IRF IRLR8721PBF Ultra-low gate impedance Datasheet

IRLR8721PbF
IRLU8721PbF
Applications
l High Frequency Synchronous Buck
Converters for Computer Processor Power
l High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
l Lead-Free
Benefits
l Very Low RDS(on) at 4.5V VGS
l Ultra-Low Gate Impedance
l Fully Characterized Avalanche Voltage
and Current
Base Part Number
Package Type
IRLR8721PbF
D-Pak
IRLU8721PbF
I-Pak
HEXFET® Power MOSFET
VDSS RDS(on) max
8.4m:
30V
Qg
8.5nC
D
S
S
D
G
G
D-Pak
I-Pak
IRLR8721PbF IRLU8721PbF
G
D
S
Gate
Drain
Source
Standard Pack
Form
Quantity
Tube
75
Tape and Reel
2000
Tape and Reel Left
3000
Tape and Reel Right
3000
Tube
75
Orderable part number
IRLR8721PbF
IRLR8721TRPbF
IRLR8721TRLPbF
IRLR8721TRRPbF
IRLU8721PbF
Absolute Maximum Ratings
Parameter
Max.
Units
30
V
VDS
Drain-to-Source Voltage
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
65
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
260
PD @TC = 25°C
Maximum Power Dissipation
65
PD @TC = 100°C
Maximum Power Dissipation
33
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
ID @ TC = 25°C
ID @ TC = 100°C
f
46f
c
A
W
W/°C
°C
0.43
-55 to + 175
Thermal Resistance
Typ.
Max.
–––
2.3
RJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Parameter
–––
50
RJA
Junction-to-Ambient
–––
110
RJC
g
Notes  through
1
Units
°C/W
are on page 11
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
VDSS/TJ
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
30
–––
–––
21
RDS(on)
Static Drain-to-Source On-Resistance
–––
–––
6.3
10.1
V VGS = 0V, ID = 250μA
mV/°C Reference to 25°C, ID = 1mA
m VGS = 10V, ID = 25A
8.4
VGS = 4.5V, ID = 20A
11.8
VGS(th)
VGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
1.35
–––
1.9
-6.8
2.35
V VDS = VGS, ID = 25μA
––– mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
μA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VGS = 20V
VGS = -20V
gfs
Qg
Forward Transconductance
Total Gate Charge
46
–––
–––
8.5
–––
13
S
VDS = 15V, ID = 20A
Qgs1
Qgs2
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
1.9
1.2
–––
–––
nC
VDS = 15V
VGS = 4.5V
Qgd
Qgodr
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
3.4
2.0
–––
–––
Output Charge
–––
–––
4.6
7.9
–––
–––
RG
td(on)
Gate Resistance
Turn-On Delay Time
–––
–––
2.3
8.8
3.8
–––
tr
td(off)
Rise Time
Turn-Off Delay Time
–––
–––
30
9.4
–––
–––
tf
Ciss
Fall Time
Input Capacitance
–––
–––
6.5
1030
–––
–––
Coss
Crss
Output Capacitance
Reverse Transfer Capacitance
–––
–––
350
110
–––
–––
Qsw
Qoss
–––
–––
f
f
ID = 20A
See Fig. 16
nC

VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 20A
ns
f
RG = 1.8
See Fig. 14
VGS = 0V
pF
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
EAR
Repetitive Avalanche Energy
c
dh
c
Typ.
–––
–––
Max.
93
20
Units
mJ
A
–––
6.5
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
(Body Diode)
Diode Forward Voltage
–––
trr
Qrr
Reverse Recovery Time
Reverse Recovery Charge
–––
–––
ton
Forward Turn-On Time
ch
2
–––
–––
–––
65
f
A
Conditions
MOSFET symbol
D
260
showing the
integral reverse
–––
1.0
V
S
p-n junction diode.
TJ = 25°C, IS = 20A, VGS = 0V
17
24
26
36
ns
nC
TJ = 25°C, IF = 20A, VDD = 15V
di/dt = 300A/μs
–––
G
f
f
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
1000
1000
BOTTOM
TOP
ID, Drain-to-Source Current (A)
100
100
10
1
2.7V
BOTTOM
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.7V
10
2.7V
60μs PULSE WIDTH
60μs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.1
0.1
1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
1000
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.0
100
T J = 175°C
10
T J = 25°C
1
VDS = 15V
60μs PULSE WIDTH
0.1
ID = 25A
VGS = 10V
1.5
1.0
0.5
0
2
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
3
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
8.0V
5.0V
4.5V
4.0V
3.5V
3.0V
2.7V
www.irf.com © 2012 International Rectifier
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
December 4, 2012
IRLR/U8721PbF
10000
5.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 20A
C, Capacitance (pF)
C oss = C ds + C gd
Ciss
1000
Coss
Crss
100
10
4.0
VDS= 6.0V
3.0
2.0
1.0
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
T J = 25°C
10
4
6
8
10
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000
100
2
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100μsec
100
1msec
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS= 24V
VDS= 15V
www.irf.com © 2012 International Rectifier
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
December 4, 2012
IRLR/U8721PbF
2.5
70
VGS(th) , Gate Threshold Voltage (V)
Limited By Package
60
ID, Drain Current (A)
50
40
30
20
10
2.0
ID = 25μA
1.5
1.0
0
0.5
25
50
75
100
125
150
175
-75 -50 -25 0
25 50 75 100 125 150 175 200
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
J
0.02
0.01
R1
R1
J
1
R2
R2
2
1
2
Ci= iRi
Ci iRi
0.01
1E-005
3
C

3
Ri (°C/W) i (sec)
0.3501 0.000072
1.1877
0.7635
0.001239
0.010527
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R3
R3
0.0001
0.001
0.01
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
www.irf.com © 2012 International Rectifier
December 4, 2012
0.1
IRLR/U8721PbF
400
DRIVER
L
VDS
D.U.T
RG
20V
+
- VDD
IAS
tp
A
0.01
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
15V
ID
1.1A
1.4A
BOTTOM 20A
350
TOP
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
I AS
V DS
Fig 12b. Unclamped Inductive Waveforms
V GS
RG
Current Regulator
Same Type as D.U.T.
RD
D.U.T.
+
-V DD
VGS
Pulse Width µs
Duty Factor 
50K
12V
.2F
Fig 14a. Switching Time Test Circuit
.3F
D.U.T.
+
V
- DS
VDS
90%
VGS
3mA
IG
ID
10%
VGS
td(on)
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
6
tr
t d(off)
tf
Fig 14b. Switching Time Waveforms
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
Avalanche Current (A)
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
10
Duty Cycle = Single Pulse
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
tav (sec)
Fig 15. Typical Avalanche Current vs. Pulsewidth
7
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
D.U.T
Driver Gate Drive
ƒ
+
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
dv/dt controlled by R G
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
 Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
‚
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple  5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgodr
Qgd
Qgs2 Qgs1
Fig 16. Gate Charge Waveform
8
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Synchronous FET
Special attention has been given to the power
losses in the switching elements of the circuit - Q1
and Q2. Power losses in the high side switch Q1,
also called the Control FET, are impacted by the Rds(on)
of the MOSFET, but these conduction losses are only
about one half of the total losses.
The power loss equation for Q2 is approximated
by;
*
Ploss  Pconduction  Pdrive  Poutput

2
Ploss  Irms  Rds(on)

Power losses in the control switch Q1 are given
by;
 Qg  Vg  f 
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
Q

  oss  Vin  f  Qrr  Vin  f 
 2

This can be expanded and approximated by;
*dissipated primarily in Q1.
Ploss  Irms 2  Rds(on ) 
 Qgd
 I 
 Vin 
ig


  Qgs 2
f  I 
 Vin  f 
ig
 

 Qg  Vg  f 

Qoss
 Vin  f 
 2

This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by
the power supply input buss voltage.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
9
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
3$57180%(5
:,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5
$
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/</,1($
'$7(&2'(
<($5
:((.
/,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
$66(0%/<
LQGLFDWHV/HDG)UHH
/27&2'(
3LQDVVHPEO\OLQHSRVLWLRQLQGLFDWHV
/HDG)UHHTXDOLILFDWLRQWRWKHFRQVXPHUOHYHO
25
3$57180%(5
,17(51$7,21$/
5(&7,),(5
,5)5
'$7(&2'(
3
'(6,*1$7(6/($')5((
3
'(6,*1$7(6/($')5((
/2*2
352'8&7 237,21$/
352'8&748$/,),('727+(
$66(0%/<
&21680(5/(9(/ 237,21$/
/27&2'(
<($5
:((.
$
$66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
(;$03/( 7+,6,6$1,5)8
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1($
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1($
25
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)8
$66(0%/<
/27&2'(
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
11
www.irf.com © 2012 International Rectifier
December 4, 2012
IRLR/U8721PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.47mH
RG = 25, IAS = 20A.
ƒ Pulse width  400μs; duty cycle  2%.
„ Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 50A.
When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to
application note #AN-994.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
Visit us at www.irf.com for sales contact information.
12
www.irf.com © 2012 International Rectifier
December 4, 2012
Similar pages