IRF IRFP3006PBF High efficiency synchronous rectification in smp Datasheet

IRFP3006PbF
VDSS
60V
RDS(on) typ.
max.
2.1m
2.5m
ID (Silicon Limited)
270A
ID (Package Limited)
195A
D
G
D
S
G
S
Applications
 High Efficiency Synchronous Rectification in SMPS
 Uninterruptible Power Supply
 High Speed Power Switching
 Hard Switched and High Frequency Circuits
TO-247AC
G
D
S
Gate
Drain
Source
Benefits
 Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
 Fully Characterized Capacitance and Avalanche SOA
 Enhanced body diode dV/dt and dI/dt Capability
 Lead-Free
Base Part Number
Package Type
IRFP3006PbF
TO-247
Standard Pack
Form
Quantity
Tube
25
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V(Silicon Limited)
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
ID @ TC = 25°C
Pulsed Drain Current 
IDM
Maximum Power Dissipation
PD @TC = 25°C
Linear Derating Factor
Gate-to-Source Voltage
VGS
Peak Diode Recovery 
dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
EAS (Thermally limited)
Single Pulse Avalanche Energy 
IAR
Avalanche Current 
EAR
Repetitive Avalanche Energy 
Thermal Resistance
Symbol
Parameter
Junction-to-Case

RJC
Case-to-Sink, Flat Greased Surface
RCS
Junction-to-Ambient
RJA
TJ
TSTG
1
www.irf.com
© 2013 International Rectifier
Orderable Part Number
IRFP3006PbF
Max.
270
190
195
1080
375
2.5
± 20
Units
A
10
V/ns
W
W/°C
V
-55 to + 175
°C
300
10lbfin (1.1Nm)
320
See Fig. 14, 15, 22a, 22b
Typ.
–––
0.24
–––
Max.
0.4
–––
40
mJ
A
mJ
Units
°C/W
September 06, 2013
IRFP3006PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
Drain-to-Source Breakdown Voltage
V(BR)DSS
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
Drain-to-Source Leakage Current
IDSS
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
RG
Internal Gate Resistance
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Qg
Total Gate Charge
Qgs
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Qgd
Total Gate Charge Sync. (Qg - Qgd)
Qsync
Turn-On Delay Time
td(on)
tr
Rise Time
Turn-Off Delay Time
td(off)
tf
Fall Time
Input Capacitance
Ciss
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Coss eff. (ER) Effective Output Capacitance
(Energy Related)
Coss eff. (TR) Effective Output Capacitance
(Time Related)
Diode Characteristics
Symbol
Parameter
Continuous Source Current
IS
(Body Diode)
Pulsed Source Current
ISM
(Body Diode) 
VSD
Diode Forward Voltage
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
Reverse Recovery Current
Min. Typ. Max. Units
Conditions
60
––– –––
V VGS = 0V, ID = 250µA
––– 0.07 ––– V/°C Reference to 25°C, ID = 5mA
––– 2.1
2.5 m VGS = 10V, ID = 170A 
2.0 ––– 4.0
V VDS = VGS, ID = 250µA
––– –––
20
µA VDS = 60V, VGS = 0V
––– ––– 250
VDS = 60V, VGS = 0V, TJ = 125°C
––– ––– 100 nA VGS = 20V
––– ––– -100
VGS = -20V
––– 2.0 –––

Min.
280
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ. Max. Units
Conditions
––– –––
S VDS = 25V, ID = 170A
200 300
ID = 170A
VDS =30V
37
–––
nC
VGS = 10V 
60
–––
140 –––
ID = 170A, VDS =0V, VGS = 10V
16
–––
VDD = 39V
ID = 170A
182 –––
ns
118 –––
RG = 2.7
VGS = 10V 
189 –––
8970 –––
VGS = 0V
VDS = 50V
1020 –––
ƒ = 1.0 MHz, See Fig. 5
534 –––
pF
1480 –––
VGS = 0V, VDS = 0V to 48V 
See Fig. 11
1920 –––
VGS = 0V, VDS = 0V to 48V 
Min. Typ. Max. Units
–––
–––
–––
–––
–––
–––
–––
–––
Conditions
D
MOSFET symbol
––– 257
showing the
A
G
integral reverse
––– 1028
S
p-n junction diode.
––– 1.3
V TJ = 25°C, IS = 170A, VGS = 0V 
44
–––
ns TJ = 25°C
48
–––
TJ = 125°C
VR = 51V,
63
––– nC TJ = 25°C
IF = 170A
77
–––
TJ = 125°C
di/dt = 100A/µs 
2.4 –––
A TJ = 25°C
Notes:
 Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 195A.Note that
current limitations arising from heating of the device leads may occur with some lead mounting arrangements. (Refer to AN-1140)
 Repetitive rating; pulse width limited by max. Junction temperature.
 Limited by TJmax, starting TJ = 25°C, L = 0.022mH, RG = 50, IAS = 170A,VGS =10V. Part not Recommended for use above
this value.
 ISD ≤ 170A, di/dt ≤ 1360A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
 Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
 R is measured at TJ approximately 90°C.
* All spec data and curves based on (TO-220 Pak -IRFB3006PbF) Datasheet.
2
www.irf.com
© 2013 International Rectifier
September 06, 2013
IRFP3006PbF
1000
1000
100
BOTTOM
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
3.5V
10
3.5V
 60µs PULSE WIDTH
Tj = 25°C
1
BOTTOM
100
3.5V
 60µs PULSE WIDTH
Tj = 175°C
10
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
TJ = 175°C
100
TJ = 25°C
10
VDS = 25V
 60µs PULSE WIDTH
1
ID = 170A
VGS = 10V
2.0
1.5
1.0
0.5
2.0
3.0
4.0
5.0
6.0
7.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
16000
Fig 4. Normalized On-Resistance vs. Temperature
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
C iss
8000
4000
20 40 60 80 100 120 140 160 180
16
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
12000
0
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
10V
8.0V
6.0V
5.0V
4.5V
4.0V
3.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
C oss
ID= 170A
12
VDS = 48V
VDS = 30V
8
4
Crss
0
0
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
www.irf.com
© 2013 International Rectifier
0
40
80
120
160
200
240
280
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
September 06, 2013
IRFP3006PbF
10000
TJ = 175°C
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
1000
100
10
TJ = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS (on)
1000
100µsec
100
LIMITED BY PACKAGE
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.0
0.4
0.8
1.2
1.6
2.0
0.1
VSD , Source-to-Drain Voltage (V)
LIMITED BY PACKAGE
ID , Drain Current (A)
250
200
150
100
50
0
50
75
100
125
150
10
100
Fig 8. Maximum Safe Operating Area
V(BR)DSS , Drain-to-Source Breakdown Voltage
300
25
1
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-to-Drain Diode
Forward Voltage
80
ID = 5mA
75
70
65
60
55
175
-60 -40 -20
TC , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
1400
EAS, Single Pulse Avalanche Energy (mJ)
2.0
1.5
Energy (µJ)
DC
0.1
0.1
1.0
0.5
ID
20A
27A
BOTTOM 170A
1200
TOP
1000
800
600
400
200
0
0.0
0
10
20
30
40
50
60
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical Coss Stored Energy
4
1msec
www.irf.com
© 2013 International Rectifier
25
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. Drain Current
September 06, 2013
IRFP3006PbF
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
EAR , Avalanche Energy (mJ)
400
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 170A
300
200
100
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
5
www.irf.com
© 2013 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature
far in excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as Tjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
September 06, 2013
IRFP3006PbF
20
ID = 1.0A
ID = 1.0mA
ID = 250µA
3.5
16
3.0
12
IRRM - (A)
VGS(th) Gate threshold Voltage (V)
4.0
2.5
8
2.0
IF = 112A
VR = 51V
4
1.5
TJ = 125°C
TJ = 25°C
0
1.0
-75 -50 -25
0
25
50
75
100
100 125 150 175
200
300
400
500
600
700
800
dif / dt - (A / µs)
TJ , Temperature ( °C )
Fig. 17 Typical Recovery Current vs. dif/dt
Fig. 16 Threshold Voltage vs. Temperature
700
20
600
16
QRR - (nC)
IRRM - (A)
500
12
8
4
0
100
200
300
400
400
300
IF = 170A
VR = 51V
200
IF = 112A
VR = 51V
TJ = 125°C
TJ = 25°C
100
TJ = 125°C
TJ = 25°C
500
600
0
700
100
800
200
300
400
500
600
700
800
dif / dt - (A / µs)
dif / dt - (A / µs)
Fig 19. Typical Stored Charge vs. dif/dt
Fig 18. Typical Recovery Current vs. dif/dt
700
600
QRR - (nC)
500
400
300
200
IF = 170A
VR = 51V
100
TJ = 125°C
TJ = 25°C
0
100
200
300
400
500
600
700
800
dif / dt - (A / µs)
Fig 20. Typical Stored Charge vs. dif/dt
6
www.irf.com
© 2013 International Rectifier
September 06, 2013
IRFP3006PbF
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
7
Fig 22b. Unclamped Inductive Waveforms
Fig 23a. Switching Time Test Circuit
Fig 23b. Switching Time Waveforms
Fig 24a. Gate Charge Test Circuit
Fig 24b. Gate Charge Waveform
www.irf.com
© 2013 International Rectifier
September 06, 2013
IRFP3006PbF
TO-247AC Package Outline (Dimensions are shown in millimeters (inches))
TO-247AC Part Marking Information
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
© 2013 International Rectifier
September 06, 2013
IRFP3006PbF
Qualification information†
Industrial
Qualification level
(per JEDEC JESD47F )††
Moisture Sensitivity Level
RoHS compliant
†
††
N/A
TO-247AC
Yes
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability
Applicable version of JEDEC standard at the time of product release.
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd, El Segundo, California 90245, USA
To contact Interna onal Rec fier, please visit h p://www.irf.com/whoto‐call/
9
www.irf.com
© 2013 International Rectifier
September 06, 2013
Similar pages