DOMINANT Opto Technologies Innovating Illumination TM DATA SHEET : PrimaxPlus 180 InGaN White : MBWW-KZHG-L1P2 Primax Synonymous with function and performance, enter the Primax, the new era of high intensity illumination in LED. With its high flux output and high luminous intensity, Primax transcends today LED lightings technology and how we perceive it. The small package outline (3.7 x 3.5 x 0.8 mm) and high intensity make it an ideal choice for backlighting, signage, exterior automotive lighting and decorative lighting. Features: > > > > > > > > > Super high brightness surface mount LED 120° viewing angle. Compact package outline (LxW) of 3.7 x 3.5 mm. Ultra low height profile - 0.8mm. Low thermal resistance. Compatible to IR reflow soldering. Corrosion resistance for automotive exterior applications. Compliance to automotive standard; AEC-Q101. Superior corrosion resistant. Applications: > > Automotive: Exterior application: eg: DRL, Position Lamp, Signal Lighting, Fog lamp, Rear Combination Lights (RCLs), Reverse lamp. Automotive: Interior application: eg: Dome Lamp, Trunk Lamp. All rights reserved. Product specifications are subject to change without notice. 1 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Optical Characteristics at Tj=250C Part Ordering Number MBWW-KZHG-UV3-L1P2 Color Luminous Flux @ 180mA (lm) Appx. 1.2 Min. Typ. Max. Viewing Angle˚ White 87.4 120 105.0 147.7 Electrical Characteristics at Tj=250C Part Number MBWW-KZHG Vf @ If = 180 mA Appx. 3.1 Min. (V) 5.6 Typ. (V) Max. (V) 6.2 6.8 Absolute Maximum Ratings Maximum Value Unit DC forward current 250 mA Peak pulse current (tp<=10μs , Duty cycle=0.10) 300 mA Not designed for reverse bias V ESD threshold (HBM) 4000 V LED junction temperature 150 ˚C Operating temperature -40 … +125 ˚C Storage temperature -40 … +125 ˚C 18 K/W 12 K/W Reverse voltage Thermal resistance - Real Thermal Resistance Junction / solder point, Rth JS real (typ = 13) - Electrical Thermal Resistance Junction / solder point, Rth JS el (typ = 9) (Mounting on DOMINANT standard PCB) 2 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination MBWW-KZHG, Color Grouping Appx. 2.1 Color Bin Structure 0.410 0.400 0.390 0.380 0.370 P2 0.360 0.350 N2 0.340 N1 M2 0.330 0.320 M1 L2 0.310 0.300 P1 L1 0.290 0.280 0.270 0.260 0.280 0.290 Bin L1 L2 M1 M2 N1 N2 P1 P2 0.300 0.310 0.320 0.330 0.340 0.350 0.360 0.370 0.380 0.390 1 2 3 4 Cx 0.3113 0.3138 0.3231 0.3219 Cy 0.2992 0.2862 0.3008 0.3154 Cx 0.3090 0.3113 0.3219 0.3209 Cy 0.3108 0.2992 0.3154 0.3281 Cx 0.3219 0.3231 0.3335 0.3339 Cy 0.3154 0.3008 0.3172 0.3336 Cx 0.3209 0.3219 0.3339 0.3341 Cy 0.3281 0.3154 0.3336 0.3472 Cx 0.3335 0.3339 0.3465 0.3447 Cy 0.3172 0.3336 0.3530 0.3347 Cx 0.3339 0.3341 0.3479 0.3465 Cy 0.3336 0.3472 0.3673 0.3530 Cx 0.3447 0.3465 0.3599 0.3567 Cy 0.3347 0.3530 0.3735 0.3535 Cx 0.3465 0.3479 0.3623 0.3599 Cy 0.3530 0.3673 0.3882 0.3735 InGaN wavelength is very sensitive to drive current. Operating at lower current is not recommended and may yield unpredictable performance current pulsing should be used for dimming purposed. 3 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Luminous Intensity Group at Tj=250C Brightness Group Luminous Flux (lm) Appx. 1.2 U2 87.4 ... 99.4 U3 99.4 ... 113.6 V2 113.6 ... 129.2 V3 129.2 ... 147.7 Vf Binning (Optional) Vf Bin @ 180mA Group Forward Wavelength Voltage distribution (V) Appx. 3.1 (nm) V1 5.6 ... 5.8 V2 5.8 ... 6.0 V3 6.0 ... 6.2 V4 6.2 ... 6.4 V5 6.4 ... 6.6 V6 6.6 ... 6.8 Please consult sales and marketing for special part number to incorporate Vf binning. 4 17/05/2017 V2.0 MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Forward Current Vs Forward Voltage RelativeRelative Luminous Flux Vs Forward Relative VsCurrent Forward Current Lumionous FluxLumionous Vs ForwardFlux Current /Ф = f(IF); Tj = 25°C VF ФV/ФVФ(180mA) f(I T25°C = 25°C =Фf(I );FV); T(180mA) V/ФV(180mA)= j = j 0.2 0.4 0 30 0.4 0.6 0.2 0.4 0.0 0.2 60 0 120 210 150 240 180 270210 9030 12060 15090 180 Forward Current I (mA) Forward Current IF (mA) F IF I(mA) Current Forward Forward Current IF (mA) Forward Current F (mA) 200 160 Relative Luminous Flux Фrel Relative Luminous Flux Фrel 200 240 TS 160 200 90 120 60 90 30 60 0 240 30 270 5.2 0.0 0.0 Forward CurrentForward Forward Current IIFF (mA) (mA)Current IF (mA) 0 30 60 0 90 30120 60150 90 180 120210 150240 180270 210 Maximum Current Maximum Current Vs TemperatureVs Temperature IF = f Current (T) Forward IF (mA) IF = Current f (T) Forward IF (mA) 280 Maximum Current Vs Temperature 280 Current Vs Temperature Maximum CurrentMaximum Vs Temperature IIFF=f(T) IF = f (T) = f (T) 280 240 280 240 TS 240 200 120 150 240 0 F 5.4 270 5.2 5.4 1.0 0.9 1.0 TS 0.8 0.9 0.7 T S 0.8 0.6 0.7 0.5 0.6 Relative Lumionous Flux Vs Forward Current ФV/ФV(180mA) = f(IF); Tj = 25°C 210 240 1.8 180 210 1.6 150 180 1.4 120 150 270 240 210 1.2 90 120 1.0 60 90 0.8 30 60 0.6 0 30 5.65.2 5.85.4 6.05.6 6.2 5.8 6.4 6.0 6.6 6.2 6.8 6.4 7.0 6.6 0.4 6.8 Forward Voltage VF (V) 0 Forward Voltage VF (V)Voltage Forward VF (V) 0.2 5.2 5.86.4 6.06.6 6.26.8 6.4 6.8 5.6 5.8 5.46.0 5.66.2Relative 7.0 6.6 Spectral Emission Relative Spectral Emission Ф = f(λ); T = 25°C; I = 180mA Forward Voltage V (V) rel I V F F (V) j f(λ); Tj =Voltage 25°C; 0.0 Фrel =Forward F =F180mA 1.0 0 30 Relative 60 90 Spectral 120 150 Emission 180 210 240 Relative Spectral Emission Relative Spectral Emission Фrel==25°C; f(λ); T180mA =T25°C; 180mA ФrelForward = 25°C; IIIFF(mA) ==180mA j IF==f(λ); jCurrent 0.9 Фrel = f(λ); T j F 1.0 Maximum Current Vs Temperature 0.8 IF = f (T) 0.9 280 0.7 0.8 0.6 240 0.7 TS 0.5 7.0 0.02 100 0.01 0.00 -0.01 -0.02 10 100 100 ∆Cx 10 0.1 -0.03 10 -0.04 0.1 80 -0.05 0 0.1 10 30 ∆Cy 60 0.1 90 1 1 1 Duty Ratio, % Duty Ratio, % 120 150 1 10 Duty Ratio, % 10 10 Duty Ratio, % 180 210 240 270 100 100 100 10 100 ForwardCurrent Current IF (mA) Forward IF (mA 0.1 1 10 90 0 5.2 0.9 100 Duty Ratio, % % Duty Ratio, 5 120 1.0 100 10 300 150 30 270 F 0.03 100 ) Forward Current IF( mA Allowable Allowable Forward Current I ( mA ) Allowable Forward Current I ( mA ) Allowable Forward Current IF( mA ) F ∆Cx, ∆Cy Allowable Forward Current IF( mA I)F( mA ) ∆Cx, ∆CyForward Allowable Current 0.04 180 60 7.0 0.6 160 200 120 0.4 0.4 0.5 0.5 0.3 80 0.3 120 120 160 80 0.4 0.4 0.2 0.2 0.3 0.3 4080 80 120 40 0.1 0.1 S = Solder Point Temperature 0.2 0.2 TS = Solder PointTTemperature 040 0.0 400 80 0.0 040 2060 4080 60 80 100 120 0.1 350 140 400 450 0.1350 500 400 550 450 600 500 650 550 700 600 750 650 800 700 850 750 800 850 0 T = Solder 20 100 120 140 Point Temperature TS = Solder Point Temperature S Temperature T(°C) Wavelength λ (nm) Temperature T(°C) Wavelength λ (nm) 0 0.0 0 0.0 40 350 400 450 350 500 400 550 450 600 500 650 550 700 600 750 650 800 700 850 750 800 850 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Allowable TS = Solder Point Temperature Allowable Forward CurrentForward Vs DutyCurrent Ratio Vs Duty Ratio (T(°C) Tj = 25°C; tp ≤ 10μs ) T(°C) Temperature Wavelength λ (nm) Temperature T(°C) ( TTemperature = 25°C; t ≤ 10μs ) Wavelength λ (nm) j p 0 Wavelength λ (nm) 1000 1000 0 20 40 60 80 100 120 140 Allowable Forward Current Forward Vs Duty Ratio Allowable Current Vs Duty Ratio ( Tj = 25°C; tp ≤ 10μs Temperature T(°C) ( Tj)= 25°C; tp ≤ 10μs ) 1000 Allowable Forward Current Vs Duty Ratio Chromaticity Coordinate Shift Vs Forward Current 1000 Allowable Forward Current Vs Duty Ratio Chromaticity Vs= Forward Current ( T(j T=j =25°C; ≤ 10μs ) ∆Cx,Coordinate ∆Cy = f(IShift );T 25°C 25°C; tp ≤tp10μs ) ∆Cx, ∆Cy = f(IFF);Tj =j 25°C 1000 0.05 120 160 Forward Current IF (mA) 0.4 0.6 0.6 0.8 Forward Current IF (mA) 0.6 0.8 0.8 1.0 150 180 Relative Luminous Flux ФCurrent Forward relI (mA)IF (mA) Forward Current 0.8 1.0 1.0 1.2 180 210 Relative Luminous Flux Ф 1.0 1.2 1.2 1.4 210 240 rel Flux Фrel ForwardRelative CurrentRelative IF (mA) Luminous Luminous Flux Фrel 1.2 1.4 1.4 1.6 Forward CurrentCurrent IF (mA) IF (mA) Forward 1.4 1.6 Relative Luminous Flux Фrel Relative Luminous Flux Фrel Relative Luminous Flux Фrel Relative Luminous Flux Фrel Relative Luminous Flux Фrel 1.6 1.8 0.0 0.2 Current Vs Forward Voltage Forward CurrentForward Vs Forward Voltage 25°C IF =Ff(V f(V ); FT); jT=j = 25°C 25°C IF = f(VF); TIFj == 270 Forward Current Vs Forward Voltage Forward Current Vs Forward f(VF); Tj = 25°C I =Voltage IF = f(VF); Tj = 25°CF 240 270 1.8 Relative Lumionous Flux Vs Forward Current270 Relative Lumionous FluxФVs/ФForward Current (180mA) = f(IF); Tj = 25°C ФV/ФV(180mA) = f(IFV); TVj = 25°C 1.6 1.8 240 270 1.8 t 70 TM 17/05/2017 V2.0 Relative Luminous Flux Фrel DOMINANT 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 350 0 TM TM MBWW-KZHG-L1P2 InGaN Warm White: DDF-LJG OptoTechnologies Technologies Opto Innovating Illumination Innovating Illumination Radiation Pattern Radiation Pattern 10° 0° (V) Voltage Relative RelativeForward Forward Voltage ∆V∆V F F (V) 40° 0.8 0.6 50° 0.4 60° 70° 0.2 80° 0 90° Relative Luminous Intensity Junction Temperature Relative Luminious Flux VsVs Junction Temperature Relative Luminous Intensity VsJunction Junction Temperature Relative Wavelength Vs Temperature Relative Luminious Flux Vs Junction Relative Wavelength VsTemperature Junction Temperature I /I (25°C) = f(T ); I = 20mA /I (25°C) = f(T ); I = 20mA I λdom -= = 180mA f(Tj); IF = 20mA ФV/ФV(25°C) =λf(T I j =FI 180mA V =V∆λ V= ФV/ФV(25°C) f(T ); dom dom V ∆λ V jj);(25°C) dom = λdom j- Fλdom F (25°C) = f(Tj); IF = 50mA 2.0 10.0 2.0 10.0 0.3 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.4 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.5 -50 0.025 6.0 4.0 4.0 2.0 2.0 0.0 0.0 0.8 0.8 -2.0 -2.0 0.6 0.6 -4.0 -4.0 0.4 0.4 -6.0 -6.0 0.2 0.2 -8.0 -0.020-0.03 -8.0 -0.025-0.04 0.020 0.015 -30 -30 -10 -10 10 10 30 30 50 50 70 70 90 90 Junction Temperature T j(°C) 110 130 110 Junction Temperature Junction Temperature T j(°C) Junction Temperature Tj(°C)Tj(°C) 130 150 j 0.03 ∆Cx , ∆Cy 0.005 0.01 j 9 ∆Cx ∆Cy ∆Cx, ∆Cy 0.000 0.00 -0.005 -0.010 -0.015 0.0 -10.0 -10.0 0.0 -50 -30 -10 -10 10 30 50 70 90 110 130 130 -50 -30 90 110 -50 -30 30 -1010 50 10 3070 30 5090 50 70 70 130 90 150 110 130 150 -50 -30 -10 10 110 Junction Temperature TTj(°C) Junction Temperature (°C) Junction Temperature T j(°C) Junction Temperature T j(°C) Junction Temperature T j(°C) Junction Temperature Tj (°C) F 0.04 0.010 0.02 , ∆Cy ∆Cx ∆Cx, ∆Cy Relative Wavelength ∆λdom(nm) -50 0.030 0.05 8.0 -0.01 ∆Cx ∆Cy -0.02 -0.030-0.05 -50 -50 -30 -30-10 -10 10 10 3030 5050 70 70 90 90 110 110 Junction Temperature T (°C) Junction Temperature T j(°C) Junction Temperature Tj j(°C) 130 150 130 Junction Temperature Tj(°C) 08/12/2016 V7.0 6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Chromaticity Coordinate Shift Vs Junction Temperature Chromaticity Coordinate Vs Junction Temperature Chromaticity Coordinate ShiftShift Vs Junction Temperature Chromaticity Coordinate Shift Vs Junction Temperature ∆Cx,∆Cx, ∆Cy∆Cy = f(T If(T 20mA ∆Cx, =∆Cy f(T IFF == 20mA ∆Cy =j);j);=f(T ); I = 180mA ∆Cx, ); I = 180mA j F 6.0 1.0 1.0 1.6 -0.4 1.6 1.6 1.2 1.2 1.8 0.3 8.0 1.4 1.4 2.0 0.4 1.8 1.8 Relative Wavelength ∆λdom(nm) Intensity Irel Luminous Relative Relative Luminious Flux Intensity Ф rel Фrel Flux Luminious Relative Relative Luminous Irel 0.4 -0.5 R 0.5 0.5 1.0 Relative Luminous Intensity Irel 20° Relative Forward Voltage ∆VF (V) ∆VF (V) Voltage Forward Relative 30° Relative Forward Voltage Vs Junction Temperature Relative Forward Voltage Vs Vs Junction Temperature Forward Voltage Junction Temperature RelativeRelative Forward Voltage Vs Junction Temperature ∆V = V V (25°C) = f(T ); I =180mA ∆V = V V (25°C) = f(T ); I = 180mA F F(25°C) FF j F = FV=FF V-FFV = f(Tjj);= FI20mA =20mA ∆VF ∆V -V F F(25°C) = f(Tj); IF F Relative Luminious Flux Фrel DOMINANT DOMINANT 17/05/2017 V2.0 0.0 -50 GHGZYHs-eZWnYislAt-euWnMOilAte:ugeMOatkie:hcgeaWaPtkihcGAaWHPmZGYA0H-Y5mZZ3YA0-sYM5Zu3:AlwPsMouxl:lalwePYmoxlNliaearYmPGNniIarPG05n3I 0• 5s3ul•PsxualmPxiraPmirP CSPC-SFPA-MFA:eMtih:eWtihmWramWraAWmA00m10s0u1lPsxualPmxiarmP irP 350package. InGaN Yellow: MAZY-YZHG 350 to InGaN Yellow: ary thermal path is are through Cathode lead of LED ring reference data not verified. The specifications are subject Engineering reference data are not verified. The specifications are subject to MAZY-YZHG chnologies verified. The specifications are subject to change without notice. nce data are not verified. The specifications are subject to change without notice. g Illumination s through Cathode lead of LED package WW-FSC Package Outlines N White: MBWW-FSC Package Outlines TM SG Package Outlines hite: PQW-SSG Package without notice. DOMINANT change without notice. Outlines PrimaxPlus • 350 InGaN Yellow: MAZY-YZHG PrimaxPlus 350mA White: Package PrimaxPlus 100mA Warm White: MAF-PSC MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination DOMINANT PrimaxPlus 350mA White: MAW-YZHG PrimaxPlus 350mA White: nGaN Yellow: MAZY-YZHG Package Outlines xPlus • 350 InGaN Yellow: MAZY-YZHG Package MAW-YZHG Outlines A Warm White: MAF-PSC Opto Technologies Plus 100mA Warm White: MAF-PSC TM 180 InGaN White: MBWW-KZHG Innovating Illumination PrimaxPlus • 180 InGaN White: MBWW-KZHG-L1P2 Package Outlines PrimaxPlus • 180 InGaN White: MBWW-KZHG Package Outlines Plus 100mA Warm White: MAF-PSC xPlus • 350 InGaN Yellow: MAZY-YZHG Package MAW-YZHG Outlines PrimaxPlus 350mA White: change without notice. Outlines hite: PQW-SSG Package N White: MBWW-FSC Package Outlines ode lead LED s Cathode lead of LED package g through Illumination change without notice. nce data of are not package verified. The specifications are subject to Engineering reference datapackage. arelead not of verified. The specifications are subject to hchnologies is thermal through Cathode lead ofCathode LED ary path is through LED package. 350 InGaN Yellow: Technologies MINANT alPrimary path is thermal through path Cathode lead ofCathode LED UNDER package. is through leadDEVELOPMENT of LED package. InGaN White: PQW-SSG DOMINANT Opto Technologies PRELIMINARY TM MAZY-YZHG UNDER DEVELOPMENT PRELIMINARY 175 InGaN White: MBWW-FSC •high InGaN Warm White: DDF-LJG Package SPNova •high InGaN White : NPW-RSZ Outlines surface mount automotive applications. • LED InGaN WhitePackage :Outlines NPW-RSZ Package Outlines brightness Super brightness surface mount LED for automotive applications. SPNova • SPNova InGaN White : for NPW-RSZ Package Outlines l Material mount tnessLED. surface mountMaterial LED. TM TM TM iewing angle. 120 viewing angle. mination Innovating Illumination Innovating Illumination Innovating Illumination logies Material Material Material Material InGaN Warm White: DDF-LJG gle. Opto Technologies Opto Technologies Material act package outline (LxW) ofoutline 3.7 x 3.5 mm. InGaN White : NPW-RSZ Opto Compact package (LxW) of 3.7 is x 3.5 mm. InGaN White : NPW-RSZ Technologies Note : Primary thermal path through Cathode lead of LED package Material ANT Material InGaN White : NPW-RSZ DOMINANT DOMINANT al TM Cu Alloy With Ag Plating Material ame Cu Alloy With Ag Plating DOMINANT of 3.7 x 3.5 mm. Material TM ge outline (LxW) of 3.7 x 3.5 mm. TM ow height profile 0.8 mm. Ultra low– height profile – 0.8 mm.: Primary thermal TM Note path Cathode lead of LED package ad-frame Cu Alloy With Ag is Plating Lead-frame Cu through Alloy With Ag Lead-frame CuPlating Alloy With Ag Plating Material Materialpath is through Cathode lead of LED pac Cu Alloy With Note Ag Plating . Cu Alloy With Ag Plating profile – 0.8 mm. : Primary thermal hermal resistance; Low thermal resistance; Temperature Resistant Plastic, Resistant PPA ge Temperature Plastic, PPA Cu Alloy With High Ag Plating Cu Alloy With High Ag Plating ckage High TemperatureHigh Resistant Plastic, Resistant PPA Package Temperature Plastic, PPA Plastic, PPA stance. Package High Temperature Resistant or corrosion robustness. Superior corrosion Highrobustness. TemperatureHigh Resistant Plastic Cu Alloy WithResistant Au Plating Temperature Plastic ead-frame Cu Alloy With Au Plating : Primary thermal path is through Cathode lead of LED package. Silicone ResinPlastic sulant Silicone Resin Temperature Resistant Plastic g.reflow soldering.HighNote High Temperature Resistant atible reflow soldering. capsulant Silicone Resin to IR Compatible to IREncapsulant reflow soldering. Encapsulant Silicone Resin Silicone Resin Notes: SiliconeHigh Resin Temperature Resistant Plastic Resistant Plastic SiliconeHigh Resin ackage Temperature Primary thermal path is through Cathode lead of LED package. TM Sn-Sn Plating ng Leads Sn-Sn Plating Silicone Resin Silicone Resin ldering Leads General Sn-Sn Plating Solderingtolerance: Leads Sn-Sn Plating +/0.1mm. Soldering Leads Sn-Sn Plating Ag Plating Silicone Ag Plating ncapsulant Silicone Innovating Illumination Sn Plating MaterialSn Plating InGaN mount WhiteLED : NPW-R Super highSPNova brightness• surface for au Material Super high brightnesssurface LED. 120 mount viewing angle. Material Material Material 120 viewing angle. oldering Leads Material product is Pb free Opto Technologies Compact (LxW) of 3.7 x 3.5 mm Au Plating package outline Material Materia DOMINANT Material Lead-frame Cu Material Compact package outline (LxW)low of 3.7 x 3.5 mm. – 0.8 mm. TM 6 6 Ultra height profile Au Plating Lead-frame 10 6 Lead-frame 08/12/2016 V7.0 10 07/07/2011 V4.0 Material Cu Alloy 08/12/2016 V7.0 With 07/07/2011 V4.0 Au Plating 07/07/2011 V4.0 Cu Alloy With A Lead-frame Ultra low height profile – 0.8 mm. Low thermal Cu resistance; Package Temp Lead-frame AlloyTemperature With Au Plating Lead-frame Cu Alloy With High Ag Plating Package High Resistant Plastic Package Low thermal resistance.31/05/2013 V1.0 7 V1.0 7 Superior 31/05/2013 corrosion robustness.High Temperature R Package Warm White MAF-PSC -pv3.docx Page 1 of 14Lead-frame axPlus 100 InGaN Warm White MAF-PSC -pv3.docx Page 1 of 14 Encapsulant Silicone Resin Package High Temperature Resistant Plastic PrimaxPlus 350 InGaN White 350 MAW-YZHG -pv3.docx Page 1 of 9 09/05/14 PrimaxPlus InGaN White MAW-YZHG -pv3.docx Page 1 of 9 High Temperature Resistant P Encapsulant V1.0 soldering. Package 8 18/04/2016 V1.0 Compatible to IR 18/04/2016 reflow 8 Compatible to IR reflow soldering. Encapsulant 12/10/2016 V3.0 Silicone Soldering Leads Au Plating 7 12/10/2016 V3.0 7 Encapsulant Resin Encapsulant SiliconeHiR Package Note: This product is Pb free Soldering Leads Encapsulant Silicone Resin Soldering LeadsAu Plating Soldering Leads Soldering Leads Encapsulant Ag Plat Note: This product is Pb free Soldering Leads Sn Plating 14/06/2016 V3.0 8 Note : Primary thermal path is through Cathode lead of LED package Note : Primary thermal path is through Cathode lead of LED packag Note : Primary thermal path is through Cathode lead of LED pa Note: This product is Pb free Note: This product is Pb free Soldering Leads Note: This product is Pb free7 17/05/2017 V2.0 SPNova • InGaN White : NPW 10 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Recommended Solder Pad 8 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Taping and orientation • Reels come in quantity of 1000 units. • Reel diameter is 180 mm. 9 17/05/2017 V2.0 DOMINANT TM Opto Technologies DOMINANT Innovating Illumination MBWW-KZHG-L1P2 TM Opto Technologies Packaging Specification 350 InGaN White: MAW-YZHG Innovating Illumination Packaging Specification 11 10 26/01/2015 V2.0 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Packaging Specification Moisture sensitivity level Barcode label DOMINANT Opto Technologies (L) Lot No : lotno ML TEMP 2 260˚C RoHS Compliant (P) Part No : partno (C) Cust No : partno (Q) Quantity : quantity (G) Grouping : group (D) D/C : date code Made in Malaysia (S) S/N : serial no Reel Label Moisture absorbent material + Moisture indicator The reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag Weight Weight(gram) (gram) Average 1pc PrimaxPlus 1 completed bag (1000pcs) 0.034 0.034 230 ± 10 190 10 Cardboard Box DOMINANT TM For PrimaxPlus Cardboard Box Size Dimensions (mm) Empty Box Weight (kg) Reel / Box Super Small 325 x 225 x 190 0.38 7 reels MAX Small 325 x 225 x 280 0.54 11 reels MAX Medium 570 x 440 x 230 1.46 48 reels MAX Large 570 x 440 x 460 1.92 96 reels MAX 11 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Recommended Pb-free Soldering Profile Classification Reflow Profile (JEDEC J-STD-020D) 300 Min 260˚C Min 30s 275 250 225 Temperature (˚C) Ramp-up 3˚C/sec max. 217˚C 200 60-150s 175 150 125 Rampdown 6˚C/sec max. 100 75 Preheat 60-120s 50 25 480s max 0 50 100 150 200 Time (sec) 12 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Appendix 1) Brightness: 1.1 Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 1.2 Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 2) Color: 2.1 Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3). 2.2 DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty of ± 1nm (accordingly to GUM with a coverage factor of k=3). 3) Voltage: 3.1 Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of ± 0.1V (accordingly to GUM with a coverage factor of k=3). 13 17/05/2017 V2.0 DOMINANT TM MBWW-KZHG-L1P2 Opto Technologies Innovating Illumination Revision History Page Subjects Date of Modification - Initial Release 24 Mar 2017 7 Update on Peak Pulse Current Update Package Outline 17 May 2017 NOTE All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein. DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design. DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies. 14 17/05/2017 V2.0 DOMINANT TM Opto Technologies Innovating Illumination MBWW-KZHG-L1P2 About Us DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found under http://www.dominant-semi.com. Please contact us for more information: DOMINANT Opto Technologies Sdn. Bhd Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia. Tel: +606 283 3566 Fax: +606 283 0566 E-mail: [email protected]