System Clock Select CLK_SYS_S: This pin selects the input CLK_SYS frequency. The pin should be tied high when a 25MHz CLK_SYS is used. The pin should be tied low or left unconnected when a 50MHz or 75MHz CLK_SYS is used. System Clock CLK_SYS: Clock input used to drive the TDM-over-Packet internal circuitry. Requires a 25MHz or 50MHz or 75MHz(+50ppm or better) clock on this pin. The 25MHz CLK_SYS is used to generate a 50MHz or 75MHz internal system clock for the TDM-over-Packet and SD_CLK. The 50MHz or 75MHz CLK_SYS is used for the SD_CLK output, and the internal system clock for the TDM-over-Packet block. 44 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME CLK_HIGH MCLK TYPE I I FUNCTION Clock High Synthesis CLK_HIGH: 19.44MHz or 38.88MHz or 77.76MHz clock input is used for E1/T1 clock recovery machines of the TDM-over-Packet and the internal MCLK for the LIU and Framer. The LIU and FRAMER use this clock as the internal MCLK when programmed in default mode. A configuration register sets if the clock input is going to be 10.00MHz or 19.44MHz or 38.88MHz or 77.76MHz. It is recommend that this signal be tied to DVSS when none of the recovered clock outputs (TDM1_ACLK–TDM8_ACLK) are used or when the chip is in single-port high-speed mode. Accuracy is described in the Clock Recovery section (Section 7.7.4). Master Clock MCLK: This is an independent free-running clock whose input can be 2.048MHz ±50ppm or 1.544MHz ±32ppm. An external MCLK is used when not using the TDM-over-Packet engine CLK_HIGH. The user must program this pin to be used as the external MCLK source. When using this MCLK pin set MCLKE bit and set MCLKS bit for correct operation as described in the GCR1 register. Common Clock CLK_CMN: Common clock has to be a multiple of 8kHz and in the range of 1MHz to 25MHz. The frequency input should not be too close to an integer multiple of the service clock frequency. Based on these criteria, the following frequencies are suggested: For systems with access to a common SONET/SDH network, a frequency of 19.44MHz (2430 x 8kHz). CLK_CMN I For systems with access to a common ATM network, 9.72MHz (1215 x 8kHz) or 19.44MHz (2430 x 8kHz). For systems using GPS, 8.184MHz (1023 x 8kHz). For systems connected by a single hop of 100Mbps Ethernet where it is possible to lock the physical layer clock, 25MHz (3125 x 8kHz). H_D[31:1] IO 8mA H_D[0]/ SPI_MISO IO 8mA H_AD[24:1] I H_CS_N I H_R_W_N/ SPI_CP I When common clock is not used tie to ground or VDD(3.3V). MICROPROCESSOR PINS Host Data Bus H_D[31:1]: Host data bus MSB is HD[31] when the host data bus width is 32 bits and HD_D[15] when the host data bus width is 16 bits. Host Data Bus H_D[0]: In CPU mode (H_CPU_SPI_N = 1), this pin is used as H_D[0], which is the LSB of the CPU data bus. SPI MISO SPI_MISO[0]: In SPI mode (H_CPU_SPI = 0), this pin is used as SPI_MISO output. If the SPI interface is not selected(SPI_SEL_N), this output is tri-state. Host Address Bus H_AD[24:1]: Host address bus, MSB is H_AD[24]. When the host data bus is 32 bits, H_AD[1] should be tied to VSS. Host Chip Select H_CS_N: Host chip select active low. Host Read/Write H_R_W_N: In CPU mode (H_CPU_SPI_N = 1), this input is host read/write. SPI Clock Phase SPU_CP: In SPI mode (H_CPU_SPI_N = 0), this input is the SPI clock phase. 45 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME H_WR_BE0_N/ SPI_CLK H_WR_BE1_N/ SPI_MOSI H_WR_BE2_N/ SPI_SEL_N H_WR_BE3_N/ SPI_CI TYPE FUNCTION I H_D[7:0] Write Enable, Active Low H_WR_BE0_N: In CPU mode (H_CPU_SPI_N = 1) this input is H_D[7:0] write enable, active low. I SPI Clock SPI_CLK: In SPI mode (H_CPU_SPI_N = 0), this input is SPI clock. H_D[15:8] Write Enable, Active Low H_WR_BE1_N: In CPU mode (H_CPU_SPI_N = 1), this input is H_D[15:8] write enable, active low. I SPI_MOSI SPI_MOSI: In SPI mode (H_CPU_SPI_N = 0), this input is SPI_MOSI. H_D[23:16] Write Enable, Active Low H_WR_BE2_N: In CPU mode (H_CPU_SPI_N = 1), this input is H_D[23:16] write enable, active low. I SPI Select SPI_SEL_N: In SPI mode (H_CPU_SPI_N = 0), this input is SPI_SEL_N. H_D[31:24] Write Enable, Active Low H_WR_BE3_N: In CPU mode (H_CPU_SPI_N = 1), H_D[31:24] write enable, active low. H_READY_N Opu 8mA H_INT[1:0] O 8mA DAT_32_16_N Ipu H_CPU_SPI_N Ipu RST_SYS_N Ipu JTMS Ipu JTCLK I JTDI Ipu JTDO Oz 8mA SPI Clock Invert SPI_CI: In SPI mode (H_CPU_SPI_N = 0), this input is clock invert for SPI mode. Host Ready H_READY_N: Host ready, active low. This pin requires the use of an external pullup resistor. The signal is actively driven high ‘1’ before it becomes tri-state. Host Interrupt H_INT[1:0]: Host Interrupts are active low. H_INT[0] is used for the TDM-overPacket and H_INT[1] is used for the LIU, FRAMER and BERT. H_INT[0] can also be ORed with H_INT[1]. See register bit GCR1.IPOR. Data 32/16-Bit Select DAT_32_16_N: Selects the host data bus width to be ‘16’ when low ‘0’ and ‘32’ when high ‘1’. This pin is ignored in SPI mode. SPI Mode H_CPU_SPI_N: ‘0’ – SPI mode, CPU bus is disabled, ‘1’ – Regular CPU bus MISCELLANEOUS PINS System Reset RST_SYS_N: System reset, active low. JTAG Test Mode Select JTMS: This pin is sampled on the rising edge of JTCLK and is used to place the test access port into the various defined IEEE 1149.1 states. This pin has a 10kΩ pullup resistor. JTAG Test Clock JTCLK: This signal is used to shift data into JTDI on the rising edge and out of JTDO on the falling edge. JTAG Test Data In JTDI: Test instructions and data are clocked into this pin on the rising edge of JTCLK. This pin has a 10kΩ pullup resistor. JTAG Test Data Out JTDO: Test instructions and data are clocked out of this pin on the falling edge of JTCLK. If not used, this pin should be left unconnected. 46 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION JTAG Test Reset JTRST: JTRST is used to asynchronously reset the test access port controller. After power-up, JTRST must be toggled from low to high. This action sets the device into the JTAG DEVICE ID mode. Pulling JTRST low restores normal device operation. JTRST is pulled HIGH internally via a 10kΩ resistor operation. If boundary scan is not used, this pin should be held low. Resistor Reference RESREF: Requires a 10kΩ precision resistor (1% or better) to ground. This is used to calibrate the termination resistors internal to the part and the transmit impedance. TEST PINS Scan Enable SCEN: Used during factory test. This pin should be a “No Connect.” Scan Test Mode STMD: Used during factory test. This pin should be a “No Connect.” High-Impedance Test Enable (Active Low) HIZ_N: This signal is used to enable testing. When this signal is low while JTRST is low, all the digital output and bidirectional pins are placed in the highimpedance state. For normal operation this signal is high. This is an asynchronous input. JTRST Ipu RESREF I SCEN Ipd STMD Ipd HIZ_N I MBIST_EN I Used during factory test. Tie to DVSS. MBIST_DONE O Used during factory test. This pin should be a “No Connect.” MBIST_FAIL O Used during factory test. This pin should be a “No Connect.” TEST_CLK O TST_CLD I TST_TA O TST_TB O TST_TC O TST_RA O TST_RB O TST_RC O Test Clock TEST_CLK: Used during factory test. This pin should be a “No Connect.” Test CLAD TST_CLD: Used during factory test. Tie to DVSS. Test Transmit Probe A TST_TA: Used during factory test. This pin should be a “No Connect.” Test Transmit Probe B TST_TB: Used during factory test. This pin should be a “No Connect.” Test Transmit Probe C TST_TC: Used during factory test. This pin should be a “No Connect.” Test Receiver Probe A TST_RA: Used during factory test. This pin should be a “No Connect.” Test Receiver Probe A TST_RA: Used during factory test. This pin should be a “No Connect.” Test Receiver Probe A TST_RA: Used during factory test. This pin should be a “No Connect.” 47 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 NAME TYPE FUNCTION POWER PINS DVSS DVDDC DVDDIO DVSSLIU DVDDLIU ATVDD1 ATVDD2 ATVDD3 ATVDD4 ATVDD5 ATVDD6 ATVDD7 ATVDD8 ATVSS1 ATVSS2 ATVSS3 ATVSS4 ATVSS5 ATVSS6 ATVSS7 ATVSS8 ARVDD1 ARVDD2 ARVDD3 ARVDD4 ARVDD5 ARVDD6 ARVDD7 ARVDD8 ARVSS1 ARVSS2 ARVSS3 ARVSS4 ARVSS5 ARVSS6 ARVSS7 ARVSS8 ACVDD2 ACVDD1 ACVSS2 ACVSS1 — — — — — Digital Ground for Framers and TDM-over-Packet (31 pins) 1.8V Core Supply Voltage for Framers and TDM-over-Packet (17 pins) 3.3V Supply Voltage for IO (16 pins) Digital Ground for LIUs (2 pins) 3.3V Digital Supply for LIUs (2 pins) — 3.3V Power Supply for the Transmitter. All ATVDD pins need to be 3.3V. — Analog Ground for Transmitters - 3.3V Analog Receive Power Supply — Analog Receive Ground — — — — 1.8V Analog CLAD Power Supply 2 Used for CLK_HIGH Adaption 1.8V Analog CLAD Power Supply 1 Analog CLAD GND2 Used for CLK_HIGH Adaption Analog CLAD GND1 Note: Pins with names ending in an asterisk (*) or “_N” are active low. 48 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 11. JTAG Information For the latest JTAG model search under www.maxim-ic.com/tools/bsdl/. 11.1 JTAG Description The DS34T108 supports the standard instruction codes SAMPLE/PRELOAD, BYPASS, and EXTEST. Optional public instructions included are HIGHZ, CLAMP and IDCODE. See Figure 11-1 for a JTAG block diagram. The DS34T108 contains the following items that meet the requirements set by the IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture: Test Access Port (TAP) TAP Controller Instruction Register Bypass Register Boundary Scan Register Device Identification Register The Test Access Port has the necessary interface pins, namely JTCLK, JTRST, JTDI, JTDO, and JTMS. Details on these pins can be found in Section 10.2. Details on the Boundary Scan Architecture and the Test Access Port can be found in IEEE 1149.1-1990, IEEE 1149.1a-1993, and IEEE 1149.1b-1994. Figure 11-1. JTAG Block Diagram BOUNDRY SCAN REGISTER IDENTIFICATION REGISTER MUX BYPASS REGISTER INSTRUCTION REGISTER TEST ACCESS PORT CONTROLLER Vdd 10K Vdd 10K JTDI SELECT OUTPUT ENABLE Vdd 10K JTMS JTCLK JTRST JTDO 49 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 11.2 JTAG TAP Controller State Machine Description This section covers the details on the operation of the Test Access Port (TAP) Controller State Machine. See Figure 11-2 for details on each of the states described below. The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK. Figure 11-2. JTAG TAP Controller State Machine Test-Logic-Reset 1 0 Run-Test/Idle 1 Select DR-Scan 1 0 1 Select IR-Scan 0 0 1 1 Capture-DR Capture-IR 0 0 Shift-DR Shift-IR 0 0 1 1 1 Exit1- DR 1 Exit1-IR 0 0 Pause-DR Pause-IR 0 0 1 0 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 1 0 Update-IR 1 0 Test-Logic-Reset. Upon device power-up, the TAP controller starts in the Test-Logic-Reset state. The Instruction Register contains the IDCODE instruction. All system logic on the device operates normally. Run-Test-Idle. Run-Test-Idle is used between scan operations or during specific tests. The Instruction Register and Test Register remain idle. Select-DR-Scan. All test registers retain their previous state. With JTMS low, a rising edge of JTCLK moves the controller into the Capture-DR state and initiates a scan sequence. JTMS high moves the controller to the SelectIR-SCAN state. 50 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 Capture-DR. Data can be parallel loaded into the test data registers selected by the current instruction. If the instruction does not call for a parallel load or the selected register does not allow parallel loads, the test register remains at its current value. On the rising edge of JTCLK, the controller goes to the Shift-DR state if JTMS is low or it to the Exit1-DR state if JTMS is high. Shift-DR. The test data register selected by the current instruction is connected between JTDI and JTDO and shifts data one stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current instruction is not placed in the serial path, it maintains its previous state. Exit1-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state, which terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Pause-DR state. Pause-DR. Shifting of the test registers is halted while in this state. All test registers selected by the current instruction retain their previous state. The controller remains in this state while JTMS is low. A rising edge on JTCLK with JTMS high puts the controller in the Exit2-DR state. Exit2-DR. While in this state, a rising edge on JTCLK with JTMS high puts the controller in the Update-DR state and terminates the scanning process. A rising edge on JTCLK with JTMS low puts the controller in the Shift-DR state. Update-DR. A falling edge on JTCLK while in the Update-DR state latches the data from the shift register path of the Test registers into the data output latches. This prevents changes at the parallel output due to changes in the shift register. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller enters the Select-DR-Scan state. Select-IR-Scan. All Test registers retain their previous state. The Instruction register remains unchanged during this state. With JTMS low, a rising edge on JTCLK moves the controller into the Capture-IR state and initiates a scan sequence for the Instruction register. JTMS high during a rising edge on JTCLK puts the controller back into the Test-Logic-Reset state. Capture-IR. The Capture-IR state is used to load the shift register in the Instruction register with a fixed value. This value is loaded on the rising edge of JTCLK. If JTMS is high on the rising edge of JTCLK, the controller enters the Exit1-IR state. If JTMS is low on the rising edge of JTCLK, the controller enters the Shift-IR state. Shift-IR. In this state, the shift register in the Instruction register is connected between JTDI and JTDO and shifts data one stage for every rising edge of JTCLK towards the serial output. The parallel register as well as all test registers remain at their previous states. A rising edge on JTCLK with JTMS high moves the controller to the Exit1IR state. A rising edge on JTCLK with JTMS low keeps the controller in the Shift-IR state while moving data one stage through the Instruction shift register. Exit1-IR. A rising edge on JTCLK with JTMS low puts the controller in the Pause-IR state. If JTMS is high on the rising edge of JTCLK, the controller enters the Update-IR state and terminates the scanning process. Pause-IR. Shifting of the Instruction register is halted temporarily. With JTMS high, a rising edge on JTCLK puts the controller in the Exit2-IR state. The controller remains in the Pause-IR state if JTMS is low during a rising edge on JTCLK. Exit2-IR. A rising edge on JTCLK with JTMS high put the controller in the Update-IR state. The controller loops back to the Shift-IR state if JTMS is low during a rising edge of JTCLK in this state. Update-IR. The instruction shifted into the Instruction shift register is latched into the parallel output on the falling edge of JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising edge on JTCLK with JTMS low puts the controller in the Run-Test-Idle state. With JTMS high, the controller enters the Select-DR-Scan state. 51 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 11.3 JTAG Instruction Register and Instructions The instruction register contains a shift register as well as a latched parallel output, and is 3 bits in length. When the TAP controller enters the Shift-IR state, the instruction shift register is connected between JTDI and JTDO. While in the Shift-IR state, a rising edge on JTCLK with JTMS low shifts data one stage towards the serial output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS high moves the controller to the Update-IR state. The falling edge of that same JTCLK latches the data in the instruction shift register to the instruction parallel output. Instructions supported by the DS34T108 and their respective operational binary codes are shown in Table 11-1. Table 11-1. JTAG Instruction Codes INSTRUCTION SAMPLE/PRELOAD BYPASS EXTEST CLAMP HIGHZ IDCODE SELECTED REGISTER Boundary Scan Bypass Boundary Scan Bypass Bypass Device Identification INSTRUCTION CODES 010 111 000 011 100 001 Table 11-2. JTAG ID Code DEVICE DS34T108 DS34T104 DS34T102 DS34T101 DS34S108 DS34S104 DS34S102 DS34S101 Rev[31:28] 0 0 0 0 0 0 0 0 ID CODE (hex) Device ID[27:12] 0093 0092 0091 0090 009B 009A 0099 0098 Manu[11:0] 143 143 143 143 143 143 143 143 11.3.1 SAMPLE/PRELOAD SAMPLE/PRELOAD is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal operation of the device by using the Capture-DR state. SAMPLE/PRELOAD also allows the DS34T108 to shift data into the boundary scan register via JTDI using the Shift-DR state. 11.3.2 EXTEST EXTEST allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output pins are driven. The boundary scan register is connected between JTDI and JTDO. The Capture-DR samples all digital inputs into the boundary scan register. 11.3.3 BYPASS When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the one-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device’s normal operation. 52 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 11.3.4 IDCODE When the IDCODE instruction is latched into the parallel Instruction register, the Identification Test register is selected. The device identification code is loaded into the Identification register on the rising edge of JTCLK following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The device ID code always has a one in the LSB position. The device ID codes are listed in Table 11-2. 11.3.5 HIGHZ All digital outputs are placed into a high-impedance state. The bypass register is connected between JTDI and JTDO. 11.3.6 CLAMP All digital outputs pins output data from the boundary scan parallel output while connecting the bypass register between JTDI and JTDO. The outputs do not change during the CLAMP instruction. 11.4 JTAG Test Registers IEEE 1149.1 requires a minimum of two test registers: the bypass register and the boundary scan register. An optional test register has been included in the device design. This test register is the identification register and is used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller. 11.4.1 Bypass Register The bypass register is a single one-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ instructions, providing a short path between JTDI and JTDO. 11.4.2 Identification Register The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state. 11.4.3 Boundary Scan Register The boundary scan register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells, and is 32 bits in length. The BSDL file found at www.maxim-ic.com/tools/bsdl shows the entire cell bit locations and definitions. 53 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 12. DC Electrical Characteristics ABSOLUTE MAXIMUM RATINGS Voltage Range on Any Input, Bidirectional or Open Drain Output Lead with Respect to DVSS………………………………………………………………………..-0.5V to +5.5V Supply Voltage Range (VDDIO, DVDDLIU) with Respect to DVSS and DVSSLIU……………………...-0.5V to +3.6V Supply Voltage Range (DVDDC) with Respect to DVSS…………………………………………………...-0.5V to +2.0V Ambient Operating Temperature Range……………………………………………………………………..-40°C to +85°C Junction Operating Temperature Range……………………………………………………………………-40°C to +125°C Storage Temperature Range………………………………………………………………………………...-55°C to +125°C Soldering Temperature………………………………………………………….See IPC/JEDEC J-STD-020 specification. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods can affect reliability. Ambient Operating Temperature Range is assuming the device is mounted on a JEDEC standard test board in a convection cooled JEDEC test enclosure. Note: The typical values listed are not production tested. Table 12-1. Recommended DC Operating Conditions (Tj = -40°C to +85°C.) PARAMETER Output Logic 1 Output Logic 0 Supply ±5% Supply ±5% SYMBOL VIH VIL DVDDIO, DVDDLIU, ARVDDn, ATVDDn DVDDC CONDITIONS MIN 2.4 -0.3 TYP MAX 3.465 +0.8 UNITS V V 3.135 3.300 3.465 V 1.71 1.8 1.89 V MIN TYP 400 200 120 75 MAX 550 300 175 115 UNITS 300 350 mA Table 12-2. DC Electrical Characteristics (Tj = -40°C to +85°C.) PARAMETER 3.3V Supply Current (DVDDIO, DVDDLIU = 3.465V; ARVDDn, ATVDDn = 3.465V) (Note 1) 1.8V Supply Current (DVDDC = 1.89V) Lead Capacitance Input Leakage Input Leakage Output Leakage (when High Impedance) Output Voltage (IOH = -4.0mA) Output Voltage (IOL = +4.0mA) Output Voltage (IOH = -8.0mA) Output Voltage (IOL = -8.0mA) Output Voltage (IOL = +12.0mA) Output Voltage (IOH = -12.0mA) Input Voltage Logic 0 Input Voltage Logic 1 Note 1: SYMBOL IDDIO IDDC CONDITIONS DS34T108 DS34T104 DS34T102 DS34T101 (Note 1) CIO IIL IILP -10 -100 +10 -10 pF μA μA ILO -10 +10 μA VOH VOL VOH VOL VOL VOH VIL VIH 7 mA 4mA output 4mA output 8mA output 8mA output 12mA output 12mA output 2.4 V V V V V V V V 0.4 2.4 0.4 0.4 2.4 0.8 2.0 All outputs loaded with rated capacitance; all inputs between DVDDIO and DVSS; inputs with pull-ups connected to DVDDIO. 54 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 13. AC Timing Characteristics Refer to the full data sheet for this information. 55 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 14. Pin Assignments 14.1 Board Design for the DS34T108 Family of Products All devices in the DS34T108 family require the same footprint on the board. It is recommended that users design their board in such a way that it supports the stuffing of higher port-count devices into a lower port-count socket. If lower port-count designs are to be potentially stuffed with higher port-count devices, consideration must be taken during board design to bias the unused inputs, input/outputs, and outputs appropriately. Generally, unused inputs are tied directly to the ground plane, unused outputs are not connected, and unused input/outputs are tied to ground through a 10kΩ resistor. Unused inputs with internal pullups or pulldowns are not connected. Table 14-1 designates how each ball on the package should be connected to implement a common board design. Shading indicates balls for the unused inputs, input/outputs, and outputs of higher port-count devices. When a user does stuff a socket with a higher port-count device, he/she needs a slightly modified BSDL file, available from the factory upon request. The user may decide to not implement a common board design. In that event, the balls for the unused inputs, input/outputs, and outputs need not be connected, and the stuffing of higher port-count devices into a lower portcount socket is not recommended. Table 14-1. Common Board Design Connections BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET M2 ACVDD1 ACVDD1 ACVDD1 ACVDD1 K2 ACVDD2 ACVDD2 ACVDD2 ACVDD2 M1 ACVSS1 ACVSS1 ACVSS1 ACVSS1 K1 ACVSS2 ACVSS2 ACVSS2 ACVSS2 B14 ARVDD1 ARVDD1 ARVDD1 ARVDD1 B10 ARVDD2 ARVDD2 ARVDD2 ARVDD2 B2 ARVDD3 ARVDD3 ARVDD3 ARVDD3 F2 ARVDD4 ARVDD4 ARVDD4 ARVDD4 U2 ARVDD5 ARVDD5 ARVDD5 ARVDD5 AA2 ARVDD6 ARVDD6 ARVDD6 ARVDD6 AA11 ARVDD7 ARVDD7 ARVDD7 ARVDD7 AA13 ARVDD8 ARVDD8 ARVDD8 ARVDD8 A14 ARVSS1 ARVSS1 ARVSS1 ARVSS1 A10 ARVSS2 ARVSS2 ARVSS2 ARVSS2 B1 ARVSS3 ARVSS3 ARVSS3 ARVSS3 F1 ARVSS4 ARVSS4 ARVSS4 ARVSS4 U1 ARVSS5 ARVSS5 ARVSS5 ARVSS5 AA1 ARVSS6 ARVSS6 ARVSS6 ARVSS6 AB11 ARVSS7 ARVSS7 ARVSS7 ARVSS7 AB13 ARVSS8 ARVSS8 ARVSS8 ARVSS8 B16 ATVDD1 ATVDD1 ATVDD1 ATVDD1 B8 ATVDD2 ATVDD2 ATVDD2 ATVDD2 D1 ATVDD3 ATVDD3 ATVDD3 ATVDD3 H2 ATVDD4 ATVDD4 ATVDD4 ATVDD4 R2 ATVDD5 ATVDD5 ATVDD5 ATVDD5 W1 ATVDD6 ATVDD6 ATVDD6 ATVDD6 56 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET AA9 ATVDD7 ATVDD7 ATVDD7 ATVDD7 AA15 ATVDD8 ATVDD8 ATVDD8 ATVDD8 A16 ATVSS1 ATVSS1 ATVSS1 ATVSS1 A8 ATVSS2 ATVSS2 ATVSS2 ATVSS2 D2 ATVSS3 ATVSS3 ATVSS3 ATVSS3 H1 ATVSS4 ATVSS4 ATVSS4 ATVSS4 R1 ATVSS5 ATVSS5 ATVSS5 ATVSS5 W2 ATVSS6 ATVSS6 ATVSS6 ATVSS6 AB9 ATVSS7 ATVSS7 ATVSS7 ATVSS7 AB15 ATVSS8 ATVSS8 ATVSS8 ATVSS8 P1 CLK_CMN CLK_CMN CLK_CMN CLK_CMN L1 CLK_HIGH CLK_HIGH CLK_HIGH CLK_HIGH CLK_MII_RX V16 CLK_MII_RX CLK_MII_RX CLK_MII_RX AA18 CLK_MII_TX CLK_MII_TX CLK_MII_TX CLK_MII_TX Y19 CLK_SSMII_TX CLK_SSMII_TX CLK_SSMII_TX CLK_SSMII_TX J1 CLK_SYS/SCCLK CLK_SYS/SCCLK CLK_SYS/SCCLK CLK_SYS/SCCLK J2 CLK_SYS_S CLK_SYS_S CLK_SYS_S CLK_SYS_S L21 DAT_32_16_N DAT_32_16_N DAT_32_16_N DAT_32_16_N L2 DVDDC DVDDC DVDDC DVDDC T5 DVDDC DVDDC DVDDC DVDDC V5 DVDDC DVDDC DVDDC DVDDC Y20 DVDDC DVDDC DVDDC DVDDC Y10 DVDDC DVDDC DVDDC DVDDC T18 DVDDC DVDDC DVDDC DVDDC G18 DVDDC DVDDC DVDDC DVDDC V18 DVDDC DVDDC DVDDC DVDDC V20 DVDDC DVDDC DVDDC DVDDC A12 DVDDC DVDDC DVDDC DVDDC E18 DVDDC DVDDC DVDDC DVDDC E20 DVDDC DVDDC DVDDC DVDDC C20 DVDDC DVDDC DVDDC DVDDC B11 DVDDC DVDDC DVDDC DVDDC G5 DVDDC DVDDC DVDDC DVDDC E5 DVDDC DVDDC DVDDC DVDDC C4 DVDDC DVDDC DVDDC DVDDC M9 DVDDIO DVDDIO DVDDIO DVDDIO N9 DVDDIO DVDDIO DVDDIO DVDDIO P10 DVDDIO DVDDIO DVDDIO DVDDIO P13 DVDDIO DVDDIO DVDDIO DVDDIO N14 DVDDIO DVDDIO DVDDIO DVDDIO P12 DVDDIO DVDDIO DVDDIO DVDDIO M14 DVDDIO DVDDIO DVDDIO DVDDIO L14 DVDDIO DVDDIO DVDDIO DVDDIO P11 DVDDIO DVDDIO DVDDIO DVDDIO K14 DVDDIO DVDDIO DVDDIO DVDDIO J12 DVDDIO DVDDIO DVDDIO DVDDIO J13 DVDDIO DVDDIO DVDDIO DVDDIO 57 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET J11 DVDDIO DVDDIO DVDDIO DVDDIO J10 DVDDIO DVDDIO DVDDIO DVDDIO L9 DVDDIO DVDDIO DVDDIO DVDDIO K9 DVDDIO DVDDIO DVDDIO DVDDIO C3 DVDDLIU DVDDLIU DVDDLIU DVDDLIU V3 DVDDLIU DVDDLIU DVDDLIU DVDDLIU M10 DVSS DVSS DVSS DVSS L13 DVSS DVSS DVSS DVSS H15 DVSS DVSS DVSS DVSS U17 DVSS DVSS DVSS DVSS L11 DVSS DVSS DVSS DVSS M11 DVSS DVSS DVSS DVSS K12 DVSS DVSS DVSS DVSS K11 DVSS DVSS DVSS DVSS K10 DVSS DVSS DVSS DVSS M12 DVSS DVSS DVSS DVSS N11 DVSS DVSS DVSS DVSS D4 DVSS DVSS DVSS DVSS H8 DVSS DVSS DVSS DVSS K13 DVSS DVSS DVSS DVSS M13 DVSS DVSS DVSS DVSS B12 DVSS DVSS DVSS DVSS N2 DVSS DVSS DVSS DVSS F6 DVSS DVSS DVSS DVSS L10 DVSS DVSS DVSS DVSS U6 DVSS DVSS DVSS DVSS W4 DVSS DVSS DVSS DVSS R8 DVSS DVSS DVSS DVSS N12 DVSS DVSS DVSS DVSS F17 DVSS DVSS DVSS DVSS L12 DVSS DVSS DVSS DVSS N10 DVSS DVSS DVSS DVSS R15 DVSS DVSS DVSS DVSS W19 DVSS DVSS DVSS DVSS N13 DVSS DVSS DVSS DVSS Y12 DVSS DVSS DVSS DVSS D19 DVSS DVSS DVSS DVSS Y3 DVSSLIU DVSSLIU DVSSLIU DVSSLIU E3 DVSSLIU DVSSLIU DVSSLIU DVSSLIU L18 H_AD[1] H_AD[1] H_AD[1] H_AD[1] N22 H_AD[10] H_AD[10] H_AD[10] H_AD[10] L15 H_AD[11] H_AD[11] H_AD[11] H_AD[11] P21 H_AD[12] H_AD[12] H_AD[12] H_AD[12] N16 H_AD[13] H_AD[13] H_AD[13] H_AD[13] N20 H_AD[14] H_AD[14] H_AD[14] H_AD[14] P22 H_AD[15] H_AD[15] H_AD[15] H_AD[15] N19 H_AD[16] H_AD[16] H_AD[16] H_AD[16] 58 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET R21 H_AD[17] H_AD[17] H_AD[17] H_AD[17] M19 H_AD[18] H_AD[18] H_AD[18] H_AD[18] N21 H_AD[19] H_AD[19] H_AD[19] H_AD[19] M21 H_AD[2] H_AD[2] H_AD[2] H_AD[2] M17 H_AD[20] H_AD[20] H_AD[20] H_AD[20] P20 H_AD[21] H_AD[21] H_AD[21] H_AD[21] R22 H_AD[22] H_AD[22] H_AD[22] H_AD[22] N17 H_AD[23] H_AD[23] H_AD[23] H_AD[23] T21 H_AD[24] H_AD[24] H_AD[24] H_AD[24] K16 H_AD[3] H_AD[3] H_AD[3] H_AD[3] M22 H_AD[4] H_AD[4] H_AD[4] H_AD[4] T20 H_AD[5] H_AD[5] H_AD[5] H_AD[5] M18 H_AD[6] H_AD[6] H_AD[6] H_AD[6] M16 H_AD[7] H_AD[7] H_AD[7] H_AD[7] M20 H_AD[8] H_AD[8] H_AD[8] H_AD[8] L16 H_AD[9] H_AD[9] H_AD[9] H_AD[9] K19 H_CPU_SPI_N H_CPU_SPI_N H_CPU_SPI_N H_CPU_SPI_N L17 H_CS_N H_CS_N H_CS_N H_CS_N T22 H_D[0]/SPI_MISO H_D[0]/SPI_MISO H_D[0]/SPI_MISO H_D[0]/SPI_MISO U21 H_D[1] H_D[1] H_D[1] H_D[1] V22 H_D[10] H_D[10] H_D[10] H_D[10] P18 H_D[11] H_D[11] H_D[11] H_D[11] W22 H_D[12] H_D[12] H_D[12] H_D[12] Y21 H_D[13] H_D[13] H_D[13] H_D[13] P19 H_D[14] H_D[14] H_D[14] H_D[14] Y22 H_D[15] H_D[15] H_D[15] H_D[15] AA21 H_D[16] H_D[16] H_D[16] H_D[16] AA22 H_D[17] H_D[17] H_D[17] H_D[17] AB21 H_D[18] H_D[18] H_D[18] H_D[18] U20 H_D[19] H_D[19] H_D[19] H_D[19] N18 H_D[2] H_D[2] H_D[2] H_D[2] R19 H_D[20] H_D[20] H_D[20] H_D[20] AB22 H_D[21] H_D[21] H_D[21] H_D[21] P17 H_D[22] H_D[22] H_D[22] H_D[22] V21 H_D[23] H_D[23] H_D[23] H_D[23] R17 H_D[24] H_D[24] H_D[24] H_D[24] V19 H_D[25] H_D[25] H_D[25] H_D[25] T19 H_D[26] H_D[26] H_D[26] H_D[26] W21 H_D[27] H_D[27] H_D[27] H_D[27] U16 H_D[28] H_D[28] H_D[28] H_D[28] R18 H_D[29] H_D[29] H_D[29] H_D[29] R20 H_D[3] H_D[3] H_D[3] H_D[3] W20 H_D[30] H_D[30] H_D[30] H_D[30] U19 H_D[31] H_D[31] H_D[31] H_D[31] T17 H_D[4] H_D[4] H_D[4] H_D[4] P16 H_D[5] H_D[5] H_D[5] H_D[5] U18 H_D[6] H_D[6] H_D[6] H_D[6] 59 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET R16 H_D[7] H_D[7] H_D[7] H_D[7] U22 H_D[8] H_D[8] H_D[8] H_D[8] T16 H_D[9] H_D[9] H_D[9] H_D[9] J17 H_INT[0] H_INT[0] H_INT[0] H_INT[0] L22 H_INT[1] H_INT[1] H_INT[1] H_INT[1] K17 H_R_W_N/SPI_CP H_R_W_N/SPI_CP H_R_W_N/SPI_CP H_R_W_N/SPI_CP K18 H_READY_N H_READY_N H_READY_N H_READY_N L19 H_WR_BE0_N/SPI_CLK H_WR_BE0_N/SPI_CLK H_WR_BE0_N/SPI_CLK H_WR_BE0_N/SPI_CLK H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI H_WR_BE1_N/SPI_MOSI J16 J18 H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N H_WR_BE2_N/SPI_SEL_N L20 H_WR_BE3_N/SPI_CI H_WR_BE3_N/SPI_CI H_WR_BE3_N/SPI_CI H_WR_BE3_N/SPI_CI T3 HiZ_N HiZ_N HiZ_N HiZ_N JTCLK L3 JTCLK JTCLK JTCLK M3 JTDI JTDI JTDI JTDI N3 JTDO JTDO JTDO JTDO K3 JTMS JTMS JTMS JTMS P3 JTRST_N JTRST_N JTRST_N JTRST_N M15 MBIST_DONE MBIST_DONE MBIST_DONE MBIST_DONE P15 MBIST_EN MBIST_EN MBIST_EN MBIST_EN N15 MBIST_FAIL MBIST_FAIL MBIST_FAIL MBIST_FAIL N1 MCLK MCLK MCLK MCLK AB17 MDC MDC MDC MDC AA20 MDIO MDIO MDIO MDIO AA17 MII_COL MII_COL MII_COL MII_COL Y18 MII_CRS MII_CRS MII_CRS MII_CRS Y17 MII_RX_DV MII_RX_DV MII_RX_DV MII_RX_DV V17 MII_RX_ERR MII_RX_ERR MII_RX_ERR MII_RX_ERR AA16 MII_RXD[0] MII_RXD[0] MII_RXD[0] MII_RXD[0] W16 MII_RXD[1] MII_RXD[1] MII_RXD[1] MII_RXD[1] AB16 MII_RXD[2] MII_RXD[2] MII_RXD[2] MII_RXD[2] Y16 MII_RXD[3] MII_RXD[3] MII_RXD[3] MII_RXD[3] W17 MII_TX_EN MII_TX_EN MII_TX_EN MII_TX_EN AB20 MII_TX_ERR MII_TX_ERR MII_TX_ERR MII_TX_ERR AB18 MII_TXD[0] MII_TXD[0] MII_TXD[0] MII_TXD[0] W18 MII_TXD[1] MII_TXD[1] MII_TXD[1] MII_TXD[1] AA19 MII_TXD[2] MII_TXD[2] MII_TXD[2] MII_TXD[2] AB19 MII_TXD[3] MII_TXD[3] MII_TXD[3] MII_TXD[3] C10 N.C. N.C. N.C. N.C. L4 RCLKF1/RCLK1 RCLKF1/RCLK1 RCLKF1/RCLK1 RCLKF1/RCLK1 C9 RCLKF2/RCLK2 RCLKF2/RCLK2 RCLKF2/RCLK2 10K to GND K5 RCLKF3/RCLK3 RCLKF3/RCLK3 10K to GND 10K to GND D7 RCLKF4/RCLK4 RCLKF4/RCLK4 10K to GND 10K to GND P6 RCLKF5/RCLK5 10K to GND 10K to GND 10K to GND Y6 RCLKF6/RCLK6 10K to GND 10K to GND 10K to GND P5 RCLKF7/RCLK7 10K to GND 10K to GND 10K to GND AB3 RCLKF8/RCLK8 10K to GND 10K to GND 10K to GND 60 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET A6 RDATF1 RDATF1 RDATF1 RDATF1 L7 RDATF2 RDATF2 RDATF2 GND C5 RDATF3 RDATF3 GND GND F4 RDATF4 RDATF4 GND GND P4 RDATF5 GND GND GND Y4 RDATF6 GND GND GND AA5 RDATF7 GND GND GND AA3 RDATF8 GND GND GND A11 RESREF RESREF RESREF RESREF K8 RF/RMSYNC1 RF/RMSYNC1 RF/RMSYNC1 RF/RMSYNC1 E7 RF/RMSYNC2 RF/RMSYNC2 RF/RMSYNC2 N.C. G4 RF/RMSYNC3 RF/RMSYNC3 N.C. N.C. E4 RF/RMSYNC4 RF/RMSYNC4 N.C. N.C. M6 RF/RMSYNC5 N.C. N.C. N.C. W8 RF/RMSYNC6 N.C. N.C. N.C. T4 RF/RMSYNC7 N.C. N.C. N.C. AB5 RF/RMSYNC8 N.C. N.C. N.C. M8 RLOF/RLOS1 RLOF/RLOS1 RLOF/RLOS1 A4 RLOF/RLOS2 RLOF/RLOS2 RLOF/RLOS1 N.C. H4 RLOF/RLOS3 RLOF/RLOS3 RLOF/RLOS2 N.C. D5 RLOF/RLOS4 N.C. N.C. U4 RLOF/RLOS5 RLOF/RLOS4 N.C. N.C. N.C. U3 RLOF/RLOS6 N.C. N.C. N.C. N7 RLOF/RLOS7 N.C. N.C. N.C. V7 RLOF/RLOS8 N.C. N.C. N.C. B13 RRING1 RRING1 RRING1 B9 RRING2 RRING2 A2 RRING3 RRING3 RRING2 N.C. RRING1 N.C. N.C. N.C. N.C. N.C. E2 RRING4 V2 RRING5 RRING4 N.C. N.C. N.C. AB2 RRING6 N.C. N.C. N.C. AA10 RRING7 N.C. N.C. N.C. AA12 RRING8 N.C. N.C. N.C. J5 RSER1 RSER1 RSER1 RSER2 N.C. RSER1 N.C. D6 RSER2 RSER2 H7 RSER3 RSER3 D3 RSER4 N.C. RSER5 RSER4 N.C. N.C. N6 N.C. N.C. W6 RSER6 N.C. N.C. N.C. T8 RSER7 N.C. N.C. N.C. N.C. AB4 RSER8 N.C. N.C. N.C. P2 RST_SYS_N RST_SYS_N RST_SYS_N RST_SYS_N A5 RSYNC1 RSYNC1 RSYNC1 RSYNC1 L6 RSYNC2 RSYNC2 RSYNC2 10K to GND A3 RSYNC3 RSYNC3 10K to GND 10K to GND 61 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET H6 RSYNC4 RSYNC4 10K to GND 10K to GND W3 RSYNC5 10K to GND 10K to GND 10K to GND R4 RSYNC6 10K to GND 10K to GND 10K to GND AA6 RSYNC7 10K to GND 10K to GND 10K to GND M5 RSYNC8 10K to GND 10K to GND 10K to GND C6 RSYSCLK1 RSYSCLK1 RSYSCLK1 RSYSCLK1 K7 RSYSCLK2 RSYSCLK2 RSYSCLK2 GND F8 RSYSCLK3 RSYSCLK3 GND GND H5 RSYSCLK4 RSYSCLK4 GND GND W5 RSYSCLK5 GND GND GND U5 RSYSCLK6 GND GND GND GND Y8 RSYSCLK7 GND GND N8 RSYSCLK8 GND GND GND A13 RTIP1 RTIP1 RTIP1 RTIP1 A9 RTIP2 RTIP2 A1 RTIP3 RTIP3 RTIP2 N.C. N.C. N.C. E1 RTIP4 N.C. N.C. N.C. N.C. V1 RTIP5 RTIP4 N.C. AB1 RTIP6 N.C. N.C. N.C. AB10 RTIP7 N.C. N.C. N.C. AB12 RTIP8 N.C. N.C. N.C. RXTSEL R3 RXTSEL RXTSEL RXTSEL J15 SCEN SCEN SCEN SCEN A17 SD_A[0] SD_A[0] SD_A[0] SD_A[0] F18 SD_A[1] SD_A[1] SD_A[1] SD_A[1] B19 SD_A[10] SD_A[10] SD_A[10] SD_A[10] D17 SD_A[11] SD_A[11] SD_A[11] SD_A[11] F16 SD_A[2] SD_A[2] SD_A[2] SD_A[2] B18 SD_A[3] SD_A[3] SD_A[3] SD_A[3] E17 SD_A[4] SD_A[4] SD_A[4] SD_A[4] A19 SD_A[5] SD_A[5] SD_A[5] SD_A[5] H17 SD_A[6] SD_A[6] SD_A[6] SD_A[6] F19 SD_A[7] SD_A[7] SD_A[7] SD_A[7] SD_A[8] F20 SD_A[8] SD_A[8] SD_A[8] D18 SD_A[9] SD_A[9] SD_A[9] SD_A[9] G17 SD_BA[0] SD_BA[0] SD_BA[0] SD_BA[0] C19 SD_BA[1] SD_BA[1] SD_BA[1] SD_BA[1] E16 SD_CAS_N SD_CAS_N SD_CAS_N SD_CAS_N H16 SD_CLK SD_CLK SD_CLK SD_CLK B17 SD_CS_N SD_CS_N SD_CS_N SD_CS_N C18 SD_D[0] SD_D[0] SD_D[0] SD_D[0] F21 SD_D[1] SD_D[1] SD_D[1] SD_D[1] B22 SD_D[10] SD_D[10] SD_D[10] SD_D[10] H20 SD_D[11] SD_D[11] SD_D[11] SD_D[11] C21 SD_D[12] SD_D[12] SD_D[12] SD_D[12] H18 SD_D[13] SD_D[13] SD_D[13] SD_D[13] 62 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET DS34T102 SOCKET DS34T101 SOCKET C22 SD_D[14] SD_D[14] SD_D[14] SD_D[14] D21 SD_D[15] SD_D[15] SD_D[15] SD_D[15] G20 SD_D[16] SD_D[16] SD_D[16] SD_D[16] D22 SD_D[17] SD_D[17] SD_D[17] SD_D[17] J20 SD_D[18] SD_D[18] SD_D[18] SD_D[18] G21 SD_D[19] SD_D[19] SD_D[19] SD_D[19] G19 SD_D[2] SD_D[2] SD_D[2] SD_D[2] J21 SD_D[20] SD_D[20] SD_D[20] SD_D[20] E22 SD_D[21] SD_D[21] SD_D[21] SD_D[21] J19 SD_D[22] SD_D[22] SD_D[22] SD_D[22] H21 SD_D[23] SD_D[23] SD_D[23] SD_D[23] F22 SD_D[24] SD_D[24] SD_D[24] SD_D[24] K21 SD_D[25] SD_D[25] SD_D[25] SD_D[25] G22 SD_D[26] SD_D[26] SD_D[26] SD_D[26] K20 SD_D[27] SD_D[27] SD_D[27] SD_D[27] H22 SD_D[28] SD_D[28] SD_D[28] SD_D[28] G16 SD_D[29] SD_D[29] SD_D[29] SD_D[29] A21 SD_D[3] SD_D[3] SD_D[3] SD_D[3] K22 SD_D[30] SD_D[30] SD_D[30] SD_D[30] J22 SD_D[31] SD_D[31] SD_D[31] SD_D[31] C16 SD_D[4] SD_D[4] SD_D[4] SD_D[4] A22 SD_D[5] SD_D[5] SD_D[5] SD_D[5] A18 SD_D[6] SD_D[6] SD_D[6] SD_D[6] B21 SD_D[7] SD_D[7] SD_D[7] SD_D[7] E21 SD_D[8] SD_D[8] SD_D[8] SD_D[8] H19 SD_D[9] SD_D[9] SD_D[9] SD_D[9] A20 SD_DQM[0] SD_DQM[0] SD_DQM[0] SD_DQM[0] E19 SD_DQM[1] SD_DQM[1] SD_DQM[1] SD_DQM[1] B20 SD_DQM[2] SD_DQM[2] SD_DQM[2] SD_DQM[2] D20 SD_DQM[3] SD_DQM[3] SD_DQM[3] SD_DQM[3] D16 SD_RAS_N SD_RAS_N SD_RAS_N SD_RAS_N C17 SD_WE_N SD_WE_N SD_WE_N SD_WE_N K15 STMD STMD STMD STMD B6 TCLKF1 TCLKF1 TCLKF1 TCLKF1 K4 TCLKF2 TCLKF2 TCLKF2 GND D8 TCLKF3 TCLKF3 GND GND J6 TCLKF4 TCLKF4 GND GND T6 TCLKF5 GND GND GND T7 TCLKF6 GND GND GND U8 TCLKF7 GND GND GND M4 TCLKF8 GND GND GND L8 TCLKO1 TCLKO1 TCLKO1 TCLKO1 B5 TCLKO2 TCLKO2 N.C. N.C. J7 TCLKO3 TCLKO3 TCLKO2 N.C. E6 TCLKO4 TCLKO4 N.C. N.C. N4 TCLKO5 N.C. N.C. N.C. 63 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET U7 TCLKO6 DS34T104 SOCKET N.C. DS34T102 SOCKET N.C. DS34T101 SOCKET N.C. P7 TCLKO7 N.C. N.C. N.C. AA7 TCLKO8 N.C. N.C. N.C. C7 TDATF1 TDATF1 TDATF1 TDATF2 N.C. TDATF1 N.C. J8 TDATF2 TDATF2 B4 TDATF3 TDATF3 K6 TDATF4 N.C. TDATF5 TDATF4 N.C. N.C. R6 N.C. N.C. N5 TDATF6 N.C. N.C. N.C. Y7 TDATF7 N.C. N.C. N.C. N.C. P8 TDATF8 N.C. N.C. N.C. E10 TDM1_ACLK TDM1_ACLK TDM1_ACLK TDM1_ACLK D12 TDM1_RCLK TDM1_RCLK TDM1_RCLK TDM1_RCLK C11 TDM1_RSIG_RTS TDM1_RSIG_RTS TDM1_RSIG_RTS TDM1_RSIG_RTS D10 TDM1_RX TDM1_RX TDM1_RX TDM1_RX D11 TDM1_RX_SYNC TDM1_RX_SYNC TDM1_RX_SYNC TDM1_RX_SYNC F12 TDM1_TCLK TDM1_TCLK TDM1_TCLK TDM1_TCLK E11 TDM1_TSIG_CTS TDM1_TSIG_CTS TDM1_TSIG_CTS TDM1_TSIG_CTS C12 TDM1_TX TDM1_TX TDM1_TX TDM1_TX F13 TDM1_TX_MF_CD TDM1_TX_MF_CD TDM1_TX_MF_CD TDM1_TX_MF_CD E13 TDM1_TX_SYNC TDM1_TX_SYNC TDM1_TX_SYNC E9 TDM2_ACLK TDM2_ACLK TDM2_ACLK TDM1_TX_SYNC N.C. E12 TDM2_RCLK TDM2_RCLK TDM2_RCLK N.C. C14 TDM2_RSIG_RTS TDM2_RSIG_RTS TDM2_RSIG_RTS N.C. D13 TDM2_RX TDM2_RX TDM2_RX N.C. C13 TDM2_RX_SYNC TDM2_RX_SYNC TDM2_RX_SYNC N.C. G10 TDM2_TCLK TDM2_TCLK TDM2_TCLK N.C. F11 TDM2_TSIG_CTS TDM2_TSIG_CTS TDM2_TSIG_CTS N.C. G11 TDM2_TX TDM2_TX TDM2_TX N.C. F10 TDM2_TX_MF_CD TDM2_TX_MF_CD TDM2_TX_MF_CD N.C. E14 TDM2_TX_SYNC TDM2_TX_SYNC N.C. G14 TDM3_ACLK TDM3_ACLK TDM2_TX_SYNC N.C. N.C. N.C. C15 TDM3_RCLK TDM3_RCLK N.C. G13 TDM3_RSIG_RTS TDM3_RSIG_RTS N.C. N.C. N.C. D15 TDM3_RX TDM3_RX N.C. D14 TDM3_RX_SYNC TDM3_RX_SYNC N.C. N.C. N.C. G9 TDM3_TCLK TDM3_TCLK N.C. G12 TDM3_TSIG_CTS TDM3_TSIG_CTS N.C. N.C. N.C. E15 TDM3_TX TDM3_TX N.C. F9 TDM3_TX_MF_CD TDM3_TX_MF_CD N.C. N.C. F14 TDM3_TX_SYNC TDM3_TX_SYNC N.C. N.C. H12 TDM4_ACLK TDM4_ACLK N.C. N.C. J14 TDM4_RCLK TDM4_RCLK N.C. N.C. F15 TDM4_RSIG_RTS TDM4_RSIG_RTS N.C. N.C. H9 TDM4_RX TDM4_RX N.C. N.C. 64 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET DS34T104 SOCKET TDM4_RX_SYNC DS34T102 SOCKET N.C. DS34T101 SOCKET N.C. H14 TDM4_RX_SYNC H11 TDM4_TCLK TDM4_TCLK N.C. N.C. N.C. G15 TDM4_TSIG_CTS TDM4_TSIG_CTS N.C. J9 TDM4_TX TDM4_TX N.C. N.C. H13 TDM4_TX_MF_CD TDM4_TX_MF_CD N.C. N.C. H10 TDM4_TX_SYNC N.C. N.C. V11 TDM5_ACLK TDM4_TX_SYNC N.C. N.C. N.C. V9 TDM5_RCLK N.C. N.C. N.C. T9 TDM5_RSIG_RTS N.C. N.C. N.C. R11 TDM5_RX N.C. N.C. N.C. U14 TDM5_RX_SYNC N.C. N.C. N.C. T13 TDM5_TCLK N.C. N.C. N.C. P14 TDM5_TSIG_CTS N.C. N.C. N.C. R12 TDM5_TX N.C. N.C. N.C. R10 TDM5_TX_MF_CD N.C. N.C. N.C. R14 TDM5_TX_SYNC N.C. N.C. N.C. W14 TDM6_ACLK N.C. N.C. N.C. T12 TDM6_RCLK N.C. N.C. N.C. R9 TDM6_RSIG_RTS N.C. N.C. N.C. V12 TDM6_RX N.C. N.C. N.C. T15 TDM6_RX_SYNC N.C. N.C. N.C. V15 TDM6_TCLK N.C. N.C. N.C. V13 TDM6_TSIG_CTS N.C. N.C. N.C. W15 TDM6_TX N.C. N.C. N.C. U15 TDM6_TX_MF_CD N.C. N.C. N.C. T10 TDM6_TX_SYNC N.C. N.C. N.C. V14 TDM7_ACLK N.C. N.C. N.C. U13 TDM7_RCLK N.C. N.C. N.C. T14 TDM7_RSIG_RTS N.C. N.C. N.C. U12 TDM7_RX N.C. N.C. N.C. R13 TDM7_RX_SYNC N.C. N.C. N.C. Y11 TDM7_TCLK N.C. N.C. N.C. W9 TDM7_TSIG_CTS N.C. N.C. N.C. W12 TDM7_TX N.C. N.C. N.C. Y15 TDM7_TX_MF_CD N.C. N.C. N.C. U11 TDM7_TX_SYNC N.C. N.C. N.C. Y13 TDM8_ACLK N.C. N.C. N.C. U9 TDM8_RCLK N.C. N.C. N.C. Y9 TDM8_RSIG_RTS N.C. N.C. N.C. V10 TDM8_RX N.C. N.C. N.C. T11 TDM8_RX_SYNC N.C. N.C. N.C. Y14 TDM8_TCLK N.C. N.C. N.C. W11 TDM8_TSIG_CTS N.C. N.C. N.C. W10 TDM8_TX N.C. N.C. N.C. W13 TDM8_TX_MF_CD N.C. N.C. N.C. 65 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 BALL DS34T108 SOCKET TDM8_TX_SYNC DS34T104 SOCKET N.C. DS34T102 SOCKET N.C. DS34T101 SOCKET N.C. U10 J3 TEST_CLK TEST_CLK TEST_CLK TEST_CLK TRING1 N.C. B15 TRING1 TRING1 TRING1 B7 TRING2 TRING2 C2 TRING3 TRING3 TRING2 N.C. G2 TRING4 N.C. N.C. N.C. N.C. N.C. T2 TRING5 TRING4 N.C. Y2 TRING6 N.C. N.C. N.C. AA8 TRING7 N.C. N.C. N.C. AA14 TRING8 N.C. N.C. N.C. D9 TSER1 TSER1 TSER1 TSER1 J4 TSER2 TSER2 TSER2 GND B3 TSER3 TSER3 GND GND F3 TSER4 TSER4 GND GND V6 TSER5 GND GND GND R7 TSER6 GND GND GND V8 TSER7 GND GND GND P9 TSER8 GND GND GND G3 TST_CLD TST_CLD TST_CLD TST_CLD L5 TSYNC/TSSYNC1 TSYNC/TSSYNC1 TSYNC/TSSYNC1 TSYNC/TSSYNC1 E8 TSYNC/TSSYNC2 TSYNC/TSSYNC2 TSYNC/TSSYNC2 10K to GND G7 TSYNC/TSSYNC3 TSYNC/TSSYNC3 10K to GND 10K to GND F5 TSYNC/TSSYNC4 TSYNC/TSSYNC4 10K to GND 10K to GND M7 TSYNC/TSSYNC5 10K to GND 10K to GND 10K to GND Y5 TSYNC/TSSYNC6 10K to GND 10K to GND 10K to GND 10K to GND R5 TSYNC/TSSYNC7 10K to GND 10K to GND AB6 TSYNC/TSSYNC8 10K to GND 10K to GND 10K to GND C8 TSYSCLK1/ECLK1 TSYSCLK1/ECLK1 TSYSCLK1/ECLK1 TSYSCLK1/ECLK1 G8 TSYSCLK2/ECLK2 TSYSCLK2/ECLK2 TSYSCLK2/ECLK2 GND F7 TSYSCLK3/ECLK3 TSYSCLK3/ECLK3 GND GND G6 TSYSCLK4/ECLK4 TSYSCLK4/ECLK4 GND GND V4 TSYSCLK5/ECLK5 GND GND GND AA4 TSYSCLK6/ECLK6 GND GND GND W7 TSYSCLK7/ECLK7 GND GND GND AB7 TSYSCLK8/ECLK8 GND GND GND A15 TTIP1 TTIP1 TTIP1 A7 TTIP2 TTIP2 C1 TTIP3 TTIP3 TTIP2 N.C. TTIP1 N.C. N.C. N.C. N.C. N.C. N.C. G1 TTIP4 T1 TTIP5 TTIP4 N.C. Y1 TTIP6 N.C. N.C. N.C. AB8 TTIP7 N.C. N.C. N.C. AB14 TTIP8 N.C. N.C. N.C. H3 TXENABLE TXENABLE TXENABLE TXENABLE 66 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 14.2 DS34T108 Pin Assignment Figure 14-1. DS34T108 Pin Assignment (HSBGA Package) 1 2 3 4 5 6 7 8 9 10 11 A RTIP3 RRING3 RSYNC3 RLOF/RLOS2 RSYNC1 RDATF1 TTIP2 ATVSS2 RTIP2 ARVSS2 RESREF B ARVSS3 ARVDD3 TSER3 TDATF3 TCLKO2 TCLKF1 TRING2 ATVDD2 RRING2 ARVDD2 DVDDC C TTIP3 TRING3 DVDDLIU DVDDC RDATF3 RSYSCLK1 TDATF1 TSYSCLK1/ECLK1 RCLKF2/RCLK2 NC TDM 1_RSIG_RTS D ATVDD3 ATVSS3 RSER4 DVSS RLOF/RLOS4 RSER2 RCLKF4/ RCLK4 TCLKF3 TSER1 TDM 1_RX TDM 1_RX_SYNC E RTIP4 RRING4 DVSSLIU RF/ RM SYNC4 DVDDC TCLKO4 RF/ RM SYNC2 TSYNC/ TSSYNC2 TDM 2_ACLK TDM 1_ACLK TDM 1_TSIG_CTS F ARVSS4 ARVDD4 TSER4 RDATF4 TSYNC/ TSSYNC4 DVSS TSYSCLK3/ECLK3 RSYSCLK3 TDM 3_TX_M F_CD TDM 2_TX_M F_CD TDM 2_TSIG_CTS G TTIP4 TRING4 TST_CLD RF/ RM SYNC3 DVDDC TSYSCLK4/ECLK4 TSYNC/ TSSYNC3 TSYSCLK2/ECLK2 TDM 3_TCLK TDM 2_TCLK TDM 2_TX H ATVSS4 ATVDD4 TXENABLE RLOF/RLOS3 RSYSCLK4 RSYNC4 RSER3 DVSS TDM 4_RX TDM 4_TX_SYNC TDM 4_TCLK J CLK_SYS/SCCLK CLK_SYS_S TEST_CLK TSER2 RSER1 TCLKF4 TCLKO3 TDATF2 TDM 4_TX DVDDIO DVDDIO K ACVSS2 ACVDD2 JTM S TCLKF2 RCLKF3/ RCLK3 TDATF4 RSYSCLK2 RF/RM SYNC1 DVDDIO DVSS DVSS L CLK_HIGH DVDDC JTCLK RCLKF1/RCLK1 TSYNC/TSSYNC1 RSYNC2 RDATF2 TCLKO1 DVDDIO DVSS DVSS M ACVSS1 ACVDD1 JTDI TCLKF8 RSYNC8 RF/RM SYNC5 TSYNC/ TSSYNC5 RLOF/RLOS1 DVDDIO DVSS DVSS N M CLK DVSS JTDO TCLKO5 TDATF6 RSER5 RLOF/RLOS7 RSYSCLK8 DVDDIO DVSS DVSS P CLK_CM N RST_SYS_N JTRST_N RDATF5 RCLKF7/RCLK7 RCLKF5/RCLK5 TCLKO7 TDATF8 TSER8 DVDDIO DVDDIO R ATVSS5 ATVDD5 RXTSEL RSYNC6 TSYNC/ TSSYNC7 TDATF5 TSER6 DVSS TDM 6_RSIG_RTS TDM 5_TX_M F_CD TDM 5_RX T TTIP5 TRING5 HiZ_N RF/RM SYNC7 DVDDC TCLKF5 TCLKF6 RSER7 TDM 5_RSIG_RTS TDM 6_TX_SYNC TDM 8_RX_SYNC U ARVSS5 ARVDD5 RLOF/RLOS6 RLOF/RLOS5 RSYSCLK6 DVSS TCLKO6 TCLKF7 TDM 8_RCLK TDM 8_TX_SYNC TDM 7_TX_SYNC V RTIP5 RRING5 DVDDLIU TSYSCLK5/ECLK5 DVDDC TSER5 RLOF/RLOS8 TSER7 TDM 5_RCLK TDM 8_RX TDM 5_ACLK W ATVDD6 ATVSS6 RSYNC5 DVSS RSYSCLK5 RSER6 TSYSCLK7/ECLK7 RF/ RM SYNC6 TDM 7_TSIG_CTS TDM 8_TX TDM 8_TSIG_CTS Y TTIP6 TRING6 DVSSLIU RDATF6 TSYNC/ TSSYNC6 RCLKF6/ RCLK6 TDATF7 RSYSCLK7 TDM 8_RSIG_RTS DVDDC TDM 7_TCLK AA ARVSS6 ARVDD6 RDATF8 TSYSCLK6/ECLK6 RDATF7 RSYNC7 TCLKO8 TRING7 ATVDD7 RRING7 ARVDD7 AB RTIP6 RRING6 RCLKF8/ RCLK8 RSER8 RF/ RM SYNC8 TSYNC/ TSSYNC8 TSYSCLK8/ECLK8 TTIP7 ATVSS7 RTIP7 ARVSS7 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 11 22 DVDDC RTIP1 ARVSS1 TTIP1 ATVSS1 SD_A[0] SD_D[ 6] SD_A[ 5] SD_DQM [ 0] SD_D[ 3] SD_D[ 5] A DVSS RRING1 ARVDD1 TRING1 ATVDD1 SD_CS_N SD_A[ 3] SD_A[ 10] SD_DQM [ 2] SD_D[ 7] SD_D[ 10] B TDM 1_TX TDM 2_RX_SYNC TDM 2_RSIG_RTS TDM 3_RCLK SD_D[ 4] SD_WE_N SD_D[ 0] SD_BA[1] DVDDC SD_D[12] SD_D[ 14] C TDM 1_RCLK TDM 2_RX TDM 3_RX_SYNC TDM 3_RX SD_RAS_N SD_A[11] SD_A[ 9] DVSS SD_DQM [ 3] SD_D[15] SD_D[ 17] D TDM 2_RCLK TDM 1_TX_SYNC TDM 2_TX_SYNC TDM 3_TX SD_CAS_N SD_A[4] DVDDC SD_DQM [ 1] DVDDC SD_D[ 8] SD_D[ 21] E TDM 1_TCLK TDM 1_TX_M F_CD TDM 3_TX_SYNC TDM 4_RSIG_RTS SD_A[ 2] DVSS SD_A[ 1] SD_A[ 7] SD_A[8] SD_D[ 1] SD_D[ 24] F TDM 3_TSIG_CTS TDM 3_RSIG_RTS TDM 3_ACLK TDM 4_TSIG_CTS SD_D[ 29] SD_BA[ 0] DVDDC SD_D[ 2] SD_D[ 16] SD_D[19] SD_D[ 26] G TDM 4_ACLK TDM 4_TX_M F_CD TDM 4_RX_SYNC DVSS SD_CLK SD_A[6] SD_D[ 13] SD_D[ 9] SD_D[ 11] SD_D[23] SD_D[ 28] H DVDDIO DVDDIO TDM 4_RCLK SCEN H_WR_BE1_N/ SPI_ M OSI H_INT[0] H_WR_BE2_N/ SPI_S EL_N SD_D[ 22] SD_D[ 18] SD_D[20] SD_D[ 31] J DVSS DVSS DVDDIO STM D H_AD[ 3] H_R_W_N/SPI_CP H_READY_N H_CPU_SPI_N SD_D[ 27] SD_D[25] SD_D[ 30] K DVSS DVSS DVDDIO H_AD[ 11] H_AD[ 9] H_CS_N H_AD[ 1] H_WR_BE0_N/ SPI_ CLK H_WR_BE3_N/SPI_ CI DAT_32_16_N H_INT[ 1] L DVSS DVSS DVDDIO M BIST_DONE H_AD[ 7] H_AD[ 20] H_AD[ 6] H_AD[ 18] H_AD[8] H_AD[ 2] H_AD[ 4] M DVSS DVSS DVDDIO M BIST_FAIL H_AD[ 13] H_AD[ 23] H_D[2] H_AD[ 16] H_AD[ 14] H_AD[19] H_AD[ 10] N DVDDIO DVDDIO TDM 5_TSIG_CTS M BIST_EN H_D[ 5] H_D[ 22] H_D[11] H_D[ 14] H_AD[ 21] H_AD[12] H_AD[ 15] P TDM 5_TX TDM 7_RX_SYNC TDM 5_TX_SYNC DVSS H_D[ 7] H_D[ 24] H_D[ 29] H_D[ 20] H_D[ 3] H_AD[17] H_AD[ 22] R TDM 6_RCLK TDM 5_TCLK TDM 7_RSIG_RTS TDM 6_RX_SYNC H_D[ 9] H_D[ 4] DVDDC H_D[ 26] H_AD[5] H_AD[24] H_D[ 0]/ SPI_M ISO T TDM 7_RX TDM 7_RCLK TDM 5_RX_SYNC TDM 6_TX_M F_CD H_D[ 28] DVSS H_D[6] H_D[ 31] H_D[ 19] H_D[1] H_D[ 8] U TDM 6_RX TDM 6_TSIG_CTS TDM 7_ACLK TDM 6_TCLK CLK_M II_RX M II_RX_ERR DVDDC H_D[ 25] DVDDC H_D[ 23] H_D[10] V TDM 7_TX TDM 8_TX_M F_CD TDM 6_ACLK TDM 6_TX M II_RXD[ 1] M II_TX_EN M II_TXD[1] DVSS H_D[ 30] H_D[ 27] H_D[12] W DVSS TDM 8_ACLK TDM 8_TCLK TDM 7_TX_M F_CD M II_RXD[ 3] M II_RX_DV M II_CRS CLK_SSM II_TX DVDDC H_D[ 13] H_D[15] Y RRING8 ARVDD8 TRING8 ATVDD8 M II_RXD[ 0] M II_COL CLK_M II_TX M II_TXD[ 2] M DIO H_D[ 16] H_D[17] AA RTIP8 ARVSS8 TTIP8 ATVSS8 M II_RXD[ 2] M DC M II_TXD[ 0] M II_TXD[ 3] M II_TX_ERR H_D[ 18] H_D[21] AB 12 13 14 15 16 17 18 19 20 21 22 67 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 14.3 DS34T104 Pin Assignment Figure 14-2. DS34T104 Pin Assignment (TEBGA Package) 1 2 3 4 5 6 7 8 9 10 11 A RTIP3 RRING3 RSYNC3 RLOF/ RLOS2 RSYNC1 RDATF1 TTIP2 ATVSS2 RTIP2 ARVSS2 RESREF B ARVSS3 ARVDD3 TSER3 TDATF3 TCLKO2 TCLKF1 TRING2 ATVDD2 RRING2 ARVDD2 DVDDC C TTIP3 TRING3 DVDDLIU DVDDC RDATF3 RSYSCLK1 TDATF1 TSYSCLK1/ECLK1 RCLKF2/ RCLK2 NC TDM 1_RSIG_RTS D ATVDD3 ATVSS3 RSER4 DVSS RLOF/ RLOS4 RSER2 RCLKF4/RCLK4 TCLKF3 TSER1 TDM 1_RX TDM 1_RX_SYNC E RTIP4 RRING4 DVSSLIU RF/RM SYNC4 DVDDC TCLKO4 RF/RM SYNC2 TSYNC/ TSSYNC2 TDM 2_ACLK TDM 1_ACLK TDM 1_TSIG_CTS F ARVSS4 ARVDD4 TSER4 RDATF4 TSYNC/ TSSYNC4 DVSS TSYSCLK3/ ECLK3 RSYSCLK3 TDM 3_TX_M F_CD TDM 2_TX_M F_CD TDM 2_TSIG_CTS G TTIP4 TRING4 TST_CLD RF/RM SYNC3 DVDDC TSYSCLK4/ECLK4 TSYNC/TSSYNC3 TSYSCLK2/ECLK2 TDM 3_TCLK TDM 2_TCLK TDM 2_TX H ATVSS4 ATVDD4 TXENABLE RLOF/RLOS3 RSYSCLK4 RSYNC4 RSER3 DVSS TDM 4_RX TDM 4_TX_SYNC TDM 4_TCLK J CLK_SYS/ SCCLK CLK_SYS_S TEST_CLK TSER2 RSER1 TCLKF4 TCLKO3 TDATF2 TDM 4_TX DVDDIO DVDDIO K ACVSS2 ACVDD2 JTM S TCLKF2 RCLKF3/RCLK3 TDATF4 RSYSCLK2 RF/RM SYNC1 DVDDIO DVSS DVSS L CLK_HIGH DVDDC JTCLK RCLKF1/RCLK1 TSYNC/TSSYNC1 RSYNC2 RDATF2 TCLKO1 DVDDIO DVSS DVSS M ACVSS1 ACVDD1 JTDI NC NC TST_RB TST_TC RLOF/RLOS1 DVDDIO DVSS DVSS N M CLK DVSS JTDO NC TST_TA TST_RA NC NC DVDDIO DVSS DVSS P CLK_CM N RST_SYS_N JTRST_N TST_TB NC NC NC NC NC DVDDIO DVDDIO R ATVSS5 ATVDD5 RXTSEL NC NC TST_RC NC DVSS NC NC NC T NC NC HiZ_N NC DVDDC NC NC NC NC NC NC U ARVSS5 ARVDD5 NC NC NC DVSS NC NC NC NC NC V NC NC DVDDLIU NC DVDDC NC NC NC NC NC NC W ATVDD6 ATVSS6 NC DVSS NC NC NC NC NC NC NC NC NC DVSSLIU NC NC NC NC NC NC DVDDC NC AA ARVSS6 ARVDD6 NC NC NC NC NC NC ATVDD7 NC ARVDD7 AB NC NC NC NC NC NC NC NC ATVSS7 NC ARVSS7 Y 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10 21 11 22 DVDDC RTIP1 ARVSS1 TTIP1 ATVSS1 SD_A[ 0] SD_D[ 6] SD_A[ 5] SD_DQM [ 0] SD_D[ 3] SD_D[ 5] A DVSS RRING1 ARVDD1 TRING1 ATVDD1 SD_CS_N SD_A[ 3] SD_A[ 10] SD_DQM [ 2] SD_D[ 7] SD_D[ 10] B TDM 1_TX TDM 2_RX_SYNC TDM 2_RSIG_RTS TDM 3_RCLK SD_D[ 4] SD_WE_N SD_D[ 0] SD_BA[ 1] DVDDC SD_D[ 12] SD_D[ 14] C TDM 1_RCLK TDM 2_RX TDM 3_RX_SYNC TDM 3_RX SD_RAS_N SD_A[ 11] SD_A[ 9] DVSS SD_DQM [ 3] SD_D[ 15] SD_D[ 17] D TDM 2_RCLK TDM 1_TX_SYNC TDM 2_TX_SYNC TDM 3_TX SD_CAS_N SD_A[ 4] DVDDC SD_DQM [ 1] DVDDC SD_D[ 8] SD_D[ 21] E TDM 1_TCLK TDM 1_TX_M F_CD TDM 3_TX_SYNC TDM 4_RSIG_RTS SD_A[ 2] DVSS SD_A[ 1] SD_A[ 7] SD_A[ 8] SD_D[ 1] SD_D[ 24] F TDM 3_TSIG_CTS TDM 3_RSIG_RTS TDM 3_ACLK TDM 4_TSIG_CTS SD_D[ 29] SD_BA[ 0] DVDDC SD_D[ 2] SD_D[ 16] SD_D[ 19] SD_D[ 26] G TDM 4_ACLK TDM 4_TX_M F_CD TDM 4_RX_SYNC DVSS SD_CLK SD_A[ 6] SD_D[ 13] SD_D[ 9] SD_D[ 11] SD_D[ 23] SD_D[ 28] H DVDDIO DVDDIO TDM 4_RCLK SCEN H_WR_BE1_N/SPI_ M OSI H_INT[ 0] H_WR_BE2_N/ SPI_S EL_N SD_D[ 22] SD_D[ 18] SD_D[ 20] SD_D[ 31] J DVSS DVSS DVDDIO STM D H_AD[ 3] H_R_W_N/ SPI_CP H_READY_N H_CPU_SPI_N SD_D[ 27] SD_D[ 25] SD_D[ 30] K DVSS DVSS DVDDIO H_AD[ 11] H_AD[ 9] H_CS_N H_AD[ 1] H_WR_BE0_N/ SPI_ CLK H_WR_BE3_N/ SPI_ CI DAT_32_16_N H_INT[ 1] L DVSS DVSS DVDDIO M BIST_DONE H_AD[ 7] H_AD[ 20] H_AD[ 6] H_AD[ 18] H_AD[ 8] H_AD[ 2] H_AD[ 4] M DVSS DVSS DVDDIO M BIST_FAIL H_AD[ 13] H_AD[ 23] H_D[2] H_AD[ 16] H_AD[ 14] H_AD[ 19] H_AD[ 10] N DVDDIO DVDDIO NC M BIST_EN H_D[ 5] H_D[ 22] H_D[ 11] H_D[ 14] H_AD[ 21] H_AD[ 12] H_AD[ 15] P NC NC NC DVSS H_D[ 7] H_D[ 24] H_D[ 29] H_D[ 20] H_D[ 3] H_AD[ 17] H_AD[ 22] R NC NC NC NC H_D[ 9] H_D[ 4] DVDDC H_D[ 26] H_AD[ 5] H_AD[ 24] H_D[0] / SPI_M ISO T NC NC NC NC H_D[ 28] DVSS H_D[6] H_D[ 31] H_D[ 19] H_D[ 1] H_D[ 8] U NC NC NC NC CLK_M II_RX M II_RX_ERR DVDDC H_D[ 25] DVDDC H_D[ 23] H_D[ 10] V NC NC NC NC M II_RXD[ 1] M II_TX_EN M II_TXD[ 1] DVSS H_D[ 30] H_D[ 27] H_D[ 12] W DVSS NC NC NC M II_RXD[ 3] M II_RX_DV M II_CRS CLK_SSM II_TX DVDDC H_D[ 13] H_D[ 15] Y NC ARVDD8 NC ATVDD8 M II_RXD[ 0] M II_COL CLK_M II_TX M II_TXD[ 2] M DIO H_D[ 16] H_D[ 17] AA NC ARVSS8 NC ATVSS8 M II_RXD[ 2] M DC M II_TXD[ 0] M II_TXD[ 3] M II_TX_ERR H_D[ 18] H_D[ 21] AB 12 13 14 15 16 17 18 19 20 21 22 68 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 14.4 DS34T102 Pin Assignment Figure 14-3. DS34T102 Pin Assignment (TEBGA Package) 1 2 3 4 5 6 7 8 9 10 11 A NC NC NC RLOF/ RLOS2 RSYNC1 RDATF1 TTIP2 ATVSS2 RTIP2 ARVSS2 RESREF B ARVSS3 ARVDD3 NC NC TCLKO2 TCLKF1 TRING2 ATVDD2 RRING2 ARVDD2 DVDDC C NC NC DVDDLIU DVDDC NC RSYSCLK1 TDATF1 TSYSCLK1/ ECLK1 RCLKF2/ RCLK2 NC TDM 1_RSIG_RTS D ATVDD3 ATVSS3 NC DVSS NC RSER2 NC NC TSER1 TDM 1_RX TDM 1_RX_SYNC E NC NC DVSSLIU NC DVDDC NC RF/ RM SYNC2 TSYNC/TSSYNC2 TDM 2_ACLK TDM 1_ACLK TDM 1_TSIG_CTS F ARVSS4 ARVDD4 NC NC NC DVSS NC NC NC TDM 2_TX_M F_CD TDM 2_TSIG_CTS G NC NC TST_CLD NC DVDDC NC NC TSYSCLK2/ECLK2 NC TDM 2_TCLK TDM 2_TX H ATVSS4 ATVDD4 TXENABLE NC NC NC NC DVSS NC NC NC J CLK_SYS/ SCCLK CLK_SYS_S TEST_CLK TSER2 RSER1 NC NC TDATF2 NC DVDDIO DVDDIO K ACVSS2 ACVDD2 JTM S TCLKF2 NC NC RSYSCLK2 RF/RM SYNC1 DVDDIO DVSS DVSS L CLK_HIGH DVDDC JTCLK RCLKF1/RCLK1 TSYNC/TSSYNC1 RSYNC2 RDATF2 TCLKO1 DVDDIO DVSS DVSS M ACVSS1 ACVDD1 JTDI NC NC NC NC RLOF/ RLOS1 DVDDIO DVSS DVSS N M CLK DVSS JTDO NC NC NC NC NC DVDDIO DVSS DVSS P CLK_CM N RST_SYS_N JTRST_N NC NC NC NC NC NC DVDDIO DVDDIO R ATVSS5 ATVDD5 RXTSEL NC NC NC NC DVSS NC NC NC T NC NC HiZ_N NC DVDDC NC NC NC NC NC NC U ARVSS5 ARVDD5 NC NC NC DVSS NC NC NC NC NC V NC NC DVDDLIU NC DVDDC NC NC NC NC NC NC W ATVDD6 ATVSS6 NC DVSS NC NC NC NC NC NC NC Y NC NC DVSSLIU NC NC NC NC NC NC DVDDC NC AA ARVSS6 ARVDD6 NC NC NC NC NC NC ATVDD7 NC ARVDD7 AB NC NC NC NC NC NC NC NC ATVSS7 NC ARVSS7 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 DVDDC RTIP1 ARVSS1 TTIP1 ATVSS1 SD_A[0] SD_D[6] SD_A[5] SD_DQM [0] SD_D[3] SD_D[5] A DVSS RRING1 ARVDD1 TRING1 ATVDD1 SD_CS_N SD_A[3] SD_A[10] SD_DQM [2] SD_D[7] SD_D[10] B TDM 1_TX TDM 2_RX_SYNC TDM 2_RSIG_RTS NC SD_D[ 4] SD_WE_N SD_D[0] SD_BA[1] DVDDC SD_D[ 12] SD_D[14] C TDM 1_RCLK TDM 2_RX NC NC SD_RAS_N SD_A[11] SD_A[9] DVSS SD_DQM [3] SD_D[ 15] SD_D[17] D TDM 2_RCLK TDM 1_TX_SYNC TDM 2_TX_SYNC NC SD_CAS_N SD_A[4] DVDDC SD_DQM [1] DVDDC SD_D[8] SD_D[21] E TDM 1_TCLK TDM 1_TX_M F_CD NC NC SD_A[ 2] DVSS SD_A[1] SD_A[7] SD_A[8] SD_D[1] SD_D[24] F NC NC NC NC SD_D[29] SD_BA[ 0] DVDDC SD_D[2] SD_D[16] SD_D[ 19] SD_D[26] G NC NC NC DVSS SD_CLK SD_A[6] SD_D[ 13] SD_D[9] SD_D[11] SD_D[23] SD_D[28] H DVDDIO DVDDIO NC SCEN H_WR_BE1_N/ SPI_ M OSI H_INT[0] H_WR_BE2_N/SPI_S EL_N SD_D[22] SD_D[18] SD_D[20] SD_D[31] J DVSS DVSS DVDDIO STM D H_AD[ 3] H_R_W_N/SPI_CP H_READY_N H_CPU_SPI_N SD_D[27] SD_D[ 25] SD_D[30] K DVSS DVSS DVDDIO H_AD[ 11] H_AD[ 9] H_CS_N H_AD[1] H_WR_BE0_N/SPI_ CLK H_WR_BE3_N/SPI_ CI DAT_32_16_N H_INT[ 1] L DVSS DVSS DVDDIO M BIST_DONE H_AD[ 7] H_AD[20] H_AD[6] H_AD[18] H_AD[8] H_AD[2] H_AD[4] M DVSS DVSS DVDDIO M BIST_FAIL H_AD[13] H_AD[23] H_D[2] H_AD[16] H_AD[14] H_AD[ 19] H_AD[10] N DVDDIO DVDDIO NC M BIST_EN H_D[5] H_D[22] H_D[11] H_D[14] H_AD[21] H_AD[ 12] H_AD[15] P NC NC NC DVSS H_D[7] H_D[24] H_D[29] H_D[ 20] H_D[ 3] H_AD[ 17] H_AD[22] R NC NC NC NC H_D[9] H_D[4] DVDDC H_D[ 26] H_AD[5] H_AD[24] H_D[ 0] /SPI_M ISO T NC NC NC NC H_D[28] DVSS H_D[6] H_D[31] H_D[ 19] H_D[ 1] H_D[8] U NC NC NC NC CLK_M II_RX M II_RX_ERR DVDDC H_D[25] DVDDC H_D[23] H_D[10] V NC NC NC NC M II_RXD[1] M II_TX_EN M II_TXD[ 1] DVSS H_D[30] H_D[27] H_D[12] W DVSS NC NC NC M II_RXD[3] M II_RX_DV M II_CRS CLK_SSM II_TX DVDDC H_D[13] H_D[15] Y NC ARVDD8 NC ATVDD8 M II_RXD[0] M II_COL CLK_M II_TX M II_TXD[2] M DIO H_D[16] H_D[17] AA NC ARVSS8 NC ATVSS8 M II_RXD[2] M DC M II_TXD[0] M II_TXD[3] M II_TX_ERR H_D[18] H_D[21] AB 12 13 14 15 16 17 18 19 20 21 22 69 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 14.5 DS34T101 Pin Assignment Figure 14-4. DS34T101 Pin Assignment (TEBGA Package) 1 2 3 4 5 6 7 8 9 10 11 A NC NC NC NC RSYNC1 RDATF1 NC ATVSS2 NC ARVSS2 RESREF B ARVSS3 ARVDD3 NC NC NC TCLKF1 NC ATVDD2 NC ARVDD2 DVDDC C NC NC DVDDLIU DVDDC NC RSYSCLK1 TDATF1 TSYSCLK1/ ECLK1 NC NC TDM 1_RSIG_RTS D ATVDD3 ATVSS3 NC DVSS NC NC NC NC TSER1 TDM 1_RX TDM 1_RX_SYNC E NC NC DVSSLIU NC DVDDC NC NC NC NC TDM 1_ACLK TDM 1_TSIG_CTS F ARVSS4 ARVDD4 NC NC NC DVSS NC NC NC NC NC G NC NC TST_CLD NC DVDDC NC NC NC NC NC NC H ATVSS4 ATVDD4 TXENABLE NC NC NC NC DVSS NC NC NC J CLK_SYS/ SCCLK CLK_SYS_S TEST_CLK NC RSER1 NC NC NC NC DVDDIO DVDDIO K ACVSS2 ACVDD2 JTM S NC NC NC NC RF/ RM SYNC1 DVDDIO DVSS DVSS L CLK_HIGH DVDDC JTCLK RCLKF1/RCLK1 TSYNC/ TSSYNC1 NC NC TCLKO1 DVDDIO DVSS DVSS M ACVSS1 ACVDD1 JTDI NC NC NC NC RLOF/RLOS1 DVDDIO DVSS DVSS N M CLK DVSS JTDO NC NC NC NC NC DVDDIO DVSS DVSS P CLK_CM N RST_SYS_N JTRST_N NC NC NC NC NC NC DVDDIO DVDDIO R ATVSS5 ATVDD5 RXTSEL NC NC NC NC DVSS NC NC NC T NC NC HiZ_N NC DVDDC NC NC NC NC NC NC U ARVSS5 ARVDD5 NC NC NC DVSS NC NC NC NC NC V NC NC DVDDLIU NC DVDDC NC NC NC NC NC NC W ATVDD6 ATVSS6 NC DVSS NC NC NC NC NC NC NC NC NC DVSSLIU NC NC NC NC NC NC DVDDC NC AA ARVSS6 ARVDD6 NC NC NC NC NC NC ATVDD7 NC ARVDD7 AB NC NC NC NC NC NC NC NC ATVSS7 NC ARVSS7 Y 1 12 2 13 3 14 4 15 5 16 6 17 7 18 8 19 9 20 10 21 11 22 DVDDC RTIP1 ARVSS1 TTIP1 ATV SS1 SD_A[ 0] SD_D[ 6] SD_A[ 5] SD_DQM [ 0] SD_D[ 3] SD_D[ 5] A DVSS RRING1 ARVDD1 TRING1 ATVDD1 SD_CS_N SD_A[ 3] SD_A[ 10] SD_DQM [ 2] SD_D[ 7] SD_D[10] B TDM 1_TX NC NC NC SD_D[4] SD_WE_N SD_D[ 0] SD_BA [1] DVDDC SD_D[12] SD_D[14] C TDM 1_RCLK NC NC NC SD_RAS_N SD_A[ 11] SD_A[ 9] DVSS SD_DQM [ 3] SD_D[ 15] SD_D[ 17] D NC TDM 1_TX_SYNC NC NC SD_CAS_N SD_A[ 4] DVDDC SD_DQM [1] DVDDC SD_D[ 8] SD_D[21] E TDM 1_TCLK TDM 1_TX_M F_CD NC NC SD_A[2] DVSS SD_A[1] SD_A[ 7] SD_A[ 8] SD_D[ 1] SD_D[24] F NC NC NC NC SD_D[ 29] SD_BA [0] DVDDC SD_D[ 2] SD_D[ 16] SD_D[19] SD_D[26] G NC NC NC DVSS SD_CLK SD_A[ 6] SD_D[ 13] SD_D[ 9] SD_D[ 11] SD_D[23] SD_D[28] H DVDDIO DVDDIO NC SCEN H_WR_BE1_N/ SPI_ M OSI H_INT[0] H_WR_BE2_N/SPI_S EL_N SD_D[22] SD_D[ 18] SD_D[20] SD_D[31] J DVSS DVSS DVDDIO STM D H_AD[3] H_R_W_N/ SPI_CP H_READY_N H_CPU_SPI_N SD_D[ 27] SD_D[25] SD_D[30] K DVSS DVSS DVDDIO H_AD[ 11] H_AD[9] H_CS_N H_AD[1] H_WR_BE0_N/ SPI_ CLK H_WR_B E3_N/ SPI_ CI DA T_32_16_N H_INT[ 1] L DVSS DVSS DVDDIO M BIST_DONE H_AD[7] H_AD[ 20] H_AD[ 6] H_AD[ 18] H_AD[ 8] H_AD[ 2] H_AD[ 4] M DVSS DVSS DVDDIO M BIST_FAIL H_AD[ 13] H_AD[ 23] H_D[ 2] H_AD[ 16] H_AD[ 14] H_AD[19] H_AD[10] N DVDDIO DVDDIO NC M BIST_EN H_D[ 5] H_D[22] H_D[11] H_D[14] H_AD[ 21] H_AD[12] H_AD[ 15] P NC NC NC DVSS H_D[ 7] H_D[24] H_D[29] H_D[ 20] H_D[3] H_AD[ 17] H_AD[22] R NC NC NC NC H_D[ 9] H_D[ 4] DVDDC H_D[ 26] H_AD[ 5] H_A D[24] H_D[0]/ SPI_M ISO T NC NC NC NC H_D[28] DVSS H_D[ 6] H_D[31] H_D[19] H_D[ 1] H_D[8] U NC NC NC NC CLK_M II_RX M II_RX_ERR DVDDC H_D[25] DVDDC H_D[ 23] H_D[ 10] V NC NC NC NC M II_RXD[1] M II_TX_EN M II_TXD[ 1] DVSS H_D[ 30] H_D[27] H_D[ 12] W DVSS NC NC NC M II_RXD[ 3] M II_RX_DV M II_CRS CLK_SSM II_TX DVDDC H_D[13] H_D[15] Y NC ARVDD8 NC ATVDD8 M II_RXD[ 0] M II_COL CLK_M II_TX M II_TXD[ 2] M DIO H_D[16] H_D[17] AA NC ARVSS8 NC ATVSS8 M II_RXD[ 2] M DC M II_TXD[ 0] M II_TXD[ 3] M II_TX _ERR H_D[18] H_D[ 21] AB 12 13 14 15 16 17 18 19 20 21 22 70 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 15. Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. The package number provided for each package is a link to the latest package outline information. The 484-ball HSBGA and the 484-ball TEBGA have the same footprint. The difference between the packages is that the HSBGA has an internal heat spreader.) 15.1 484-Ball HSBGA (56-G6038-002) 71 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 15.2 484-Ball TEBGA (56-G6038-001) 72 of 74 _____________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 16. Thermal Information PARAMETER Target Ambient Temperature Range Die Junction Temperature Range Theta-JC (Junction to Top of Case) Theta-JB (Junction to Bottom Pins) Theta-JA, Still Air (Note 1) VALUE HSBGA TEBGA -40°C to +85°C -40°C to +125°C 2.2°C/W 5.2°C/W 12.5°C/W -40°C to +85°C -40°C to +125°C 5.4°C/W 11.2°C/W 19.7°C/W Note 1: Theta-JA values are estimates using JEDEC-standard PCB and enclosure dimensions. 73 of 74 ______________________________________________________ DS34T101/DS34T102/DS34T104/DS34T108 17. Document Revision History REVISION 072707 DESCRIPTION New product release. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2007 Maxim Integrated Products 74 of 74 is a registered trademark of Maxim Integrated Products.