Integral IL235Z Integrated circuit of temperature sensor Datasheet

IL235Z
INTEGRATED CIRCUIT OF TEMPERATURE SENSOR
(analog LM235Z, SGS-Thomson)
Microcircuit IL235Z is precision temperature sensor with calibration
capacity . Microcircuit operates as Zener diode with brake down
voltage being in direct proportion to to absolute temperature (10
mV/OK). Full dynamic resistance of the circuit is less than 1 Оhm at
operation current 450 µА...5 mА. The sensor calibrated at the
temperature 25OС,has typical error less than 1OС in the temperature
range above 100OС. The peculiarity of the circuit IL235Z is the linear
dependence of output voltage versus temperature.
Packaged IC type:
IC features
• calibration in OК
• initial measurement accuracy 1OK
• range of operating supply current from 450 µА to 5 mА
Full dynamic resistance less than 1 Оhm
IL235Z, TO-92
Bottom view
Figure 1 - Package pin
definitions
Figure 2 - circuitry IL235Z.
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Тable 1 - Maximum ratings
Name of parameter
Symbol
Standard
min
IC current
reverse
direct
IR
IF
Air operation temperature: *
- constant mode
- short-time
Storage temperature
max
15
10
--
Unit of
measurement
mA
°С
TOPER
- 40
125
-65
Tstg
125
150
150
°С
Note - *TJ ≤ 150°С
Тable 2 – Temperature parameters.
Name of parameter
Symbol
min
output voltage, V
Non-calibrated temperature
error
temperature error at calibration
25°С
Calibrated error in extended
temperature range
Non-linearity of temperature
characteristic
UOUT
∆Т1
2,95
-
∆Т2
∆Т3
Standard
Type
max
Test
conditions
Temperature
Unit
IR = 1 mA
°С
25
25
-45 ÷ 125
-45 ÷ 125
°С
Тcase=Тmax
-45 ÷ 125
°С
-55 ÷ 150
°С
3,01
3
5
1,5
IR = 1 mA
IR = 1 mA
-
2,98
1
2
0,5
-
2
-
V
°С
periodical
∆Т4
-
0,3
1
IR = 1 mA
Тable 3 – Electrical parameters.
Name of parameter
Measurement of output voltage
in supply currents range
Изменение выходного
напряжения в диапазоне
питающих токов
Dynamic impedance
Temperature coefficient of
output voltage
Time constant:
-still air
-speed of air is 0,5 m/с
- agitated oil
Time stability
Symbo
l
min
∆UOUT
-
∆R1
ТКН
-
τТ
Standard
type. max
Test
conditions
Temperat
ure
°С
-45 ÷ 125
mV
10
0,45 mА ≤ IR
≤ 5 mА
0,5
+10
-
IR = 1 mА
-
25
25
Ohm
mV/°С
-
-45 ÷ 125
С
80
10
1
0,2
2,5
°С/
1000ч
Note – Precise measurements done in agitated oil bath. For other conditions there should be taking into
consideration self-heating .
ТСТАБ
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
-
125
IL235Z
Calibration error, (оС)
Change of reverse voltage, (mV)
Temperature , (оС)
Reverse current, (mА)
Figure 3 –Reverse voltage versus reverse current
Figure 4 – Calibration error versus temperature
Reverse current, (mА)
Input and output voltage, (V)
Time, (mks)
reverse voltage, (V)
Figure 5 – Reverse current versus reverse voltage
Figure 6 – Output signal response time
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Noise density (nV/√Hz)
Direct dynamic resistance , (Оhm)
Frequency, (Hz)
Frequency, (Hz)
Figure 7 – Dynamic resistance versus frequency
Figure 8 – Noise voltage
Thermal resistance, (оС/Wt)
Time constant, ( с )
Air motion speed, (m/с)
Air motion speed, (m/с)
Figure 9 – Thermal resistance versus air motion
speed
Figure 10 – Time constant versus air motion
speed
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Heat conduction , (%)
Heat conduction, (%)
Time, (min)
Time, (min)
Figure 11 – Time dependence of heat conduction in
still air
Figure 12 – Time dependence of heat
conduction in agitated oil
Direct voltage, (V)
Direct current, (mА)
Figure 13 – Dependence of direct voltage on direct current
Information for application.
There is a simple technique of the device calibration for improving precision of temperature
measurement (see typical application circuits).
Calibration of the device occurs in one spot as the IC output voltage is proportional to absolute
temperature with sensor voltage extrapolation to 0 V at 0оК (-273,15оС). The errors in dependence
of output voltage on temperature are determined only by characteristic incline. Therefore bias
calibration at one temperature corrects errors in the whole temperature range. Output voltage of
calibrated or non calibrated circuit may be derived from the following equation:
VOT = VOTO
T
;
To
where Т – unknown temperature;
ТО – reference temperature (in оК).
Nominally IC output calibrated to the value 10 mV/ оК.
To ensure measurement precision they apply some rules. Degradation of the precision when
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
self-heating is proper to any devices of temperature sensors. The circuit should operate at low
operating current but sufficient for controlling the sensor and its calibration circuit at maximum
operating temperature.
When using the sensor in the field with constant thermal resistance, error when self-heating may
be reduced by external calibration. It can be done at the circuit bias when applying temperaturestabilized current. Thus heating will be proportional to Zener diode voltage. In this case error when
self-heating is proportional to absolute temperature as the error of scaling coefficient.
Typical application circuits.
Figure 14 – Basic circuit of temperature sensor
Figure 16 – Temperature sensor with external
calibration *
Figure 15 – Application circuit of temperature
sensor with wide range supply voltage
Figure 17 – Sequential sensor connection for
increase of temperature bias voltage–
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Figure 18 – Circuit of isolated temperature sensor
Figure 19 – Temperature regulator
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
IL235Z
Figure 20 – Thermal sensor with 1000 scale
* Calibration for 2,7315 V on output of LM308
Figure 21 – Differential temperature sensor
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Thermo
couple
R3
Thermo
electrical
coefficient
377 Оhm
52,3 µV/оС
T
308 Оhm
42,8 µV/оС
K
293 Оhm
40,8 µV/оС
S
45,8 Оhm
6,4 µV/оС
J
Adjustment: compensation of sensor and
resistor tolerances
1 Selection of 1N4568
2 Adjustment of voltage drop on element R3
by the resistor R1 to obtain the value of
thermoelectrical coefficient, multiplied by the
ambient temperature (in K degrees).
3 Selection of IL235Z and adjustment of R2 for
setting voltage drop on the element R3
according to thermocouple type
J – 14,32 mV
T – 11,79 mV
K – 11,17 mV
S – 1,768 mV
Figure 22 – Circuit of cold junction compensation (compensation for ground thermocouple)
*Value of R3 nominal for this thermocouple type
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
IL235Z
Thermocouple
J
R3
R4
1050
Оhm
365 Оhm
Тhermoelectrical
coefficient
52,3 µV/оС
T
856 Оhm
315 Оhm
42,8 µV/оС
K
816 Оhm
300 Оhm
40,8 µV/оС
S
128 Оhm
46,3 Оhm
6,4 µV/оС
Adjustment: compensation of sensor and resistor
tolerances
1 Adjustment by the resistor R1 for obtaining voltage
drop on the element R3, equal to thermoelectrical
coefficient multiplied by the ambient temperature (in K
degrees)
2 Adjustment of the resistor R2 for obtaining some
voltage drop on the element R4 according to
thermocouple type
J – 14,32 mV
T – 11,79 mV
K – 11,17 mV
S – 1,768 mV
Figure 23 – Circuit of cold junction compensation with unipolar supply
*Value of R3 and R4 nominals for this thermocouple type
Korzhenevskogo 12, Minsk, 220064, Republic of
Belarus
Fax:
+375 (17) 278 28 22,
Phone: +375 (17) 278 07 11, 277 24 70, 277 24 61,
277 69 16
E-mail: [email protected]
URL: www.bms.by
Similar pages