IRF IRGB5B120KDPBF Insulated gate bipolar transistor with ultrafast soft recovery diode Datasheet

PD - 95617
IRGB5B120KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
• Low VCE (on) Non Punch Through IGBT Technology.
• Low Diode VF.
• 10µs Short Circuit Capability.
• Square RBSOA.
• Ultrasoft Diode Reverse Recovery Characteristics.
• Positive VCE (on) Temperature Coefficient.
• TO-220 Package.
• Lead-Free
VCES = 1200V
IC = 6.0A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-channel
VCE(on) typ. = 2.75V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 25°C
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current 
Diode Continuous Forward Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Max.
Units
1200
12
6.0
24
24
12
6.0
24
± 20
89
36
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.50
–––
2 (0.07)
1.4
2.8
–––
62
–––
Units
°C/W
g (oz)
1
8/2/04
IRGB5B120KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage 1200 –––
Temperature Coeff. of Breakdown Voltage ––– 1.15
Collector-to-Emitter Saturation Voltage ––– 2.75
––– 3.36
Gate Threshold Voltage
4.0 5.0
Temperature Coeff. of Threshold Voltage ––– -11
Forward Transconductance
––– 2.6
Zero Gate Voltage Collector Current
––– –––
––– 66
Diode Forward Voltage Drop
––– 2.13
––– 2.38
Gate-to-Emitter Leakage Current
––– –––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 500µA
––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C)
3.0
IC = 6.0A
VGE = 15V
3.7
V
IC = 6.0A
VGE = 15V TJ = 125°C
6.0
V
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C)
–––
S
VCE = 50V, IC = 6.0A, PW=80µs
100
µA
VGE = 0V, VCE = 1200V
200
VGE = 0V, VCE = 1200V, TJ = 125°C
2.45
IF = 6.0A
TJ = 125°C
2.75
V
IF = 6.0A
±100 nA
VGE = ±20V
Ref.Fig.
5, 6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Cies
Coes
Cres
RBSOA
SCSOA
Erec
t rr
I rr
Ref.Fig.
Max. Units
Conditions
23
38
IC = 6.0A
5.6
nC VCC = 800V
CT1
20
VGE = 15V
CT4
440
µJ
IC = 6.0A, VCC = 600V
440
VGE = 15V,RG = 50Ω, L =3.7mH
880
Ls = 150nH
TJ = 25°C ‚
CT4
29
IC = 6.0A, VCC = 600V
27
VGE = 15V, RG = 50Ω L =3.7mH
120
ns
Ls = 150nH, TJ = 25°C
25
CT4
660
IC = 6.0A, VCC = 600V
13,15
560
µJ
VGE = 15V,RG = 50Ω, L =3.7mH
WF1WF2
1220
Ls = 150nH
TJ = 125°C ‚
14, 16
27
IC = 6.0A, VCC = 600V
CT4
25
VGE = 15V, RG = 50Ω L =3.7mH
150
ns
Ls = 150nH, TJ = 125°C
WF1
29
WF2
–––
VGE = 0V
22
–––
pF
VCC = 30V
–––
f = 1.0MHz
4
TJ = 150°C, IC = 24A, Vp =1200V
Reverse Bias Safe Operting Area
FULL SQUARE
VCC = 1000V, VGE = +15V to 0V, RG=50Ω CT2
CT3
µs
TJ = 150°C, Vp =1200V, RG = 50Ω
Short Circuit Safe Operting Area
10 ––– –––
WF4
VCC = 900V, VGE = +15V to 0V
17,18,19
Reverse Recovery energy of the diode ––– 360 –––
µJ
TJ = 125°C
20, 21
Diode Reverse Recovery time
––– 160 –––
ns
VCC = 600V, IF = 6.0A, L = 2.0mH
CT4,WF3
Diode Peak Reverse Recovery Current ––– 9.0 –––
A
VGE = 15V,RG = 50Ω, Ls = 150nH
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
25
3.7
13
390
330
720
22
19
100
19
440
370
810
21
18
110
22
370
33
11
Note:
 VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.
‚ Energy losses include "tail" and diode reverse recovery.
2
www.irf.com
IRGB5B120KDPbF
100
14
12
80
10
Ptot (W)
IC (A)
8
6
60
40
4
20
2
0
0
0
20
40
60
80
0
100 120 140 160
50
100
150
200
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100
10
10
1
100 µs
IC A)
IC (A)
10 µs
1
DC
1ms
0.1
10ms
0
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGB5B120KDPbF
20
20
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
16
16
ICE (A)
12
ICE (A)
VGE = 18V
VGE = 15V
8
4
VGE = 12V
VGE = 10V
12
VGE = 8.0V
8
4
0
0
0
2
4
6
8
0
2
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
8
20
VGE = 18V
VGE = 15V
16
VGE = 12V
VGE = 10V
12
-40°C
25°C
125°C
16
12
VGE = 8.0V
IF (A)
ICE (A)
6
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
20
8
8
4
4
0
0
0
2
4
6
8
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
4
4
VCE (V)
0.0
1.0
2.0
3.0
4.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
IRGB5B120KDPbF
20
20
16
ICE = 6.0A
ICE = 12A
14
ICE = 24A
18
ICE = 6.0A
16
ICE = 12A
ICE = 24A
14
12
VCE (V)
VCE (V)
18
10
8
12
10
8
6
6
4
4
2
2
0
5
10
15
5
20
10
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
20
50
ICE = 6.0A
ICE = 12A
18
16
T J = 25°C
T J = 125°C
40
ICE = 24A
14
12
ICE (A)
VCE (V)
15
VGE (V)
VGE (V)
10
30
20
8
6
T J = 125°C
10
4
T J = 25°C
2
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 125°C
www.irf.com
20
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
5
IRGB5B120KDPbF
1200
1000
EON
1000
600
Swiching Time (ns)
Energy (µJ)
800
EOFF
400
tdOFF
100
tF
200
tdON
tR
0
0
4
8
12
16
10
20
4
IC (A)
6
8
10
12
14
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 125°C; L=3.7mH; VCE= 600V
RG= 50Ω; VGE= 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 125°C; L=3.7mH; VCE= 600V
RG= 50Ω; VGE= 15V
1400
1000
1200
Swiching Time (ns)
Energy (µJ)
tdOFF
EON
1000
800
EOFF
600
400
tR
100
tdON
200
tF
0
10
0
100
200
300
RG (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 125°C; L=3.7mH; VCE= 600V
ICE= 6.0A; VGE= 15V
6
400
0
100
200
300
400
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 125°C; L=3.7mH; VCE= 600V
ICE= 6.0A; VGE= 15V
www.irf.com
IRGB5B120KDPbF
10
10
RG = 50 Ω
8
6
RG = 150 Ω
IRR (A)
IRR (A)
8
4
6
4
RG = 270 Ω
2
2
RG = 470 Ω
0
0
0
2
4
6
8
10
0
12
100
200
400
500
RG (Ω)
IF (A)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 125°C; IF = 6.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 125°C
1.6
10
8
6
4
50Ω
9.0A
150Ω
1.2
QRR (µC)
IRR (A)
300
270Ω
6.0A
470Ω
0.8
3.0A
0.4
2
0
0
0
100
200
300
400
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 600V; VGE= 15V;
IF = 6.0A; TJ = 125°C
www.irf.com
500
0
100
200
300
400
500
600
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 600V; VGE= 15V;TJ = 125°C
7
IRGB5B120KDPbF
500
Energy (µJ)
400
300
50 Ω
150 Ω
270 Ω
470 Ω
200
100
0
0
2
4
6
8
10
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 125°C
16
1000
Cies
14
600V
12
800V
10
VGE (V)
Capacitance (pF)
100
Coes
Cres
10
8
6
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
5
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 6.0A; L = 600µH
www.irf.com
IRGB5B120KDPbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
Ri (°C/W) τi (sec)
1.024
0.001014
τ
0.378
τ2
0.017595
Ci= τi/Ri
Ci i/Ri
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
τ2
Ci= τi/Ri
Ci i/Ri
0.01
R3
R3
τ3
τC
τ
τ3
Ri (°C/W)
1.045
τi (sec)
0.000395
1.214
0.540
0.001078
1.1386
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGB5B120KDPbF
L
L
VCC
DUT
0
80 V
DUT
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
diode clamp /
DUT
Driver
D
C
1000V
L
- 5V
900V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R=
DUT
VCC
ICM
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
10
www.irf.com
IRGB5B120KDPbF
800
8
1800
18
700
7
1600
16
1400
6
90% Ice
1200
5
3
5% Vce
200
2
5% Ice
8
600
6
1
200
0
0
0
0.4
0.6
Time (uS)
0.8
1
1000
6
900
4
800
-100
2
700
-200
0
600
-300
-2
100
10%
Pe a k
IRR
-4
Vce (V)
tr r
IF (A)
Q RR
-500
-600
-8
200
-700
-1 0
100
0 .0 5
time ( µ s )
0 .2 0
-1 2
0 .3 5
Fig.WF3-Typ. Diode Recovery Waveform
@ TJ =125°C using Fig. CT4
www.irf.com
0.5
0.6
0.7
-2
0.8
100
VCE
80
60
400
300
- 0 .1 0
0.4
500
-6
-800
- 0 .2 5
Eon Loss
Fig.WF2-Typ. Turn-on Loss Waveform
@ TJ =125°C using Fig. CT4
8
Pe a k
Irr
2
Tim e (uS)
200
-400
5% VCE
4
0
0.3
Fig.WF2-Typ. Turn-off Loss Waveform
@ TJ =125°C using Fig. CT4
0
tr
-200
-1
0.2
10% test current
400
Eoff Loss
VF (V)
800
100
-100
10
Ice (A)
300
Vce (V)
4
14
12
TEST CURRENT
1000
tf
400
Ice (A)
Vce (V)
500
90% test current
Ice (A)
600
0
0.00
40
20
ICE
10.00
20.00
30.00
40.00
0
50.00
Time(uS)
Fig.WF4-Typ. S.C. Waveform
@ TC =150°C using Fig. CT3
11
IRGB5B120KDPbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
LOT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y LINE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
TO-220AB package is not recommended for Surface Mount Application
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 08/04
12
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages