[ /Title (CD74 HC251 , CD74 HCT25 1) /Subject (High Speed CMOS Logic 8-Input Multiplexer; Three- CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 Data sheet acquired from Harris Semiconductor SCHS169C High-Speed CMOS Logic 8-Input Multiplexer, Three-State November 1997 - Revised October 2003 Features Description • Selects One of Eight Binary Data Inputs The ’HC251 and ’HCT251 are 8-channel digital multiplexers with three-state outputs, fabricated with high-speed silicongate CMOS technology. Together with the low power consumption of standard CMOS integrated circuits, they possess the ability to drive 10 LSTTL loads. The three-state feature makes them ideally suited for interfacing with bus lines in a bus-oriented system. • Three-State Output Capability • True and Complement Outputs • Typical (Data to Output) Propagation Delay of 14ns at VCC = 5V, CL = 15pF, TA = 25oC • Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads This multiplexer features both true (Y) and complement (Y) outputs as well as an output enable (OE) input. The OE must be at a low logic level to enable this device. When the OE input is high, both outputs are in the high-impedance state. When enabled, address information on the data select inputs determines which data input is routed to the Y and Y outputs. The ’HCT251 logic family is speed, function, and pin-compatible with the standard ’LS251. • Wide Operating Temperature Range . . . -55oC to 125oC • Balanced Propagation Delay and Transition Times • Significant Power Reduction Compared to LSTTL Logic ICs Ordering Information • Alternate Source is Philips • HC Types - 2V to 6V Operation - High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V PART NUMBER • HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, VIL= 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH Pinout CD54HC251, CD54HCT251 (CERDIP) CD74HC251, CD74HCT251 (PDIP, SOIC) TOP VIEW I3 1 16 VCC I2 2 15 I4 I1 3 14 I5 I0 4 13 I6 Y 5 12 I7 Y 6 11 S0 OE 7 10 S1 GND 8 9 S2 TEMP. RANGE (oC) CD54HC251F3A -55 to 125 16 Ld CERDIP CD54HCT251F3A -55 to 125 16 Ld CERDIP CD74HC251E -55 to 125 16 Ld PDIP CD74HC251M -55 to 125 16 Ld SOIC CD74HC251MT -55 to 125 16 Ld SOIC CD74HC251M96 -55 to 125 16 Ld SOIC CD74HCT251E -55 to 125 16 Ld PDIP CD74HCT251M -55 to 125 16 Ld SOIC CD74HCT251MT -55 to 125 16 Ld SOIC CD74HCT251M96 -55 to 125 16 Ld SOIC NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250. CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © 2003, Texas Instruments Incorporated PACKAGE 1 CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 Functional Diagram OE 7 I0 I1 I2 CHANNEL INPUTS I3 I4 I5 I6 I7 S0 4 3 2 1 15 14 5 13 12 6 Y OUTPUTS Y 11 10 DATA S1 SELECT 9 S2 TRUTH TABLE INPUTS OUTPUT SELECT S2 S1 S0 OUTPUT CONTROL OE Y Y X X X H Z Z L L L L I0 I0 L L H L I1 I1 L H L L I2 I2 L H H L I3 I3 H L L L I4 I4 H L H L I5 I5 H H L L I6 I6 H H H L I7 I7 H = High Voltage Level, L = Low Voltage Level, X = Don’t Care, Z = High Impedance (Off), I0, I1...I7 = the level of the respective input. 2 CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA DC Drain Current, per Output, IO For -0.5V < VO < VCC +0.5V . . . . . . . . . . . . . . . . . . . . . . . . . .±25mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA Thermal Resistance (Typical, Note 1) θJA (oC/W) E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range (TA) . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. DC Electrical Specifications TEST CONDITIONS PARAMETER 25oC -40oC TO 85oC -55oC TO 125oC SYMBOL VI (V) IO (mA) VCC (V) VIH - - 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V - - - - - - - - - V -4 4.5 3.98 - - 3.84 - 3.7 - V -5.2 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V - - - - - - - - - V 4 4.5 - - 0.26 - 0.33 - 0.4 V 5.2 6 - - 0.26 - 0.33 - 0.4 V MIN TYP MAX MIN MAX MIN MAX UNITS HC TYPES High Level Input Voltage Low Level Input Voltage High Level Output Voltage CMOS Loads VIL VOH - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads Low Level Output Voltage TTL Loads VOL VIH or VIL - 3 CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 DC Electrical Specifications (Continued) TEST CONDITIONS 25oC -40oC TO 85oC -55oC TO 125oC SYMBOL VI (V) IO (mA) VCC (V) II VCC or GND - 6 - - ±0.1 - ±1 - ±1 µA ICC VCC or GND 0 6 - - 8 - 80 - 160 µA - VIL or VIH VO = VCC or GND 6 - - ±0.5 - ±5.0 - ±10 µA High Level Input Voltage VIH - - 4.5 to 5.5 2 - - 2 - 2 - V Low Level Input Voltage VIL - - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V High Level Output Voltage CMOS Loads VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V -4 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V ±0.1 - ±1 - ±1 µA PARAMETER Input Leakage Current Quiescent Device Current Three-State Leakage Current MIN TYP MAX MIN MAX MIN MAX UNITS HCT TYPES High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current II VCC and GND 0 5.5 - ICC VCC or GND 0 5.5 - - 8 - 80 - 160 µA Three-State Leakage Current - VIL or VIH VO = VCC or GND 6 - - ±0.5 - ±5.0 - ±10 µA Additional Quiescent Device Current Per Input Pin: 1 Unit Load ∆ICC (Note 2) VCC -2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 µA Quiescent Device Current NOTE: 2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS S0, S1, S2 0.55 I0 - I7 0.5 OE 2.65 NOTE: Unit Load is ∆ICC limit specified in DC Electrical Table, e.g., 360µA max at 25oC. 4 CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 Switching Specifications Input tr, tf = 6ns PARAMETER SYMBOL TEST CONDITIONS -40oC TO 85oC 25oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS 2 - - 245 - 305 - 370 ns 4.5 - - 49 - 61 - 74 ns CL =15pF 5 - 21 - - - - - ns CL = 50pF 6 - - 42 - 52 - 63 ns tPLH, tPHL CL = 50pF 2 - - 175 - 220 - 265 ns 4.5 - - 35 - 44 - 53 ns CL =15pF 5 - 12 - - - - - ns CL = 50pF 6 - - 30 - 37 - 45 ns tPLH, tPHL CL = 50pF 2 - - 140 - 175 - 210 ns 4.5 - - 28 - 35 - 42 ns CL =15pF 5 - 11 - - - - - ns CL = 50pF 6 - - 24 - 30 - 36 ns tTLH, tTHL CL = 50pF 2 - - 75 - 95 - 110 ns 4.5 - - 15 - 19 - 22 ns 6 - - 13 - 16 - 19 ns HC TYPES Propagation Delay tPLH, tPHL CL = 50pF Select to Outputs Data to Outputs Enable to High Z and Enable from High Z Output Transition Time Input Capacitance CIN - - - - 10 - 10 - 10 pF Three-State Output Capacitance CO - - - - 15 - 15 - 15 pF Power Dissipation Capacitance (Notes 3, 4) CPD - 5 - 60 - - - - - pF CL = 50pF 4.5 - - 42 - 53 - 63 ns CL =15pF 5 - 18 - - - - ns 4.5 - - 35 - 44 - 53 ns 5 - 12 - - - - - ns 4.5 - 30 - 38 - 45 ns 5 - 12 - - - - - ns 4.5 - - 15 - 19 - 22 ns - - 10 - 10 - 10 pF 60 - - - - - pF HCT TYPES Propagation Delay tPLH, tPHL Select to Outputs Data to Outputs tPLH, tPHL CL = 50pF CL =15pF Enable to High Z and Enable tPLH, tPHL CL = 50pF from High Z CL =15pF Output Transition Time tTLH, tTHL CL = 50pF Input Capacitance CIN - - Power Dissipation Capacitance (Notes 3, 4) CPD - 5 NOTES: 3. CPD is used to determine the dynamic power consumption, per package. 4. PD = VCC2 fi (CPD + CL) where fi = input frequency, CL = output load capacitance, VCC = supply voltage. 5 CD54HC251, CD74HC251, CD54HCT251, CD74HCT251 Test Circuits and Waveforms tr = 6ns tf = 6ns 90% 50% 10% INPUT GND tTLH tPHL 6ns 10% 2.7 1.3 OUTPUT LOW TO OFF 90% OUTPUT HIGH TO OFF 50% OUTPUTS DISABLED FIGURE 3. HC THREE-STATE PROPAGATION DELAY WAVEFORM OTHER INPUTS TIED HIGH OR LOW OUTPUT DISABLE IC WITH THREESTATE OUTPUT GND 1.3V tPZH 90% OUTPUTS ENABLED OUTPUTS ENABLED 0.3 10% tPHZ tPZH 3V tPZL tPLZ 50% OUTPUTS ENABLED 6ns GND 10% tPHZ tf OUTPUT DISABLE tPZL tPLZ OUTPUT HIGH TO OFF 6ns tr VCC 90% tPLH FIGURE 2. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 6ns OUTPUT LOW TO OFF 1.3V 10% INVERTING OUTPUT FIGURE 1. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC 50% tTLH 90% tPLH tPHL GND tTHL 90% 50% 10% INVERTING OUTPUT 3V 2.7V 1.3V 0.3V INPUT tTHL OUTPUT DISABLE tf = 6ns tr = 6ns VCC 1.3V OUTPUTS DISABLED OUTPUTS ENABLED FIGURE 4. HCT THREE-STATE PROPAGATION DELAY WAVEFORM OUTPUT RL = 1kΩ CL 50pF VCC FOR tPLZ AND tPZL GND FOR tPHZ AND tPZH NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1kΩ to VCC, CL = 50pF. FIGURE 5. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT 6 PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) 5962-9052401MEA ACTIVE CDIP J 16 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9052401ME A CD54HCT251F3A CD54HC251F ACTIVE CDIP J 16 1 TBD A42 N / A for Pkg Type -55 to 125 CD54HC251F CD54HC251F3A ACTIVE CDIP J 16 1 TBD A42 N / A for Pkg Type -55 to 125 8512501EA CD54HC251F3A CD54HCT251F3A ACTIVE CDIP J 16 1 TBD A42 N / A for Pkg Type -55 to 125 5962-9052401ME A CD54HCT251F3A CD74HC251E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 CD74HC251E CD74HC251EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 CD74HC251E CD74HC251M ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HC251M CD74HC251M96 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HC251M CD74HC251MG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HC251M CD74HC251MT ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HC251M CD74HCT251E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 CD74HCT251E CD74HCT251EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type -55 to 125 CD74HCT251E CD74HCT251M ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HCT251M CD74HCT251M96 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HCT251M CD74HCT251ME4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HCT251M CD74HCT251MG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -55 to 125 HCT251M Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Jun-2014 Status (1) CD74HCT251MT ACTIVE Package Type Package Pins Package Drawing Qty SOIC D 16 250 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Op Temp (°C) Device Marking (4/5) -55 to 125 HCT251M (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF CD54HC251, CD54HCT251, CD74HC251, CD74HCT251 : Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Jun-2014 • Catalog: CD74HC251, CD74HCT251 • Military: CD54HC251, CD54HCT251 NOTE: Qualified Version Definitions: • Catalog - TI's standard catalog product • Military - QML certified for Military and Defense Applications Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 19-Mar-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel Diameter Width (mm) W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant CD74HC251M96 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 CD74HCT251M96 SOIC D 16 2500 330.0 16.4 6.5 10.3 2.1 8.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 19-Mar-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) CD74HC251M96 SOIC D 16 2500 333.2 345.9 28.6 CD74HCT251M96 SOIC D 16 2500 333.2 345.9 28.6 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated