ATMEL ATA6870-PLPW Li-ion, nimh battery measuring, charge balancing and power-supply circuit Datasheet

Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
12-bit Battery-cell Voltage Measurement
Simultaneous Battery Cells Measurement in Parallel
Cell Temperature Measurement
Charge Balancing Capability
– Parallel Balancing of Cells Possible
Integrated Power Supply for MCU
Undervoltage Detection
Less than 10 µA Standby Current
Low Cell Imbalance Current (< 10 µA)
Hot Plug-in Capable
Interrupt Timer for Cycling MCU Wake-ups
Cost-efficient Solution Due to Cost-optimized 30V CMOS Technology
Reliable Communication between Stacked ICs Due to Level Shifters with Current
Sources and Checksum Monitoring of Data
Daisy-chainable
– Each IC Monitors up to 6 Battery Cells
– 16 ICs (96 Cells) per String
– No Limit on Number of Strings
Package QFN48 7 mm × 7 mm
Li-Ion, NiMH
Battery
Measuring,
Charge
Balancing and
Power-supply
Circuit
Applications
• Battery Measurement, Supply and Monitoring IC for Li-ion and NiMH Battery Systems
in Electric (EV) and Hybrid Electrical (HEV) Vehicles
Benefits
• Highest Safety Level for Li-ion Battery Systems in Combination with ATA6871
• Cost Reduction Due to Integrated Measurement Circuit and High Voltage Power-supply
ATA6870
Preliminary
1. Description
The ATA6870 is a measurement and monitoring circuit designed for Li-ion and NiMH
multicell battery stacks in hybrid electrical vehicles.
The ATA6870 monitors the battery-cell voltage and the battery-cell temperature with a
12-bit ADC.
The circuit also provides charge-balancing capability for each battery-cell.
In addition, a linear regulator is integrated to supply a microcontroller or other external
components. Reliable communication between stacked ICs is achieved by level-shifters with current sources. The ATA6870 can be connected to three, four, five or six
battery-cells. Up to 16 circuits (96 cells) can be cascaded in one string. The number of
strings is not limited.
9116B–AUTO–10/09
2. Block Diagram
Figure 2-1.
Block Diagram
To ATA6870
above
VDDHV
MBAT7
Cell 6:
Reference
ADC
Cell Balancing
Standby Control
Digital
Level Shifter
DISCH6
PD_N
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
MBAT6
POW_ENA
VDDHVM
AVDD
3.3V Internal
Voltage Regulator
DISCH1
Logic
Cell 1:
Reference
ADC
Cell Balancing
Digital
Level Shifter
MBAT2
BIASRES
Internal Biasing
MBAT1
NTC
NTC
Cell
Temperature
Measuring
Interchip
and
Microcontroller
Communication
Interface
Test
TEMP1
Digital
Level Shifter
TEMPREF
TEMP2
TEMPVSS
GND AVSS DVSS SCANMODE
PWTST
DTST
CS_FUSE
DVDD
VDDFUSE
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MCU
MFIRST
ATST
To ATA6870
below
2
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
3. Pin Configuration
Table 3-1.
40
VDDHVP
41
MISO_IN
42
PD_N
43
SCK_OUT
IRQ_IN
44
MOSI_OUT
45
CS_N_OUT
46
CLK_OUT
47
VDDHV
48
MBAT7
MBAT6
DISCH6
Pinning QFN48, 7 mm × 7 mm
39
38
37
DISCH5
1
36
MBAT5
2
35
PD_N_OUT
DISCH4
3
34
POW_ENA
VDDHVM
MBAT4
4
33
PWTST
DISCH3
5
32
BIASRES
ATA6870
MBAT3
6
31
TEMPREF
DISCH2
7
30
TEMP2
12
25
ATST
13
14
15
16
17
18
19
20
21
22
23
24
GND
CLK
DVDD
AVDD
DVSS
AVSS
26
VDDFUSE
27
11
CS_FUSE
10
IRQ
SCANMODE
MBAT1
DTST
TEMPVSS
MFIRST
TEMP1
28
MOSI
29
9
MISO
8
SCK
MBAT2
DISCH1
CS_N
Figure 3-1.
Pin Description
Pad Number
Pad Name
Exposed Pad
Function
Remark
Heatslug
1
DISCH5
Output to drive external cell-balancing transistor
2
MBAT5
Battery cell sensing line
3
DISCH4
Output to drive external cell-balancing transistor
4
MBAT4
Battery cell sensing line
5
DISCH3
Output to drive external cell-balancing transistor
6
MBAT3
Battery cell sensing line
7
DISCH2
Output to drive external cell-balancing transistor
8
MBAT2
Battery cell sensing line
9
DISCH1
Output to drive external cell-balancing transistor
10
MBAT1
Battery cell sensing line
11
IRQ
Interrupt output for MCU/ATA6870 below
12
CLK
System clock
13
CS_N
14
SCK
SPI clock input from MCU/ATA6870 below
15
MOSI
Master Out Slave In input from MCU
SPI data input
16
MISO
Master In Slave Out output for MCU
SPI data output
17
MFIRST
Chip select input from MCU/ATA6870 below
Select Master/Slave
3
9116B–AUTO–10/09
Table 3-1.
4
Pin Description (Continued)
Pad Number
Pad Name
Function
Remark
18
DTST
Test-mode pin
Keep pin open (output)
19
SCANMODE
Test-mode pin
Connected to VSSA
20
CS_FUSE
Test-mode pin
Connected to VSSA
21
VDDFUSE
Test-mode pin
Connected to VSSA
22
DVSS
23
DVDD
Digital positive supply input (3.3V)
24
GND
Ground
25
ATST
Test-mode pin
26
AVDD
3.3V Regulator output
Digital negative supply
27
AVSS
28
TEMPVSS
29
TEMP1
Temperature measuring input 1
30
TEMP2
Temperature measuring input 2
31
TEMPREF
Reference voltage for temperature measuring
32
BIASRES
Internal supply current adjustment
33
PWTST
34
POW_ENA
Power regulator enable/disable
35
PD_N_OUT
Power down output
36
VDDHVM
Power regulator output to supply e.g. an external
microcontroller
37
VDDHVP
Power regulator supply voltage
38
PD_N
Connected to AVDD
Keep pin open (output)
Analog negative supply
Ground for temperature measuring
Test - mode pin
Keep pin open (output)
Power down input
39
MISO_IN
Master In Slave Out input from ATA6870 above
40
MOSI_OUT
Master Out Slave In output for ATA6870 above
41
SCK_OUT
SPI clock output for input of ATA6870 above
42
CS_N_OUT
43
CLK_OUT
44
IRQ_IN
Interrupt input from ATA6870 above
45
VDDHV
Supply voltage
46
MBAT7
Battery cell sensing line
47
DISCH6
Output to drive external cell-balancing transistor
48
MBAT6
Battery cell sensing line
Chip select output for input of ATA6870 above
System clock output for input of ATA6870 above
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
4. ATA6870 System Overview
The ATA6870 can be stacked up to 16 times in one string. The communication with MCU is carried out on the lowest level through an SPI bus. The data on the SPI bus is transmitted to the 15
other ATA6870s using the communication interface implemented inside ATA6870.
Figure 4-1.
Battery Management Architecture with One Battery String
ATA6870
ATA6870
ATA6870
ATA6870
MCU
5
9116B–AUTO–10/09
Figure 4-2.
Battery Management Architecture with Several Battery Strings
ATA6870
ATA6870
MCU
OPTO
ATA6870
ATA6870
MCU
6
To Battery
Master Controller
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
5. Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Unless otherwise specified all voltages to pin VSSA.
Parameters
Pin
Symbol
Min.
Max.
Unit
Ambient temperature
TA
–40
+85
°C
Junction temperature
TJ
–40
+125
°C
TS
–55
+150
°C
VMBAT(i+1) VMBAT(i)
–0.3
+5.5
V
Storage temperature
Battery cell voltage
MBAT(i+1),
MBAT(i)
VVDDHV - VVMBAT7max
VVDDHV - VVMBAT7
–5.5
+0.3
V
MBAT1
VMBAT1
–0.3
+0.3
V
VDDHVP
VVDDHVP
–0.3
+33.6
V
VDDHV
VVDDHV
–0.3
+30
V
Supply voltage DVDD (regulator is Off)
DVDD
VDVDD
–0.3
+5.5
V
Supply voltage AVDD (regulator is Off)
AVDD
VAVDD
–0.3
+5.5
V
Test-input
VDDFUSE
VVDDFUSE
–0.3
+5.5
V
Reference voltage for temperature
measuring (regulator is Off)
TEMPREF
VTEMPREF
–0.3
VDD+0.3
V
Supply voltage VDDHVM (regulator is Off)
VDDHVM
V VDDHVM
–0.3
+5.5
V
Digital Ground
DVSS
VAVSS - VGND
–0.3
+0.3
V
Analog Ground
AVSS
VAVSS - VGND
–0.3
+0.3
V
AVSS, DVSS
VAVSS - VDVSS
–0.3
+0.3
V
VMBAT1
Supply voltage power regulator
Operating supply voltage
Digital/Analog Ground
Ground voltage for temperature measuring
Input voltage for logic I/O pins
Input voltage for analog I/O pins
TEMPVSS
VTEMPVSS
–0.3
+0.3
V
CLK, CS_N,
SCK, MOSI,
DTST, ATST,
SCANMODE,
MFIRST,
POW_ENA,
CS_FUSE,
PWTST
VCLK, VCS_N,
VSCK, VMOSI,
VDTST, VATST,
VSCANMODE,
VMFIRST,
VPOW_ENA,
VCS_FUSE, VPWTST
–0.3
VDD + 0.3
V
IRQ, MISO
VIRQ, VMISO
–0.3
+5.5
V
–0.3
VDD + 0.3
V
TEMP1, TEMP2, VTEMP1, VTEMP2,
VBIASRES
BIASRES
Input voltage for digital high voltage input
pins
MISO_IN,
IRQ_IN
VMISO_IN, VIRQ_IN
VDDHV – 0.3
VDDHV + 0.3
V
Voltage at digital high voltage output pins
MOSI_OUT,
SCK_OUT,
CS_N_OUT,
CLK_OUT
VMOSI_OUT,
VSCK_OUT,
VCS_N_OUT,
VCLK_OUT
VDDHV – 0.3
VDDHV + 0.3
V
PD_N
V PD_N
VDDHV – 5.5
VDDHV + 0.3
V
PD_N_OUT
V PD_N_OUT
–5.5
+0.3
V
DISCH(i)
VDISCH(i)
VMBAT(i) – 0.3
VMBAT(i+1) + 0.3
V
Input: PD_N
Output: PD_N_OUT
Voltage at cell balancing outputs
7
9116B–AUTO–10/09
5. Absolute Maximum Ratings (Continued)
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Unless otherwise specified all voltages to pin VSSA.
Parameters
Pin
Symbol
HBM ESD
ANSI/ESD-STM5.1
JESD22-A114
AEC-Q100 (002)
CDM ESD STM 5.3.1
Min.
Max.
Unit
±2
kV
500
V
750
V
±100
mA
ESD
1, 12, 13, 24, 25,
36, 37, 48
Latch-up acc. to AECQ100-004, JESD78A
LATCH-UP
6. Thermal Resistance
Parameters
Symbol
Value
Unit
Max. thermal resistance
junction-ambient(1)
Rthjamax
20
K/W
Max. thermal resistance junction-case
RthjCmax
TBD
K/W
Package. QFN48 7× 7
Note:
8
1. Package mounted on 4 large PCB (per JESD51-7) under natural convention as defined in JESD51-2.
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7. Circuit Description and Electrical Characteristics
Unless otherwise specified all parameters in this section are valid for a supply voltage range of
6.9V < V D D H V < 30V and a battery cell voltage of V M B A T ( i + 1 ) – V M B A T ( i ) = 0V to 5V,
–40°C < TA < 85°C. All values refer to pin VSSA, unless otherwise specified.
7.1
Operating Modes
The ATA6870 has two operation modes.
1. Power-down Mode (PDmode)
2. Normal Mode (NORM Mode)
7.1.1
Power-down Mode
In Power-down Mode all blocks of the IC are switched off.
The circuit can be switched from Power-down to ON Mode or back via the PD_N input. If the pin
is connected to VDDHV via an external optocoupler, for example, the circuit is in ON Mode. If
several ATA6870 are stacked, the power-down signal must be only provided for the IC on the
top level of the stack. The next lower IC receives this information from the PD_N_OUT output of
its upper IC. The PD_N_OUT pin must be connected to either the PD_N pin of the next lower
ATA6870 or to VSSA.
9
9116B–AUTO–10/09
Figure 7-1.
Power-down
VDDHV
MBAT7
PD_N
Digital
Level Shifter
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
Standby Control
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
POW_ENA
VDDHVM
MBAT6
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH1
Internal Biasing
MBAT1
NTC
Interchip
and
Microcontroller
Communication
Interface
Test
Cell
Temperature
Measuring
TEMP1
NTC
Digital
Level Shifter
TEMPREF
TEMP2
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
PWTST
SCANMODE
DVSS
GND
TEMPVSS
AVSS
DVDD
BIASRES
Logic
Digital
Level Shifter
MBAT2
VDDHV
MBAT7
PD_N
Digital
Level Shifter
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
Standby Control
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
POW_ENA
VDDHVM
MBAT6
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH1
Logic
Digital
Level Shifter
MBAT2
BIASRES
Internal Biasing
MBAT1
TEMPREF
NTC
MCU
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
PWTST
SCANMODE
DVSS
GND
AVSS
TEMPVSS
10
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
Test
Cell
Temperature
Measuring
TEMP1
NTC
Interchip
and
Microcontroller
Communication
Interface
Digital
Level Shifter
TEMP2
DVDD
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Table 7-1.
Electrical Characteristics
No. Parameters
Pin
Symbol
Maximum allowed input
current in Power-down
1.1
Mode (e.g., leakage current
of an optocoupler)
PD_N
IPD_N
1.2 Input current in ON Mode
PD_N
IPD_N
PD_N
1.3
Test Conditions
Maximum voltage
(pin PD_N left open)
IPD_N = 0 to 50 µA
Propagation delay time
1.4 from Power-down Mode to
NORM Mode
Min.
Typ.
Max.
Unit
Type*
50
µA
A
5
mA
A
VVDDHV VPD_N
5
V
A
DVDD
tVDDON
3
ms
A
DVDD
tVDDOFF
10
ms
A
2.5
min slope
1 mA
I PD_N = -------------msec
Propagation delay time
1.5 from NORM Mode to
Power-down Mode
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.1.2
Normal Operating Mode (NORM Mode)
The ATA6870 turns on when the PD_N signal is switched from low to high. The power supplies
AVDD and DVDD as well as VDDHVM (if the input signal POW_ENA = high) are turned on. The
configuration registers are set to their default values. In NORM Mode the ATA6870 can acquire
analog data (voltage or temperature channels) upon request from the host microcontroller.
When the host microcontroller orders an acquisition through the SPI bus, the IC starts digitizing
all voltage and one temperature channel in parallel. The on-chip digital signal processor filters, in
real time, the channel samples. When conversion and filtering are done, the data-ready interrupt
to the host processor indicates the data availability. The MCU can now read the ADC result registers. The MCU reads the ATA6870’s status registers to check each IC and to acknowledge the
interrupt. When ATA6870 is in NORM Mode, the MCU can be active or in idle mode. In order to
wake-up the MCU by an interrupt, the Low Frequency Timer (LFT) can be activated in ATA6870.
Interrupt is signaled with a high level on IRQ pin. The LFT is re-programmable on the fly and can
be reset through SPI, but is not stoppable.
Figure 7-2.
ATA6870 in NORM Mode
ASICs in NOMode
Idle
IRQ
SPI
MCU
Acquisition
Asserted
ACQ Cmd
Background
task
Send SPI
Command
Read status register
Background
task/Idle
Interrupt
Handling
Idle
Read data burst mode
Background
task
Processing
11
9116B–AUTO–10/09
Table 7-2.
Electrical Characteristics
No. Parameters
Test Conditions
2.1 Supply voltage
2.2
Current consumption
IVDDHV (Normal Mode)
Current consumption in
Power-down mode
2.3
(PDmode) IVDDHV +
IMBAT(i)max(1)
VMBAT(i+1) –
VMBAT(i) = 3.7V
Pin
Symbol
Min.
VDDHV
VVDDHV
6.9
VDDHV
IVDDHV
Typ.
VDDHV
Imbalance from battery cell
to battery cell in
VMBAT(i+1) –
2.4
VMBAT(i) = 3.7V
Power-down Mode
(PDN Mode)
MBAT(i+1)
IMBAT(i+1)
Max.
Unit
Type*
30
V
A
15
mA
A
10
µA
A
10
µA
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note:
1. Largest input current of the cell inputs MBAT(i)
7.2
Interface to Battery Cells
Each input line MBAT(i) and the supply lines VDDHV, AVSS can be protected by additional
resistors and a filter capacitor as shown below.
Figure 7-3.
External Components between ATA6870 and the Battery Cells
R_VDDHV
R_IN
VDDHV
MBAT(i+1)
Discharge
Resistor
Battery
cell(i)
Cell(i)
DISCH(i)
R_IN
R_VSS
Battery cell
Board
MBAT(i)
AVSS
ATA6870
MBAT(i) are high impedance input (~2 MΩ). Thus, external components can be added to protect
ATA6870 chip against current spikes and overvoltage at battery cell level.
12
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Table 7-3.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Max.
Unit
Type*
3.1 R_IN
MBAT(i)
1
kΩ
D
3.2 R_VDDHV
VDDHV
50
Ω
D
AVSS
50
Ω
D
3.3 R_VSS
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.3
Reduced Number of Battery Cells Configuration
It is possible for ATA6870 to operate with a reduced number of cells: 3, 4, 5, and 6 cell operation
are possible. In these cases, the cell-chip inputs corresponding to the missing cells should be
connected to the upper cell potential of the module.
Connection with 4 Cells only
VDDHV
Figure 7-4.
MBAT7
PD_N
PD_N_OUT
DISCH6
VDDHVP
POW_ENA
MBAT6
VDDHVM
DISCH5
AVDD
MBAT5
DVDD
BIASRES
DISCH4
MBAT4
ATA6870
MISO_IN
DISCH3
MOSI_OUT
MBAT3
SCK_OUT
CS_N_OUT
CLK_OUT
DISCH2
IRQ_IN
MBAT2
CS_N
DISCH1
SCK
MFIRST
VDDFUSE
ATST
DVSS
TEMPVSS
GND
TEMP1
AVSS
TEMP2
DTST
MISO
CS_FUSE
MOSI
TEMPREF
SCANMODE
MBAT1
IRQ
CLK
Battery cell 1 (MBAT1, MBAT2) and battery cell 6 (MBAT6, MBAT7) must always be used for the
lowest/highest cell.
13
9116B–AUTO–10/09
7.4
ATA6870 External MCU Supply
The ATA6870 provides a 3.3V power-supply for external components such as the microcontroller unit (MCU). The input pin for this supply is pin VDDHVP, and the output pin is VDDHVM.
This regulator is able to supply the MCU directly from the topmost battery cell of a string. The
power regulators of all stacked ATA6870 are therefore put in serial configuration to avoid imbalance.The regulator can be disabled with the digital input pin POW_ENA.
Table 7-4.
Truth Table
Pin
Symbol
POW_ENA
VPOW_ENA
Value
Function
Low
Voltage regulator disabled
High
Voltage regulator enabled
Logic levels: Low = VDVSS, High = VDVDD
14
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Figure 7-5.
MCU Supply with the Internal Power Supply
VDDHV
MBAT7
PD_N
Digital
Level Shifter
Standby Control
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
POW_ENA
VDDHVM
MBAT6
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH1
Logic
Digital
Level Shifter
MBAT2
BIASRES
Internal Biasing
MBAT1
Cell
Temperature
Measuring
TEMP1
Interchip
and
Microcontroller
Communication
Interface
Test
Digital
Level Shifter
TEMPREF
TEMP2
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
SCANMODE
PWTST
DVSS
GND
TEMPVSS
AVSS
DVDD
+
VDDHV
MBAT7
PD_N
Standby Control
Digital
Level Shifter
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
POW_ENA
VDDHVM
MBAT6
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH2
Logic
Digital
Level Shifter
MBAT2
BIASRES
TEMPREF
Interchip
and
Microcontroller
Communication
Interface
Digital
Level Shifter
Test
Cell
Temperature
Measuring
TEMP1
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MCU
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
SCANMODE
PWTST
DVSS
GND
TEMPVSS
AVSS
+
Internal Biasing
MBAT1
TEMP2
DVDD
15
9116B–AUTO–10/09
Table 7-5.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Max.
Unit
Type*
33.3
V
A
3.5
V
A
4.1 Supply voltage
VDDHVP
VVDDHVP
6.9
4.2 Output voltage
VDDHVM
VVDDHVM
3.1
VDDHVM
IVDDHVM
20
mA
A
VDDHVM
IVDDHVM
50
mA
A
4.3 DC output current
4.4 Peak output current
(1)
3.3
(2)
VDDHVM
30
33
µF
D
4.6 Capacitor load(2)
VDDHVM
200
220
nF
D
V
A
V
A
V
C
µA
A
4.5 Capacitor load
0.7 ×
VDVDD
4.7 High level input voltage
POW_ENA
VPOW_ENA
4.8 Low level input voltage
POW_ENA
VPOW_ENA
4.9 Hysteresis
POW_ENA
VPOW_ENA
0.05 ×
VDVDD
POW_ENA
IPOW_ENA
–1
4.10 Input current
VPOW_ENA = 0V to
VDVDD
0.3 ×
VDVDD
+1
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. Maximum current the power regulator can provide, time limited by thermal consideration only
2. These capacitors are mandatory
16
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Figure 7-6.
MCU Supply with an External Power Supply
VDDHV
MBAT7
PD_N
Digital
Level Shifter
Standby Control
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
POW_ENA
VDDHVM
MBAT6
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH2
Logic
Digital
Level Shifter
MBAT2
BIASRES
Internal Biasing
MBAT1
Cell
Temperature
Measuring
TEMP1
Interchip
and
Microcontroller
Communication
Interface
Test
Digital
Level Shifter
TEMPREF
TEMP2
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
PWTST
SCANMODE
AVSS
DVSS
TEMPVSS
GND
DVDD
VDDHV
MBAT7
PD_N
Standby Control
Digital
Level Shifter
Cell 6:
Reference
ADC
Cell Balancing
DISCH6
PD_N_OUT
VDDHVP
3.3V
Voltage Regulator
MBAT6
POW_ENA
VDDHVM
AVDD
ATA6870
3.3V Internal
Voltage Regulator
Cell 1:
Reference
ADC
Cell Balancing
DISCH2
Logic
Digital
Level Shifter
MBAT2
BIASRES
Internal Biasing
MBAT1
Cell
Temperature
Measuring
TEMP1
Interchip
and
Microcontroller
Communication
Interface
Test
Digital
Level Shifter
TEMPREF
TEMP2
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
CLK_OUT
IRQ_IN
CS_N
SCK
MOSI
MISO
IRQ
CLK
MCU
MFIRST
VDDFUSE
ATST
DTST
CS_FUSE
PWTST
SCANMODE
AVSS
DVSS
TEMPVSS
GND
DVDD
17
9116B–AUTO–10/09
7.5
7.5.1
Analog Blocks
Battery Voltage Measuring
Figure 7-7.
Block Diagram Battery Voltage Measurement
External
ATA6870
1.666V
Reference
DVDD
gain
MBAT(i+1)
Cell i
MBAT(i)
12 bits
incremental
ADC
High
voltage
level shifter
(digital)
DISCH(i)
Bitstream
CLK
MUX
Disch(i)
DVSS
The battery voltage measurement block contains
• a 3-input multiplexer
• a voltage reference,
• a 12-bit ADC
• the upper part of digital voltage level shifters
7.5.1.1
Input Multiplexer
The multiplexer has 3 inputs. Each of the functions are described in the table below:
Table 7-6.
Inputs of the Multiplexer
Input
Function
V(MBAT(i+1), MBAT(i))
Input voltage measurement
V(VREF(i))
Gain error acquisition of ADC
V(MBAT(i), MBAT(i))
Offset error acquisition of ADC
The multiplexer inputs are controlled by SPI.
18
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.5.1.2
12 Bits Incremental ADC
The purpose of this cell is to convert an analog input into a 12-bit digital word.
Table 7-7.
Electrical Characteristics
No. Parameters
Test Conditions
5.1 Accuracy of voltage channel(1)
Maximum input noise
0.5 mVrms
Pin
MBAT(i+1),
MBAT(i)
Accuracy of voltage
channel(1)(2)
Maximum input noise
MBAT(i+1),
0.5 mVrms
MBAT(i)
VMBAT(i+1) – VMBAT(i) = 3.6V
5.3 Input voltage range
MBAT(i+1),
MBAT(i)
5.2
Symbol
VMBAT(i+1),
VMBAT(i)
Min.
Typ.
Max.
Unit
Type*
–10
+10
mV
A
–7
+7
mV
A
0
5
V
A
5.4 Input resolution (1 LSB)
VLSB
1.5
mV
A
5.5 Reference voltage
VRef
1.667
V
D
5.6 Offset voltage
MBAT(i+1),
MBAT(i)
VMBAT(i+1),
VMBAT(i)
410
LSB
A
5.7 Gain voltage
MBAT(i+1),
MBAT(i)
VMBAT(i+1),
VMBAT(i)
655
LSB/V
A
kHz
D
5.8 System clock
CLK
fCLK
5.9 SPI interface clock
SCK
fSCK
(3)
12
tconv = (2
5.10 Conversion rate
+ 1) / fCLK
MBAT(i+1),
MBAT(i)
5.11 Input bandwidth
450
500
550
0.5 × fCLK
D
tconv
8.194
ms
D
fBW
50
Hz
D
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. The accuracy of the voltage channels is guaranteed with no external resistor in the MBAT(i), MBAT(i+1) lines.
2. Reduced temperature range (–20°C to + 65°C)
3. Conversion rate without readout times of SPI
Figure 7-8.
ADC output
3686D = 0.9D*212
Slope = (1502D - 410D)/1.667 = 655DLSB/V
ADC (VREF)
1502D
410D = 0.1*212
0
0
VREF
5
Input Voltage
(MBATi+1, MBATi)
19
9116B–AUTO–10/09
In order to correct offset and gain, MBATi and VREF are measured:
adc ( VREF i ) – adc ( MBAT i )
Slope = ---------------------------------------------------------------------v ( VREFi )
(1)
Offset = adc(MBATi)
adc(MBATi+1) = Slope × v(MBATi+1, MBATi) + Offset
adc ( MBATi+1 ) – adc ( MBAT i )
v ( MBAT i+1 MBAT i ) = ----------------------------------------------------------------------------- × v ( VREF i )
adc ( VREF i ) – adc ( MBATi )
Table 7-8.
(2)
Ideal ADC
ADC Input
Ideal ADC Output Code
Comments
0V
410
0.1 × 212
VREF = 1.667V
1502
2.2V
1851
2.5V
2048
3V
2375
3.7V
2834
5V
3686
0.5 × 212
0.9 × 212
12
adc ( MBAT i+1 ) – 0.1 × 2
v ( MBAT i+1 MBAT i ) = 1.667 × ------------------------------------------------------------------12
1502 – 0.1 × 2
(3)
v(MBATi+1, MBATi) = 1.52656 × 10–3 × (adc(MBATi+1) – 410)
Using this equation, the round error is less than one mV.
5
= 1.5 mV
LSB = -----------------------------------------------------12
12
0.9 × 2 – 0.1 × 2
Compensation with 1st Order Correction
As the MCU cannot perform a division operation,
1
---------------------------------------------------------------------- is approximated in a first order polynomial equation:
adc ( VREF i ) – adc ( MBAT i )
[ adc ( VREF i ) – 1502 ] – [ adc ( MBAT i ) – 410 ]
1
--------------------------------- – ------------------------------------------------------------------------------------------------------------------2
( 1502 – 410 )
( 1502 – 410 )
20
(4)
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
With equation (3) and (4) we get the formula for calculating the analog input voltage (without
division):
[ adc ( VREF i ) – 1502 ] – [ adc ( MBAT i ) – 410 ]
1
v ( MBAT i+1 , MBAT i ) = 1.667 × --------------------------------- – ------------------------------------------------------------------------------------------------------------------- × [ adc ( MBATi+1 ) – adc ( MBAT i ) ]
2
( 1502 – 410 )
( 1502 – 410 )
7.5.1.3
Acquisition Time and Clocking
The acquisition time depends on the number of ATA6870s to be addressed.
Table 7-9.
Electrical Characteristics
Number of
ATA6870
SCK Frequency
(kHz)
CLK Frequency
(kHz)
Conversion
Time (ms)
Total Acquisition
Duration (ms)(1)
1
250
500
8.2
9.5
2
250
500
8.2
10.2
3
250
500
8.2
10.8
4
250
500
8.2
11.5
5
250
500
8.2
12.2
6
125
500
8.2
17.0
7
125
500
8.2
18.4
8
125
500
8.2
19.7
9
125
500
8.2
21.1
10
62.5
500
8.2
36.1
11
62.5
500
8.2
38.8
12
62.5
500
8.2
41.5
13
62.5
500
8.2
44.2
14
62.5
500
8.2
46.8
15
62.5
500
8.2
49.5
16
62.5
500
8.2
52.2
Notes:
1. The total acquisition time takes the following into account:
- ADC conversion
- Reading of voltage values in burst mode for all ATA6870 devices,
- Reading of temperature values for all ATA6870 devices (only one temperature input is read).
SPI clock (pin SCK) must a maximum of half the frequency of the system clock CLK.
21
9116B–AUTO–10/09
7.5.2
Battery Cell Discharge
Each battery cell can be discharged with an external resistor and an NMOS transistor.
Figure 7-9.
External Circuit for Cell Balancing
R_VDDHV
R_IN
VDDHV
MBAT(i+1)
Discharge
Resistor
Battery
cell(i)
Cell(i)
DISCH(i)
R_IN
R_VSS
Battery cell
MBAT(i)
AVSS
Board
ATA6870
The pin DISCH(i) (Discharge for battery cell i) is intended to switch on the external discharge
resistor in parallel to the battery cell to bypass charge current for cell balancing reasons.
The pin DISCH(i) is a digital output:
No discharge: VDISCH(i) = VMBAT(i)
Discharge: VDISCH(i) = VMBAT(i+1)
Table 7-10.
Electrical Characteristics
No. Parameters
Test Conditions
6.1 Operating voltage range
Pin
Symbol
Min.
MBAT(i)
MBAT(i+1) –
MBAT(i)
1.5
Typ.
Max.
Unit
Type*
5
V
A
6.2 High-level output voltage
IDISCH(i) = –10 µA,
MBAT(i+1) – MBAT(i) =
1.5V to 5V
DISCH(i)
VDISCH(i) –
VMBAT(i)
VMBAT(i+1) –
50 mV
V
A
6.3 High-level output voltage
IDISCH(i) = –1 mA
MBAT(i+1) – MBAT(i) =
3V to 5V
DISCH(i)
VDISCH(i) –
VMBAT(i)
VMBAT(i+1) –
0.6V
V
A
kΩ
A
6.4 Pull-down resistor(1)
DISCH(i)MBAT(i)
60
140
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note:
1. Integrated pull-down resistor between pins DISCH(i) and MBAT(i)
22
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.5.3
Temperature Channel
The temperature sensors are based on a resistor divider using a standard resistor and an NTC
resistor. This resistor divider is connected to the reference of the ADC for temperature measuring. As the ADC is sharing same reference value, the output of temperature measurement with
ADC is ratio metric.
Figure 7-10. Battery Cell Temperature Measurement
AVDD
TEMPREF
RES_REF2
1.2V
Reference
RES_REF1
TEMP1
TEMP2
12 bits
Incremental ADC
OUT
RES_NTC1
RES_NTC2
Operation Register
TEMPVSS
During one measuring cycle only one temperature input can be measured by the ADC. The
channel can be selected in the Operation Register (0x02) by the TempMode bit (bit 3).
The ADC output is equal to:
RES_NTC(1)
8- – ----8-⎞
out = 2048 × ⎛ 1 + --------------------------------------------------------------------------------- × ----⎝
(RES_NTC(1) + RES_REF(1)) 15 10⎠
Table 7-11.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Max.
Unit
Type*
TEMPREF
VTEMPREF –
VTEMPVSS
1.1
1.2
1.3
V
A
TEMPREF
ITEMPREF
2
mA
A
7.3 Input voltage range
TEMP1
VTEMP1
0
VTEMPREF
V
A
7.4 Input voltage range
TEMP2
VTEMP2
0
VTEMPREF
V
A
7.5 Resistor RES_REF
RES_REF
1.2
7.6 Resistor RES_NTC
RES_NTC
7.1 Reference voltage
7.2
Reference voltage output
current
Code output for
7.7 value(RES_NTCx) =
value (RES_REFx)
22
kΩ
D
800
kΩ
D
V(TEMPi, TEMPVSS)
= 0.5 × V(TEMPREF,
TEMPVSS)
931D
956D
981D
A
7.8
Code output for
value(RES_NTC) = 0
V(TEMPi, TEMPVSS)
=0
385D
410D
435D
A
7.9
Code output for
V(TEMPi, TEMPVSS)
value(RES_NTC) = infinite = V(TEMPREF)
1477D
1502D
1527D
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
23
9116B–AUTO–10/09
7.5.4
Internal Voltage Regulator
The regulator output is pin AVDD. The pins AVDD and DVDD have to be connected together. An
external filtering capacitor (10 nF recommended) is used to filter and stabilize the function. The
regulator output can be used to supply outside functions at the price of power supply imbalance
between battery cells.
Table 7-12.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
VDDHV
VVDDHV
6.9
8.2 Regulated output voltage
AVDD
VAVDD
3.1
8.3 Output current
AVDD
IAVDD
0
8.1 Supply voltage range
8.4 Cload (load capacitor)
Cload
9
Typ.
3.3
Max.
Unit
Type*
30
V
A
3.5
V
A
5
mA
A
nF
D
10
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.5.5
Central Biasing
This block generates a precise bias current to supply internal blocks of the IC. Connection of any
external loads to this pin is not allowed.
Table 7-13.
Electrical Characteristics
No. Parameters
Test Conditions
9.1 Biasing voltage
Pin
Symbol
Unit
Type*
BIASRES
VBIASRES
1.2
V
A
RRefbias
121
kΩ
D
+1
%
D
50
pF
D
9.2 External resistor
ΔRRefbias
9.3 Tolerance
Maximum external parasitic
9.4
capacitor
BIASRES
Min.
–1
CExternal
Typ.
Max.
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Figure 7-11. Internal Bias Current Generation
IBIAS
Bandgap 1.2V
BIASRES
RREFBIAS
121 kΩ
24
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.5.6
RC Oscillator
Table 7-14.
Internal RC Oscillator Frequency
No. Parameters
Test Conditions
Pin
10.1 Oscillator frequency
Symbol
Min.
Typ.
Max.
Unit
Type*
fOsc
45
50
55
kHz
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.5.7
Power On Reset
The Power On Reset is used to initialize the digital part at power-up.
The Power On Reset circuit is functional when the voltage at pin DVDD is larger than VPOROP.
There are two reset sources:
System “hard reset”
System hard reset occurs when the voltage at pin DVVD goes below the Power On Reset
threshold.
ATA6870 registers are set to their initial values.
After t = tRESET, the MCU can access the ATA6870.
Figure 7-12. Power On Reset
VPOROFF
VPORON
VPOROP
VDVDD
VPOR
Table 7-15.
Electrical Characteristics
No. Parameters
Pin
Symbol
11.1 Power On Reset Functional
DVDD
VPOROP
11.2 Power On Reset Off
DVDD
VPOROFF
1.5
DVDD
VPOROFF –
VPORON
0.03
11.3 Power On Reset Hysteresis
11.4 Power On Reset Time
Test Conditions
tRESET
Min.
Typ.
Max.
Unit
Type*
0.8
V
A
2.5
V
A
V
C
µs
A
800
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
25
9116B–AUTO–10/09
7.6
7.6.1
Digital Part
General Features
The digital parts of the ATA6870 includes the following blocks:
• 4-Wire-SPI Full Duplex Communication with External Host MCU
• SPI System Protocol Management (Frames Decoding) and Configuration Registers Bank
• Interrupt to MCU Management
• Operations Decoding (Voltage and/or Temperature Acquisition) and Analog Part Control
• Low Frequency Timer (50 kHz) for Wake-up Management
7.6.2
Host Interface
Figure 7-13. Host Interface
VDDMicrocontroller Unit
CS_N
VDVDD
SCK
SPI
Master
SPI
MOSI
MFIRST
MISO
MCU
IRQ
SPI Slave
ATA6870 (1)
The communication between ATA6870 (1) and its host MCU, as well as ATA6870 (n) and
ATA6870(n-1) is based on a 4 wire serial/parallel SPI interface (CS_N, SCK, MISO, MOSI) and
an interrupt line (IRQ). The SPI interface allows register read and write operations. The interrupt
line indicates events that require host intervention.
ATA6870(n)’s 4 wire-SPI bus inputs (CS_N, SCK, MOSI) are up-shifted through level shifters.
They are internally connected to the outputs CS_N_OUT, SCK_OUT, MOSI_OUT and connected to ATA6870(n+1) (CS_N, SCK, MOSI).
ATA6870(n)’s 4 wire-SPI bus output (MISO) and ATA6870(n)’s interrupt (IRQ) are down-shifted
through level shifters and connected to ATA6870(n-1) (MOSI_IN, IRQ_IN) or host MCU (n = 1).
26
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.6.3
Interrupt
In NORM Mode (Normal Mode), the reasons for an interrupt request are:
• The availability of measured data (data ready)
When a voltage measurement is completed, the dataRdy flag is set in the status register.
The ATA6870 cannot decode any new incoming operation until the dataRdy flag is released.
• The low frequency timer (LFT) elapses (wakeup)
The wakeup flag is set in the status register when the LFT elapses. The LFT is controlled via
the SPI interface.
• A transmission error is flagged during the last SPI transaction (the commError bit is set in the
status register).
• If an undervoltage condition occurs. The undervoltage function is controllable via SPI
interface.
A mask bit in the irqMask register corresponds to each interrupt source. The MCU must read the
ATA6870 status register before the interrupt is cleared. With each SPI access a 16-bit IRQ state
is sent via MISO to the MCU with the interrupt state of all stacked ATA6870 (see Section 7.6.4.1
“SPI Transaction Fields” on page 27).
In PDmode (Power Down), if the digital control part and MCU are not supplied, neither SPI command nor interrupt are transmitted over the interface.
7.6.4
SPI Interface
The full duplex SPI interface block allows communication with the host MCU using four wires
(MISO, MOSI, SCK and CS_N). SPI transactions are based on a byte-access MSB first protocol.
7.6.4.1
SPI Transaction Fields
Most of the time, the SPI frame is defined by 4 distinct fields:
IDENTIFICATION (2 bytes): 16-bit chip identification (MOSI), in parallel 16-bit IRQ state
(MISO)
CONTROL (1 byte): 7-bit register address + 1-bit read/write information (MOSI)
DATA (k byte): k*8 bits data (MOSI or MISO depending on the access direction)
CHKSUM (1 byte): 8 bits if the Chksum_ena bit is set in the Ctrl register (register 0x01, bit 4)
27
9116B–AUTO–10/09
Figure 7-14. SPI Transaction Fields Organization
byte1
byte2
byte3
byte4
byte5 to n-1
MOSI
ChipID1
ChipID0
CONTROL
DATA
....
MISO
IRQID1
IRQID0
byte n
CS_N
CHKSUM
(1)
CHKSUM
(1)
SPI write access
CS_N
MOSI
ChipID1
ChipID0
MISO
IRQID1
IRQID0
CONTROL
DATA
....
SPI read access
Note:
7.6.4.2
1. Only send if chksum_ena bit set to 1 in the Ctrl register
Identification Field
ATA6870 Chip Identification
The two chip identification bytes are sent over MOSI to the ATA6870(n) in the chain. The
ATA6870(n) checks the LSB. When LSB=1, the information is for this device. The SPI address
will be decoded and the information processed. Independent from this the identification bytes
are shifted by one bit to the right and transferred to the next ATA6870(n) in the chain. The 2
identification bytes allows the identification of up to 16 ATA6870s.
.
28
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Figure 7-15. Identification Field: Chip-ID Reception
IDENTIFICATION FIELD
CS_N
ATA6870 (1)
MOSI_IN
0x00
0x08
CONTROL
DATA
ATA6870 (2)
MOSI_IN
0x00
0x04
CONTROL
DATA
ATA6870 (3)
MOSI_IN
0x00
0x02
CONTROL
DATA
ATA6870 (4)
MOSI_IN
0x00
0x01
CONTROL
DATA
ATA6870 (n>4)
MOSI_IN
0x00
0x00
CONTROL
DATA
ATA6870 (1->3) identification
field has lsb = 0 => device is not
affected.
ATA6870 (4) identification
Shift it ”on the fly” once
field has lsb = 1 => decode
to the right
SPI access.
Shift it ”on the fly” once
to the right
7.6.4.3
ATA6870 (>4) identification
field has lsb = 0 => device is not
affected.
Shift it ”on the fly” once
to the right
ATA6870 IRQ Identification
Figure 7-16. IRQ Propagation Scheme
IRQ_IN
IRQ
irq_int
ATA6870 (n)
IRQ_IN
IRQ
irq_int
ATA6870 (n-1)
IRQ_IN
IRQ
irq_int
MCU
ATA6870 (1)
29
9116B–AUTO–10/09
ATA6870(n) IRQ output is connected to ATA6870(n-1) IRQ_IN input.
ATA6870(n-1) IRQ output is a logic OR between IRQ_IN and its internal irq_int signal.
ATA6870(1) IRQ output is connected to MCU.
Figure 7-17. Identification Field: Interrupt State Emission
CS_N
ATA6870 (1)
MISO
0x20
0x00
ATA6870 (2)
MISO
0x40
0x00
ATA6870 (3)
MISO
0x80
0x00
ATA6870 (16)
MISO
0x00
0x00
Master SPI receives
identification word = 0x2000 = 213 = 2m.
This means ATA6870 number
(16-m = 16-13) = 3 has IRQ pending.
Others ATA6870s assert the MSB
of the first byte to 0. Others bits are
those coming from upper ATA6870,
shifted once to the right.
ATA6870 (3) IRQ is set. =>
ATA6870 (3) sets the MSB of the
first byte to be shifted out. Others
bits are those coming from upper
ATA6870, shifted once to the right.
Note:
n = IC number
m = bit number
m = n -1
1 < = n < = 16
0 < = m < = 15
With each SPI access, a 16- bit IRQ state is send via MISO synchronous to the identification
field to the MCU with the interrupt state of all stacked ATA6870. The MCU, interrupted by an
ATA6870, has to send the identification field to check the IRQ levels (in that case the checksum
is not considered). It is also possible to continue the transaction with CONTROL and DATA field.
The MCU decodes the identification field shifted in MISO input. When bit m is set,
ATA6870(16-m) is requesting interrupt.
Figure 7-18. Identification Field
CS_N
SCK
MOSI
MISO
30
M(16) M(15) M(14) M(13) M(12) M(11) M(10) M(9)
I(1)
I(2)
I(3)
I(4)
I(5)
I(6)
I(7)
I(8)
M(8) M(7) M(6) M(5) M(4) M(3) M(2) M(1)
I(9)
I(10) I(11) I(12) I(13) I(14) I(15) I(16)
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.6.4.4
CONTROL Field
The CONTROL field defines the register to access and the direction (read/write). The size of the
data (8, 16, or 112 bits) is defined by the address value in the CONTROL field.
Table 7-16.
Control Field
CONTROL Field
7.6.4.5
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
A6
A5
A4
A3
A2
A1
A0
W/Rd
DATA Field
The DATA field can be composed of 1, 2, or 14 bytes depending on the accessed register. Irrespective of the data direction, a byte is always transmitted with MSB first; a multi-byte word is
transmitted with MSByte first.
Figure 7-19. CONTROL and DATA Fields - 8-bits Register Write
CS_N
SCK
MOSI
A(6)
A(5)
A(4)
MISO
A(3)
A(2)
A(1)
A(0)
1
D(7)
D(6)
Data not relevant
D(5)
D(4)
D(3)
D(2)
D(1)
D(0)
D(1)
D(0)
Data not relevant
Figure 7-20. CONTROL and DATA Fields - 8-bits Register Read
CS_N
SCK
MOSI
MISO
A(6)
A(5)
A(4)
A(3)
A(2)
A(1)
Data not relevant
A(0)
0
Data not relevant
D(7)
D(6)
D(5)
D(4)
D(3)
D(2)
Figure 7-21. CONTROL and DATA Fields - 16-bits Register Write
CS_N
SCK
MOSI
A(6) A(5) A(4) A(3) A(2) A(1) A(0)
MISO
Data not relevant
1
D(15) D(14) D(13) D(12) D(11) D(10) D(9) D(8)
Data not relevant
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Data not relevant
31
9116B–AUTO–10/09
Figure 7-22. CONTROL and DATA Fields - 16-bits Register Read
CS_N
SCK
MOSI
A(6) A(5) A(4) A(3) A(2) A(1) A(0)
MISO
0
D(15) D(14) D(13) D(12) D(11) D(10) D(9) D(8)
Data not relevant
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
In order to retrieve results from all channels in one ATA6870 without having to request for each
channel, an SPI 112-bit read-only "burst access" (dataRd16Burst register; address = 0x7F) is
implemented. When requested, the ATA6870 outputs its 6 voltage channels V6 to V1 and one of
the two temperature channels T2 and T1 in sequence on the SPI bus. The diagrams below show
the CONTROL and DATA fields of such an access.
Figure 7-23. CONTROL and DATA Fields - 112-bits Register Read
CS_N
SCK
MOSI
1
1
1
MISO
1
1
1
1
0
0
Data not relevant
0
0
0
D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel V6
CS_N
SCK
MOSI
MISO
0
0
0
0
D(11) D(10) D(9) D(8)
D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel V1
CS_N
SCK
MOSI
MISO
0
0
0
0
D(11) D(10) D(9) D(8) D(7) D(6) D(5) D(4) D(3) D(2) D(1) D(0)
Channel temperature T1 or T2
32
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
One ATA6870 frame corresponds to the set of results obtained in one ATA6870. An ATA6870
frame is formatted as follows:
Figure 7-24. SPI Access to dataRd16burst Register 0x7F
Voltage channels
Temp channel
16 bit
16 bit
16 bit
16 bit
16 bit
16 bit
16 bit
ADC6
ADC5
ADC4
ADC3
ADC2
ADC1
ADCT
Padding: 0x00
msb
12-bit ADC data
lsb
When reading data of chained ATA6870, data is transferred as follow:
Figure 7-25. Example with two ATA6870 in a Chain
CS_N
SCK
MOSI
SPI Clock
Rd Reg command chip1
MISO
7.6.4.6
SPI Clock
Rd Reg command chip2
ATA6870 #1 Frame
ATA6870 #2 Frame
Communication Error
Correct communication can be verified using various functions of the ATA6870.
For internal synchronization, it is mandatory to keep CLK running during any SPI access; CLK
must be set on 4 clock cycles (at least) before SPI access starts, and must be kept on 4 clock
cycles (at least) after SPI access ends up. Keeping at least 4 CLK clock cycles between two
consecutive SPI accesses is mandatory. If this is not the case, the ATA6870s will detect an error
in communication. The CommError bit will be set in the Status Register 0x06).
Figure 7-26. SPI Access and CLK Activity
CLK OFF
CLK ON
4 clk_ticks
CLK_OFF
4 clk_ticks
SPI ACCESS
4 clk ticks
SPI ACCESS
The ATA6870 verifies that complete bytes (8 bits long) are always transmitted. A transition starts
when CS_N goes to low and it ends when CS_N goes to high. The number of clock cycles (signal CLK) is monitored during the transition. This number of clock cycles has to be modulo 8. If
the CS_N length is not modulo 8 clock cycles, the bit CommError is set in the Status register.
This will cause an interrupt to the MCU if the CommError is not masked by the commErrorMsk
bit in the IrqMask register.
33
9116B–AUTO–10/09
7.6.4.7
CHKSUM Field
The ATA6870 provides the possibility of verifying the transmitted data using a checksum. Setting chksum_ena bit to 1 in the Ctrl register (default = 0) activates the checksum feature.
The chksum field is an 8-bit checksum computed from the proceeding data (control and data
fields, byte 3 to byte n-1). It is based on the polynomial x8+x2+x1+1. The way it is computed is
depicted below:
Figure 7-27. LFSR-based Checksum Computation
F0i
serial bitstream
MSB first
F1i
z-1
F2i
z-1
F3i
z-1
F4i
z-1
F5i
z-1
F6i
z-1
F6o
z-1
The checksum is calculated from the CONTROL field and DATA field by a polynomial division.
The DATA field can consist of 1 byte up to 14 bytes (112-bit read-only “burst access”). The
IDENTIFICATION field (2 bytes) is not used to generate the checksum. The checksum is always
sent by the microcontroller, independent of read write mode.
The checksum is in the LFSR (Linear Feedback Shift Register) when the complete bitstream
(the whole fields of the transaction) followed by 0x00 have been shifted in the LFSR.
The checksum verification on the complete data transmission was OK when the complete bitstream followed by the checksum have been shifted in the LFSR, and the content of the LFSR is
0x00. If this is not the case, the receiving ATA6870 will set the chkError bit in the status register.
This will cause an interrupt to the MCU if the chkError is not masked by the chkErrorMsk bit in
the IrqMask register. See the example below. The checksum is serially computed from the 8-bit
value 0x57. So the bitstream 0x5700 is shifted in the LFSR. The resulting checksum is [f6o, f6i,
f5i … f0i] at the last shift in cycle:
Table 7-17.
5D
7D
0D
34
checksum = [f6o, f6i, ... f0i] = 0xA2
Input
f01
f1i
f2i
f3i
f4i
f5i
f6i
f6o
X
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
1
0
1
0
0
0
0
1
1
0
1
0
1
0
0
0
1
1
1
0
1
0
1
0
0
1
1
1
1
0
1
0
1
0
0
0
1
1
1
0
1
0
1
0
1
1
0
1
1
0
1
0
0
0
1
1
0
1
1
0
1
0
1
1
0
1
0
1
1
0
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
Table 7-17.
checksum = [f6o, f6i, ... f0i] = 0xA2 (Continued)
Input
f01
f1i
f2i
f3i
f4i
f5i
f6i
f6o
X
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
1
1
0
1
1
0
1
0
1
0
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
0
1
0D
0x2
0xA
During an SPI write access, the checksum is computed by the MCU and sent MSB first in the
CHKSUM field. For an SPI read access, the checksum is computed by the ATA6870 and is
checked by the MCU. During CHKSUM, MCU has to send 0x00 on MOSI, and must check that
its own LFSR equals 0x00 at the end of CHKSUM field.
7.6.4.8
Device Position
For the ATA6870 (1), this is the device on the lowest level, the SPI has to work as a standard
logic CMOS interface to the MCU. The SPI’s between stacked ATA6870 have to work as
level-shifters based on current sources. These different physical interfaces can be selected by
the Pin MFIRST.
Table 7-18.
Device Position
MFIRST
Table 7-19.
Configuration
0
ATA6870 (2) to ATA6870 (n)
1
ATA6870 (1)
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
0.7 ×
DVDD
12.1 High level input voltage
MFIRST
MFIRST
12.2 Low level input voltage
MFIRST
MFIRST
12.3 Hysteresis
MFIRST
MFIRST
0.05 ×
DVDD
MFIRST
MFIRST
–1
12.4 Input current
VMFIRST = 0V to VDVDD
Typ.
Max.
0.3 ×
DVDD
+1
Unit
Type*
V
A
V
A
V
C
µA
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
35
9116B–AUTO–10/09
7.6.5
Digital Inputs and Outputs
7.6.5.1
Digital Output Characteristics
Digital Output Characteristics (MISO, IRQ)
If the ATA6870 is configured as first IC (master) in a string (MFIRST = 1), these pins are configured as an open drain output. If the ATA6870 is configured to be a stacked IC (MFIRST = 0), the
output signals MISO and IRQ coming from the upper IC need to be transferred to the MISO and
IRQ outputs of the master in the string via the MISO_IN and IRQ_IN inputs. In this case the
MISO and IRQ outputs act as level shifters based on current sources.
Table 7-20.
Electrical Characteristics
No. Parameters
Test Conditions
13.1 Low level output voltage
IOUT = +5 mA
MFIRST = 1
Pin
MISO, IRQ
Symbol
Min.
Typ.
VMISO, VIRQ
Max.
Unit
Type*
0.2 ×
VDD
V
A
13.2 Low level output current
±0.3V, MFIRST = 0
MISO, IRQ
IMISO, IIRQ
–13
–8
µA
A
13.3 High level output current
±0.3V, MFIRST = 0
MISO, IRQ
IMISO, IIRQ
–65
–40
µA
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Digital Output Characteristics (MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT)
These outputs act as level shifters based on current sources. They transfer the input signals
MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT to the next IC above. If the ATA6870 is the IC
on the top level of a string, these outputs must be connected to VDDHV.
Table 7-21.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
14.1 Low level output current
VDDHV + 1V to
VDDHV + 2V
(1)
V(1)
14.2 High level output current
VDDHV + 1V to
VDDHV + 2V
(1)
V(1)
Typ.
Max.
Unit
Type*
25
55
µA
A
–1
+1
µA
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note:
1. MOSI_OUT, SCK_OUT, CS_N_OUT, CLK_OUT
36
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.6.5.2
Digital Input Characteristics
Digital Input Characteristics (MISO_IN, IRQ_IN)
Table 7-22.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
15.1 Low level input current
(VDDHV + 1.4V)
±0.3V
MISO_IN,
IRQ_IN
IMISO_IN
IIRQ_IN
13
15.2 High level input current
(VDDHV + 1.4V)
±0.3V
MISO_IN,
IRQ_IN
IMISO_IN
IIRQ_IN
Typ.
Max.
Unit
Type*
µA
A
µA
A
Max.
Unit
Type*
DVDD
V
A
0.3 ×
DVDD
V
A
V
C
40
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Digital Input Characteristics (CS_N, SCK, MOSI, CLK)
Table 7-23.
Electrical Characteristics
No. Parameters
Test Conditions
Pin
Symbol
Min.
0.7 ×
DVDD
Typ.
16.1 High level input voltage
MFIRST = 1
(1)
V(1)
16.2 Low level input voltage
MFIRST = 1
(1)
V(1)
16.3 Hysteresis
MFIRST = 1
(1)
V(1)
16.4 High level input current
MFIRST = 1
I(1)
50
100
µA
A
16.5 Low level input current
MFIRST = 1
I(1)
–130
–70
µA
A
16.6 Low level input current
MFIRST = 0,
V(1) = 1V to 2V
(1)
I(1)
–55
–35
µA
A
16.7 High level input current
MFIRST = 0
V(1) = 1V to 2V
(1)
I(1)
–1
+1
µA
A
Max.
Unit
Type*
0.1 ×
DVDD
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Note:
1. CS_N, SCK, MOSI, CLK
Table 7-24.
Propagation Delay Timing
No. Parameters
Test Conditions
Pin
Symbol
Min.
Typ.
Propagation delay
Upper IC to lower IC
Rpull-up = 5.1 kΩ
Load capacitor max. = 15 pF
MFIRST = 0, 1
> 10% input to > 90% output
(1)
110
ns
A
Propagation delay
17.2
Lower IC to upper IC
Rpull-up = 5.1 kΩ
Load capacitor max. = 15 pF
MFIRST = 0, 1
> 10% input to > 90% output
(2)
140
ns
A
17.1
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
Notes: 1. MISO_IN, IRQ_IN to MISO, IRQ
2. SCK, MOSI, CS_N, CLK to SCK_OUT, MOSI_OUT, CS_N_OUT, CLK_OUT
37
9116B–AUTO–10/09
7.6.5.3
Test-mode Pins
The test-mode pins DTST, ATST, PWTST (outputs) have to be kept open in the application. The
test-mode pins SCANMODE and CS_FUSE (inputs) have to be connected to VSSA. These
inputs have an internal pull-down resistor. The test-mode pin VDDFUSE is a supply pin. It must
also be connected to VSSA.
Table 7-25.
Input Characteristics Pins SCANMODE, CS_FUSE, VDDFUSE
No. Parameters
Test Conditions
Pin
Symbol
SCANMODE, RSCANMODE,
CS_FUSE
RCS_FUSE
18.1 Pull-down resistor
Min.
Typ.
50
Max.
Unit
Type*
200
kΩ
A
*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter
7.7
7.7.1
Operations
Voltage and Temperature Measurement
At startup, the ATA6870 is supplied and is waiting for any operation request.
The available operations are:
• 6 channels voltage acquisition with a temperature acquisition
– with voltage = V(MBATi+1, MBATi) (standard operation)
and with voltage = V(TEMP1 or TEMP2, TEMPVSS) (standard operation)
– with voltage = V(MBATi, MBATi) (offset calibration: CalOffset operation)
and with voltage = V(TEMPVSS, TEMPVSS) (offset calibration: CalOffset operation)
– with voltage = V(VREFi, MBATi) (gain calibration: CalGain operation)
and with voltage = V(TEMPREF, TEMPVSS) (gain calibration: CalGain operation)
Operation completion is flagged to the host MCU via the IRQ output in conjunction with dataRdy
bit set in the status register. In order to retrieve the full results in a single access, the user has to
access the dataRd16burst register (112 bits). Getting the results of a single channel (voltage or
temperature) is also possible. For this, first select the channel to read through the ChannelReadSel register, then retrieve the channel value through the DataRd16 register. It is not possible to
order a new operation until the previous operation has been acknowledged. The host MCU
acknowledges the interrupt by reading the status register. This resets the dataRdy bit as well as
the IRQ output, and enables the ATA6870 to start the next operation. Writing NoOp in the Operation register during an operation running aborts the current operation. In this case, the dataRdy
bit is not set and interrupt is not requested to the host MCU. The Opstatus register flags whether
operation is running, aborted, ended, or no operation is running.
38
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.7.2
Discharge Function
Each channel is independently dischargeable. Discharge is activated or deactivated by the register ChannelDischSel.
7.7.3
Low Frequency Timer Function
A low frequency timer (LFT), synchronous to internal 50 kHz oscillator provides the host MCU
with a low power timer, which useful to either synchronize operations in the host MCU or monitor
the ATA6870’s activity.
The LFT elapsing asserts an interrupt to the host MCU if the corresponding mask bit in the IrqMask register is not set.
Default is LFT not enabled. To enable the LFT, set the LFTimer_ena bit to 1 in the Ctrl register.
LFT counting time is fully programmable in the register LFTimer.
Changing the LFTimer register restarts the LFT if the new counting time is smaller than the current value of the LFT. Otherwise, LFT runs until it reaches the new end value.
Asserting LFTRst bit in the Rstr register resets and restarts the LFT if the LFT is enabled. Otherwise, LFT is reset but not started.
Each ATA6870 will assert its own interrupt when the timer elapses. Depending on how the timer
is used, the host MCU may mask LFTdone interrupts in the whole ATA6870s chain, except the
first one. As internal RC oscillators are not synchronized, this prevents the MCU from being
interrupted each time one of the LFT elapses.
7.7.4
Undervoltage Detection
A programmable undervoltage detection function is embedded in the ATA6870. After being digitalized, each of the 6 voltages is compared to a programmable threshold defined in the
UdvThresh register. If one of the six channels is out of the range defined by the threshold, an
interrupt is requested to the host MCU if the corresponding udv mask bit is not set in the IrqMask
register.
The default threshold is 1.5V.
As soon as MCU has acknowledged, undervoltage information is no more available to MCU,
because status register is cleared when MCU reads it out. As a consequence, the next undervoltage interrupt cannot occur until the ATA6870 leaves its current undervoltage state.
39
9116B–AUTO–10/09
7.8
Registers
Registers are read and written through the SPI interface.
Table 7-26.
Register
Address
40
Register Mapping
Control Field Control Field
Read Mode
Write Mode
Register Name
Access
Type
Function
0x00
0x00
-
RevID
R
8 bits
Revision ID/value Mfirst, pow_on
0x01
0x02
0x03
Ctrl
RW
8 bits
Control Register
0x02
0x04
0x05
Operation
RW
8 bits
Operation request
0x03
0x06
-
OpStatus
R
8 bits
Operation status
0x04
-
0x09
Rstr
W
8 bits
Software reset
0x05
0x0A
0x0B
IrqMask
RW
8 bits
Mask interrupt sources
0x06
0x0C
-
Status
R
8 bits
Status interrupt sources
0x08
0x10
-
ChannelUdvStatus
R
8 bits
Channels undervoltage status
0x09
0x12
0x13
ChannelDischSel
RW
8 bits
Select channel to discharge
0x0A
0x14
0x15
ChannelReadSel
RW
8 bits
Select channel to read
0x0B
0x16
0x17
LFTimer
RW
8 bits
Low Frequency Timer control
0x0C
0x18
-
CalibStatus
R
8 bits
Reserved
0x0D
0x1A
0x1B
FuseCtrl
RW
8 bits
Reserved
0x10
0x20
0x21
UdvThresh
RW
16 bits
Undervoltage detection threshold
0x11
0x22
-
DataRd16
R
16 bits
Single access to selected channel
value
0x12
0x24
0x25
ATA6870Test
RW
16 bits
Reserved
0x7F
0xFE
-
DataRd16Burst
R
112 bits
Burst Access to the whole channels
(6 voltage and 1 temperature)
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.8.1
7.8.1.1
Registers Content
RevID Register
Table 7-27.
RevId Register Overview
Register
RevID
Address
0x00
7 (msb)
6
5
4
3
x
x
x
pow_en
Mfirst
Table 7-28.
2
1
0 (lsb)
RevID
Description
RevID
ATA6870 revision number, revision B: 0x02
Mfirst
Status input pin MFIRST
pow_en
Status input pin POW_EN
Ctrl Register
Table 7-29.
Ctrl Register Overview
Register
Ctrl
Address
0x01
7 (msb)
6
5
x
x
x
Table 7-30.
4
Reset Value
3
2
Chksum_ena LFTimer_ena TFMODE_ena
0x00
1
0 (lsb)
x
x
Ctrl Register Content
Bit Field
7.8.1.3
0x02
RevId Register Content
Bit Field
7.8.1.2
Reset Value
Description
TFMode_ena
0: Prevent ATA6870 to switch to test mode
1: Not allowed for customer use
LFTimer_ena
0: Disable internal Low Frequency Timer
1: Enable internal Low Frequency Timer
Chksum_ena
0: Disable SPI transaction checksum computation/check
1: Enable SPI transaction checksum computation/check
Operation Register
Table 7-31.
Operation Register Overview
Register
Operation
Address
0x02
7 (msb)
6
x
x
5
4
OpMode
Reset Value
3
TempMode
2
0x02
1
VoltMode
0 (lsb)
OpRqst
41
9116B–AUTO–10/09
Table 7-32.
Operation Register Content
Bit Field
Description
OpRqst
0: NoOp: No Operation, or abort current operation
1: AcqRqst: Start the analog to digital conversion
An interrupt is generated when data is available in DataRd16/DataRd16Burst.
VoltMode
00: Caloffset: select V(MBAT(i), MBAT(i)) as input of voltage channels.
(offset calibration)
01: AcqV: select V(MBAT(i+1), MBAT(i)) as input of voltage channels (default)
10: Not allowed
11: Calgain: select V(vref(i)) as input of voltage channels. (gain calibration)
0: Select TEMP1 input pin as input of temperature channel
1: Select TEMP2 input pin as input of temperature channel
TempMode
00: 6 voltage channels and temperature acquisition
01: No acquisition performed
10: No acquisition performed
11: No acquisition performed
OpMode
When a conversion operation is finished and the interrupt has been acknowledged by the MCU
the Operation register is automatically reset to “NoOp”. Writing “NoOp” in the register when conversion operation is running, aborts the current operation. Other changes are not accepted
during any operation.
Figure 7-28. Typical Data Acquisition Flow
ASIC3 (MFIRST = 0)
ASIC2 (MFIRST = 0)
ASIC1 (MFIRST = 1)
Init State
Opstatus = NoOP
Status Cleared
Init State
Opstatus = NoOP
Status Cleared
Init State
Opstatus = NoOP
Status Cleared
Runs Conversion
Opstatus = Running
Runs Conversion
Opstatus = Running
Runs Conversion
Opstatus = Running
Conversion Finished
Opstatus = Result Available
Status = Data Ready
IRQ DATA RDY
Conversion Finished
Opstatus = Result Available
Status = Data Ready
IRQ DATA RDY
Conversion Finished
Opstatus = Result Available
Status = Data Ready
IRQ DATA RDY
MCU
...
Set Operation = ACQ*/CAL*
Background Tasks/Idle
ASIC3
Read/Check Opstatus
Read/Check Status
Opstatus = NoOP
Status Cleared
ASIC2
Read/Check Opstatus
Read/Check Status
Opstatus = NoOP
Status Cleared
Opstatus = NoOP
IRQ Acknowledged
Status Cleared
ASIC1
Read/Check Opstatus
Read/Check Status
ASIC3 Burst Read Data
ASIC2 Burst Read Data
ASIC1 Burst Read Data
...
42
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.8.1.4
OpStatus Register
Table 7-33.
OpStatus Register Overview
Register
OpStatus
Address
0x03
Reset Value
7 (msb)
6
5
4
3
2
x
x
x
x
x
x
Table 7-34.
0x00
1
0 (lsb)
OpStatus
OpStatus Register Content
Bit Field
Description
OpStatus
00: No Operation
01: Operation is ongoing
10: Operation is finished, result is available
11: Operation is cancelled, result is not available
Figure 7-29. Operation Status Register Management
User reads Operation Status Register,
Reset
NO OP
Users programs conversions operation
Operation Running
Users programs NoOp
End of conversion
Operation Aborted,
Result not Available
Operation Finished,
Result Available
User programs conversion operation or
reads operation status register
Status reg has been read and:
User programs conversion operation or
reads operation status register
The OPStatus register is reset when read after a completed or aborted operation. Reading the
register before starting an operation is not mandatory. Reading data conversion results or reading the OpStatus Register during an operation does not affect the OpStatus register.
43
9116B–AUTO–10/09
7.8.1.5
Rstr Register
Table 7-35.
Rstr Register Overview
Register
Rstr
Address
0x04
Reset Value
0x00
7 (msb)
6
5
4
3
2
1
0 (lsb)
x
x
x
x
x
x
LFTRst
0
Table 7-36.
Rstr Register Content
Bit Field
Description
0: No reset
1: Low Frequency Timer software reset
LFTRst
LFTRst resets and restarts the low frequency timer if not disabled (LFTimer_ena = 0).
7.8.1.6
IrqMask Register
Table 7-37.
IrqMask Register Overview
Register
IrqMask
Address
0x05
7 (msb)
6
5
x
x
x
Table 7-38.
3
2
0x00
1
0 (lsb)
chkErrorMask udvmask commErrorMask LFTdoneMask dataDryMask
IrqMask Register Content
Bit Field
Description
dataRdyMask
Mask data ready interrupt when set to 1
WakeupMask
Mask LFTdone interrupt when set to 1
commErrorMask
udvMask
chkErrorMask
44
4
Reset Value
Mask commError interrupt when set to 1
Mask undervoltage detection interrupt when set to 1
Mask checksum error interrupt when set to 1
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.8.1.7
Status Register
Table 7-39.
Status Register Overview
Register
Status
Address
0x06
Reset Value
0x10
7 (msb)
6
5
4
3
2
1
0 (lsb)
x
TFMdeOn
por
chkError
udv
commError
LFTdone
dataRdy
Table 7-40.
Status Register Content
Bit Field
Description
dataRdy
Conversion finished
LFTdone
Low frequency timer elapsed
commError
udv
Bad SPI command detected (wrong length)
Undervoltage detected
chkError
Error on checksum check
Por
Power on reset detected
TFMdeOn
Test mode on
Any bit among {dataRdy, LFTdone, commError, udv, chkError} set in the status register requests
an interrupt to the external MCU if the corresponding mask bit in the IrqMask register is 0. Reading the status register acknowledges the interrupt and resets its content. Por and TFMdeOn
cause no interrupt.
45
9116B–AUTO–10/09
7.8.1.8
ChannelUdvStatus Register
Table 7-41.
ChannelUdvStatus Register Overview
Register
ChannelUdvStatus
Address
0x08
7 (msb)
6
x
x
Table 7-42.
5
4
Reset Value
3
2
0x00
1
0 (lsb)
chUdv6_stat chUdv5_stat chUdv4_stat chUdv3_stat chUdv2_stat chUdv1_stat
ChannelUdvStatus Register Content
Bit Field
Description
chUdv1_stat
1: Undervoltage detected on channel 1
0: No undervoltage detected on channel 1
chUdv2_stat
1: Undervoltage detected on channel 2
0: No undervoltage detected on channel 2
chUdv3_stat
1: Undervoltage detected on channel 3
0: No undervoltage detected on channel 3
chUdv4_stat
1: Undervoltage detected on channel 4
0: No undervoltage detected on channel 4
chUdv5_stat
1: Undervoltage detected on channel 5
0: No undervoltage detected on channel 5
chUdv6_stat
1: Undervoltage detected on channel 6
0: No undervoltage detected on channel 6
Undervoltage is detected when voltage decreases under the threshold value defined in
udvThresh register.
When undervoltage is detected on a channel, the ATA6870 requests an interrupt if the UDVmask bit in the IRQMask register is 0.
46
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.8.1.9
ChannelDischSel Register
Table 7-43.
ChannelDischSel Register Overview
Register
ChannelDischSel
Address
0x09
7 (msb)
6
x
x
Table 7-44.
5
4
Reset Value
3
chV6_disch chV5_disch chV4_disch
2
0x00
1
0 (lsb)
chV3_disch chV2_disch chV1_disch
ChannelDischSel Register Content
Bit Field
Description
chV1_disch
1: Enable voltage channel 1 discharge
0: Disable voltage channel 1 discharge
chV2_disch
1: Enable voltage channel 2 discharge
0: Disable voltage channel 2 discharge
chV3_disch
1: Enable voltage channel 3 discharge
0: Disable voltage channel 3 discharge
chV4_disch
1: Enable voltage channel 4 discharge
0: Disable voltage channel 4 discharge
chV5_disch
1: Enable voltage channel 5 discharge
0: Disable voltage channel 5 discharge
chV6_disch
1: Enable voltage channel 6 discharge
0: Disable voltage channel 6 discharge
The channels are dischargeable simultaneously.
7.8.1.10
ChannelReadSel Register
Table 7-45.
ChannelReadSel Register Overview
Register
ChannelReadSel
Address
7 (msb)
0x0A
6
5
4
Reset Value
3
2
0x00
1
0 (lsb)
ChannelReadSel
47
9116B–AUTO–10/09
Table 7-46.
ChannelReadSel Register Content
Bit Field
Description
111: Value of the LFT is returned in DataRd16 register
110: Temperature channel available in DataRd16 register
101: Voltage channel6, value available in DataRd16 register
100: Voltage channel5, value available in DataRd16 register
011: Voltage channel4, value available in DataRd16 register
010: Voltage channel3, value available in DataRd16 register
001: Voltage channel2, value available in DataRd16 register
000: Voltage channel1, value available in DataRd16 register
ChannelReadSel
This register can be used to quickly read a single channel without using a full burst access. The
value of the selected channel will be available in the DataRd16 register. The value will always be
updated by writing a channel address to the ChannelReadSel register. Data in this register is not
valid during ongoing data conversion.
7.8.1.11
LFTimer Register
LFTimer Register Overview
Register
LFTimer
Address
7 (msb)
0x0B
6
5
4
LFTPrescaler
Table 7-47.
Reset Value
3
2
0xF9
1
0 (lsb)
LFTDelay
LFTimer Register Content
Bit Field
Description
LFTDelay
Contains the present Low Frequency Timer delay value
LFTPrescaler
0: PrescalerValue = 1
1: PrescalerValue = 6
The default timer value is 59.965s (0xF9) for fOSC = 50 kHz.
Figure 7-30. Block Diagram LFTimer
LFTprescaler
50 kHz
/4096
/6
LFTdelay
7-bit
counter
Comp
Delay Time elapsed
clear
Formula for Delay Time calculation:
LFTprescaler D
1
Delay Time = ------------------------- × 4096 × ( 6
) × ( LFTdelay D + 1 )
T OSC [Hz]
48
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
The LFT can be programmed to the following values (fOSC = 50 kHz):
LFTprescaler = 0:
LFTprescaler = 1:
0.082s <= duration <= 10.486s, Increment = 82 ms
492 ms <= duration <= 62.915s, Increment = 492 ms
When LFT elapsed, an interrupt is requested unless LFTdoneMask bit is set in the IRQMask
register.
For details on the tolerances for the oscillator, see Section 7.5.6 “RC Oscillator” on page 25.
Keeping at list 100 µs between two successive LFTimer register write accesses prevents internal metastability issues, which might result in bad LFTdelay decoding.
7.8.1.12
Test-Mode Register
Table 7-48.
Test-Mode Register 1 Overview
Register
TESTmode1
Address
0x0C
Reset Value
0x03
7 (msb)
6
5
4
3
2
1
0 (lsb)
0
0
0
0
0
0
1
1
Table 7-49.
Test-Mode Register 2 Overview
Register
TESTmode2
Address
0x0D
Reset Value
0x07
7 (msb)
6
5
4
3
2
1
0 (lsb)
0
0
0
0
0
1
1
1
Table 7-50.
Test-Mode Register 3 Overview
Register
UdvThresh
Address
0x12
Reset value
0x0E00
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
Test-Mode registers 1, 2, and 3 are reserved for the factory calibration process. They are not
allowed for customer use.
49
9116B–AUTO–10/09
7.8.1.13
UdvThresh Register
Table 7-51.
UdvThresh Register Overview
Register
UdvThresh
Address
0x10
15
14
13
12
x
x
x
x
Table 7-52.
11
10
9
Reset value
8
7
6
5
4
3
0x0570
2
1
0
udvThresh
UdvThresh Register Content
Bit Field
Format
Description
udvThresh
12 bits
Threshold for undervoltage detection
Default value is 1.5V (0x0570, 1392D)
1.5V = VREF × (1392 – 410) / (1502 – 410)
See also Section 7.5.1.2 “12 Bits Incremental ADC” on page 19.
7.8.1.14
DataRd16 Register
Table 7-53.
DataRd16 Register Overview
Register
DataRd16
Address
14
13
12
x
x
x
x
Table 7-54.
11
10
9
Reset value
8
7
6
5
4
3
0x0000
2
1
0
DataRd16
DataRd16 Register Content
Bit Field
DataRd16
50
0x11
15
Format
Description
12 bits
Return selected channel value (see Section 7.8.1.10
“ChannelReadSel Register” on page 47)
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
7.8.1.15
DataRd16burst Register
Table 7-55.
DataRd16burst Register Overview
Register
DataRd16Burst
Address
0x7F
111
110
109
108
X
X
X
x
95
94
93
92
x
x
x
x
79
78
77
76
x
x
x
x
63
62
61
60
x
x
x
x
47
46
45
44
x
x
x
x
31
30
29
28
x
x
x
x
15
14
13
12
x
x
x
x
Table 7-56.
107
106
105
104
Reset value
103
102
101
0x0000
100
99
98
97
96
84
83
82
81
80
68
67
66
65
64
52
51
50
49
48
36
35
34
33
32
20
19
18
17
16
4
3
2
1
0
Channel6 data
91
90
89
88
87
86
85
Channel5 data
75
74
73
72
71
70
69
Channel4 data
59
58
57
56
55
54
53
Channel3 data
43
42
41
40
39
38
37
Channel2 data
27
26
25
24
23
22
21
Channel1 data
11
10
9
8
7
6
5
Temperature data
DataRd16burst Register Content
Bit Field
Format
Description
DataRd16burst
112 bits
Returns the values of all channels from one ATA6870, including
temperature measurement
51
9116B–AUTO–10/09
Figure 7-31. Application
10Ω
1 kΩ
1.5 kΩ
PD_N
VDDHVP
MISO_IN
SCK_OUT
MOSI_OUT
CLK_OUT
100 nF
CS_N_OUT
IRQ_IN
MBAT7
VDDHV
MBAT6
1 kΩ
DISCH6
100 nF
VDDHVM
+
33 µF
DISCH5
PD_N_OUT
MBAT5
POW_ENA
220 nF
1 kΩ
100 nF
PWTST
DISCH4
ATST
MBAT4
BIASRES
1 kΩ
121 kΩ
100 nF
ATA6870
DISCH3
TEMPVREF
MBAT3
TEMP2
1 kΩ
100 nF
DISCH2
+
TEMP1
MBAT2
TEMPVSS
NTC
1 kΩ
10 µF
NTC
100 nF
DVDD
GND
DVSS
VDDFUSE
AVSS
CS_FUSE
DTST
MISO
MOSI
SCK
CLK
IRQ
CS_N
MBAT1
MFIRST
DISCH1
1 kΩ
SCANMODE
100 nF
AVDD
10 nF
10Ω
10Ω
1 kΩ
PD_N
VDDHVP
MISO_IN
MOSI_OUT
SCK_OUT
CS_N_OUT
100 nF
CLK_OUT
IRQ_IN
VDDHV
MBAT7
MBAT6
1 kΩ
DISCH6
100 nF
VDDHVM
+
33 µF
DISCH5
PD_N_OUT
MBAT5
POW_ENA
220 nF
+
1 kΩ
10 µF
100 nF
100 nF
PWTST
DISCH4
ATST
MBAT4
BIASRES
1 kΩ
121 kΩ
100 nF
ATA6870
DISCH3
TEMPVREF
MBAT3
TEMP2
1 kΩ
100 nF
DISCH2
TEMP1
MBAT2
TEMPVSS
NTC
1 kΩ
NTC
DVDD
GND
DVSS
VDDFUSE
AVSS
CS_FUSE
DTST
MISO
MOSI
SCK
CLK
IRQ
CS_N
MBAT1
MFIRST
DISCH1
1 kΩ
SCANMODE
100 nF
AVDD
10 nF
10Ω
MISO
MOSI
SCK
CSN
CLK
IRQ
VDD
OUT
Microcontroller
GND
Figure 7-31 shows an application with 2 stacked ATA6870s.
52
ATA6870 [Preliminary]
9116B–AUTO–10/09
ATA6870 [Preliminary]
8. Ordering Information
Extended Type Number
Package
MOQ
ATA6870-PLPW
QFN48, 7 × 7
1,000 pieces
ATA6870-PLQW
QFN48, 7 × 7
4,000 pieces
9. Package Information
Package: VQFN_7 x 7_48L
Exposed pad 5.6 x 5.6
Dimensions in mm
Bottom
Not indicated tolerances ±0.05
5.6±0.15
Top
48
37
48
1
36
1
12
25
12
Pin 1 identification
Z
7
24
13
0.2
0.5 nom.
5.5
Z 10:1
0.4±0.1
0.9±0.1
technical drawings
according to DIN
specifications
Drawing-No.: 6.543-5130.01-4
Issue: 1; 21.03.06
0.23±0.07
9.1
Markings
As a minimum, the devices will be marked with the following:
• Date code (year and week number)
• Atmel® part number (ATA6870)
53
9116B–AUTO–10/09
10. Revision History
Please note that the following page numbers referred to in this section refer to the specific revision
mentioned, not to this document.
Revision No.
History
•
•
•
•
•
•
•
•
9116B-AUTO-10/09
•
•
•
•
•
•
•
•
•
•
•
•
•
54
Table 3-1 “Pin Description” on page 4 changed
Table 5 “Abs.Max.RAtings” changed
Table 7-1 “Electrical Characteristics” on page 11 changed
Table 7-5 “Electrical Characteristics” on page 16 changed
Table 7-7 “Electrical Characteristics” on page 19 changed
Table 7-9 on page 21 changed
Table 7-11 “Battery Cell Temperature Measuring Characteristics”
on page 23 changed
Table 7-12 “Battery Cell Temperature Measuring Characteristics”
on page 24 changed
Section 7.5.7 “Power On Reset” on page 25 changed
Table 7.15 “Battery Cell Temperature Measuring Characteristics”
on page 25 changed
Figure 7-13 “Host Interface” on page 26 changed
Figure 7-14 “SPI Transaction Field Organization” on page 28 changed
Section 7.6.4.7 “CHKSUM Field” on page 34 changed
Table 7-19 “Electrical Characteristics” on page 35 changed
Table 7-22 “Electrical Characteristics” on page 37 changed
Table 7-23 “Electrical Characteristics” on page 37 changed
Table 7-26 “Register Mapping” on page 40 changed
Table 7-32 “Operation Register Content” on page 42 changed
Section 7.8.1.5 “Rstr Register” on page 44 changed
Table 7.55 “DataRd16burst Register Overview” on page 51 changed
Figure 7-31 “Application” on page 52 changed
ATA6870 [Preliminary]
9116B–AUTO–10/09
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054
Saint-Quentin-en-Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel ®, Atmel logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
9116B–AUTO–10/09
Similar pages