DOMINANT MBWW-KZHG-UV3-L1P2 Primaxplus Datasheet

DOMINANT
Opto Technologies
Innovating Illumination
TM
DATA SHEET :
PrimaxPlus
180 InGaN White : MBWW-KZHG-L1P2
Primax
Synonymous with function and performance, enter the Primax, the new
era of high intensity illumination in LED. With its high flux output and high
luminous intensity, Primax transcends today LED lightings technology and
how we perceive it. The small package outline (3.7 x 3.5 x 0.8 mm) and
high intensity make it an ideal choice for backlighting, signage, exterior
automotive lighting and decorative lighting.
Features:
>
>
>
>
>
>
>
>
>
Super high brightness surface mount LED
120° viewing angle.
Compact package outline (LxW) of 3.7 x 3.5 mm.
Ultra low height profile - 0.8mm.
Low thermal resistance.
Compatible to IR reflow soldering.
Corrosion resistance for automotive exterior applications.
Compliance to automotive standard; AEC-Q101.
Superior corrosion resistant.
Applications:
>
>
Automotive: Exterior application: eg: DRL, Position Lamp,
Signal Lighting, Fog lamp, Rear Combination Lights (RCLs),
Reverse lamp.
Automotive: Interior application: eg: Dome Lamp, Trunk Lamp.
All rights reserved. Product specifications are subject to change without notice.
1
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=250C
Part Ordering
Number
MBWW-KZHG-UV3-L1P2
Color
Luminous Flux @ 180mA (lm) Appx. 1.2
Min.
Typ.
Max.
Viewing
Angle˚
White
87.4
120
105.0
147.7
Electrical Characteristics at Tj=250C
Part Number
MBWW-KZHG
Vf @ If = 180 mA Appx. 3.1
Min. (V)
5.6
Typ. (V)
Max. (V)
6.2
6.8
Absolute Maximum Ratings
Maximum Value
Unit
DC forward current
250
mA
Peak pulse current (tp<=10μs , Duty cycle=0.10)
300
mA
Not designed for reverse bias
V
ESD threshold (HBM)
4000
V
LED junction temperature
150
˚C
Operating temperature
-40 … +125
˚C
Storage temperature
-40 … +125
˚C
18
K/W
12
K/W
Reverse voltage
Thermal resistance
- Real Thermal Resistance
Junction / solder point, Rth JS real (typ = 13)
- Electrical Thermal Resistance
Junction / solder point, Rth JS el (typ = 9)
(Mounting on DOMINANT standard PCB)
2
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
MBWW-KZHG, Color Grouping Appx. 2.1
Color Bin Structure
0.410
0.400
0.390
0.380
0.370
P2
0.360
0.350
N2
0.340
N1
M2
0.330
0.320
M1
L2
0.310
0.300
P1
L1
0.290
0.280
0.270
0.260
0.280
0.290
Bin
L1
L2
M1
M2
N1
N2
P1
P2
0.300
0.310
0.320
0.330
0.340
0.350
0.360
0.370
0.380
0.390
1
2
3
4
Cx
0.3113
0.3138
0.3231
0.3219
Cy
0.2992
0.2862
0.3008
0.3154
Cx
0.3090
0.3113
0.3219
0.3209
Cy
0.3108
0.2992
0.3154
0.3281
Cx
0.3219
0.3231
0.3335
0.3339
Cy
0.3154
0.3008
0.3172
0.3336
Cx
0.3209
0.3219
0.3339
0.3341
Cy
0.3281
0.3154
0.3336
0.3472
Cx
0.3335
0.3339
0.3465
0.3447
Cy
0.3172
0.3336
0.3530
0.3347
Cx
0.3339
0.3341
0.3479
0.3465
Cy
0.3336
0.3472
0.3673
0.3530
Cx
0.3447
0.3465
0.3599
0.3567
Cy
0.3347
0.3530
0.3735
0.3535
Cx
0.3465
0.3479
0.3623
0.3599
Cy
0.3530
0.3673
0.3882
0.3735
InGaN wavelength is very sensitive to drive current. Operating at lower current is not recommended and may yield unpredictable
performance current pulsing should be used for dimming purposed.
3
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Luminous Intensity Group at Tj=250C
Brightness Group
Luminous Flux (lm) Appx. 1.2
U2
87.4 ... 99.4
U3
99.4 ... 113.6
V2
113.6 ... 129.2
V3
129.2 ... 147.7
Vf Binning (Optional)
Vf Bin @ 180mA
Group
Forward
Wavelength
Voltage
distribution
(V) Appx. 3.1 (nm)
V1
5.6 ... 5.8
V2
5.8 ... 6.0
V3
6.0 ... 6.2
V4
6.2 ... 6.4
V5
6.4 ... 6.6
V6
6.6 ... 6.8
Please consult sales and marketing for special part number to incorporate Vf binning.
4
17/05/2017 V2.0
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Forward Current Vs Forward Voltage
RelativeRelative
Luminous
Flux
Vs Forward
Relative
VsCurrent
Forward Current
Lumionous
FluxLumionous
Vs ForwardFlux
Current
/Ф
= f(IF); Tj = 25°C
VF
ФV/ФVФ(180mA)
f(I
T25°C
=
25°C
=Фf(I
);FV);
T(180mA)
V/ФV(180mA)=
j =
j
0.2
0.4
0
30
0.4
0.6
0.2
0.4
0.0
0.2
60 0
120 210
150 240
180 270210
9030 12060 15090 180
Forward Current I (mA)
Forward Current IF (mA) F
IF I(mA)
Current
Forward
Forward
Current
IF (mA)
Forward
Current
F (mA)
200
160
Relative
Luminous
Flux Фrel
Relative
Luminous
Flux Фrel
200
240
TS
160
200
90
120
60
90
30
60
0
240 30 270
5.2
0.0
0.0
Forward
CurrentForward
Forward
Current
IIFF (mA)
(mA)Current IF (mA)
0
30
60 0 90 30120 60150 90
180 120210 150240 180270 210
Maximum
Current
Maximum Current Vs TemperatureVs Temperature
IF = f Current
(T)
Forward
IF (mA)
IF = Current
f (T)
Forward
IF (mA)
280
Maximum
Current Vs Temperature
280
Current Vs Temperature
Maximum CurrentMaximum
Vs Temperature
IIFF=f(T)
IF = f (T)
= f (T)
280
240
280
240
TS
240
200
120
150
240
0
F
5.4
270
5.2
5.4
1.0
0.9
1.0
TS
0.8
0.9
0.7
T
S
0.8
0.6
0.7
0.5
0.6
Relative Lumionous Flux Vs Forward Current
ФV/ФV(180mA) = f(IF); Tj = 25°C
210
240
1.8
180
210
1.6
150
180
1.4
120
150
270
240
210
1.2
90
120
1.0
60
90
0.8
30
60
0.6
0
30
5.65.2 5.85.4 6.05.6 6.2 5.8 6.4 6.0 6.6 6.2 6.8 6.4 7.0 6.6
0.4
6.8
Forward
Voltage VF (V)
0
Forward Voltage
VF (V)Voltage
Forward
VF (V)
0.2 5.2
5.86.4 6.06.6 6.26.8 6.4
6.8
5.6
5.8 5.46.0 5.66.2Relative
7.0 6.6
Spectral
Emission
Relative Spectral Emission
Ф
=
f(λ);
T
=
25°C;
I
=
180mA
Forward
Voltage
V
(V)
rel I V
F
F
(V) j
f(λ); Tj =Voltage
25°C;
0.0 Фrel =Forward
F =F180mA
1.0 0
30 Relative
60
90 Spectral
120 150 Emission
180 210 240
Relative
Spectral
Emission
Relative Spectral Emission
Фrel==25°C;
f(λ);
T180mA
=T25°C;
180mA
ФrelForward
= 25°C; IIIFF(mA)
==180mA
j
IF==f(λ);
jCurrent
0.9 Фrel = f(λ); T
j
F
1.0
Maximum Current Vs Temperature
0.8
IF = f (T)
0.9
280
0.7
0.8
0.6
240
0.7
TS
0.5
7.0
0.02
100
0.01
0.00
-0.01
-0.02
10
100
100
∆Cx
10
0.1
-0.03
10
-0.04 0.1
80
-0.05
0
0.1
10
30
∆Cy
60
0.1
90
1
1
1
Duty Ratio, %
Duty Ratio, %
120
150
1
10
Duty Ratio, %
10
10
Duty Ratio, %
180 210 240 270
100
100
100
10
100
ForwardCurrent
Current IF (mA)
Forward
IF (mA
0.1
1
10
90
0
5.2
0.9
100
Duty Ratio,
% %
Duty
Ratio,
5
120
1.0
100
10
300
150
30
270
F
0.03
100
)
Forward Current IF( mA
Allowable
Allowable Forward Current I ( mA
)
Allowable Forward Current I ( mA )
Allowable Forward Current IF( mA ) F
∆Cx, ∆Cy
Allowable
Forward
Current
IF( mA I)F( mA )
∆Cx,
∆CyForward
Allowable
Current
0.04
180
60
7.0
0.6
160
200
120
0.4
0.4
0.5
0.5
0.3
80
0.3
120
120
160
80
0.4
0.4
0.2
0.2
0.3
0.3
4080
80
120
40
0.1
0.1
S = Solder Point Temperature
0.2
0.2
TS = Solder PointTTemperature
040
0.0
400
80
0.0
040
2060
4080
60
80
100
120 0.1 350
140 400 450
0.1350
500 400
550 450
600 500
650 550
700 600
750 650
800 700
850 750 800 850
0 T = Solder
20
100
120
140
Point
Temperature
TS = Solder Point Temperature
S
Temperature
T(°C)
Wavelength λ (nm)
Temperature T(°C)
Wavelength λ (nm)
0
0.0
0
0.0
40
350
400 450 350
500 400
550 450
600 500
650 550
700 600
750 650
800 700
850 750 800 850
0
20
40
60
80
100
120
140
0
20
40
60
80
100
120
140
Allowable
TS = Solder Point Temperature
Allowable Forward
CurrentForward
Vs DutyCurrent
Ratio Vs Duty Ratio
(T(°C)
Tj =
25°C; tp ≤ 10μs
)
T(°C)
Temperature
Wavelength
λ
(nm)
Temperature
T(°C)
( TTemperature
=
25°C;
t
≤
10μs
)
Wavelength
λ
(nm)
j
p
0
Wavelength λ (nm)
1000
1000
0
20
40
60
80
100
120
140
Allowable Forward
Current Forward
Vs Duty Ratio
Allowable
Current Vs Duty Ratio
( Tj = 25°C; tp ≤ 10μs
Temperature T(°C)
( Tj)= 25°C; tp ≤ 10μs )
1000
Allowable Forward Current Vs Duty Ratio
Chromaticity
Coordinate Shift Vs Forward Current
1000
Allowable Forward Current Vs Duty Ratio
Chromaticity
Vs=
Forward
Current
( T(j T=j =25°C;
≤ 10μs
)
∆Cx,Coordinate
∆Cy = f(IShift
);T
25°C
25°C; tp ≤tp10μs
)
∆Cx, ∆Cy = f(IFF);Tj =j 25°C
1000
0.05
120
160
Forward Current IF (mA)
0.4
0.6
0.6
0.8
Forward Current IF (mA)
0.6
0.8
0.8
1.0
150
180
Relative Luminous
Flux ФCurrent
Forward
relI (mA)IF (mA)
Forward
Current
0.8
1.0
1.0
1.2
180
210
Relative Luminous Flux Ф
1.0
1.2
1.2
1.4
210
240
rel
Flux Фrel
ForwardRelative
CurrentRelative
IF (mA) Luminous
Luminous
Flux Фrel
1.2
1.4
1.4
1.6
Forward
CurrentCurrent
IF (mA) IF (mA)
Forward
1.4
1.6
Relative Luminous Flux Фrel
Relative Luminous Flux Фrel
Relative
Luminous
Flux Фrel
Relative
Luminous
Flux Фrel
Relative Luminous Flux Фrel
1.6
1.8
0.0
0.2
Current
Vs Forward Voltage
Forward CurrentForward
Vs Forward
Voltage
25°C
IF =Ff(V
f(V
); FT); jT=j = 25°C
25°C
IF = f(VF); TIFj ==
270
Forward Current Vs Forward Voltage
Forward Current Vs Forward
f(VF); Tj = 25°C
I =Voltage
IF = f(VF); Tj = 25°CF
240
270
1.8
Relative Lumionous Flux Vs Forward Current270
Relative Lumionous FluxФVs/ФForward
Current
(180mA)
= f(IF); Tj = 25°C
ФV/ФV(180mA) = f(IFV); TVj = 25°C
1.6
1.8
240
270
1.8
t
70
TM
17/05/2017 V2.0
Relative Luminous Flux Фrel
DOMINANT
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
350
0
TM
TM
MBWW-KZHG-L1P2
InGaN Warm
White: DDF-LJG
OptoTechnologies
Technologies
Opto
Innovating
Illumination
Innovating
Illumination
Radiation Pattern
Radiation Pattern
10°
0°
(V)
Voltage
Relative
RelativeForward
Forward Voltage
∆V∆V
F
F (V)
40°
0.8
0.6
50°
0.4
60°
70°
0.2
80°
0
90°
Relative
Luminous
Intensity
Junction
Temperature
Relative
Luminious
Flux
VsVs
Junction
Temperature
Relative
Luminous
Intensity
VsJunction
Junction
Temperature
Relative
Wavelength
Vs
Temperature
Relative
Luminious
Flux
Vs
Junction
Relative
Wavelength
VsTemperature
Junction
Temperature
I
/I
(25°C)
=
f(T
);
I
=
20mA
/I
(25°C)
=
f(T
);
I
=
20mA
I
λdom -=
= 180mA
f(Tj); IF = 20mA
ФV/ФV(25°C)
=λf(T
I j =FI 180mA
V =V∆λ
V=
ФV/ФV(25°C)
f(T
);
dom
dom
V ∆λ
V
jj);(25°C)
dom = λdom
j- Fλdom
F (25°C) = f(Tj); IF = 50mA
2.0 10.0
2.0
10.0
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.5
-50
0.025
6.0
4.0
4.0
2.0
2.0
0.0
0.0
0.8
0.8 -2.0
-2.0
0.6
0.6 -4.0
-4.0
0.4
0.4 -6.0
-6.0
0.2
0.2 -8.0
-0.020-0.03
-8.0
-0.025-0.04
0.020
0.015
-30
-30
-10
-10
10
10
30
30
50
50
70
70
90
90
Junction Temperature T j(°C)
110
130
110
Junction
Temperature
Junction
Temperature
T j(°C)
Junction
Temperature
Tj(°C)Tj(°C)
130
150
j
0.03
∆Cx , ∆Cy
0.005 0.01
j
9
∆Cx
∆Cy
∆Cx, ∆Cy
0.000 0.00
-0.005
-0.010
-0.015
0.0 -10.0
-10.0
0.0 -50
-30
-10 -10
10
30
50
70
90 110
130 130
-50
-30
90
110
-50
-30 30
-1010 50
10 3070
30 5090
50 70
70 130
90 150
110 130 150
-50 -30
-10
10
110
Junction
Temperature TTj(°C)
Junction
Temperature
(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
Tj (°C)
F
0.04
0.010 0.02
, ∆Cy
∆Cx
∆Cx,
∆Cy
Relative Wavelength ∆λdom(nm)
-50
0.030 0.05
8.0
-0.01
∆Cx
∆Cy
-0.02
-0.030-0.05
-50 -50
-30 -30-10 -10 10 10 3030 5050 70
70 90
90 110
110
Junction
Temperature
T
(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
Tj j(°C)
130 150
130
Junction Temperature Tj(°C)
08/12/2016 V7.0
6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
Chromaticity
Coordinate
Shift
Vs
Junction
Temperature
Chromaticity
Coordinate
Vs Junction
Temperature
Chromaticity
Coordinate
ShiftShift
Vs
Junction
Temperature
Chromaticity
Coordinate
Shift
Vs Junction
Temperature
∆Cx,∆Cx,
∆Cy∆Cy
= f(T
If(T
20mA
∆Cx,
=∆Cy
f(T
IFF ==
20mA
∆Cy
=j);j);=f(T
);
I
=
180mA
∆Cx,
);
I
=
180mA
j
F
6.0
1.0
1.0
1.6
-0.4
1.6
1.6
1.2
1.2
1.8
0.3
8.0
1.4
1.4
2.0
0.4
1.8
1.8
Relative Wavelength ∆λdom(nm)
Intensity Irel
Luminous
Relative
Relative
Luminious
Flux Intensity
Ф
rel
Фrel
Flux
Luminious
Relative
Relative
Luminous
Irel
0.4
-0.5
R
0.5
0.5
1.0
Relative Luminous Intensity Irel
20°
Relative Forward
Voltage
∆VF (V) ∆VF (V)
Voltage
Forward
Relative
30°
Relative
Forward
Voltage
Vs Junction
Temperature
Relative
Forward
Voltage
Vs Vs
Junction
Temperature
Forward
Voltage
Junction
Temperature
RelativeRelative
Forward
Voltage
Vs Junction
Temperature
∆V
=
V
V
(25°C)
=
f(T
);
I
=180mA
∆V
=
V
V
(25°C)
=
f(T
);
I
=
180mA
F
F(25°C)
FF
j
F
= FV=FF V-FFV
= f(Tjj);= FI20mA
=20mA
∆VF ∆V
-V
F F(25°C) = f(Tj); IF
F
Relative Luminious Flux Фrel
DOMINANT
DOMINANT
17/05/2017 V2.0
0.0
-50
GHGZYHs-eZWnYislAt-euWnMOilAte:ugeMOatkie:hcgeaWaPtkihcGAaWHPmZGYA0H-Y5mZZ3YA0-sYM5Zu3:AlwPsMouxl:lalwePYmoxlNliaearYmPGNniIarPG05n3I 0• 5s3ul•PsxualmPxiraPmirP
CSPC-SFPA-MFA:eMtih:eWtihmWramWraAWmA00m10s0u1lPsxualPmxiarmP irP
350package.
InGaN
Yellow:
MAZY-YZHG
350 to
InGaN
Yellow:
ary thermal
path
is are
through
Cathode
lead
of
LED
ring
reference
data
not verified.
The
specifications
are
subject
Engineering
reference
data are
not
verified.
The
specifications
are subject
to MAZY-YZHG
chnologies
verified.
The
specifications
are
subject
to
change
without
notice.
nce
data
are
not
verified.
The
specifications
are
subject
to
change
without
notice.
g
Illumination
s
through
Cathode
lead
of
LED
package
WW-FSC
Package
Outlines
N White: MBWW-FSC Package
Outlines
TM
SG
Package
Outlines
hite:
PQW-SSG
Package
without
notice.
DOMINANT
change
without
notice. Outlines
PrimaxPlus • 350 InGaN Yellow: MAZY-YZHG
PrimaxPlus 350mA White:
Package
PrimaxPlus 100mA Warm White:
MAF-PSC
MBWW-KZHG-L1P2
Opto Technologies
Innovating
Illumination
DOMINANT
PrimaxPlus
350mA
White:
MAW-YZHG
PrimaxPlus
350mA
White:
nGaN
Yellow:
MAZY-YZHG
Package
Outlines
xPlus
• 350
InGaN
Yellow:
MAZY-YZHG
Package MAW-YZHG
Outlines
A
Warm
White:
MAF-PSC
Opto
Technologies
Plus 100mA Warm
White:
MAF-PSC
TM
180 InGaN White: MBWW-KZHG
Innovating Illumination
PrimaxPlus • 180 InGaN White: MBWW-KZHG-L1P2 Package Outlines
PrimaxPlus • 180 InGaN White: MBWW-KZHG Package Outlines
Plus
100mA Warm
White: MAF-PSC
xPlus • 350 InGaN
Yellow: MAZY-YZHG
Package MAW-YZHG
Outlines
PrimaxPlus
350mA White:
change without
notice. Outlines
hite: PQW-SSG
Package
N
White:
MBWW-FSC
Package
Outlines
ode
lead
LED
s
Cathode
lead of
LED
package
g through
Illumination
change
without
notice.
nce
data of
are
not package
verified.
The
specifications
are subject
to
Engineering
reference
datapackage.
arelead
not of
verified.
The specifications
are subject
to
hchnologies
is thermal
through
Cathode
lead ofCathode
LED
ary
path
is through
LED package.
350 InGaN
Yellow:
Technologies
MINANT
alPrimary
path is thermal
through path
Cathode
lead ofCathode
LED UNDER
package.
is through
leadDEVELOPMENT
of LED package.
InGaN White: PQW-SSG
DOMINANT Opto Technologies
PRELIMINARY
TM
MAZY-YZHG
UNDER DEVELOPMENT
PRELIMINARY
175
InGaN
White:
MBWW-FSC
•high
InGaN
Warm
White:
DDF-LJG
Package
SPNova
•high
InGaN
White
: NPW-RSZ
Outlines
surface
mount
automotive
applications.
• LED
InGaN
WhitePackage
:Outlines
NPW-RSZ
Package
Outlines
brightness
Super
brightness
surface
mount
LED
for automotive
applications.
SPNova
• SPNova
InGaN
White
: for
NPW-RSZ
Package
Outlines
l
Material
mount
tnessLED.
surface mountMaterial
LED.
TM
TM
TM
iewing
 angle.
120 viewing angle.
mination
Innovating Illumination
Innovating Illumination
Innovating Illumination
logies
Material
Material
Material
Material
InGaN
Warm White:
DDF-LJG
gle.
Opto
Technologies
Opto
Technologies
Material
act package
outline
(LxW)
ofoutline
3.7
x 3.5
mm.
InGaN
White
: NPW-RSZ
 Opto
Compact
package
(LxW)
of 3.7 is
x 3.5
mm.
InGaN
White : NPW-RSZ
Technologies
Note
: Primary
thermal
path
through
Cathode
lead
of
LED
package
Material
ANT
Material
InGaN
White
: NPW-RSZ
DOMINANT
DOMINANT
al
TM
Cu
Alloy
With
Ag
Plating
Material
ame
Cu Alloy With Ag Plating
DOMINANT
of
3.7
x
3.5
mm.
Material
TM
ge
outline
(LxW)
of
3.7
x
3.5
mm.
TM
ow
height
profile
0.8 mm.
 Ultra
low– height
profile
– 0.8
mm.: Primary thermal
TM
Note
path
Cathode
lead of LED package
ad-frame
Cu Alloy With
Ag is
Plating
Lead-frame
Cu through
Alloy With Ag
Lead-frame
CuPlating
Alloy With Ag Plating
Material
Materialpath is through Cathode lead of LED pac
Cu Alloy With Note
Ag Plating
.
Cu Alloy
With Ag Plating
profile
–
0.8
mm.
:
Primary
thermal
hermal resistance;
Low thermal resistance;
Temperature
Resistant
Plastic, Resistant
PPA
ge
Temperature
Plastic, PPA
Cu Alloy With High
Ag Plating
Cu
Alloy With High
Ag
Plating
ckage
High TemperatureHigh
Resistant
Plastic, Resistant
PPA
Package
Temperature
Plastic,
PPA Plastic, PPA
stance.
Package
High Temperature
Resistant
or corrosion
robustness.
 Superior
corrosion
Highrobustness.
TemperatureHigh
Resistant
Plastic
Cu Alloy
WithResistant
Au Plating
Temperature
Plastic
ead-frame
Cu Alloy
With Au Plating
: Primary
thermal
path
is through
Cathode
lead of LED package.
Silicone
ResinPlastic
sulant
Silicone Resin
Temperature
Resistant
Plastic
g.reflow soldering.HighNote
High
Temperature
Resistant
atible
reflow
soldering.
capsulant
Silicone Resin
to IR
Compatible
to IREncapsulant
reflow soldering.
Encapsulant
Silicone Resin Silicone Resin
Notes:
SiliconeHigh
Resin
Temperature
Resistant
Plastic Resistant Plastic
SiliconeHigh
Resin
ackage
Temperature
Primary
thermal
path
is
through
Cathode
lead
of
LED
package.
TM
Sn-Sn
Plating
ng Leads
Sn-Sn Plating
Silicone Resin
Silicone
Resin
ldering Leads General
Sn-Sn Plating
Solderingtolerance:
Leads
Sn-Sn
Plating
+/0.1mm.
Soldering Leads
Sn-Sn Plating
Ag Plating
Silicone
Ag
Plating
ncapsulant
Silicone
Innovating Illumination
Sn Plating
MaterialSn Plating

InGaN mount
WhiteLED
: NPW-R
 Super highSPNova
brightness• surface
for au
Material
Super high brightnesssurface
LED.
120 mount
viewing
angle.
Material
Material
Material  120 viewing angle.
oldering Leads
Material
product is Pb free
Opto Technologies
 Compact
(LxW) of 3.7 x 3.5
mm
Au Plating package outline
Material
Materia
DOMINANT
Material
Lead-frame
Cu
Material
Compact package
outline
(LxW)low
of 3.7
x 3.5
mm. – 0.8 mm.
TM
6
 6 Ultra
height
profile
Au Plating

Lead-frame
10
6
Lead-frame
08/12/2016 V7.0
10
07/07/2011 V4.0
Material
Cu Alloy
08/12/2016
V7.0 With
07/07/2011 V4.0
Au Plating
07/07/2011 V4.0
Cu Alloy With A
 Lead-frame
Ultra low height profile – 0.8
mm.
Low
thermal Cu
resistance;
Package
Temp
Lead-frame
AlloyTemperature
With Au Plating
Lead-frame
Cu Alloy
With High
Ag Plating
Package
High
Resistant
Plastic
Package
 Low
thermal resistance.31/05/2013 V1.0
7
V1.0
7
 Superior 31/05/2013
corrosion
robustness.High Temperature R
Package
Warm White
MAF-PSC
-pv3.docx
Page 1 of 14Lead-frame
axPlus
100 InGaN
Warm
White
MAF-PSC
-pv3.docx
Page 1 of 14
Encapsulant
Silicone
Resin
Package
High
Temperature
Resistant
Plastic
PrimaxPlus 350 InGaN
White 350
MAW-YZHG
-pv3.docx
Page
1
of
9
09/05/14
PrimaxPlus
InGaN
White
MAW-YZHG
-pv3.docx
Page
1
of
9 High Temperature Resistant P
Encapsulant
V1.0 soldering.
Package
8
18/04/2016 V1.0
 Compatible to IR 18/04/2016
reflow
8
 Compatible
to IR reflow soldering.
Encapsulant
12/10/2016 V3.0 Silicone
Soldering
Leads
Au Plating
7
12/10/2016
V3.0
7
Encapsulant
Resin
Encapsulant
SiliconeHiR
Package
Note: This product is Pb free
Soldering Leads
Encapsulant
Silicone Resin
Soldering LeadsAu Plating
Soldering Leads
Soldering Leads Encapsulant
Ag Plat
Note: This product is Pb free
Soldering Leads
Sn
Plating
14/06/2016 V3.0
8
Note : Primary thermal path is through Cathode lead of LED package
Note : Primary thermal path is through Cathode lead of LED packag
Note : Primary thermal path is through Cathode lead of LED pa
Note: This product is Pb free
Note: This product is Pb free
Soldering Leads
Note: This product is Pb free7
17/05/2017 V2.0
SPNova • InGaN White : NPW
10
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Recommended Solder Pad
8
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Taping and orientation
• Reels come in quantity of 1000 units.
• Reel diameter is 180 mm.
9
17/05/2017 V2.0
DOMINANT
TM
Opto Technologies
DOMINANT
Innovating Illumination
MBWW-KZHG-L1P2
TM
Opto Technologies
Packaging Specification
350 InGaN White: MAW-YZHG
Innovating Illumination
Packaging Specification
11
10
26/01/2015 V2.0
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Packaging Specification
Moisture sensitivity level
Barcode label
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
Reel
Label
Moisture absorbent material +
Moisture indicator
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc PrimaxPlus
1 completed bag (1000pcs)
0.034
0.034
230 ± 10
190
10
Cardboard
Box
DOMINANT TM
For PrimaxPlus
Cardboard Box
Size
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
7 reels MAX
Small
325 x 225 x 280
0.54
11 reels MAX
Medium
570 x 440 x 230
1.46
48 reels MAX
Large
570 x 440 x 460
1.92
96 reels MAX
11
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020D)
300
Min 260˚C
Min 30s
275
250
225
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-120s
50
25
480s max
0
50
100
150
200
Time (sec)
12
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Appendix
1)
Brightness:
1.1
Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of
± 11 % (according to GUM with a coverage factor of k=3).
1.2
Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 %
(according to GUM with a coverage factor of k=3).
2)
Color:
2.1
Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded
uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3).
2.2
DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty
of ± 1nm (accordingly to GUM with a coverage factor of k=3).
3)
Voltage:
3.1
Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of
± 0.1V (accordingly to GUM with a coverage factor of k=3).
13
17/05/2017 V2.0
DOMINANT
TM
MBWW-KZHG-L1P2
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
-
Initial Release
24 Mar 2017
7
Update on Peak Pulse Current
Update Package Outline
17 May 2017
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies.
14
17/05/2017 V2.0
DOMINANT
TM
Opto Technologies
Innovating Illumination
MBWW-KZHG-L1P2
About Us
DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found
under http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia.
Tel: +606 283 3566 Fax: +606 283 0566
E-mail: [email protected]
Similar pages