Fujitsu MB89PV680 8-bit proprietary microcontroller Datasheet

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12525-2E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89680 Series
MB89689/P689/W689/PV680
■ OUTLINE
The MB89680 series is a line of single-chip microcontrollers. In addition to a compact instruction set, the
microcontrollers contain a variety of peripheral functions such as dual-clock control system, four operating speed
control stages, timers, PWM timer, a serial interface, a UART, an A/D converter, and an external interrupt.
■ FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
F2MC-8L family CPU core
Dual-clock control system
Maximum memory space: 64 Kbytes
Minimum execution time: 0.5 µs/8 MHz
Interrupt processing time: 4.5 µs/8 MHz
I/O ports: max. 85 channels
21-bit timebase counter
8-bit PWM timer
8/16-bit timer
UART
Serial I/O with 1-byte buffer
8-bit A/D converter
Pulse width counter
Modem signal output
External interrupts: 16 channels
Power-on reset function
Low-power consumption modes (subclock mode, watch mode, sleep mode, and stop mode)
CMOS technology
■ PACKAGE
100-pin Plastic QFP
100-pin Ceramic QFP
100-pin Ceramic MQFP
(FPT-100P-M06)
(FPT-100C-A02)
(MQP-100C-P01)
MB89680 Series
■ PRODUCT LINEUP
Part number
Item
Classification
ROM size
MB89689
MB89P689
MB89W689
Mass-produced
One-time PROM
product
product
(mask ROM product)
60 K × 8 bits
(internal mask ROM)
EPROM product
60 K × 8 bits
(internal PROM)
MB89PV680
Piggyback/
evaluation product
(for development)
60 K × 8 bits
(internal EPROM)
60 K × 8 bits
(external ROM)
2.0 K × 8 bits
RAM size
Instruction bit length
8 bits
Instruction length
1 byte to 3 bytes
Data bit length
1, 8, 16 bits
Number of instructions
136
Clock generator
Built-in
Minimum execution time
0.5 µs/8 MHz to 8 µs/8 MHz, 61 µs/32.768 kHz
Interrupt processing time
4.5 µs/8 MHz to 72 µs/8 MHz, 562.5 µs/32.768 kHz
Ports
( ) indicate dual function
ports
Output ports (N-ch open-drain):
Output ports (CMOS):
I/O ports (N-ch open-drain):
I/O ports (CMOS):
Total:
8 bits × 1 channel
8-bit PWM timer
8 bits × 2 channels, or 16 bits × 1 channel
8/16-bit timer/counter
With 1-byte buffer × 1 channel
8-bit serial I/O
8 bits × 8 channels
8-bit A/D converter
UART
Pulse width counter
Full-duplex double buffer
Transfer data length: 6 bits to 8 bits
8 baud rates selectability, external clock available
5-bit noise reduction circuit
Pulse edge detectable and selectable (rising, falling, and both edges)
Software modem
transmission circuit
1200-bps/2400-bps modem output
External interrupt
16 channels
Timebase timer
21 bits
Watch prescaler
15 bits
Standby mode
Watch mode, subclock mode, sleep mode, and stop mode
Process
Power supply voltage*
EPROM for use
21 (8)
8 (0)
8 (6)
48 (29)
85 (43)
CMOS
2.2 V to 6.0 V
2.7 V to 6.0 V
MBM27C512-20TV
* : Varies with conditions such as the operating frequency. (See section “■ ELECTRICAL CHARACTERISTICS.”)
2
MB89680 Series
■ PACKAGE AND CORRESPONDING PRODUCTS
MB89689
MB89P689
Package
MB89W689
MB89PV680
×
×
FPT-100P-M06
FPT-100C-A02
×
MQP-100C-P01
×
: Available
×
×
× : Not available
Note: For more information about each package, see section “■ Package Dimensions.”
■ DIFFERENCES AMONG PRODUCTS
1. Memory Size
Before evaluating using the piggyback product, verify its differences from the product that will actually be used.
2. Current Consumption
In the case of the MB89PV680, add the current consumed by the EPROM which is connected to the top socket.
When operated at low speed, the product with an OTPROM or an EPROM will consume more current than
the product with a mask ROM.
However, the current consumption in sleep/stop modes is the same.
3. Mask Options
Functions that can be selected as options and how to designate these options vary by the product. Before using
options check section “■ Mask Options.” Take particular care on the following points:
• Options are fixed on the MB89PV680.
3
MB89680 Series
■ PIN ASSIGNMENT
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
PA7/INT3
PA6/INT2
PA5/INT1
PA4/INT0
PA3/INLB
N.C.
AVR
(AVCC) VCC
P57/AN07
P56/AN06
P55/AN05
P54/AN04
P53/AN03
P52/AN02
P51/AN01
P50/AN00
(AVSS) VSS
PA2/INLA
PA1/INL9
PA0/INL8
(Top view)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
P25
P26
P27
P40
P41
P42
P43
P44
P30/PWM
P31/BUZR
P32/MSKI
P33
P34
P35/UCK1
P36/UI1
P37/UO1
P60/TMO1
P61/TMO2
P62/TCLK
VCC
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VCC
X1A
X0A
MOD0
MOD1
X0
X1
VSS
RST
P00
P01
P02
P03
P04
P05
P06
P07
P10
P11
P12
P13
P14
P15
P16
P17
P20
P21
P22
P23
P24
(FPT-100P-M06)
(FPT-100C-A02)
4
P97/INL7
P96/INL6
P95/INL5
P94/INL4
P93/INL3
P92/INL2
P91/INL1
P90/INL0
P87
P86
P85
P84
P83
P82
P81
P80
P77
P76
P75/BSO2
P74/BSI2
P73/BSK2
VSS
P72/UO2
P71/UI2
P70/UCK2
P67/BSO1
P66/BSI1
P65/BSK1
P64
P63/MSKO
MB89680 Series
O2
O3
VSS
N.C.
O4
O5
OE
A2
N.C.
A3
A11
A4
A9
A5
A8
A6
A7
A1
A12
A10
A15
A0
N.C.
CE
101
N.C.
V CC
O8
132
01
A14
O7
A13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P97/INL7
P96/INL6
P95/INL5
P94/INL4
P93/INL3
P92/INL2
P91/INL1
P90/INL0
P87
P86
P85
P84
P83
P82
P81
P80
P77
P76
P75/BSO2
P74/BSI2
P73/BSK2
VSS
P72/UO2
P71/UI2
P70/UCK2
P67/BSO1
P66/BSI1
P65/BSK1
P64
P63/MSKO
P25
P26
P27
P40
P41
P42
P43
P44
P30/PWM
P31/BUZR
P32/MSKI
P33
P34
P35/UCK1
P36/UI1
P37/UO1
P60/TMO1
P61/TMO2
P62/TCLK
VCC
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VCC
X1A
X0A
MOD0
MOD1
X0
X1
VSS
RST
P00
P01
P02
P03
P04
P05
P06
P07
P10
P11
P12
P13
P14
P15
P16
P17
P20
P21
P22
P23
P24
O6
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
PA7/INT3
PA6/INT2
PA5/INT1
PA4/INT0
PA3/INLB
N.C.
AVR
(AVCC) VCC
P57/AN07
P56/AN06
P55/AN05
P54/AN04
P53/AN03
P52/AN02
P51/AN01
P50/AN00
(AVSS) VSS
PA2/INLA
PA1/INL9
PA0/INL8
(Top view)
(MQP-100C-P01)
• Pin assignment on package top (MB89PV680 only)
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
101
N.C.
109
A2
117
N.C.
125
OE
102
A15
110
A1
118
O4
126
N.C.
103
A12
111
A0
119
O5
127
A11
104
A7
112
N.C.
120
O6
128
A9
105
A6
113
O1
121
O7
129
A8
106
A5
114
O2
122
O8
130
A13
107
A4
115
O3
123
CE
131
A14
108
A3
116
VSS
124
A10
132
VCC
N.C.: Internally connected. Do not use.
5
MB89680 Series
■ PIN DESCRIPTION
Pin no.
Pin name
QFP*1, MQFP*2
Function
1
VCC
—
Power supply pin
2
X1A
A
Subclock crystal oscillator pins (32.768 kHz)
3
X0A
4
MOD0
B
5
MOD1
Operating mode selection pins
Connect to VSS (GND) when using.
6
X0
A
Main clock crystal oscillator pins (8 MHz)
7
X1
8
VSS
—
Power supply (GND) pin
9
RST
C
Reset input pin
10 to 17
P00 to P07
D
General-purpose I/O ports
18 to 25
P10 to P17
D
General-purpose I/O ports
26 to 33
P20 to P27
F
General-purpose output ports
34 to 38
P40 to P44
I
General-purpose output ports
39
P30/PWM
E
General-purpose I/O port
Also serve as an 8-bit PWM.
40
P31/BUZR
E
General-purpose I/O port
Also serve as a buzzer output.
41
P32/MSKI
E
General-purpose I/O port
Also serve as a pulse width counter.
42,
43
P33,
P34
E
General-purpose I/O ports
44,
45,
46
P35/UCK1,
P36/UI1,
P37/UO1
E
General-purpose I/O ports
Also serve as a UART I/O 1.
47,
48,
49
P60/TMO1,
P61/TMO2,
P62/TCLK
E
General-purpose I/O ports
Also serve as an 8/16-bit timer.
50
VCC
—
Power supply pin
51
P63/MSKO
E
General-purpose I/O port
Also serve as a modem output.
52
P64
E
General-purpose I/O port
53,
54,
55
P65/BSK1,
P66/BSI1,
P67/BSO1
E
General-purpose I/O ports
Also serve as a serial I/O 1 with 1-byte buffer.
*1: FPT-100P-M06, FPT-100C-A02
*2: MQP-100C-P01
6
Circuit type
(Continued)
MB89680 Series
(Continued)
Pin no.
QFP*1, MQFP*2
Pin name
Circuit type
Function
56,
57,
58
P70/UCK2,
P71/UI2,
P72/UO2
H
General-purpose I/O ports
Also serve as a UART I/O 2.
59
VSS
—
Power supply (GND) pin
60,
61,
62
P73/BSK2,
P74/BSI2,
P75/BSO2
H
General-purpose I/O ports
Also serve as a serial I/O 2 with 1-byte buffer.
63,
64
P76,
P77
H
General-purpose I/O ports
65 to 72
P80 to P87
I
General-purpose output ports
73 to 80
P90/INL0 to
P97/INL7
E
General-purpose I/O ports
External interrupt input is hysteresis input.
81 to 83
PA0/INL8 to
PA2/INLA
E
General-purpose I/O ports
External interrupt input is hysteresis input.
VSS (AVSS)
—
(A/D converter) power supply (GND) pin
P50/AN00 to
P57/AN07
G
General-purpose I/O ports
Also serve as an analog input.
93
VCC (AVCC)
—
(A/D converter) power supply pin
94
AVR
—
A/D converter reference voltage input pin
95
N.C.
—
Internally connected pins
Be sure to leave them open.
PA3/INLB,
PA4/INT0 to
PA7/INT3
E
General-purpose I/O ports
External interrupt input is hysteresis input.
84
85 to 92
96 to 100
*1: FPT-100P-M06, FPT-100C-A02
*2: MQP-100C-P01
7
MB89680 Series
■ I/O CIRCUIT TYPE
Type
Circuit
Remarks
A
X1, X1A
• Main clock (A2)
(At an oscillation feedback resistor of approximately
1 MΩ/5.0 V)
• Subclock (A1)
(At an oscillation feedback resistor of approximately
4.5 MΩ/5.0 V
*
X0, X0A
* The subclock circuit in the MB89PV680
contains no oscillation feedback resistor.
Standby control signal
B
C
• At an output pull-up resistor (P-ch) of approximately
50 kΩ/5.0 V
• Hysteresis input
R
P-ch
N-ch
D
• CMOS output
• CMOS input
• Pull-up resistor optional
R
P-ch
P-ch
N-ch
E
• CMOS output
• Hysteresis input
• Pull-up resistor optional
R
P-ch
P-ch
N-ch
(Continued)
8
MB89680 Series
(Continued)
Type
Circuit
Remarks
F
• CMOS output
P-ch
N-ch
G
• N-ch open-drain output
• Analog input
P-ch
N-ch
Analog input
H
• N-ch open-drain output
• Hysteresis input
• Pull-up resistor optional
R
P-ch
N-ch
I
• N-ch open-drain output
• Pull-up resistor optional
R
P-ch
N-ch
9
MB89680 Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum
Ratings” in section “■ Electrical Characteristics” is applied between VCC and VSS.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also, take care to prevent the analog power supply (AV CC and AVR) and analog input from exceeding the digital
power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down
resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although VCC power supply voltage is assured to operate within the rated range, a rapid fluctuation of the voltage
could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC is therefore
important. As stabilization guidelines, it is recommended to control power so that VCC ripple fluctuations (P-P
value) will be less than 10% of the standard VCC value at the commercial frequency (50 Hz to 60 Hz) and the
transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as when power
is switched.
6. Precautions when Using an External Clock
When an external clock is used, oscillation stabilization time is required even for power-on reset (optional) and
wake-up from stop mode.
10
MB89680 Series
■ PROGRAMMING TO THE EPROM ON THE MB89P689/W689
The MB89P689/W689 is an OTPROM version of the MP89680 series.
1. Features
• 60-Kbyte PROM on chip
• Options can be set using the EPROM programmer.
• Equivalent to the MBM27C1001 in EPROM mode (when programmed with the EPROM programmer) and
supporting the 4-byte programming mode
2. Memory Space
Memory space in each mode such as 60-Kbyte PROM, option area is diagrammed below.
Address
Single chip
00000H
EPROM mode
(Corresponding addresses on the EPROM programmer)
00000H
I/O
00080H
RAM
2 KB
Not available
00880H
Not available
00FE4H
00FE4H
Option area
Option area
00FFCH
01000H
00FFCH
01000H
PROM
60 KB
PROM
60 KB
0FFFFH
0FFFFH
Not available
1FFFFH
3. Programming to the EPROM
In EPROM mode, the MB89P689 functions equivalent to the MBM27C1001. This allows the PROM to be
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by
using the dedicated socket adapter.
When the operating ROM area for a single chip is 60 Kbytes (1000H to FFFFH) the PROM can be programmed
as follows:
• Programming procedure
(1) Set the EPROM programmer to MBM27C1001.
(2) Load program data into the EPROM programmer at 1000H to FFFFH.
Load option data into addresses 0FE4H to 0FFCH of the EPROM programmer. (For information about each
corresponding option, see “8. Setting PROM Options.”)
(3) Program to 0FE4H to 0FFCH and 1000H to FFFFH with the EPROM programmer.
11
MB89680 Series
4. Recommended Screening Conditions
High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked
OTPROM microcomputer program.
Program, verify
Aging
+150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature.
For this reason, a programming yield of 100% cannot be assured at all times.
6. MB89W689 Erasure
In order to clear all locations of their programmed contents, it is necessary to expose the internal EPROM to an
ultraviolet light source. A dosage of 10 W-seconds/cm2 is required to completely erase an internal EPROM. This
dosage can be obtained by exposure to an ultraviolent lamp (wavelength of 2537 Angstroms (Å)) with intensity
of 12000µW/cm2 for 15 to 21 minutes. The internal EPROM should be about one inch from the source and all
filters should be removed from the UV light source prior to erasure.
It is important to note that the internal EPROM and similar devices, will erase with light sources having wavelengths shorter than 4000 Å. Although erasure time will be much longer than with UV source at 2537 Å,
nevertheless the exposure to fluorescent light and sunlight will eventually erase the internal EPROM, and
exposure to them should be prevented to realize maximum system reliability. If used in such an environment,
the package windows should be covered by an opaque label or substance.
12
MB89680 Series
7. EPROM Programmer Socket Adapter
Part no.
MB89P689PF
Package
QFP-100
Compatible
socket adapter
Sun Hayato Co.,
Ltd.
ROM-100QF-32DP-8LA
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
8. Setting PROM Options
The programming procedure is the same as that for the program data. Options can be set by programming
values at the addresses shown on the memory map. The relationship between bits and options is shown on the
following bit map:
• PROM option bit map
Address
00FE4H
Bit 7
Bit 6
Bit 5
Vacancy
Vacancy
Vacancy
Bit 4
Single/dualclock system
Readable
Readable
Readable
1: Dual clock
and writable and writable and writable 2: Single clock
Bit 3
Bit 2
Bit 1
Bit 0
Reset
output
1: Yes
0: No
Power-on
reset
1: Yes
0: No
Oscillation stabilization time
11 218/FCH
01 212/FCH
10 216/FCH
00 2 3/FCH
P07
Pull-up
00FE8H
1: No
0: Yes
P06
Pull-up
1: No
0: Yes
P05
Pull-up
1: No
0: Yes
P04
Pull-up
1: No
0: Yes
P03
Pull-up
1: No
0: Yes
P02
Pull-up
1: No
0: Yes
P01
Pull-up
1: No
0: Yes
P00
Pull-up
1: No
0: Yes
P17
Pull-up
00FECH
1: No
0: Yes
P16
Pull-up
1: No
0: Yes
P15
Pull-up
1: No
0: Yes
P14
Pull-up
1: No
0: Yes
P13
Pull-up
1: No
0: Yes
P12
Pull-up
1: No
0: Yes
P11
Pull-up
1: No
0: Yes
P10
Pull-up
1: No
0: Yes
P37
Pull-up
1: No
0: Yes
P36
Pull-up
1: No
0: Yes
P35
Pull-up
1: No
0: Yes
P34
Pull-up
1: No
0: Yes
P33
Pull-up
1: No
0: Yes
P32
Pull-up
1: No
0: Yes
P31
Pull-up
1: No
0: Yes
P30
Pull-up
1: No
0: Yes
P67
Pull-up
P66
Pull-up
P65
Pull-up
P64
Pull-up
Readable
Readable
Readable
1: No
and writable and writable and writable 0: Yes
P63
Pull-up
1: No
0: Yes
P62
Pull-up
1: No
0: Yes
P61
Pull-up
1: No
0: Yes
P60
Pull-up
1: No
0: Yes
P97
Pull-up
1: No
0: Yes
P96
Pull-up
1: No
0: Yes
P95
Pull-up
1: No
0: Yes
P94
Pull-up
1: No
0: Yes
P93
Pull-up
1: No
0: Yes
P92
Pull-up
1: No
0: Yes
P91
Pull-up
1: No
0: Yes
P90
Pull-up
1: No
0: Yes
PA7
Pull-up
00FFCH
1: No
0: Yes
PA6
Pull-up
1: No
0: Yes
PA5
Pull-up
1: No
0: Yes
PA4
Pull-up
1: No
0: Yes
PA3
Pull-up
1: No
0: Yes
PA2
Pull-up
1: No
0: Yes
PA1
Pull-up
1: No
0: Yes
PA0
Pull-up
1: No
0: Yes
00FF0H
00FF4H
00FF8H
Notes: • Note that the option setting area addresses are at intervals of four addresses to support the 4-byte
programming mode.
• In three bytes between adjacent setup addresses, the value written to the preceding setup address is
mirrored. Be sure to set the same data in the programmer.
• Each bit is set to ‘1’ as the initialized value.
13
MB89680 Series
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C512-20TV
2. Programming Socket Adapter
Package
LCC-32 (Rectangle)
Adapter socket part number
ROM-32LC-28DP-YG
Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403
FAX: (81)-3-5396-9106
3. Memory Space
Address
MB89PV680
MBM27C512
0000H
I/O
0080H
0100H
Register
0200H
RAM
2 KB
0880H
1000H
1000H
External ROM
60 KB
FFFFH
EPROM
60 KB
FFFFH
4. Programming to the EPROM
(1) Set the EPROM programmer to the MBM27C512.
(2) Load program data into the EPROM programmer at 1000H to FFFFH.
(3) Program to 1000H to FFFFH with the EPROM programmer.
14
MB89680 Series
■ BLOCK DIAGRAM
CMOS I/O
Timebase timer
P30/PWM
Reset circuit
(Watchdog)
RST
X0
X1
Port 3
8-bit PWM timer
Buzzer output
P31/BUZR
P32/MSKI
P33
P34
P35/UCK1
P36/UI1
P37/UO1
Modem timer
Main clock oscillator
(max 8 MHz)
UART
Clock controller
Port 5
8
8-bit A/D
converter
8
P50/AN00
t o P57/AN07
CMOS I/O
8/16-bit timer
P60/TMO1
P61/TMO2
P62/TCLK
Port 6
8
CMOS I/O port 1
P40 t o P44
CMOS I/O port 2
Modem output
8-bit serial I/O
with 1-byte buffer
P63/MSKO
P64
P65/BSK1
P66/BSI1
P67/BSO1
N-ch open-drain I/O
P70/UCK2
P71/UI2
P72/UO2
P73/BSK2
P74/BSI2
P75/BSO2
P76
P77
RAM
Port 7
P20 to P27
8
5
N-ch open-drain output
CMOS I/O port 0
Internal data bus
P10 to P17
8
N-ch open-drain output port 4
Internal data bus
P00 to P07
Subclock oscillator
(32.768 kHz)
F2MC-8L
CPU
ROM
N-ch open-drain output port 8
CMOS I/O
Other pins
VCC × 2, VSS × 2
MOD0, MOD1, N.C.
AVCC, AVR, AVSS
External interrupt 2
External interrupt 1
12
4
Port 9 and port A
X0A
X1A
8
8
4
4
P80 t o P87
P90/INL0
t o P97/INL7
PA0/INL8
t o PA3/INLB
PA4/INT0
t o PA7/INT3
15
MB89680 Series
■ CPU CORE
1. Memory Space
The microcontrollers of the MB89680 series offer 64 Kbytes of memory for storing all of I/O, data, and program
areas. The I/O area is located at the lowest address. The data area is provided immediately above the I/O area.
The data area can be divided into register, stack, and direct areas according to the application. The program
area is located at exactly the opposite end of I/O area, that is, near the highest address. Provide the tables of
interrupt reset vectors and vector call instructions toward the highest address within the program area. The
memory space of the MB89680 series is structured as illustrated below.
• Memory space
MB89689
0000H
0000H
I/O
MB89PV680
0000H
I/O
I/O
007FH
0080H
007FH
0080H
007FH
0080H
00FFH
0100H
00FFH
0100H
00FFH
0100H
Register
01FFH
0200H
RAM
2.0 KB
087FH
0880H
Register
01FFH
0200H
0FFFH
1000H
Register
01FFH
0200H
0FFFH
1000H
Vacancy
0FFFH
1000H
ROM
60 KB
FFFFH
RAM
2.0 KB
087FH
0880H
Vacancy
ROM
60 KB
FFFFH
RAM
2.0 KB
087FH
0880H
Vacancy
16
MB89P689
MB89W689
External ROM
60 KB
FFFFH
MB89680 Series
2. Registers
The F2MC-8L family has two types of registers; dedicated registers in the CPU and general-purpose registers
in the memory. The following dedicated registers are provided:
Program counter (PC):
A 16-bit register for indicating the instruction storage positions
Accumulator (A):
A 16-bit temporary register for storing arithmetic operations, etc. When the
instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):
A 16-bit register which performs arithmetic operations with the accumulator
When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit register for index modification
Extra pointer (EP):
A 16-bit pointer for indicating a memory address
Stack pointer (SP):
A 16-bit register for indicating a stack area
Program status (PS):
A 16-bit register for storing a register pointer, a condition code
16 bits
Initial value
: Program counter
PC
FFFDH
A
: Accumulator
T
: Temporary accumulator Indeterminate
IX
: Index register
Indeterminate
EP
: Extra pointer
Indeterminate
SP
: Stack pointer
Indeterminate
PS
: Program status
Indeterminate
I-flag = 0, IL1, 0 = 11
The other bit values are indeterminate.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for
use as a condition code register (CCR). (See the diagram below.)
• Structure of the program status register
15
PS
14
13
12
RP
11
10
9
8
Vacancy Vacancy Vacancy
RP
7
6
H
I
5
4
IL1, 0
3
2
1
0
N
Z
V
C
CCR
17
MB89680 Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule illustrated below.
• Rule for conversion of actual addresses of the general-purpose register area
Lower OP codes
RP
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
b1
b0
↓
↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data and
bits for control of CPU operations at the time of an interrupt.
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.
I-flag:
Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’.
Cleared to ‘0’ at the reset.
IL1, 0:
Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is
higher than the value indicated by this bit.
IL1
IL0
Interrupt level
High-low
0
0
0
High
0
1
1
1
0
2
1
1
3
Low
N-flag: Set to ‘1’ if the MSB becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ when the bit is
cleared to ‘0’.
Z-flag:
Set to ‘1’ when an arithmetic operation results in 0. Cleared to ‘0’ otherwise.
V-flag:
Set to ‘1’ if the complement on 2 overflows as a result of an arithmetic operation. Cleared to ‘0’ if the
overflow does not occur.
C-flag: Set to ‘1’ when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to
‘0’ otherwise. Set to the shift-out value in the case of a shift instruction.
18
MB89680 Series
The following general-purpose registers are provided:
General-purpose registers: An 8-bit register for storing data
The general-purpose registers are 8 bits and located in the register banks of the memory. One bank contains
eight registers and up to a total of 32 banks can be used. The bank currently in use is indicated by the register
bank pointer (RP).
• Register bank configuration
This address = 0100H + 2 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
32 banks
Memory area
19
MB89680 Series
■ I/O MAP
Address
Read/write
Register name
00H
(R/W)
PDR0
Port 0 data register
01H
(W)
DDR0
Port 0 data direction register
02H
(R/W)
PDR1
Port 1 data register
03H
(W)
DDR1
Port 1 data direction register
04H
(R/W)
PDR2
Port 2 data register
05H
Register description
(Vacancy)
06H
07H
(R/W)
SYCC
System clock control register
08H
(R/W)
SMC
Standby control register
09H
(R/W)
WDTC
Watchdog timer control register
0AH
(R/W)
TBTC
Timebase timer control register
0BH
(R/W)
WPCR
Watch prescaler control register
0CH
(R/W)
PDR3
Port 3 data register
0DH
(R/W)
DDR3
Port 3 data direction register
0EH
(R/W)
PDR4
Port 4 data register
0FH
(R/W)
BZCR
Buzzer register
10H
(R/W)
PDR5
Port 5 data register
11H
(Vacancy)
12H
(R/W)
PDR6
Port 6 data register
13H
(R/W)
DDR6
Port 6 data direction register
14H
(R/W)
PDR7
Port 7 data register
15H
16H
(Vacancy)
(R/W)
PDR8
17H
Port 8 data register
(Vacancy)
18H
(R/W)
PDR9
Port 9 data register
19H
(R/W)
DDR9
Port 9 data direction register
1AH
(R/W)
PDRA
Port A data register
1BH
(R/W)
DDRA
Port A data direction register
1CH
(Vacancy)
1DH
1EH
(R/W)
CNTR
PWM control register
1FH
(W)
COMR
PWM compare register
20H
(Vacancy)
21H
22H
(R/W)
SBMR
Serial mode register with 1 byte buffer
(Continued)
20
MB89680 Series
(Continued)
Address
Read/write
Register name
23H
(R/W)
SBFR
(W)
SBUFW
Serial buffer write register
(R)
SBUFR
Serial buffer read register
25H
(R)
SBDR
Serial data register with 1 byte buffer
26H
(R/W)
T2CR
Timer 2 control register
27H
(R/W)
T1CR
Timer 1 control register
28H
(R/W)
T2DR
Timer 2 data register
29H
(R/W)
T1DR
Timer 1 data register
2AH
(R/W)
MODC
Modem output control register
2BH
(R/W)
MODA
Modem output data register
24H
2CH
Register description
Serial flag register with 1 byte buffer
(Vacancy)
2DH
(R/W)
ADC1
A/D converter control 1 register
2EH
(R/W)
ADC2
A/D converter control 2 register
2FH
(R/W)
ADCD
A/D converter data register
30H
(R/W)
EIE1
External interrupt 1 enable register
31H
(R/W)
EIF1
External interrupt 1 flag register
32H
(R/W)
EIE2
External interrupt 2 enable register
33H
(R/W)
EIF2
External interrupt 2 flag register
34H
(R/W)
MDC1
Modem timer control 1 register
35H
(R/W)
MDC2
Modem timer control 2 register
36H
(R)
MLDH
Modem timer “H” level data register
37H
(R)
MLDL
Modem timer “L” level data register
38H
(R/W)
SMC
UART serial mode control register
39H
(R/W)
SRC
UART serial rate control register
3AH
(R/W)
SSD
UART serial status and data register
3BH
(R)
SIDR
UART serial input data register
3CH
(W)
SODR
UART serial output data register
3DH
(R/W)
SSEL
Serial I/O port switching register
3EH to 7BH
(Vacancy)
7CH
(W)
ILR1
Interrupt level 1 setting register
7DH
(W)
ILR2
Interrupt level 2 setting register
7EH
(W)
ILR3
Interrupt level 3 setting register
7FH
(Vacancy)
Note: Do not use (vacancies).
21
MB89680 Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(AVSS = VSS = 0.0 V)
Parameter
Symbol
Value
Unit
Remarks
Min.
Max.
VCC
VSS – 0.3
VSS + 7.0
V
AVCC
VSS – 0.3
VSS + 7.0
V
Set VCC = AVCC*
AVR
VSS – 0.3
VSS + 7.0
V
AVR must not exceed “AVCC +
0.3 V”.
VI
VSS – 0.3
VCC + 0.3
V
Except P4, P7, P8
VI
VSS – 0.3
VSS + 7.0
V
P4, P7, P8
Output voltage
VO
VSS – 0.3
VCC + 0.3
V
“L” level maximum output
current
IOL

20
mA
Peak value
“L” level average output current
I OLAV

10
mA
Average value (operating current
× operating rate)
“L” level total maximum output
current
∑IOL

120
mA
Peak value
“L” level total average output
current
∑IOLAV

40
mA
Average value (operating current
× operating rate)
“H” level maximum output
current
IOH

–20
mA
Peak value
“H” level average output current
I OHAV

–10
mA
Average value (operating current
× operating rate)
“H” level total maximum output
current
∑IOH

–60
mA
Peak value
“H” level total average output
current
∑IOHAV

–20
mA
Average value (operating current
× operating rate)
Power consumption
PD

200
mW
Operating temperature
TA
–40
+85
°C
Storage temperature
Tstg
–55
+150
°C
Power supply voltage
Input voltage
* : Use AVCC and VCC set to the same voltage.
Take care so that AVCC does not exceed VCC, such as when power is turned on.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
22
MB89680 Series
2. Recommended Operating Conditions
(AVSS = VSS = 0.0 V)
Symbol
Parameter
Value
Unit
Remarks
Min.
Max.
VCC,
AVCC
2.2*
6.0*
V
Normal operation assurance range*
(MB89689)
VCC,
AVCC
2.7*
6.0*
V
Normal operation assurance range*
(MB89P689/W689/PV680)
VCC,
AVCC
1.5
6.0
V
Retains the RAM state in stop mode
A/D converter reference input
voltage
AVR
0.0
AVCC
V
Operating temperature
TA
–40
+85
°C
Power supply voltage
* : This values vary with the operating frequency. See Figure 1.
Figure 1 Operating Voltage vs. Main Clock Operating Frequency
6
Operating voltage (V)
5
Analog accuracy assured in the
AVCC = 3.5 V to 6.0 V range
Operation assurance range
4
3
2
1
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Main clock operating frequency (MHz) (at an instruction cycle of 4/F CH)
Figure 1 indicates the operating frequency of the external oscillator at an instruction cycle of 4/FCH.
Since the operating voltage range is dependent of the instruction cycle, see minimum execution time if the
operating speed is switched using a gear.
23
MB89680 Series
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the
device’s electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside
these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representative beforehand.
24
MB89680 Series
3. DC Characteristics
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
“H” level input
voltage
“L” level input
voltage
Pin name
Symbol
Condition
Value
Min.
Typ.
Max.
Unit
VIH
P0, P1
0.7 VCC
—
VCC + 0.3
V
VIHS
P3, P6, P9, PA,
RST, MOD0,
MOD1, X0, X0A
0.8 VCC
—
VCC + 0.3
V
VIHS2
P7
0.8 VCC
VSS + 7.0
V
VIL
P0, P1
VILS
VSS − 0.3
—
0.3 VCC
V
P3, P6, P7, P9, PA,
RST, MOD0,
MOD1, X0, X0A
VSS − 0.3
—
0.2 VCC
V
—
Open-drain
output pin applied VD
voltage
P4, P7, P8
VSS − 0.3
—
VSS + 7.0
V
P5
VSS − 0.3
—
VCC + 0.3
V
“H” level output
voltage
VOH
P0 to P3, P6, P9,
PA
2.4
—
—
V
VOL1
P0 to P4, P6 to P9,
IOL = 4.0 mA
PA
—
—
0.4
V
VOL2
RST
IOL = 4.0 mA
—
—
0.4
V
ILI
P0 to P9, PA,
MOD0, MOD1
0.45 V < VI <
VCC
—
—
±5
µA
VCC
FCH = 8 MHz
VCC = 5.0 V
Main clock
opration
Highest gear
speed
—
13
26
mA
VCC
FCH = 8 MHz
VCC = 5.0 V
Main sleep
mode
Highest gear
speed
—
4
8
mA
“L” level output
voltage
Input leakage
current (Hi-z
output leakage
current)
ICC
Power supply
current
ICCS1
IOH = –2.0 mA
Remarks
FCH = 32.768 kHz
ICCS2
VCC
VCC = 3.0 V
Subclock
sleep mode
—
25
50
µA
ICCH1
VCC
TA = +25°C
Subclock stop
mode
—
—
1
µA
(Continued)
25
MB89680 Series
(Continued)
(AVCC = VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Pin name
Symbol
ICCH2
VCC
Condition
TA = +85°C
Subclock stop
mode
Value
Unit
Min.
Typ.
Max.
—
1
10
µA
Remarks
FCL = 32.768 kHz
Power supply
current
ICSB
VCC
VCC = 3.0 V
Subclock
operation
—
50
100
µA
ICCT
VCC
VCC = 3.0 V
Watch mode
—
—
15
µA
IA
AVCC
—
1.5
3.5
When A/D
mA conversion
is activated
—
1
5
µA
—
10
—
pF
FCH = 8 MHz
IAH
Input capacitance CIN
26
AVCC
Other than AVCC,
AVSS, VCC, and VSS
f = 1 MHz
When A/D
conversion
is stopped
MB89680 Series
4. AC Characteristics
(1) Reset Timing
(VCC = 5.0 V ±10%, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
RST “L” pulse width
tZLZH
RST “H” pulse width
tZHZL
Value
Condition
—
Unit
Min.
Max.
48 tXCYL*
—
ns
24 tXCYL*
—
ns
Remarks
* : tXCYL is the oscillation cycle input to the X0.
tZHZL
tZLZH
RST
0.8 VCC
0.2 VCC
0.2 VCC
0.2 VCC
(2) Specifications for Power-on Reset
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Power supply rising time
tR
Power supply cut-off time
tOFF
Condition
—
Value
Unit
Remarks
Min.
Max.
—
50
ms
Power-on reset function only
1
—
ms
Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time selected.
For example, when the main clock is operating at F CH = 8 MHz and the oscillation stabilization time is 212/FCH,
the oscillation stabilization time is 0.5 ms. Therefore, the maximum value of power supply rising time is about
0.5 ms.
When increasing the supply voltage during operation, voltage variation should be within twice the intended
increment so that the voltage rises as smoothly as possible.
tR
tOFF
4.5 V
VCC
0.2 V
0.2 V
0.2 V
27
MB89680 Series
(3) Clock Timing
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Input clock frequency
Clock cycle time
Input clock duty rate
Input clock rising/falling
time
Symbol
Pin
name
Condition
Value
Min.
Typ.
Max.
Unit
Remarks
FCH
X0, X1
1
—
8
MHz
Main clock
FCL
X0A,
X1A
—
32.768
—
kHz
Subclock
tHCYL
X0, X1
125
—
1000
ns
Main clock
tLCYL
X0A,
X1A
—
30.5
—
µs
Subclock
duty*1
X0
30
—
70
%
2
—
duty1*
X1
30
—
70
%
tCR1
X0
—
—
24
ns
tCF1
X0
—
—
24
ns
tCR2
X0A
—
—
200
ns
tCF2
X0A
—
—
200
ns
External clock
*1: duty = PWH/tHCYL
*2: duty1= PWHL/tHCYL
• Main clock timing conditions
tHCYL
0.8 VCC
0.8 VCC
0.8 VCC
X0
0.2 VCC
PWH
0.2 VCC
PWL
tCR
tCF
• Main clock configurations
When a crystal
or
ceramic resonator is used
X0
When an external clock is used
X0
X1
X1
Open
FCH
C0
28
C1
FCH
MB89680 Series
• Subclock timing conditions
tLCYL
0.8 VCC
0.8 VCC
0.8 VCC
X0A
0.2 VCC
PWHL
0.2 VCC
PWLL
tCR
tCF
• Subclock configurations
When a crystal
or
ceramic resonator is used
X0A
When an external clock is used
X0A
X1A
X1A
Open
FCL
C0
C1
FCL
(4) Instruction Cycle
(AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Minimum execution time
(instruction cycle)
Symbol
Value (typical)
Unit
Remarks
tinst
4/FCH, 8/FCH, 16/FCH, 64/FCH
µs
(4/FCH) tinst = 0.5 µs when operating at
FCH = 8 MHz
tinst
2/FCL
µs
tinst = 61.036 µs when operating at
FCL = 32.768 kHz
29
MB89680 Series
(5) Serial I/O Timing
(AVCC = VCC = 5.0 V ±10%, VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Parameter
Pin name
Condition
Value
Max.
2 tinst*
—
µs
–200
200
ns
1/2 tinst*
—
µs
Serial clock cycle time
tSCYC
BSK/UCK
BSK/UCK ↓ → BSO/UO
time
tSLOV
BSK/UCK,
BSO/UO
Valid BSI/UI → BSK/UCK ↑
tIVSH
BSI/UI,
BSK/UCK
BSK/UCK ↑ → valid BSI/UI
hold time
tSHIX
BSK/UCK,
BSI/UI
1/2 tinst*
—
µs
Serial clock “H” pulse width
tSHSL
BSK/UCK
1 tinst*
—
µs
Serial clock “L” pulse width
tSLSH
BSK/UCK
1 tinst*
—
µs
BSK/UCK ↓ → BSO/UO
time
tSLOV
BSK/UCK,
BSO/UO
0
200
ns
Valid BSI/UI → BSK/UCK ↑
tIVSH
BSI/UI,
BSK/UCK
1/2 tinst*
—
µs
BSK/UCK ↑ → valid BSI/UI
hold time
tSHIX
BSK/UCK,
BSI/UI
1/2 tinst*
—
µs
Internal shift
clock mode
External shift
clock mode
* : For information on tinst, see “(4) Instruction Cycle.”
• Internal shift clock mode
tSCYC
BSK/UCK
2.4 V
0.8 V
0.8 V
t SLOV
2.4 V
BSO/UO
0.8 V
tIVSH
BSI/UI
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
• External shift clock mode
tSLSH
BSK/UCK
tSHSL
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tSLOV
BSO/UO
2.4 V
0.8 V
tIVSH
BSI/UI
30
Unit
Min.
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
Remarks
MB89680 Series
(6) Peripheral Input Timing
(AVCC = VCC = 5.0 V ±10%, VSS = 0.0 V, TA = –40°C to +85°C)
Parameter
Symbol
Value
Pin
Min.
Max.
Unit
Peripheral input “H” level pulse
width
tILIH
INL0 to INLB,
INT0 to INT3
2 tinst*
—
µs
Peripheral input “L” level pulse
width
tIHIL
INL20 to INLB,
INT0 to INT3
2 tinst*
—
µs
Remarks
* : For information on tinst, see “(4) Instruction Cycle.”
tILIH
tIHIL
INL0 to INLB
INT0 to INT3
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
31
MB89680 Series
5. A/D Converter Electrical Characteristics
(AVCC = VCC = 3.5 V to 6.0 V, AVSS = VSS = 0.0 V, TA = –40°C to +85°C)
Symbol
Pin
name
Condition
Resolution
—
—
AVR = AVCC
= 5.0 V
Total error
—
Linearity error
Differential linearity
error
Parameter
Value
Unit Remarks
Min.
Typ.
Max.
—
—
8
bit
—
—
—
±1.5
LSB
—
—
—
—
±1.0
LSB
—
—
—
—
±0.9
LSB
AVss
–1.0 LSB
AVss
+0.5 LSB
AVss
+2.0 LSB
mV
AVR
AVR = AVCC
Zero transition
voltage
V0T
—
Full-scale transition
voltage
VFST
—
–3.0 LSB
AVR
–1.5 LSB
AVR
mV
Interchannel
disparity
—
—
—
—
0.5
LSB
A/D mode
conversion time
—
—
—
44
—
tinst*
Sense mode
conversion time
—
—
—
12
—
tinst*
—
—
10
µA
Analog port input
current
IAIN
AN00 to
AN07
—
Analog input voltage
—
AN00 to
AN07
0.0
—
AVR
V
Reference voltage
—
AVR
0.0
—
AVCC
V
—
100
300
µA
—
—
1
µA
Reference voltage
supply current
IR
AVR
IRH
AVR
AVR = AVCC
= 5.0 V
1 LSB =
AVR/256
* : For information on tinst, see “(4) Instruction Cycle.”
6. A/D Converter Glossary
• Resolution
Analog changes that are identifiable by the A/D converter
When the number of bits is 8, analog voltage can be divided into 28 = 256.
• Linearity error (unit: LSB)
The deviation of the straight line connecting the zero transition point (“0000 0000” ↔ “0000 0001”) with the
full-scale transition point (“1111 1111” ↔ “1111 1110”) from actual conversion characteristics
• Differential linearity error (unit: LSB)
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
• Total error (unit: LSB)
The difference between theoretical and actual conversion values
32
MB89680 Series
Digital output
1111 1111
1111 • 1110
0000
0000
0000
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Theoretical conversion value
Actual conversion value
(1 LSB × N + VOT)
1 LSB =
AVR
256
Linearity error =
Linearity error
Differential linearity error =
Total error =
VNT – (1 LSB × N + VOT)
1 LSB
V( N + 1 ) T – VNT – 1
1 LSB
VNT – (1 LSB × N + 1 LSB)
1 LSB
0010
0001
0000
VOT
VNT
V(N + 1)T
VFST
Analog input
7. Notes on Using A/D Converter
• Input impedance of the analog input pins
The A/D converter used for the MB89890 series contains a sample hold circuit as illustrated below to fetch
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output
impedance of the external circuit low (below 10 kΩ).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.
0.1 µF for the analog input pin.
• Analog Input Equivalent Circuit
Sample hold circuit
C ≅ 33 pF
Analog input pin
Comparator
If the analog input
impedance is higher
than 10 kΩ, it is
recommended to
connect an external
capacitor of approx.
0.1 µF.
R ≅ 6 kΩ
Close for 8 instruction cycles after starting
A/D conversion.
Analog channel selector
• Error
The smaller the | AVR – AVSS |, the greater the error would become relatively.
33
MB89680 Series
■ INSTRUCTIONS (136 INSTRUCTIONS)
Execution instructions can be divided into the following four groups:
•
•
•
•
Transfer
Arithmetic operation
Branch
Others
Table 1 lists symbols used for notation of instructions.
Table 1
Instruction Symbols
Symbol
Meaning
dir
Direct address (8 bits)
off
Offset (8 bits)
ext
Extended address (16 bits)
#vct
Vector table number (3 bits)
#d8
Immediate data (8 bits)
#d16
Immediate data (16 bits)
dir: b
Bit direct address (8:3 bits)
rel
Branch relative address (8 bits)
@
Register indirect (Example: @A, @IX, @EP)
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH
Upper 8 bits of accumulator A (8 bits)
AL
Lower 8 bits of accumulator A (8 bits)
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the
instruction in use.)
TH
Upper 8 bits of temporary accumulator T (8 bits)
TL
Lower 8 bits of temporary accumulator T (8 bits)
IX
Index register IX (16 bits)
(Continued)
34
MB89680 Series
(Continued)
Symbol
Meaning
EP
Extra pointer EP (16 bits)
PC
Program counter PC (16 bits)
SP
Stack pointer SP (16 bits)
PS
Program status PS (16 bits)
dr
Accumulator A or index register IX (16 bits)
CCR
Condition code register CCR (8 bits)
RP
Register bank pointer RP (5 bits)
Ri
General-purpose register Ri (8 bits, i = 0 to 7)
×
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(( × ))
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
Columns indicate the following:
Mnemonic:
Assembler notation of an instruction
~:
The number of instructions
#:
The number of bytes
Operation:
Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
•
•
•
•
“–” indicates no change.
dH is the 8 upper bits of operation description data.
AL and AH must become the contents of AL and AH prior to the instruction executed.
00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
35
MB89680 Series
Table 2
Transfer Instructions (48 instructions)
Mnemonic
~
#
Operation
TL
TH
AH
NZVC
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
36
MB89680 Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
(Continued)
37
MB89680 Series
(Continued)
Mnemonic
~
#
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
Operation
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
38
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
L
F
CMP
ADDC
ADDC
A
SUBC
SUBC
A
MOV
A
XOR
AND
OR
CLRB
BBC
INCW
DECW MOVW MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
MOV
CMP
DAS
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0 R0,#d8 R0,#d8
dir: 0 dir: 0,rel
R0
R0
#0
rel
rel
rel
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1 R1,#d8 R1,#d8
dir: 1 dir: 1,rel
R1
R1
#1
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BP
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2 R2,#d8 R2,#d8
dir: 2 dir: 2,rel
R2
R2
#2
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BN
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3 R3,#d8 R3,#d8
dir: 3 dir: 3,rel
R3
R3
#3
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNZ
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4 R4,#d8 R4,#d8
dir: 4 dir: 4,rel
R4
R4
#4
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BZ
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5 R5,#d8 R5,#d8
dir: 5 dir: 5,rel
R5
R5
#5
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BGE
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6 R6,#d8 R6,#d8
dir: 6 dir: 6,rel
R6
R6
#6
rel
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BLT
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7 R7,#d8 R7,#d8
dir: 7 dir: 7,rel
R7
R7
#7
rel
8
9
A
B
C
D
E
F
rel
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16
A,EP
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 6 dir: 6,rel A,@IX +d @IX +d,A IX,#d16
A,IX
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 4 dir: 4,rel
A,ext
ext,A A,#d16
A,PC
MOV
MOV
CLRB
BBC
INCW
DECW MOVW MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
XCH
XOR
AND
OR
A, T
A
A
A,@IX +d A,@IX +d A,@IX +d A,@IX +d @IX +d,A A,@IX +d A,@IX +d A,@IX +d @IX +d,#d8 @IX +d,#d8
MOV
A
SETC
7
6
CMP
JMP
CALL
PUSHW POPW MOV
MOVW CLRC
addr16 addr16
IX
IX
ext,A
PS,A
MOV
CMP
ADDC SUBC MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir dir,#d8 dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
E
5
D
MOV
CMP
ADDC SUBC
A,#d8
A,#d8
A,#d8
A,#d8
C
4
B
CLRB
BBC
INCW
DECW JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
RORC CMPW ADDCW SUBCW XCHW XORW ANDW ORW
MOVW MOVW CLRB
BBC
INCW
DECW MOVW MOVW
A
A
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
A
A
SETI
9
3
8
ROLC
7
2
6
DIVU
A
5
PUSHW POPW MOV
MOVW CLRI
A
A
A,ext
A,PS
4
MULU
RETI
3
1
RET
2
SWAP
1
NOP
0
0
H
MB89680 Series
■ INSTRUCTION MAP
39
MB89680 Series
■ MASK OPTIONS
Part number
MB89689
MB89P689
MB89W689
MB89PV680
Specifying procedure
Spcify when ordering
masking
Set with EPROM
programmer
Setting not
possible
Selectable by pin
Selectable by pin
Fixed to without a
pull-up resistor
Selectable
Selectable
Fixed to with power-on
reset
No.
1
Pull-up resistors
P00 to P07,
P10 to P17,
P30 to P37,
P60 to P67,
P90 to P97,
PA0 to PA7
2
Power-on reset (POR)
With power-on reset
Without power-on reset
3
Oscillation stabilization time
selection (OSC)
The initial value of the main
clock oscillation stabilization
time can be set with WTM1
and WTM0 bit.
4
Reset pin output (RST)
With reset output
Without reset output
Selectable
Selectable
5
Clock mode selection (CLK)
Dual-clock mode
Single-clock mode
Selectable
Selectable
Selectable
WTM1 WTM0
0
0: 23/FCH
0
1: 212/FCH
1
0: 216/FCH
1
1: 218/FCH
Selectable
WTM1 WTM0
0
0: 23/FCH
0
1: 212/FCH
1
0: 216/FCH
1
1: 218/FCH
Fixed to oscillation
stabilization time of
218/FCH
Fixed to with reset
output
Fixed to dual clock
■ ORDERING INFORMATION
Part number
40
Package
MB89689PF
MB89P689PF
100-pin Plastic QFP
(FPT-100P-M06)
MB89W689CF
100-pin Ceramic QFP
(FPT-100C-A02)
MB89PV680CF
100-pin Ceramic MQFP
(MQP-100C-P01)
Remarks
MB89680 Series
■ PACKAGE DIMENSIONS
100-pin Plastic QFP
(FPT-100P-M06)
23.90±0.40(.941±.016)
3.35(.132)MAX
(Mounting height)
80
20.00±0.20(.787±.008)
0.05(.002)MIN
(STAND OFF)
51
81
50
14.00±0.20
(.551±.008)
12.35(.486)
REF
17.90±0.40
(.705±.016)
16.30±0.40
(.642±.016)
INDEX
31
100
"A"
LEAD No.
1
30
0.65(.0256)TYP
0.30±0.10
(.012±.004)
0.13(.005)
0.15±0.05(.006±.002)
M
Details of "A" part
Details of "B" part
0.25(.010)
"B"
0.10(.004)
0.30(.012)
0.18(.007)MAX
18.85(.742)REF
0.53(.021)MAX
22.30±0.40(.878±.016)
C
0 10°
0.80±0.20
(.031±.008)
1994 FUJITSU LIMITED F100008-3C-2
Dimensions in mm (inches)
100-pin Ceramic QFP
(FPT-100C-A02)
0.51(.020) TYP
8.89(.350)DIA
TYP
17.91(.705)
TYP
16.00(.630)
14.00±0.25
TYP
(.551±.010)
12.34(.486)
REF
16.31(.642)
TYP
INDEX AREA
0.30±0.05
0.65±0.15
(.0256±.0060)
(.012±.002)
18.85(.742)REF
0.15±0.05
(.006±.002)
1.60(.063) TYP
0.65±0.15
(.0256±.0060)
4.45(.175)MAX
20.00±0.25
(.787±.010)
23.90(.941) TYP
22.00(.866) TYP
22.30(.878) TYP
C
1994 FUJITSU LIMITED F100013SC-1-2
0.80(.0315) TYP
Dimensions in mm (inches)
41
MB89680 Series
100-pin Ceramic MQFP
(MQP-100C-P01)
18.70(.736)TYP
INDEX AREA
16.30±0.33
(.642±.013)
15.58±0.20
(.613±.008)
12.35(.486)TYP
+0.40
1.20 –0.20
+.016
.047 –.008
0.65±0.15
(.0256±.0060)
0.65±0.15
(.0256±.0060)
1.27±0.13
(.050±.005)
22.30±0.33
(.878±.013)
24.70(.972)
TYP
0.30(.012)
TYP
1.27±0.13
(.050±.005)
18.12±0.20
12.02(.473)
(.713±.008)
TYP
10.16(.400)
14.22(.560)
TYP
TYP
0.30(.012)TYP
7.62(.300)TYP
0.30±0.08
(.012±.003)
18.85(.742)
TYP
0.30±0.08
(.012±.003)
+0.40
1.20 –0.20
+.016
.047 –.008
9.48(.373)TYP
11.68(.460)TYP
10.82(.426)
0.15±0.05 MAX
(.006±.002)
C
42
1994 FUJITSU LIMITED M100001SC-1-2
Dimensions in mm (inches)
MB89680 Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9802
 FUJITSU LIMITED Printed in Japan
44
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.
Similar pages