APT30GP60B 600V ® POWER MOS 7 IGBT A new generation of high voltage power IGBTs. Using punch-through technology and a proprietary metal gate, this IGBT has been optimized for very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases, the POWER MOS 7® IGBT provides a lower cost alternative to a Power MOSFET. • Low Conduction Loss • 100 kHz operation @ 400V, 37A • Low Gate Charge • 200 kHz operation @ 400V, 24A • Ultrafast Tail Current shutoff • SSOA rated MAXIMUM RATINGS Symbol TO-247 G C C E E All Ratings: TC = 25°C unless otherwise specified. Parameter Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±20 Gate-Emitter Voltage Transient ±30 I C1 Continuous Collector Current @ TC = 25°C 100 I C2 Continuous Collector Current @ TC = 110°C 49 I CM Pulsed Collector Current SSOA PD TJ,TSTG TL UNIT APT30GP60B VCES VGEM G 1 Volts Amps 120 @ TC = 25°C 120A @ 600V Switching Safe Operating Area @ TJ = 150°C Watts 463 Total Power Dissipation -55 to 150 Operating and Storage Junction Temperature Range Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS BVCES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C) 2.2 2.7 Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C) 2.1 3 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) I GES 250 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 2500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com UNIT nA 6-2003 MIN Rev D Characteristic / Test Conditions 050-7400 Symbol APT30GP60B DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage Qg Qge Qgc SSOA Total Gate Charge 3 Gate-Emitter Charge Gate-Collector ("Miller ") Charge Switching SOA MIN TYP Capacitance 3200 VGE = 0V, VCE = 25V 295 f = 1 MHz 20 Gate Charge VGE = 15V 7.5 VCE = 300V 20 I C = 30A 30 TJ = 150°C, R G = 5Ω, VGE = MAX UNIT pF V 90 nC 120 A 15V, L = 100µH,VCE = 600V td(on) tr td(off) tf Turn-on Delay Time Current Rise Time Eoff Turn-off Switching Energy td(on) Turn-on Delay Time Eon2 Eoff I C = 30A 46 4 Turn-on Switching Energy (Diode) 5 Eon1 55 250 13 VGE = 15V 84 I C = 30A 80 Current Fall Time 5 µJ 330 18 R G = 5Ω 4 Turn-on Switching Energy (Diode) Turn-off Switching Energy 335 Inductive Switching (125°C) VCC(Peak) = 400V Turn-off Delay Time ns 260 TJ = +25°C 6 Current Rise Time Turn-on Switching Energy 18 R G = 5Ω Eon2 tf VGE = 15V Current Fall Time Turn-on Switching Energy td(off) 13 Turn-off Delay Time Eon1 tr Inductive Switching (25°C) VCC(Peak) = 400V ns 260 TJ = +125°C 508 6 µJ 518 750 TYP MAX THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN RΘJC Junction to Case (IGBT) .27 RΘJC Junction to Case (DIODE) N/A Package Weight 5.90 WT UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. (See Figure 24.) 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 050-7400 Rev D 6-2003 APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PREFORMANCE CURVES APT30GP60B 60 60 TC=-55°C 40 30 20 TC=25°C 10 TC=125°C 0 VGE, GATE-TO-EMITTER VOLTAGE (V) 140 120 100 80 TJ = 25°C 60 TJ = 125°C 40 20 20 TC=25°C TC=125°C 10 IC = 30A TJ = 25°C 14 12 VCE=120V VCE=300V 10 8 VCE=480V 6 4 2 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 3 IC= 60A 2.5 IC= 30A 2 IC= 15A 1.5 1 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.2 1.15 1.10 1.05 1.0 0.95 0.90 0.85 0.8 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature 3.5 3 10 20 30 40 50 60 70 80 90 100 GATE CHARGE (nC) FIGURE 4, Gate Charge VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE IC= 60A 2.5 IC= 30A 2 IC=15A 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TRMPERATURE (°C) FIGURE 6, On State Voltage vs Junction Temperature 140 120 100 80 60 40 20 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 6-2003 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 Rev D 3.5 30 0 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 4 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 40 FIGURE 2, Output Characteristics (VGE = 10V) 16 IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) TJ = -55°C 160 TC=-55°C 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(VGE = 15V) 200 180 50 0 0 0.5 1 1.5 2 2.5 3 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST <0.5 % DUTY CYCLE VGE = 10V. 250µs PULSE TEST <0.5 % DUTY CYCLE 050-7400 IC, COLLECTOR CURRENT (A) 50 IC, COLLECTOR CURRENT (A) VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE APT30GP60B 100 VGE= 10V 20 15 VGE= 15V 10 VCE = 400V TJ = 25°C, TJ =125°C RG = 5Ω L = 100 µH 5 0 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 25 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 50 TJ = 25 or 125°C,VGE = 10V tf, FALL TIME (ns) tr, RISE TIME (ns) 30 20 R = 5Ω, L = 100µH, VCE = 400V G VGE =10V,TJ=25°C 30 20 10 RG = 5Ω, L = 100µH, VCE = 400V TJ = 125°C, VGE = 10V or 15V 60 40 TJ = 25°C, VGE = 10V or 15V 0 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 1400 VCE = 400V VGE = +15V RG = 5 Ω 1200 T = 125°C,VGE =15V J 1000 TJ = 125°C,VGE =10V 800 600 TJ = 25°C,VGE =15V 400 TJ = 25°C,VGE =10V 200 EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 40 20 TJ = 25 or 125°C,VGE = 15V 1400 VCE = 400V VGE = +15V RG = 5 Ω 1200 TJ = 125°C, VGE = 10V or 15V 1000 TJ = 25°C, VGE = 10V or 15V 800 600 400 200 0 0 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 10 20 30 40 50 60 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 2500 1600 VCE = 400V VGE = +15V TJ = 125°C 2000 Eon2, 60A 1500 Eoff, 60A 1000 Eon2, 30A 500 0 Eon2, 15A Eoff, 30A Eoff, 15A 0 10 20 30 40 50 60 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 50 100 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 6-2003 VGE =10V,TJ=125°C 60 80 10 Rev D 70 0 10 20 30 40 50 60 70 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 40 050-7400 80 VCE = 400V RG = 5Ω L = 100 µH 0 0 0 VGE =15V,TJ=125°C 90 VCE = 400V VGE = +15V RG = 5 Ω 1200 Eon2,60A Eoff,60A 800 Eon2,30A 400 Eoff, 30A Eon2,15A 0 Eoff, 15A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PREFORMANCE CURVES APT30GP60B 140 10,000 Cies 120 1,000 500 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) 5,000 Coes 100 50 Cres 10 5 0 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 100 80 60 40 20 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18, Minimim Switching Safe Operating Area 0.25 0.9 0.20 0.7 0.15 0.5 0.10 0.3 Note: PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.30 t1 t2 0.05 0.1 0.05 0 10-5 Duty Factor D = t1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration RC MODEL 1.0 300 0.144 0.0132F 0.135F Case temperature FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL Fmax = min(f max1 ,f max 2 ) 50 10 TJ = 125°C TC = 75°C D = 50 % VCE = 400V RG = 5 Ω 0 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current f max1 = 0.05 t d(on ) + t r + t d(off ) + t f f max 2 = Pdiss − Pcond E on 2 + E off Pdiss = TJ − TC R θJC 6-2003 0.107 100 Rev D Power (Watts) 0.00500F 050-7400 0.0196 FMAX, OPERATING FREQUENCY (kHz) Junction temp. ( ”C) APT30GP60B Gate Voltage APT15DF60 10 % TJ = 125 C td(on) tr V CE IC V CC Collector Current 90% A 5% D.U.T. 5% 10% Collector Voltage Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions 90% VTEST td(off) Gate Voltage *DRIVER SAME TYPE AS D.U.T. TJ = 125 C Collector Voltage A tf V CE IC 90% 100uH V CLAMP 10% B 0 A Collector Current Switching Energy D.U.T. DRIVER* Figure 24, EON1 Test Circuit Figure 23, Turn-off Switching Waveforms and Definitions T0-247 Package Outline 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) Collector 6.15 (.242) BSC 20.80 (.819) 21.46 (.845) 3.50 (.138) 3.81 (.150) 4.50 (.177) Max. 0.40 (.016) 0.79 (.031) 6-2003 Rev D 2.21 (.087) 2.59 (.102) 2.87 (.113) 3.12 (.123) 1.65 (.065) 2.13 (.084) 19.81 (.780) 20.32 (.800) 1.01 (.040) 1.40 (.055) 050-7400 5.38 (.212) 6.20 (.244) Gate Collector Emitter 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.