ADPOW APT30GP60B Power mos 7 igbt Datasheet

APT30GP60B
600V
®
POWER MOS 7 IGBT
A new generation of high voltage power IGBTs. Using punch-through
technology and a proprietary metal gate, this IGBT has been optimized for
very fast switching, making it ideal for high frequency, high voltage switchmode power supplies and tail current sensitive applications. In many cases,
the POWER MOS 7® IGBT provides a lower cost alternative to a Power
MOSFET.
• Low Conduction Loss
• 100 kHz operation @ 400V, 37A
• Low Gate Charge
• 200 kHz operation @ 400V, 24A
• Ultrafast Tail Current shutoff
• SSOA rated
MAXIMUM RATINGS
Symbol
TO-247
G
C
C
E
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
I C1
Continuous Collector Current @ TC = 25°C
100
I C2
Continuous Collector Current @ TC = 110°C
49
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
UNIT
APT30GP60B
VCES
VGEM
G
1
Volts
Amps
120
@ TC = 25°C
120A @ 600V
Switching Safe Operating Area @ TJ = 150°C
Watts
463
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
I GES
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
UNIT
nA
6-2003
MIN
Rev D
Characteristic / Test Conditions
050-7400
Symbol
APT30GP60B
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Qge
Qgc
SSOA
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Switching SOA
MIN
TYP
Capacitance
3200
VGE = 0V, VCE = 25V
295
f = 1 MHz
20
Gate Charge
VGE = 15V
7.5
VCE = 300V
20
I C = 30A
30
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
90
nC
120
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
I C = 30A
46
4
Turn-on Switching Energy (Diode) 5
Eon1
55
250
13
VGE = 15V
84
I C = 30A
80
Current Fall Time
5
µJ
330
18
R G = 5Ω
4
Turn-on Switching Energy (Diode)
Turn-off Switching Energy
335
Inductive Switching (125°C)
VCC(Peak) = 400V
Turn-off Delay Time
ns
260
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
18
R G = 5Ω
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
13
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC(Peak) = 400V
ns
260
TJ = +125°C
508
6
µJ
518
750
TYP
MAX
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
RΘJC
Junction to Case (IGBT)
.27
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7400
Rev D
6-2003
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PREFORMANCE CURVES
APT30GP60B
60
60
TC=-55°C
40
30
20
TC=25°C
10
TC=125°C
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
140
120
100
80
TJ = 25°C
60
TJ = 125°C
40
20
20
TC=25°C
TC=125°C
10
IC = 30A
TJ = 25°C
14
12
VCE=120V
VCE=300V
10
8
VCE=480V
6
4
2
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
3
IC= 60A
2.5
IC= 30A
2
IC= 15A
1.5
1
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
1.2
1.15
1.10
1.05
1.0
0.95
0.90
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
3.5
3
10
20 30 40 50 60 70 80 90 100
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC= 60A
2.5
IC= 30A
2
IC=15A
1.5
1
0.5
0
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TRMPERATURE (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
120
100
80
60
40
20
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2003
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
Rev D
3.5
30
0
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
4
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
40
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
TJ = -55°C
160
TC=-55°C
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
200
180
50
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
050-7400
IC, COLLECTOR CURRENT (A)
50
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
APT30GP60B
100
VGE= 10V
20
15
VGE= 15V
10
VCE = 400V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
0
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
25
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
50
TJ = 25 or 125°C,VGE = 10V
tf, FALL TIME (ns)
tr, RISE TIME (ns)
30
20
R = 5Ω, L = 100µH, VCE = 400V
G
VGE =10V,TJ=25°C
30
20
10
RG = 5Ω, L = 100µH, VCE = 400V
TJ = 125°C, VGE = 10V or 15V
60
40
TJ = 25°C, VGE = 10V or 15V
0
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
1400
VCE = 400V
VGE = +15V
RG = 5 Ω
1200
T = 125°C,VGE =15V
J
1000
TJ = 125°C,VGE =10V
800
600
TJ = 25°C,VGE =15V
400
TJ = 25°C,VGE =10V
200
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
40
20
TJ = 25 or 125°C,VGE = 15V
1400
VCE = 400V
VGE = +15V
RG = 5 Ω
1200
TJ = 125°C, VGE = 10V or 15V
1000
TJ = 25°C, VGE = 10V or 15V
800
600
400
200
0
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
10
20
30
40
50
60
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
2500
1600
VCE = 400V
VGE = +15V
TJ = 125°C
2000
Eon2, 60A
1500
Eoff, 60A
1000
Eon2, 30A
500
0
Eon2, 15A
Eoff, 30A
Eoff, 15A
0
10
20
30
40
50
60
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
VGE =15V,TJ=25°C
50
100
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
6-2003
VGE =10V,TJ=125°C
60
80
10
Rev D
70
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
40
050-7400
80
VCE = 400V
RG = 5Ω
L = 100 µH
0
0
0
VGE =15V,TJ=125°C
90
VCE = 400V
VGE = +15V
RG = 5 Ω
1200
Eon2,60A
Eoff,60A
800
Eon2,30A
400
Eoff, 30A
Eon2,15A
0
Eoff, 15A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PREFORMANCE CURVES
APT30GP60B
140
10,000
Cies
120
1,000
500
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
5,000
Coes
100
50
Cres
10
5
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
100
80
60
40
20
0
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.25
0.9
0.20
0.7
0.15
0.5
0.10
0.3
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
t1
t2
0.05
0.1
0.05
0
10-5
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
RC MODEL
1.0
300
0.144
0.0132F
0.135F
Case temperature
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min(f max1 ,f max 2 )
50
10
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
0
10
20
30
40
50
60
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
f max1 =
0.05
t d(on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
6-2003
0.107
100
Rev D
Power
(Watts)
0.00500F
050-7400
0.0196
FMAX, OPERATING FREQUENCY (kHz)
Junction
temp. ( ”C)
APT30GP60B
Gate Voltage
APT15DF60
10 %
TJ = 125 C
td(on)
tr
V CE
IC
V CC
Collector Current
90%
A
5%
D.U.T.
5%
10%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
td(off)
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
TJ = 125 C
Collector Voltage
A
tf
V CE
IC
90%
100uH
V CLAMP
10%
B
0
A
Collector Current
Switching Energy
D.U.T.
DRIVER*
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
T0-247 Package Outline
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
Collector
6.15 (.242) BSC
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
6-2003
Rev D
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
050-7400
5.38 (.212)
6.20 (.244)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages