PD - 96284 IRF7815PbF HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters in Networking Systems Benefits l Very Low RDS(on) at 10V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating VDSS RDS(on) max Qg (typ.) 150V 43m @VGS = 10V 25nC : A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D SO-8 Top View Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 150 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 4.1 IDM Continuous Drain Current, VGS @ 10V Pulsed Drain Current PD @TA = 25°C Power Dissipation 2.5 ID @ TA = 25°C ID @ TA = 70°C f f Power Dissipation TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range V 5.1 c PD @TA = 70°C Units A 41 W 1.6 W/°C 0.02 -55 to + 150 °C Thermal Resistance Parameter RθJL Junction-to-Drain Lead RθJA Junction-to-Ambient Notes through www.irf.com f g Typ. Max. ––– 20 ––– 50 Units °C/W are on page 9 1 12/01/09 IRF7815PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVDSS ∆ΒVDSS/∆TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient 150 ––– ––– 0.17 ––– ––– V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA RDS(on) VGS(th) ∆VGS(th) Static Drain-to-Source On-Resistance Gate Threshold Voltage ––– 3.0 34 4.0 43 5.0 mΩ V Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -12.2 ––– ––– 20 mV/°C Gate-to-Source Forward Leakage ––– ––– ––– ––– 250 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 8.2 ––– ––– -100 ––– Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 25 6.5 38 ––– Qgs2 Qgs Post-Vth Gate-to-Source Charge Gate-to-Source Charge ––– ––– 1.3 7.8 ––– ––– Qgd Qgodr Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 7.4 9.8 ––– ––– 8..7 10 ––– ––– IDSS IGSS gfs Qg Qgs1 Qsw Qoss Output Charge ––– ––– RG td(on) Gate Resistance Turn-On Delay Time ––– ––– 1.02 8.4 ––– ––– tr td(off) Rise Time Turn-Off Delay Time ––– ––– 3.2 14 ––– ––– tf Ciss Fall Time Input Capacitance ––– ––– 8.3 1647 ––– ––– Coss Crss Output Capacitance Reverse Transfer Capacitance ––– ––– 129 30 ––– ––– µA nA S VGS = 10V, ID = 3.1A e VDS = VGS, ID = 100µA VDS = 150V, VGS = 0V VDS = 150V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 50V, ID = 3.1A VDS = 75V nC VGS = 10V ID = 3.1A See Figs. 6, 16a & 16b nC Ω VDS = 16V, VGS = 0V VDD = 75V, VGS = 10V ns ID = 3.1A e RG = 1.8Ω See Figs. 15a & 15b VGS = 0V pF VDS = 75V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Units mJ A Max. 529 3.1 Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ISM (Body Diode) Pulsed Source Current ––– ––– 41 VSD trr (Body Diode) Diode Forward Voltage Reverse Recovery Time ––– ––– ––– 41 Qrr Reverse Recovery Charge ––– 213 2 c ––– ––– Conditions MOSFET symbol 2.3 A showing the integral reverse 1.3 62 V ns 320 nC p-n junction diode. TJ = 25°C, IS = 3.1A, VGS = 0V TJ = 25°C, IF = 3.1A, VDD = 75V di/dt = 300A/µs e e www.irf.com IRF7815PbF 100 10 BOTTOM 100 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 0.1 5.0V 0.1 1 10 BOTTOM 5.0V 1 ≤60µs PULSE WIDTH Tj = 150°C ≤60µs PULSE WIDTH Tj = 25°C 0.01 10 0.1 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 100 ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 5.0V VDS = 50V ≤60µs PULSE WIDTH 10 T J = 150°C T J = 25°C 1 ID = 5.1A VGS = 10V 2.0 1.5 1.0 0.5 0.1 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 7.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7815PbF 100000 VGS, Gate-to-Source Voltage (V) ID= 3.1A C oss = C ds + Cgd 10000 C, Capacitance (pF) 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + Cgd, C ds SHORTED C rss = C gd Ciss 1000 Coss 100 Crss 12.0 VDS= 120V VDS= 75V 10.0 VDS= 30V 8.0 6.0 4.0 2.0 10 0.0 1 10 100 1000 0 VDS, Drain-to-Source Voltage (V) 15 20 25 30 35 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 100 ID, Drain-to-Source Current (A) 100 ISD, Reverse Drain Current (A) 10 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage T J = 150°C 10 T J = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS(on) 100µsec 10 10msec 1msec T A = 25°C Tj = 150°C Single Pulse VGS = 0V 1 0.1 0.3 0.5 0.7 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 5 0.9 0 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7815PbF 6 VGS(th), Gate threshold Voltage (V) 6.0 ID, Drain Current (A) 5 4 3 2 1 5.0 4.0 ID = 100uA ID = 150uA ID = 250uA ID = 1.0mA ID = 1.0A 3.0 0 2.0 25 50 75 100 125 150 -75 -50 -25 T A , Ambient Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage Vs. Temperature Fig 9. Maximum Drain Current Vs. Ambient Temperature 100 Thermal Response ( Z thJA ) °C/W D = 0.50 10 0.20 0.10 0.05 0.02 0.01 1 τJ 0.1 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ2 τ1 τ3 τ2 τ3 τ4 τ4 Ci= τi/Ri Ci= τi/Ri 0.001 1E-005 0.0001 0.001 0.01 τA 2.8482 0.012383 16.4171 36.75014 20.8292 5.677801 9.8220 0.525832 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 τi (sec) Ri (°C/W) R4 R4 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 2500 100 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRF7815PbF ID = 5.1A 90 ID 0.30A 0.44A BOTTOM 3.1A TOP 2000 80 T J = 125°C 70 1500 60 1000 50 T J = 25°C 40 30 500 0 20 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS + V - DD IAS tp tp A 0.01Ω I AS Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD VDS 90% D.U.T. + - VDD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 15a. Switching Time Test Circuit 6 Fig 14b. Unclamped Inductive Waveforms 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms www.irf.com IRF7815PbF Id Vds Vgs L VCC DUT 0 20K 1K Vgs(th) S Qgodr Fig 16b. Gate Charge Waveform Fig 16a. Gate Charge Test Circuit Driver Gate Drive D.U.T P.W. + + - * RG • • • • D.U.T. ISD Waveform Reverse Recovery Current VDD ** P.W. Period *** + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test D= Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Qgs2 Qgs1 Qgd + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode Forward Drop Inductor Curent Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel VDD ISD *** VGS = 5V for Logic Level Devices Fig 17. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs www.irf.com 7 IRF7815PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' ',0 % $ + >@ ( $ 0,1 $ E F ' ( H %$6,& H ; H H ;E >@ $ $ 0,//,0(7(56 0$; $ ,1&+(6 0,1 0$; %$6,& %$6,& %$6,& + . / \ .[ & \ >@ ;F ;/ & $ % )22735,17 127(6 ',0(16,21,1* 72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5) 026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'( <:: 3 ',6*1$7(6/($')5(( 352'8&7 237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF7815PbF SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 110mH, RG = 25Ω, IAS = 3.1A Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ of approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/2009 www.irf.com 9