Fujitsu MB39A107 Dc/dc converter ic for charging li-ion battery with synchronous rectifier Datasheet

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-27234-1E
ASSP For Power Supply Applications (Secondary Battery)
DC/DC Converter IC for Charging Li-ion Battery
with Synchronous Rectifier
MB39A107
■ DESCRIPTION
The MB39A107 is a DC/DC converter IC suitable for down-conversion, using pulse-width modulation (PWM)
charging and enabling output voltage to be set to any desired level from 1 cell to 4 cells.
The MB39A107 adopts output for Nch MOS drive of synchronous rectification type.
The MB39A107 can be used to monitor the current in an AC adapter or battery, as it contains a current amplifier
that can set an offset voltage.
It can also be used for applications such as setting the charging voltages for 2 batteries.
The MB39A107 provides a broad power supply voltage range and low standby current as well as high efficiency,
making it ideal for use as a built-in charging device in products such as notebook PC.
■ FEATURES
•
•
•
•
•
•
Built-in low-current control circuits in two systems (supporting dynamically controlled charging)
The charge current value can be analog controlled (+INE1 and +INE2 terminal)
Built-in synchronous rectification system output for Nch MOS FET
Built-in charge pump for driving high-side Nch MOS, providing 100% on-duty support
Built-in AC adapter detection function
Output voltage setting accuracy : 4.2 V ± 0.74 % (Ta = − 10 °C to + 85 °C)
(Continued)
■ PACKAGE
30-pin plastic TSSOP
(FPT-30P-M04)
MB39A107
(Continued)
• Built-in high accuracy current detection amplifier : ± 5 % (input voltage difference at 100 mV)
: ±15 % (input voltage difference at 20 mV)
• Output voltage setting using external resistor : 1 cell to 4 cells
• Oscillation frequency range : 100 kHz to 1 MHz
• In standby mode, leave output voltage setting resistor open to prevent inefficient current loss.
• Built-in standby current function : 0 µA (Typ)
• Built-in soft-start function independent of loads
2
MB39A107
■ PIN ASSIGNMENT
(TOP VIEW)
VCC
1
30
VB
+INUV
2
29
CB
OUTC1
3
28
OUT-1
−INC1
4
27
VS
+INC1
5
26
OUT-2
IOFA1
6
25
PGND
+INE1
7
24
OUT-CP
−INE1
8
23
CTL-2
FB1
9
22
CTL-1
OUTC2
10
21
GND
−INC2
11
20
VREF
+INC2
12
19
RT
+INE2
13
18
CS
−INE2
14
17
OUTD
FB23
15
16
−INE3
(FPT-30P-M04)
3
MB39A107
■ PIN DESCRIPTION
4
Pin No.
Symbol
I/O
Descriptions
1
VCC

2
+ INUV
I
Low input voltage detection comparater (UV Comp.) input terminal
3
OUTC1
O
Current detection amplifier (Current Amp1) output terminal
4
− INC1
I
Current detection amplifier (Current Amp1) input terminal
5
+ INC1
I
Current detection amplifier (Current Amp1) input terminal
6
IOFA1
I
Current detection amplifier (Current Amp1) offset voltage input terminal
7
+ INE1
I
Error amplifier (Error Amp1) non-inverted input terminal
8
− INE1
I
Error amplifier (Error Amp1) inverted input terminal
9
FB1
O
Error amplifier (Error Amp1) output terminal
10
OUTC2
O
Current detection amplifier (Current Amp2) output terminal
11
− INC2
I
Current detection amplifier (Current Amp2) input terminal
12
+ INC2
I
Current detection amplifier (Current Amp2) input terminal
13
+ INE2
I
Error amplifier (Error Amp2) non-inverted input terminal
14
− INE2
I
Error amplifier (Error Amp2) inverted input terminal
15
FB23
O
Error amplifier (Error Amp2, 3) output terminal
16
− INE3
I
Error amplifier (Error Amp3) inverted input terminal
17
OUTD
O
With IC in standby mode, this terminal is set to Hi-Z to prevent loss of
current through output voltage setting resistance.
Set CTL terminal to “H” level to output “L” level.
18
CS

Soft-start capacitor connection terminal
19
RT

Triangular waveform oscillation frequency setting resistor connection
terminal
20
VREF
O
Reference voltage output terminal
21
GND

Ground terminal
22
CTL-1
I
DC/DC converter block power supply control terminal
23
CTL-2
I
Current detection amplifier (Current Amp1) power supply control terminal
24
OUT-CP
O
External main-side FET charge pump output terminal for driving gate
25
PGND

Ground teriminal
26
OUT-2
O
External synchronous rectification-side FET output terminal for driving gate
27
VS

External main-side FET source connection terminal
28
OUT-1
O
External main-side FET output terminal for driving gate
29
CB

This terminal generates a voltage of “VCC + about 5 V” with a capacitor and
an SBD connected to the OUT-CP, VB, and CB terminals.
30
VB
O
Output circuit bias output terminal
Reference voltage, control circuit power supply terminal
MB39A107
■ BLOCK DIAGRAM
+INUV
2
OUTC1
3
<Current Amp1>
+INC1
5
−INC1
4
IOFA1
6
VCC
1
<UV Comp.>
+
+
×25
−
−
4.05 V/4.20 V
Offset adjustment
VREF
−
−INE1
8
+INE1
7
<Error Amp1>
−
+
+
+
30 VB
VB Reg.
<−INE Comp.>
(6.0 V)
+
29 CB
3.92 V/4.00 V
4.2 V
<PWM Comp.>
+
+
−
9
−INE2 14
OUTC2 10
+INC2 12
−INC2 11
<Current Amp2>
+
×25
−
Drv
-1
Dead Time
Modulation
FB1
27 VS
VREF
Drv
-2
26 OUT-2
Drv
-CP
24 OUT-CP
−2.5 V
−1.5 V
<Error Amp2>
−
+
+
+INE2 13
28 OUT-1
25 PGND
H : UVLO, UV release
FB23 15
UVLO
−INE3 16
<Error Amp3>
−
+
+
OUTD 17
VB
UVLO
VREF
UVLO
4.2 V
Current Amp1
ON/OFF
<SOFT>
VREF
23 CTL-2
VCC
10 µA
<OSC>
CS 18
CT
45 pF
4.2 V
bias
<REF>
<CTL>
DC/DC
ON/OFF
22 CTL-1
VREF
5.0 V
19
RT
20
VREF
21
GND
5
MB39A107
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Condition
Power supply voltage
VCC

Boot voltage
VCB
Control input voltage
VCTL
Output current
IoUT
Power dissipation
PD
Storage temperature
TSTG
Rating
Unit
Min
Max

27
V
CB terminal

32
V
CTL-1 terminal, CTL-2 terminal

27
V

60
mA

1390*
mW
− 55
+125
°C

Ta ≤ +25 °C

* : The packages are mounted on the dual-sided epoxy board (10 cm × 10 cm) .
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
6
MB39A107
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Condition
Power supply voltage
VCC

Boot voltage
VCB
Reference voltage output current
Bias output current
Value
Unit
Min
Typ
Max
7

25
V
CB terminal


30
V
IREF
VREF terminal
−1

0
mA
IVB
VB terminal
−1

0
mA
VINE
+ INE1, + INE2, + INE3,
− INE1, − INE2 terminal
0

VCC −
1.8
V
VINC
+ INC1, + INC2,
− INC1, − INE2 terminal
0

VCC
V
VINUV
+ INUV terminal
0

VCC
V
IOFA1 terminal input voltage
VIOFA1

0

5
V
OUTD terminal output voltage
VOUTD

0

17
V
OUTD terminal output current
IOUTD

0

2
mA
CTL terminal input voltage
VCTL

0

25
V
Output current
IOUT

− 45

+ 45
mA
Input voltage
IOUT
Main side
Duty ≤ 5% (t = 1/fosc × Duty)
− 800

+ 800
mA
IOUT
Synchronous rectification side
Duty ≤ 5% (t = 1/fosc × Duty)
− 1200

+ 1200
mA
Peak output current
Oscillation frequency
fOSC

100
500
1000
kHz
Timing resistor
RT

22
47
200
kΩ
Soft-start capacitor
CS


0.022
1.0
µF
Charge pump capacitor
CCP


0.33

µF
CB terminal capacitor
CCB

0.47
1.0

µF
Bias output capacitor
CVB

0.47
1.0

µF
Reference voltage output capacitor
CREF


0.1
1.0
µF
Ta

− 30
+ 25
+ 85
°C
Operating ambient temperature
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
7
MB39A107
■ ELECTRICAL CHARACTERISTICS
(VCC = 19 V, VB = 0 mA, VREF = 0 mA, Ta = + 25 °C)
Parameter
Triangular
Wave
Oscillator
Block
[OSC]
VREF1
20
VREF2
Conditions
Value
Unit
Typ
Max
Ta = + 25 °C
4.967
5.000
5.041
V
20
Ta = − 10 °C to + 85 °C
4.95
5.00
5.05
V
Line
20
VCC = 7 V to 25 V

3
10
mV
Load
20
VREF = 0 mA to − 1 mA

1
10
mV
los
20
VREF = 1 V
− 50
− 25
− 12
mA
VTLH
30
VB =
3.80
4.00
4.20
V
VTHL
30
VB =
3.10
3.30
3.50
V
VH
30
0.49
0.70
0.91
V
VTLH
20
VREF =
2.6
2.8
3.0
V
VTHL
20
VREF =
2.4
2.6
2.8
V
Hysteresis width
VH
20

0.05
0.20
0.35
V
Charge current
ICS
18

− 14
− 10
−6
µA
Oscillation frequency
fOSC
28
RT = 47 kΩ
450
500
550
kHz
∆fOSC/
fOSC
28
Ta = − 30 °C to +85 °C

1*

%
VTH1
8, 9
FB1 = 2 V, Ta = +25 °C
4.179
4.200
4.221
V
VTH2
8, 9
FB1 = 2 V,
Ta = − 10 °C to +85 °C
4.169
4.200
4.231
V
VIO
7, 8
FB1 = 2 V

1
5
mV
IB
7, 8
− INE1 = + INE1 = 0 V
− 100
− 30

nA
AV
7, 8,
DC
9

100*

dB
BW
7, 8,
AV = 0 dB
9

1.2*

MHz
Reference
Voltage
Input stability
Block
Load stability
[Ref]
Short-circuit output
current
Soft-start
Circuit
Block
[SOFT]
Pin
No.
Min
Output voltage
Under
Voltage
(VCC)
Lockout
Circuit
Block
[UVLO]
Symbol
Threshold voltage
Hysteresis width
Threshold voltage
Frequency temperature
variation
Threshold voltage
Input offset voltage
Input bias current
Error
Amp Block Voltage gain
[Error
Amp1]
Frequency bandwidth
Output voltage
Output source current
Output sink current

VFBH
9

4.8
5.0

V
VFBL
9


0.8
0.9
V
ISOURCE
9
FB1 = 2 V

− 120
− 60
µA
ISINK
9
FB1 = 2 V
2.0
4.0

mA
* : Standard design value
(Continued)
8
MB39A107
(VCC = 19 V, VB = 0 mA, VREF = 0 mA, Ta = + 25 °C)
Symbol
Pin
No.
VIO
13,
14
FB23 = 2 V
Input bias current
IB
13,
14
− INE2 = + INE2 = 0 V
Voltage gain
AV
13,
14,
15
BW
13,
14,
15
VFBH
15
Parameter
Input offset voltage
Error Amp
Block
[Error
Frequency bandwidth
Amp2]
Output voltage
Output source current
Output sink current
Error Amp Frequency bandwidth
Block
[Error
Output voltage
Amp3]
Unit
Min
Typ
Max

1
5
mV
− 100
− 30

nA
DC

100*

dB
AV = 0 dB

1.2*

MHz
4.8
5.0

V

VFBL
15

0.8
0.9
V
15
FB23 = 2 V


− 120
− 60
µA
ISINK
15
FB23 = 2 V
2.0
4.0

mA
VTH1
15,
16
FB23 = 2 V, Ta = +25 °C
4.179 4.200 4.221
V
VTH2
15,
16
FB23 = 2 V,
Ta = − 10 °C to +85 °C
4.169 4.200 4.231
V
AV
15,
16
DC

100*

dB
BW
15,
16
AV = 0 dB

1.2*

MHz
VFBH
15
4.8
5.0

V

VFBL
15

0.8
0.9
V
ISOURCE
15
FB23 = 2 V

− 120
− 60
µA
Output sink current
ISINK
15
FB23 = 2 V
2.0
4.0

mA
OUTD terminal output
leakage current
ILEAK
17
OUTD = 17 V

0
1
µA
OUTD terminal output
ON resistor
RON
17
OUTD = 1 mA

35
50
Ω
VOUTC1
3
+ INC1 = 9 V to VCC,
2.375
∆VIN = − 100 mV, IOFA1 = 0 V
2.5
2.625
V
VOUTC2
3
+ INC1 = 9 V to VCC,
∆VIN = − 20 mV, IOFA1 = 0 V
0.425
0.5
0.575
V
VOUTC3
3
+ INC1 = 0 V to 9 V,
∆VIN = − 100 mV, IOFA1 = 0 V
2.25
2.5
2.75
V
VOUTC4
3
+ INC1 = 0 V to 9 V,
∆VIN = − 100 mV, IOFA1 = 0 V
0.25
0.5
0.75
V
24.25
25
25.75
V/V
Output source current
Current
Detection
Amp
Block
[Current
Amp1]
Value
ISOURCE
Threshold voltage
Voltage gain
Conditions
Current detection
voltage
Voltage gain
AV

3, 4, + INC1 = 3 V to VCC,
5 ∆VIN = − 20 mV, IOFA1 = 0 V
* : Standard design value
(Continued)
9
MB39A107
(VCC = 19 V, VB = 0 mA, VREF = 0 mA, Ta = + 25 °C)
Symbol
Pin
No.
IINC1
4, 5
IINC2
4, 5
Frequency bandwidth
BW
3, 4,
AV = 0 dB
5
IOFA1 terminal input
current
IOFA1
6
VOUTCH
3
VOUTCL
3
Output source current ISOURCE
3
Output sink current
ISINK
Parameter
Unit
Typ
Max
+ INC1 = − INC1 = 19 V

50
75
µA
CTL-2 = 0 V,
+ INC1 = − INC1 = 19 V

0
1
µA

0.2*

MHz
− 100
− 30

nA

5.3
5.6

V


20
200
mV
OUTC = 2 V

−2
−1
mA
3
OUTC = 2 V
150
300

µA
VOUTC1
10
+ INC2 = 9 V to VCC,
2.375
∆VIN = − 100 mV, IOFA1 = 0 V
2.5
2.625
V
VOUTC2
10
+ INC2 = 9 V to VCC,
∆VIN = − 20 mV, IOFA1 = 0 V
0.425
0.5
0.575
V
VOUTC3
10
+ INC2 = 0 V to 9 V,
∆VIN = − 100 mV, IOFA1 = 0 V
2.25
2.5
2.75
V
VOUTC4
10
+ INC2 = 0 V to 9 V,
∆VIN = − 100 mV, IOFA1 = 0 V
0.25
0.5
0.75
V
AV
10,
11,
12
+ INC2 = 3 V to VCC,
∆VIN = − 100 mV
24.25
25
25.75
V/V
IINC1
11,
12
+ INC2 = − INC2 = 19 V

50
75
µA
IINC2
11,
12
CTL-1 = 0 V,
+ INC2 = − INC2 = 19 V

0
1
µA
BW
10,
11,
12
AV = 0 dB

0.2*

MHz
VOUTCH
10

5.3
5.6

V
VOUTCL
10


20
200
mV
Output source current ISOURCE
10
OUTC2 = 2 V

−2
−1
mA
Output sink current
10
OUTC2 = 2 V
150
300

µA
Output voltage
Current detection
voltage
Current
Detection
Amp Block
[Current
Amp2]
Value
Min
Input current
Current
Detection
Amp Block
[Current
Amp1]
Conditions
Voltage gain
Input current
Frequency bandwidth
Output voltage
PWM
Comparator
Block
Threshold voltage
[PWM
Comp.]
ISINK
IOFA1 = 2.5 V
VTL
9, 15 Duty cycle = 0%
1.4
1.5

V
VTH
9, 15 Duty cycle = 100%

2.5
2.6
V
* : Standard design value
(Continued)
10
MB39A107
(Continued)
(VCC = 19 V, VB = 0 mA, VREF = 0 mA, Ta = + 25 °C)
Parameter
Symbol
Pin
No.
Conditions
ISOURCE
28
ISOURCE
Value
Unit
Min
Typ
Max
Main side,
Duty ≤ 5% (t = 1/fOSC × Duty)

− 600*

mA
26
Synchronous rectification
side,
Duty ≤ 5% (t = 1/fOSC × Duty)

− 800*

mA
ISINK
28
Main side,
Duty ≤ 5% (t = 1/fOSC × Duty)

800*

mA
ISINK
26
Synchronous rectification
side,
Duty ≤ 5% (t = 1/fOSC × Duty)

1000*

mA
tD1
26, 28


100*

ns
tD2
26, 28


100*

ns
ROH
24
OUT-CP = − 45 mA

2
10
Ω
ISINK
24
OUT-CP = 10 V

200*

mA
Low Input
Threshold voltage
Voltage
Detection
Comparator Hysteresis width
Block
Input bias current
[UV Comp.]
VTLH
2, 28
+ INUV =
4.12
4.2
4.28
V
VTHL
2, 28
+ INUV =
3.97
4.05
4.13
V
VH
2, 28

0.15

V
IINUV
2
+ INUV = 0 V
− 200
− 100

nA
Battery
Threshold voltage
Voltage
Detection
Comparator
Block
Hysteresis width
[ − INE
Comp.]
VTLH
16
− INE3 =
3.89
3.93
3.97
V
VTHL
16
− INE3 =
3.85
3.89
3.93
V
VH
16


0.04

V
Output voltage
VB
30

5.9
6
6.1
V
ON condition
VON
22, 23 CTL-1, CTL-2 terminal
2

25
V
OFF condition
VOFF
22, 23 CTL-1, CTL-2 terminal
0

0.8
V
ICTLH
22, 23 CTL-1 = CTL-2 = 5 V

100
150
µA
ICTLL
22, 23 CTL-1 = CTL-2 = 0 V

0
1
µA
Output source
current
Output
Block
[Drv-1, 2]
Output sink current
Dead time
Charge
Output ON resistor
Pump Block
Output sink current
[Drv-CP]
Bias Voltage Block
[VB]
Control
Block
[CTL]
Input current
Standby current
General
Power supply current

ICCS
1
CTL-1 = CTL-2 = 0 V

0
10
µA
ICC1
1
CTL-1 = CTL-2 = 5 V

12
18
mA
ICC2
1
CTL-1 = 5 V, CTL-2 = 0 V

10.5
15.8
mA
ICC3
1
CTL-1 = 0 V, CTL-2 = 5 V

2.1
3.2
mA
* : Standard design value
11
MB39A107
■ TYPICAL CHARACTERISTICS
Power supply current ICC (mA)
10
8
6
4
Ta = +25 °C
CTL1 = 5 V
CTL2 = 5 V
RT = OPEN
2
0
0
5
10
15
20
25
Power Supply Current vs. Power Supply Voltage
Power supply current ICC (mA)
Power Supply Current vs. Power Supply Voltage
10
8
6
4
Ta = +25 °C
CTL1 = 5 V
CTL2 = 0 V
RT = OPEN
2
0
0
Power supply voltage VCC (V)
5
10
15
20
25
Power supply voltage VCC (V)
Power supply current ICC (mA)
Power Supply Current vs. Power Supply Voltage
10
Ta = +25 °C
CTL1 = 0 V
CTL2 = 5 V
RT = OPEN
8
6
4
2
0
0
5
10
15
20
25
Power supply voltage VCC (V)
800
9
8
700
7
600
6
VREF
500
5
400
4
300
3
ICTL
200
2
100
1
0
0
30
0
5
10
15
20
25
CTL1 terminal voltage VCTL (V)
1000
10
Ta = +25 °C
VCC = 19 V
VREF = 0 mA
900
800
700
9
8
7
600
6
VREF
500
5
400
4
300
3
ICTL
200
2
100
1
0
0
5
10
15
20
25
0
30
Reference voltage VREF (V)
10
Ta = +25 °C
VCC = 19 V
VREF = 0 mA
900
CTL2 terminal current ICTL (µA)
1000
CTL2 Terminal Current, Reference Voltage vs.
CTL2 Terminal Voltage
Reference voltage VREF (V)
CTL1 terminal current ICTL (µA)
CTL1 Terminal Current, Reference Voltage vs.
CTL1 Terminal Voltage
CTL2 terminal voltage VCTL (V)
(Continued)
12
MB39A107
Reference Voltage vs. Load Current
Reference Voltage vs. Power Supply Voltage
10
Reference voltage VREF (V)
Reference voltage VREF (V)
10
Ta = +25 °C
CTL1 = 5 V
CTL2 = 5 V
VREF = 0 mA
8
6
4
2
0
0
5
10
15
20
Ta = +25 °C
VCC = 19 V
CTL1 = 5 V
CTL2 = 5 V
8
6
4
2
0
25
0
5
Power supply voltage VCC (V)
5.02
5.00
4.98
4.96
4.94
4.92
−40
−20
0
20
40
60
80
100
Triangular wave oscillation
frequency fOSC (kHz)
Reference voltage VREF (V)
5.04
20
25
10000
VCC = 19 V
CTL1 = 5 V
CTL2 = 5 V
VREF = 0 mA
5.06
15
30
35
Triangular Wave Oscillation Frequency vs.
Timing Resistor
Reference Voltage vs. Ambient Temperature
5.08
10
Load current IREF (mA)
Ta = +25 °C
VCC = 19 V
CB = 25 V
CTL1 = 5 V
CTL2 = 5 V
1000
100
Ambient temperature Ta ( °C)
10
1
10
100
1000
Timing resistor RT (kΩ)
Triangular Wave Oscillation Frequency vs.
Power Supply Voltage
560
VCC = 19 V
CB = 25 V
CTL1 = 5 V
CTL2 = 5 V
RT = 47 kΩ
540
520
500
480
460
440
−40
−20
0
20
40
60
Ambient temperature Ta ( °C)
80
100
560
Triangular wave oscillation
frequency fOSC (kHz)
Triangular wave oscillation
frequency fOSC (kHz)
Triangular Wave Oscillation Frequency vs.
Ambient Temperature
Ta = +25 °C
CB = VCC + 6 V
CTL1 = 5 V
CTL2 = 5 V
RT = 47 kΩ
540
520
500
480
460
440
0
5
10
15
20
25
30
Power supply voltage VCC (V)
(Continued)
13
MB39A107
Error Amplifier 3 Threshold Voltage vs.
Ambient Temperature
Error Amplifier 1 Threshold Voltage vs.
Ambient Temperature
4.25
VCC = 19 V
CTL1 = 5 V
CTL2 = 5 V
4.24
4.23
Error amplifier 3
threshold voltage VTH (V)
Error amplifier 1
threshold voltage VTH (V)
4.25
4.22
4.21
4.20
4.19
4.18
4.17
4.16
4.15
−40
−20
0
20
40
60
80
4.23
4.22
4.21
4.20
4.19
4.18
4.17
4.16
4.15
−40
100
VCC = 19 V
CTL1 = 5 V
CTL2 = 5 V
4.24
Ambient temperature Ta ( °C)
−20
0
20
40
60
80
100
Ambient temperature Ta ( °C)
Error Amplifer, Gain and Phase vs. Frequency
Ta = +25 °C
VCC = 19 V
40
180
240 kΩ
φ
90
10
AV
0
0
−10
−90
−20
10 kΩ
1 µF
+
Gain AV (dB)
20
Phase φ (deg)
30
IN
8
2.4 kΩ (14)
7
10 kΩ
(13)
−
9
(15) OUT
+
+
4.2 V
(CS)
−30
Error Amp1
(Error Amp2)
−180
−40
1k
10 k
100 k
1M
10 M
Frequency f (Hz)
Error Amplifier, Gain and Phase vs. Frequency
Ta = +25 °C
VCC = 19 V
40
180
240 kΩ
90
10
AV
0
0
−10
−90
−20
Phase φ (deg)
φ
20
−30
10 kΩ
1 µF
+
Gain AV (dB)
30
16
2.4 kΩ
10 kΩ
IN
−
+
+
15
OUT
Error Amp3
CS
4.2 V
−180
− 40
1k
10 k
100 k
1M
10 M
Frequency f (Hz)
(Continued)
14
MB39A107
(Continued)
s
Current Detection Amplifier, Gain and Phase
vs. Frequency
Ta = +25 °C
VCC = 19 V
40
180
VCC = 19 V
AV
10
0
0
−10
φ
−90
−20
Phase φ (deg)
90
20
10 kΩ
1 µF
+
10 kΩ
IN
5 +
100 mV (12)
4 −
(11)
Current Amp1 (IOFA1 = 0 V)
(Current Amp2)
−180
− 40
1k
10 k
100 k
1M
3
(10) OUT
12.6 V
−30
10 M
Frequency f (Hz)
Power Dissipation vs. Ambient Temperature
Power dissipation PD (mW)
Gain AV (dB)
30
800
740
700
600
500
400
300
200
100
0
−40
−20
0
20
40
60
80
100
Ambient temperature Ta ( °C)
15
MB39A107
■ FUNCTIONAL DESCRIPTION
1. DC/DC Converter Functions
(1) Reference voltage block (REF)
The reference voltage circuit generates a temperature-compensated reference voltage (5.0 V Typ) using the
voltage supplied from the VCC terminal (pin 1) . The voltage is used as the reference voltage for the IC’s internal
circuit.
The reference voltage can be used to supply a load current of up to 1 mA to an external device through the
VREF terminal (pin 20) .
(2) Triangular wave oscillator block (OSC)
The triangular wave oscillator incorporates a triangular oscillation frequency setting capacitor connected
respectively to the RT terminal (pin 19) to generate triangular oscillation waveforms.
The triangular oscillation waveforms are input to the IC’s internal PWM comparator.
(3) Error amplifier block (Error Amp1)
The error amplifier detects output signal of current detection amplifier (Current Amp2) and outputs PWM control
signal by comparison with +INE1 terminal (pin 7), also controls charge current.
Charge current controls by this amplifier and by the error amplifier (Error Amp2) allow two constant current values
to be set to offer fail-safe control.
By connecting a feedback resistor and capacitor between FBI terminal (pin 9) and − INE1 terminal (pin 8), it is
possible to create any desired level of loop gain, thereby providing stable phase compensation to the system.
Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the
CS terminal (pin 18).
The use of Error amplifier for soft-start detection makes it possible for a system to operate on a fixed soft-start
time that is independent of the output load.
The amplifier can serve for constant current control in combination with the current detection amplifier (Current
Amp1) .
(4) Error amplifier block (Error Amp2)
The error amplifier detects output signal of current detection amplifier (Current Amp2) and outputs PWM control
signal by comparison with +INE2 terminal (pin 13), also controls charge current.
By connecting a feedback resistor and capacitor between FB23 terminal (pin 15) and − INE2 terminal (pin 14),
it is possible to create any desired level of loop gain, thereby providing stable phase compensation to the system.
Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the
CS terminal (pin 18).
The use of Error amplifier for soft-start detection makes it possible for a system to operate on a fixed soft-start
time that is independent of the output load.
16
MB39A107
(5) Error amplifier block (Error Amp3)
The error amplifier (Error Amp3) detects the DC/DC converter output voltage and outputs PWM control signals.
An arbitrary output voltage can be set for 1 to 4 cells by connecting external output voltage setting resistors to
the error amplifier inverting input pins.
By connecting a feedback resistor and capacitor between FB23 terminal (pin 15) and − INE3 terminal (pin 16),
it is possible to create any desired level of loop gain, thereby providing stable phase compensation to the system.
Also, it is possible to prevent rush current at power supply start-up by connecting a soft-start capacitor with the
CS terminal (pin 18).
The use of Error amplifier for soft-start detection makes it possible for a system to operate on a fixed soft-start
time that is independent of the output load.
(6) Current detection amplifier block (Current Amp1)
The current detection amplifier (Current Amp1) uses the +INC1 terminal (pin 5) and −INC1 terminal (pin 4) to
detect a voltage drop which occurs between both ends of the sense resistor (RS2) due to the flow of the AC
adapter current and outputs the signal amplified 25 times to the OUTC1 terminal (pin 3) .
It is also possible to set an offset voltage equal to the voltage applied to the IOFA1 terminal (pin 6) .
(7) Current detection amplifier block (Current Amp2)
The current detection amplifier (Current Amp2) uses the +INC2 terminal (pin 12) and −INC2 terminal (pin 11)
to detect a voltage drop which occurs between both ends of the output sense resistor (RS1) due to the flow of
the charge current and outputs the signal amplified 25 times to the OUTC2 terminal (pin 10) .
(8) PWM comparator block (PWM Comp.)
The PWM comparator is a voltage-pulse width modulator that controls the output duty depending on the output
voltage of error amplifier (Error Amp1, Error Amp2 and Error Amp3).
The PWM comparator compares the triangular wave voltage generated by the triangular wave oscillator with the
error amplifier output voltage. Then it turns on the output transistor on the main side and turns off the output
transistor on the synchronous rectification side during the interval in which the triangular wave voltage is lower
than the error amplifier output voltage.
(9) Output block (Drv-1, Drv-2)
The output circuit on the main side and on the synchronous rectification side are both in the totem pole configuration, capable of driving an external Nch MOS FET.
(10) Charge pump block (Drv-CP)
The CB terminal is a power supply terminal of output circuit (Drv-1) for the main side external Nch MOS FET drive.
The CB terminal generates “VCC + about 5 V” in the OUT-CP terminal (pin 24) , VB terminal (pin 30) , and CB
terminal (pin 29) by connecting the capacitor with SBD.
17
MB39A107
(11) Power supply control block
Setting the CTL-1 terminal (pin 22) and CTL-2 terminal (pin 23) “L” level in the standby mode.
(The supply current is 10 µA at maximum in the standby mode.) Setting the CTL-1 and CTL-2 terminals “H”
level allows the DC/DC converter and current detection amplifier (Current Amp1) to operate independently of
each other.
CTL function table
CTL-1
CTL-2
DC/DC converter block
Current Amp1
L
L
OFF
OFF
H
L
ON
OFF
L
H
OFF
ON
H
H
ON
ON
(12) Bias voltage block
6 V (Typ) is as a power supply of the output circuit and potential for the charge pump output voltage setting.
(13) Battery voltage detection comparator block ( − INEComp.)
At least 95% of the battery set voltage is detected to turn off the output transistor of the output block (Drv-2) on
the synchronous rectification side.
2. Protection Functions
(1) Under voltage lockout protection circuit block (VREF-UVLO)
The momentary decrease in internal reference voltage (VREF) may cause malfunctions in the control IC, resulting
in breakdown or degradation of the system.
To prevent such malfunctions, under voltage lockout protection circuit detects internal reference voltage drop
and fixes OUT-1 terminal (pin 28) and OUT-2 terminal (pin 26) to "L" level.
The system restores voltage supply when the internal reference voltage reaches the threshold voltage of the
under voltage lockout protection circuit.
Protection circuit (VREF-UVLO)operation function table
At UVLO operating (VRFE voltage is lower than UVLO threshold voltage.)
The logic of following terminal is fixed.
OUTD
OUT-1
OUT-2
OUT-CP
Hi-Z
L
L
L
CS
VB
L
L
(2) Under voltage lockout protection circuit (VB-UVLO)
The transient state or a momentary decrease in supply voltage, which occurs when the bias voltage (VB) for
output circuit is turned on, may cause malfunction in the control IC, resulting in breakdown or degradation of the
system.
To prevent such malfunctions, under voltage lockout protection circuit detects a bias voltage drop, and fixes OUT1 terminal (pin 28) and OUT-2 terminal (pin 26) to "L" level.
The system restores voltage supply when the power supply voltage or the internal reference voltage reaches
the threshold voltage of the under voltage lockout protection circuit.
18
MB39A107
Protection circuit (VB-UVLO)operation function table
At UVLO operating (VB voltage is lower than UVLO threshold voltage.)
The logic of following terminals is fixed.
OUT-1
OUT-2
OUT-CP
L
L
L
CS
L
(3) Under input voltage detection comparator block (UVComp.)
Decrease of input voltage is detected and OUT-1 terminal (pin 28) and OUT-2 terminal (pin 26) are fixed to “L” level.
In addition, an arbitrary detection voltage value can be set with an external resistor.
The system restores voltage supply when the input voltage reaches or exceeds the threshold voltage of the
under input voltage detection comparator.
Protection circuit (UVComp.)operation function table
At under input voltage detection (Input voltage is lower than UVComp. threshold voltage.)
The logic of following terminals is fixed.
OUT-1
OUT-2
OUT-CP
L
L
L
CS
L
3. Soft-start function
Soft-start block (SOFT)
Connecting a capacitor to the CS terminal (pin 18) prevents rush currents from flowing upon activation of the
power supply.
Using the error amplifier to detect a soft-start allows to soft-start at constant setting time intervals independent
of the output load of the DC/DC converter.
19
MB39A107
■ SETTING THE CHARGING VOLTAGE
The charging voltage (DC/DC output voltage) can be set by connecting an external output voltage setting resistors
(R1, R2) to the −INE3 terminal (pin 16) .
Select a resistance value at which the ON resistance (35 Ω at 1 mA) of the built-in FET connected to the OUTD
terminal (pin 17) can be ignored.
Battery charging voltage : Vo
R1 + R2
× − INE3 (V)
Vo (V) =
R2
VO
B
<Error Amp3>
R1
−INE3
16
−
+
+
R2
17
4.2 V
OUTD
18
CS
■ SETTING THE CHARGING CURRENT
The charge current value (output limit current) can be set depending on the voltage value at the +INE2 terminal
(pin 13) .
If a current exceeding the setting value attempts to flow, the charging voltage drops according to the setting
current value.
Battery charge current setting voltage : + INE2
+ INE2 (V) = 25 × Ichg (A) × RS (Ω)
■ SETTING THE TRIANGULAR WAVE OSCILLATION FREQUENCY
The triangular wave oscillation frequency can be set by the timing resistor (RT) connected to the RT terminal
(pin 19) .
Triangular oscillation frequency : fOSC
23500
fOSC (kHz) =:
RT (kΩ)
20
MB39A107
■ SETTING THE SOFT-START TIME
(1) Setting constant voltage mode soft-start
For preventing rush current upon activation of IC, the IC allows soft-start using the capacitor (CS) connected to
the CS terminal (pin 18) .
When the CTL-1 terminal (pin 22) is placed under “H” level and IC is activated (threshold voltage of VCC ≥
UVLO) , and Q2 is turned off and the external soft-start capacitor (CS) connected to the CS terminal is charged
at 10 µA.
The Error Amp3 output (FB23 terminal (pin 15) ) is determined by comparison between the lower voltage of the
two non-inverted input terminal voltages (4.2 V and − CS terminal voltage) , and the inverted input terminal
voltage (at the −INE3 terminal (pin 16) ) . FB23 during soft-start intervals (CS terminal voltage < 4.2 V) is therefore
determined through comparison between the −INE3 terminal voltage and CS terminal voltage and the DC/DC
converter output voltage is proportional to the CS terminal voltage rising as the external soft-start capacitor
connected to the CS terminal is charged.
The soft-start time is obtained by the following formula.
Soft start time : ts (time to output voltage 100%)
ts (s) =: 0.42 × Cs (µF)
CS terminal voltage
Comparison voltage with
Error Amp block − INE3 voltage
=: 4.9 V
=: 4.2 V
=: 0 V
t
Soft-start time : ts
• Soft-start circuit
VREF
10 µA
10 µA
−INE3
<Error Amp3>
−
16
+
+
CS
18
4.2 V
CS
Q2
UVLO
21
MB39A107
(2) Setting constant current mode soft-start
For preventing rush current upon activation of IC, the IC allows soft-start using the capacitor (CS) connected to
the CS terminal (pin 18) .
When the CTL-1 terminal (pin 22) is placed under “H” level and IC is activated (threshold voltage of VCC ≥
UVLO) , and Q2 is turned off and the external soft-start capacitor (CS) connected to the CS terminal is charged
at 10 µA.
The error Amp2 output (FB23 terminal (pin 15) ) is determined by comparison between the lower voltage of the
two non-inverted input terminal voltages (at the +INE2 terminal (pin 13) and CS terminal) , and the inverted input
terminal voltage (at the −INE2 terminal (pin 14) ) . FB23 during soft-start intervals (CS terminal voltage < +INE2)
is therefore determined through comparison between the −INE2 terminal voltage and CS terminal voltage and
the DC/DC converter output current is proportional to the CS terminal voltage rising as the external soft-start
capacitor connected to the CS terminal is charged.
The soft-start time is obtained by the following formula.
Soft start time : ts (time to output voltage 100%)
+ INE2
ts (s) =:
× Cs (µF)
10 µA
CS terminal voltage
Comparison voltage with
=: 4.9 V
+ INE2
Error Amp block − INE2 voltage
=: 0 V
t
Soft-start time : ts
• Soft-start circuit
VREF
10 µA
10 µA
<Error Amp2>
−INE2
−
14
+
+
CS
18
+INE2
CS
22
13
Q2
UVLO
MB39A107
■ PROCESSING WITHOUT USING OF THE SOFT-START FUNCTION
When soft-start function is not used, leave the CS terminal (pin 18) open.
• When no soft-start function is specified
“Open”
CS 18
23
MB39A107
■ I/O EQUIVALENT CIRCUIT
〈〈 Reference voltage block 〉〉
〈〈 Control block 〉〉
VCC 1
CTL-2 23
1.23 V
ESD
protection
element
+
−
CTL-1 22
20 VREF
37.65
kΩ
12.3
kΩ
GND 21
〈〈 Soft-start block 〉〉
ESD
protection
element
33.1
kΩ
33.1
kΩ
51
kΩ
51
kΩ
GND
〈〈 Triangular wave
oscillator block 〉〉
〈〈 Error amplifier block (Error Amp1) 〉〉
VREF
(5.0 V)
VCC
VREF
(5.0 V)
VREF
(5.0 V)
18 CS
1.22 V
+
−
−INE1 8
CS
19 RT
GND
9 FB1
4.2 V
GND
GND
7 +INE1
〈〈 Error amplifier block (Error Amp2) 〉〉
〈〈 Error amplifier block (Error Amp3) 〉〉
VCC
VCC
VREF
(5.0 V)
−INE2 14
−INE3 16
4.2 V
15 FB23
GND
CS
FB23
4.2V
GND
13 +INE2
〈〈 Current detection amplfier block
(Current Amp1) 〉〉
〈〈 Current detection amplfier block
(Current Amp1 offset adjustment block) 〉〉
VCC
VCC
+INC1 5
−IN
3 OUTC1
6 IOFA1
GND
GND
4 −INC1
(Continued)
24
MB39A107
(Continued)
〈〈 Current detection amplfier block (Current Amp2) 〉〉
〈〈 PWM comparator block 〉〉
VCC
VCC
+INC2 12
FB1
10 OUTC2
CT
FB23
GND
GND
11 −INC2
〈〈 Output block
(synchronous rectification-side) 〉〉
〈〈 Output block (Main side) 〉〉
CB 29
〈〈 Charge pump block 〉〉
VB 30
VCC
28 OUT-1
24 OUT-CP
26 OUT-2
PGND
VS 27
PGND 25
GND
〈〈 Under input voltage detection comparator block 〉〉
〈〈 Battery voltage detection comparator block 〉〉
VCC
VCC
VREF
(5.0 V)
VREF
(5.0 V)
2 +INUV
GND
−INE3
GND
〈〈 Prevent inefficient current block 〉〉
〈〈 Bias voltage block 〉〉
VCC
30 VB
17 OUTD
1.23 V
GND
GND
25
26
7 V to 25 V
Chg_ctr
R5
6.2
kΩ
C7
6800 pF
R11
51 kΩ
15 mΩ
R7
R17
100 kΩ
FB1
+INE1
−INE1
IOFA1
−INC1
+INC1
7
8
6
4
5
13
15
R28
100 kΩ
R27
200 kΩ
−INE3 16
R35 1 kΩ
FB23
+INE2
C10
0.022 µF
CS
18
C18
C9
10 2200
OUTD
pF
pF
17
R21 R22 R18
R26
18 1.3 47
100 kΩ
kΩ kΩ kΩ
R25
51
kΩ
C19
10 pF
9
R16
10 kΩ
−INE2
14
C8
6800 pF
OUTC2
R24
10
R23
10 kΩ
100 kΩ
12
A
+INC2
B
11
−INC2
R14
47 kΩ
12 kΩ
SW3 SW4
10
kΩ
R12
51 kΩ
R19 R20
33 200
kΩ kΩ
R6
100 kΩ
D1
OUTC1
10 µA
<SOFT>
VREF
VREF
VREF
4.2 V
−
+
+
CT
45 pF
<ErrorAmp3>
−
+
+
<ErrorAmp2>
4.2 V
<ErrorAmp1>
−
+
+
+
Offset adjustment
<CurrentAmp2>
+
×25
−
+
×25
−
<CurrentAmp1>
3
To Microprocessor
3.92 V/4.00 V
+
−
<−INEComp.>
RT
R30
47 kΩ
19
<OSC>
4.2 V
bias
VREF
5.0 V
C11
0.1 µF
VCC
Drv
-CP
Drv
-2
Drv
-1
(6.0 V)
C6
0.1 µF
20
GND
21
<CTL>
VCC
DC/DC
ON/OFF
CurrentAmp1
ON/OFF
VREF
UVLO
VB
UVLO
H : UVLO, UV release
<REF>
VREF
−2.5 V
−1.5 V
1
VB Reg.
UVLO
<UVComp.>
4.05 V/4.20 V
−
+
+INUV
<PWMComp.>
+
+
−
2
Dead Time
Modulation
R4 R5
22
23
25
24
26
CTL-1
CTL-2
PGND
OUT-CP
C12
0.47 µF
OUT-2
D3
C14
D4
0.47 µF 0.47
OUT-1 µF
28
VS
27
CB
29
C13
VB
30
C15
1 µF
C1
2.2
µF
C2
2.2 µF
Q1
Q2
D5
2.2
µF
C3
2.2
µF
C4
Output voltage (Battery
voltage) is adjustable.
D2
5.2 µH
L1
Ichg
B
2.2
µF
Battery
R8
33 mΩ
C5
A
VO
MB39A107
■ APPLICATION EXAMPLE 1
MB39A107
■ PARTS LIST 1
COMPONENT
ITEM
SPECIFICATION
VENDOR
PARTS No.
Q1, Q2,
Nch FET
VDS = 30 V, ID = 8.0 A
NEC
µPA2752
D1
D2, D5
D3, D4
Diode
Diode
Diode
L1
Inductor
5.2 µH
5.5 A, 22 mΩ
SUMIDA
CDRH104R-5R2
C1, C2
C3 to C5
C6, C11
C7, C8
C9
C10
C12
C13, C14
C15
C18, C19
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
2.2 µF
2.2 µF
0.1 µF
6800 pF
2200 pF
0.022 µF
0.47 µF
0.47 µF
1 µF
10 pF
25 V
25 V
50 V
50 V
50 V
50 V
25 V
50 V
25 V
50 V
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
C3216JB1E225K
C3225JB1H225K
C1608JB1H104K
C1608JB1H682K
C1608JB1H222K
C1608JB1H223K
C3216JB1E474K
C3216JB1H474K
C3216JB1E105K
C1608JB1H100K
R4
R5
R6
R7
R8
R11, R12
R14
R15
R16, R24
R17, R23, R26
R18, R30
R19
R20
R21
R22
R25
R27
R28
R35
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
33 kΩ
200 kΩ
100 kΩ
15 mΩ
33 mΩ
51 kΩ
47 kΩ
12 kΩ
10 kΩ
100 kΩ
47 kΩ
10 kΩ
6.2 kΩ
18 kΩ
1.3 kΩ
51 kΩ
200 kΩ
100 kΩ
1 kΩ
0.5%
0.5%
0.5%
1%
1%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
ssm
ssm
ssm
KOA
KOA
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
RR0816P-333-D
RR0816P-204-D
RR0816P-104-D
SL1TTE15LOF
SL1TTE33LOF
RR0816P-513-D
RR0816P-473-D
RR0816P-123-D
RR0816P-103-D
RR0816P-104-D
RR0816P-473-D
RR0816P-103-D
RR0816P-622-D
RR0816P-183-D
RR0816P-132-D
RR0816P-513-D
RR0816P-204-D
RR0816P-104-D
RR0816P-102-D
VF = 0.4 V (Max) , At IF = 2.5 A
SHINDENGEN
VF = 0.42 V (Max) , At IF = 3 A
ROHM
VF = 0.45 V (Max) , At IF = 100 mA
ORIGIN
DEP5PC3
RB053L-30
FQ4JP3
Note : NEC
: NEC corporation
SHINDENGEN : Shindengen Electric Manufacturing. Co., Ltd.
ROHM
ORIGIN
SUMIDA
TDK
ssm
KOA
: ROHM CO., LTD
: Origin Electric Co., Ltd.
: SUMIDA Corporation
: TDK Corporation
: SUSUMU CO., LTD
: KOA Corporation
27
28
7 V to 25 V
R2
6.2
kΩ
7
8
6
4
5
R25
51
kΩ
C19
10 pF
13
15
R28
100 kΩ
R27
200 kΩ
−INE3 16
R35 1 kΩ
FB23
+INE2
C10
0.022 µF
CS
18
C18
C9
10 2200
OUTD
pF
pF
17
R21 R22 R18
R26
18 1.3 47
100 kΩ
kΩ kΩ kΩ
SW3 SW4
10
kΩ
R19 R20
C7
6800 pF
+INE1
−INE1
IOFA1
−INC1
+INC1
FB1
9
R16
10 kΩ
−INE2
14
C8
6800 pF
OUTC2
R24
10
R23
10 kΩ
100 kΩ
12
A
+INC2
B
11
−INC2
R33
30 kΩ
D1
56 180
kΩ kΩ
R3
47 kΩ
R1
20 kΩ
R34
33 200
kΩ kΩ
R6
100 kΩ
R5
OUTC1
10 µA
<SOFT>
VREF
VREF
VREF
4.2 V
−
+
+
CT
45 pF
<ErrorAmp3>
−
+
+
<ErrorAmp2>
4.2 V
<ErrorAmp1>
−
+
+
+
Offset adjustment
<CurrentAmp2>
+
×25
−
+
×25
−
<CurrentAmp1>
3
3.92 V/4.00 V
+
−
<−INEComp.>
RT
R30
47 kΩ
19
<OSC>
4.2 V
bias
VREF
5.0 V
C11
0.1 µF
VCC
Drv
-CP
Drv
-2
Drv
-1
(6.0 V)
C6
0.1 µF
20
GND
21
<CTL>
VCC
DC/DC
ON/OFF
CurrentAmp1
ON/OFF
VREF
UVLO
VB
UVLO
H : UVLO, UV release
<REF>
VREF
−2.5 V
−1.5 V
1
VB Reg.
UVLO
<UVComp.>
4.05 V/4.20 V
−
+
+INUV
<PWMComp.>
+
+
−
2
Dead Time
Modulation
R4
22
23
25
24
26
CTL-1
CTL-2
PGND
OUT-CP
C12
0.47 µF
OUT-2
D3
C14
D4
0.47 µF 0.47
OUT-1 µF
28
VS
27
CB
29
C13
VB
30
C15
1 µF
C1
2.2
µF
C2
2.2 µF
Q1
Q2
D5
2.2
µF
C3
2.2
µF
C4
Output voltage (Battery
voltage) is adjustable.
D2
5.2µH
L1
Ichg
B
2.2
µF
Battery
R8
33 mΩ
C5
A
VO
MB39A107
■ APPLICATION EXAMPLE 2
MB39A107
■ PARTS LIST 2
COMPONENT
ITEM
SPECIFICATION
VENDOR
PARTS No.
Q1, Q2
Nch FET
VDS = 30 V, ID = 8.0 A
NEC
µPA2752
D1
D2, D5
D3, D4
Diode
Diode
Diode
L1
Inductor
5.2 µH
5.5 A, 22 mΩ
SUMIDA
CDRH104R-5R2
C1, C2
C3 to C5
C6, C11
C7, C8
C9
C10
C12
C13, C14
C15
C18, C19
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
Ceramics Condenser
2.2 µF
2.2 µF
0.1 µF
6800 pF
2200 pF
0.022 µF
0.47 µF
0.47 µF
1 µF
10 pF
25 V
25 V
50 V
50 V
50 V
50 V
25 V
50 V
25 V
50 V
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
TDK
C3216JB1E225K
C3225JB1H225K
C1608JB1H104K
C1608JB1H682K
C1608JB1H222K
C1608JB1H223K
C3216JB1E474K
C3216JB1H474K
C3216JB1E105K
C1608JB1H100K
R1
R2
R3
R4
R5
R6
R8
R16, R24
R18, R30
R19
R20
R21
R22
R23, R26
R25
R27
R28
R33
R34
R35
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
56 kΩ
180 kΩ
47 kΩ
33 kΩ
200 kΩ
100 kΩ
33 mΩ
10 kΩ
47 kΩ
10 kΩ
6.2 kΩ
18 kΩ
1.3 kΩ
100 kΩ
51 kΩ
200 kΩ
100 kΩ
30 kΩ
20 kΩ
1 kΩ
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
1%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
0.5%
ssm
ssm
ssm
ssm
ssm
ssm
KOA
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
ssm
RR0816P-563-D
RR0816P-184-D
RR0816P-473-D
RR0816P-333-D
RR0816P-204-D
RR0816P-104-D
SL1TTE33LOF
RR0816P-103-D
RR0816P-473-D
RR0816P-103-D
RR0816P-622-D
RR0816P-183-D
RR0816P-132-D
RR0816P-104-D
RR0816P-513-D
RR0816P-204-D
RR0816P-104-D
RR0816P-303-D
RR0816P-203-D
RR0816P-102-D
VF = 0.4 V (Max) , At IF = 2.5 A
SHINDENGEN
VF = 0.42 V (Max) , At IF = 3 A
ROHM
VF = 0.45 V (Max) , At IF = 100 mA
ORIGIN
DEP5PC3
RB053L-30
FQ4JP3
Note : NEC
: NEC corporation
SHINDENGEN : Shindengen Electric Manufacturing. Co., Ltd.
ROHM
ORIGIN
SUMIDA
TDK
ssm
KOA
: ROHM CO., LTD
: Origin Electric Co., Ltd.
: SUMIDA Corporation
: TDK Corporation
: SUSUMU CO., LTD
: KOA Corporation
29
MB39A107
■ REFERENCE DATA
Conversion efficiency η (%)
Conversion Efficiency vs. Charge Current (constant voltage mode)
100
95
90
85
Ta = + 25 °C
VIN = 19 V
Charge voltage = 16.8 V setting
SW1 = ON
SW2 = ON
SW3 = OFF
SW4 = OFF
TOTAL efficiency η (%)
= (Vo × Io) / (VIN × IIN) × 100
80
75
70
65
60
55
50
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Charge current Io (A)
Conversion efficiency η (%)
Conversion Efficiency vs. Charge Voltage (constant current mode)
100
95
90
85
Ta = + 25 °C
VIN = 19 V
Charge current = 4.5 A setting
SW1 = ON
SW2 = ON
SW3 = OFF
SW4 = OFF
TOTAL efficiency η (%)
= (Vo × Io) / (VIN × IIN) × 100
80
75
70
65
60
55
50
0
2
4
6
8
10
12
14
16
Charge voltage Vo (V)
Charge Voltage vs. Charge Current (16.8 V setting)
Charge voltage Vo (V)
18
16
14
SW3 = OFF
SW4 = ON
12
SW3 = OFF
SW4 = OFF
10
8
6
4
2
0
0.0
SW3 = ON
SW4 = OFF
Ta = + 25 °C
VIN = 19 V
Charge voltage
= 16.8 V setting
SW1 = ON
SW2 = ON
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
Charge current Io (A)
(Continued)
30
MB39A107
(Continued)
• Switching Waveform (constant voltage mode)
Vs(V)
3
Ta = +25 ˚C
VIN = 19 V
CTL1 = 5 V
CTL2 = 5 V
SW3 = OFF
SW4 = OFF
Vo = 16.8 V
Io = 2 A
2
Vs
1
0
OUT1
OUT1(V)
20
OUT2(V)
10
10
0
5
OUT2
0
0.2
0.4
0
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 (ms)
• Switching Waveform (constant current mode)
Vs(V)
3
Ta = +25 ˚C
VIN = 19 V
CTL1 = 5 V
CTL2 = 5 V
SW3 = OFF
SW4 = OFF
Vo = 10 V
Io = 4.5 A
2
Vs
1
0
OUT1
OUT1(V)
20
OUT2(V)
10
10
0
5
OUT2
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0 (ms)
31
MB39A107
• CTL function
• CTL1, CTL2 = L→H constant voltage mode
VO (V)
VIN = 19 V
Setting VO = 10 Ω
15
VO
10
5
OUTC1 (V)
0
5
OUTC1
0
CTL-1 (V)
CTL-1
5
CTL-2 (V)
CTL2
5
0
3
0
0
2
4
6
8
10
12
14
16
18
20
(ms)
• CTL1, CTL2 = H→L constant voltage mode
VO (V)
15
VIN = 19 V
Setting VO = 10 Ω
VO
10
5
OUTC1 (V)
0
5
OUTC1
0
CTL-1 (V)
CTL-1
5
CTL-2 (V)
CTL2
0
5
0
0
2
4
6
8
10
12
14
16
18
20
(ms)
(Continued)
32
MB39A107
(Continued)
• CTL1, CTL2 = L→H constant current mode
VO (V)
VIN = 19 V
Setting VO = 3 Ω
15
10
VO
5
OUTC1 (V)
0
5
OUTC1
0
CTL-1 (V)
CTL-1
5
CTL-2 (V)
CTL2
0
5
0
0
2
4
6
8
10
12
14
16
18
20
(ms)
• CTL1, CTL2 = H→L constant current mode
VO (V)
VIN = 19 V
Setting VO = 3 Ω
15
10
VO
5
OUTC1 (V)
0
5
OUTC1
0
CTL-1 (V)
CTL-1
5
CTL-2 (V)
CTL2
0
5
0
0
2
4
6
8
10
12
14
16
18
20
(ms)
33
MB39A107
■ SELECTION OF COMPONENTS
• Nch MOS FET
The Nch MOS FET for switching use should be rated for at least + 20% more than the maximum input voltage.
To minimize continuity loss, use a FET with low RDS (ON) between the drain and source. For high input voltage
and high frequency operation, on/off-cycle switching loss will be higher so that power dissipation must be
considered. In this application, the µPA2752 (NEC products) is used. Continuity loss, on/off switching loss and
total loss are determined by the following formulas. The selection must ensure that peak drain current does not
exceed rated values.
Continuity loss : Pc
PC
=
ID2 × RDS (ON) × Duty
On-cycle switching loss : PS (ON)
PS (ON) =
VD (Max) × ID × tf × fOSC
6
Off-cycle switching loss : PS (OFF)
PS (OFF) =
VD (Max) × ID (Max) × tf × fOSC
6
Total loss : PT
PT
=
PC + PS (ON) + PS (OFF)
Example) Using the µPA2752
Setting 16.8V
Main side
Input voltage VIN (Max) = 25 V, output voltage VO = 16.8 V, drain current ID = 4.5 A, oscillation frequency
fOSC = 500 kHz, L = 5.2 µH, drain-source on resistance RDS (ON) =: 20 mΩ, tr = 6.2 ns, tf = 5.8 ns
Drain current (Max) : ID (Max)
ID (Max) =
Io +
= 4.5 +
VIN (Max) − Vo
2L
ton
25 − 16.8
2 × 5.2 × 10
−6
×
1
500 × 103
× 0.672
=: 5.56 A
Drain current (Min) : ID (Min)
ID (Min) =
Io −
= 4.5 −
=: 3.44 A
34
VIN (Max) − Vo
2L
ton
25 − 16.8
2 × 5.2 × 10 − 6
×
1
500 × 103
× 0.672
MB39A107
PC
=
ID2 × RDS (ON) × Duty
=
4.52 × 0.02 × 0.672
=:
0.272 W
PS (ON) =
=
VD (Max) × ID × tr × fOSC
6
25 × 4.5 × 6.2 × 10 − 9 × 500 × 103
6
=: 0.058 W
PS (OFF) =
=
VD (Max) × ID (Max) × tf × fOSC
6
25 × 5.56 × 5.8 × 10 − 9 × 500 × 103
6
=: 0.067 W
= PC + PS (ON) + PS (OFF)
PT
=: 0.272 + 0.058 + 0.067
=: 0.397 W
The above power dissipation figures for the µPA2752 are satisfied with ample margin at 2 W (Ta = + 25 °C).
Synchronous rectification side
Input voltage VIN (Max) = 25 V, output voltage Vo = 16.8 V, drain current ID = 4.5 A, oscillation frequency
fOSC = 500 kHz, L = 5.2 µH, drain-source on resistance RDS (ON) =: 20 mΩ, tr = 6.2 ns, tf = 5.8 ns
Drain current (Max) : ID (Max)
ID (Max) =
Io +
= 4.5 +
Vo
2L
toff
16.8
2 × 5.2 × 10 − 6
×
1
500 × 103
×
(1 − 0.672)
=: 5.56 A
Drain current (Min) : ID (Min)
ID (Min) =
Io −
= 4.5 −
=:
Vo
2L
toff
16.8
2 × 5.2 × 10
−6
×
1
500 × 103
×
(1 − 0.672)
3.44 A
35
MB39A107
PC
=
ID2 × RDS (ON) × Duty (OFF)
=
4.52 × 0.02 × (1 − 0.672)
=:
0.133 W
PS (ON) =
=
VF × ID × tr × fOSC
6
0.45 × 4.5 × 6.2 × 10 − 9 × 500 × 103
6
=: 0.001 W
PS (OFF) =
=
VF × ID (Max) × tf × fOSC
6
0.45 × 5.56 × 5.8 × 10 − 9 × 500 × 103
6
=: 0.001 W
PT
= PC + PS (ON) + PS (OFF)
=: 0.133 + 0.001 + 0.001
=: 0.135 W
The above power dissipation figures for the µPA2752 are satisfied with ample margin at 2 W (Ta = + 25 °C).
Setting 12.6V
Main side
Input voltage VIN (Max) = 20 V, output voltage Vo = 12.6 V, drain current ID = 4.5 A, oscillation frequency
fOSC = 500 kHz, L = 5.2 µH, drain-source on resistance RDS (ON) =: 20 mΩ, tr = 6.2 ns, tf = 5.8 ns
Drain current (Max) : ID (Max)
ID (Max) =
Io +
= 4.5 +
VIN (Max) − Vo
ton
2L
20 − 12.6
2 × 5.2 × 10 − 6
×
1
500 × 103
× 0.63
=: 5.40 A
Drain current (Min) : ID (Min)
ID (Min) =
Io −
= 4.5 −
=: 3.60 A
36
VIN (Max) − Vo
ton
2L
20 − 12.6
2 × 5.2 × 10
−6
×
1
500 × 103
× 0.63
MB39A107
PC
=
ID2 × RDS (ON) × Duty
=
4.52 × 0.02 × 0.63
=:
0.255 W
PS (ON) =
=
VD (Max) × ID × tr × fOSC
6
20 × 4.5 × 6.2 × 10 − 9 × 500 × 103
6
=: 0.047 W
PS (OFF) =
=
VD (Max) × ID (Max) × tf × fOSC
6
20 × 5.40 × 5.8 × 10 − 9 × 500 × 103
6
=: 0.052 W
PT
= PC + PS (ON) + PS (OFF)
=: 0.255 + 0.047 + 0.052
=: 0.354 W
The above power dissipation figures for the µPA2752 are satisfied with ample margin at 2 W (Ta = + 25 °C).
Synchronous rectification side
Input voltage VIN (Max) = 20 V, output voltage Vo = 12.6 V, drain current ID = 4.5 A, oscillation frequency
fOSC = 500 kHz, L = 5.2 µH, drain-source on resistance RDS (ON) =: 20 mΩ, tr = 6.2 ns, tf = 5.8 ns
Drain current (Max) : ID (Max)
ID (Max) =
Io +
= 4.5 +
Vo
2L
toff
12.6
2 × 5.2 × 10 − 6
×
1
500 × 103
×
(1 − 0.63)
×
(1 − 0.63)
=: 5.40 A
Drain current (Min) : ID (Min)
ID (Min) =
Io −
= 4.5 −
Vo
2L
toff
12.6
2 × 5.2 × 10
−6
×
1
500 × 103
=: 3.60 A
37
MB39A107
PC
=
ID2 × RDS (ON) × Duty (OFF)
=
4.52 × 0.02 × (1 − 0.63)
=:
0.150 W
PS (ON) =
=
VF × ID × tr × fOSC
6
0.45 × 4.5 × 6.2 × 10 − 9 × 500 × 103
6
=: 0.001 W
PS (OFF) =
=
VF × ID (Max) × tf × fOSC
6
0.45 × 5.40 × 5.8 × 10 − 9 × 500 × 103
6
=: 0.001 W
= PC + PS (ON) + PS (OFF)
PT
=: 0.15 + 0.001 + 0.001
=: 0.152 W
The above power dissipation figures for the µPA2752 are satisfied with ample margin at 2 W (Ta = + 25 °C).
• Inductor
In selecting inductors, it is of course essential not to apply more current than the rated capacity of the inductor,
but also to note that the lower limit for ripple current is a critical point that if reached will cause discontinuous
operation and a considerable drop in efficiency. This can be prevented by choosing a higher inductance value,
which will enable continuous operation under light loads. Note that if the inductance value is too high, however,
direct current resistance (DCR) is increased and this will also reduce efficiency. The inductance must be set at
the point where efficiency is greatest.
Note also that the DC superimposition characteristic become worse as the load current value approaches the
rated current value of the inductor, so that the inductance value is reduced and ripple current increases, causing
loss of efficiency.
The selection of rated current value and inductance value will vary depending on where the point of peak efficiency
lies with respect to load current.
Inductance values are determined by the following formulas.
The L value for all load current conditions is set so that the peak to peak value of the ripple current is 1/2 the
load current or less.
Inductance value : L
L≥
38
2 (VIN − VO)
IO
ton
MB39A107
16.8 V output
Example :
2 (VIN (Max) − VO)
L≥
ton
IO
≥
2 × (25 − 16.8)
1
×
4.5
×
500 × 103
0.672
≥ 4.9 µH
12.6 V output
Example :
2 (VIN (Max) − VO)
L≥
ton
Io
≥
2 × (20 − 12.6)
4.5
×
1
× 0.63
500 × 103
≥ 4.1 µH
Inductance values derived from the above formulas are values that provide sufficient margin for continuous
operation at maximum load current, but at which continuous operation is not possible at light loads. It is therefore
necessary to determine the load level at which continuous operation becomes possible. In this application, the
SUMIDA CDRH104R-5R2 is used. The following formula is available to obtain the load current as a continuous
current condition when 5.2 µH is used.
Load current value under continuous operating conditions : Io
IO ≥
VO
2L
toff
Example : Using the CDRH104R-5R2
5.2 µH (tolerance ± 20% ), rated current = 5.5 A
16.8 V output
VO
IO ≥
toff
2L
≥
16.8
2 × 5.2 × 10 − 6
×
1
500 × 103
×
(1 − 0.672)
≥ 1.06 A
39
MB39A107
12.6 V output
VO
IO ≥
toff
2L
≥
12.6
2 × 5.2 × 10
−6
×
1
500 × 103
×
(1 − 0.63)
≥ 0.897A
To determine whether the current through the inductor is within rated values, it is necessary to determine the
peak value of the ripple current as well as the peak-to-peak values of the ripple current that affect the output
ripple voltage.
The peak value and peak-to-peak value of the ripple current can be determined by the following formulas.
Peak Value : IL
IL ≥ Io +
VIN − VO
2L
ton
Peak-Peak Value : ∆IL
∆IL =
VIN − VO
L
ton
Example : Using the CDRH104R-5R2
5.2 µH (tolerance ± 20% ), rated current = 5.5 A
Peak Value
16.8 V output
IL ≥ Io +
≥ 4.5 +
VIN (Max) − VO
2L
ton
25 − 16.8
2 × 5.2 × 10 − 6
×
1
500 × 103
×
0.672
≥ 5.56 A
12.6 V output
IL ≥ IO +
≥ 4.5 +
≥ 5.40 A
40
VIN (Max) − VO
2L
ton
20 − 12.6
2 × 5.2 × 10 − 6
×
1
500 × 103
× 0.63
MB39A107
Peak-Peak Value
16.8 V output
VIN (Max) − Vo
∆IL =
L
=
25 − 16.8
5.2 × 10
−6
ton
×
1
500 × 103
×
0.672
=: 2.12 A
12.6 V output
VIN (Max) − Vo
∆IL =
L
=
20 − 12.6
5.2 × 10
−6
ton
×
1
500 × 103
× 0.63
=: 1.79 A
• Diode for charge pump
Using a low-leak diode increases efficiency a little; but using a signal diode is satisfactory. It is recommended
to use a low-VF one. Also, use a capacitor for the charge pump, which is sufficiently larger value than the gate
capacitor for the main-side FET. It is recommended to use a component between 0.1 µF to 1.0 µF.
41
MB39A107
■ NOTES ON USE
• Take account of common impedance when designing the earth line on a printed wiring board.
• Take measures against static electricity.
• For semiconductors, use antistatic or conductive containers.
• When storing or carrying a printed circuit board after chip mounting, put it in a conductive bag or container.
• The work table, tools, and measuring instruments must be grounded.
• The worker must put on a grounding device containing 250 kΩ to 1 MΩ resistors in series.
• Do not apply a negative voltage.
• Applying a negative voltage of −0.3 V or less to an LSI may generate a parasitic transistor, resulting in
malfunction.
42
MB39A107
■ ORDERING INFORMATION
Part number
MB39A107PFT
Package
Remarks
30-pin plastic TSSOP
(FPT-30P-M04)
43
MB39A107
■ PACKAGE DIMENSION
30-pin plastic TSSOP
(FPT-30P-M04)
7.80±0.10(.307±.004)
"A"
Details of "A" part
0~8°
1.10(.043)
MAX
0.60±0.10
(.024±.004)
+0.20
4.40 –0.10
6.40±0.10
+.008
.173 –.004 (.252±.004)
INDEX
0.25(.010)
0.10±0.05
(.004±.002)
0.50(.020)
0.20±0.03
(.008±.001)
0.10(.004)
7.00(.276)
C
0.3865(.0152)
0.127±0.03
(.005±.001)
0.90±0.05
(.035±.002)
0.3865(.0152)
2001 FUJITSU LIMITED F30007SC-1-1
Dimensions in mm (inches)
Note : The values in parentheses are reference values.
44
MB39A107
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information, such as descriptions of function and application
circuit examples, in this document are presented solely for the
purpose of reference to show examples of operations and uses of
Fujitsu semiconductor device; Fujitsu does not warrant proper
operation of the device with respect to use based on such
information. When you develop equipment incorporating the
device based on such information, you must assume any
responsibility arising out of such use of the information. Fujitsu
assumes no liability for any damages whatsoever arising out of
the use of the information.
Any information in this document, including descriptions of
function and schematic diagrams, shall not be construed as license
of the use or exercise of any intellectual property right, such as
patent right or copyright, or any other right of Fujitsu or any third
party or does Fujitsu warrant non-infringement of any third-party’s
intellectual property right or other right by using such information.
Fujitsu assumes no liability for any infringement of the intellectual
property rights or other rights of third parties which would result
from the use of information contained herein.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F0312
 FUJITSU LIMITED Printed in Japan
Similar pages