PD - 95617 IRGB5B120KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10µs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • TO-220 Package. • Lead-Free VCES = 1200V IC = 6.0A, TC=100°C G tsc > 10µs, TJ=150°C E n-channel VCE(on) typ. = 2.75V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Max. Units 1200 12 6.0 24 24 12 6.0 24 ± 20 89 36 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.50 ––– 2 (0.07) 1.4 2.8 ––– 62 ––– Units °C/W g (oz) 1 8/2/04 IRGB5B120KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 ––– Temperature Coeff. of Breakdown Voltage ––– 1.15 Collector-to-Emitter Saturation Voltage ––– 2.75 ––– 3.36 Gate Threshold Voltage 4.0 5.0 Temperature Coeff. of Threshold Voltage ––– -11 Forward Transconductance ––– 2.6 Zero Gate Voltage Collector Current ––– ––– ––– 66 Diode Forward Voltage Drop ––– 2.13 ––– 2.38 Gate-to-Emitter Leakage Current ––– ––– Max. Units Conditions ––– V VGE = 0V, IC = 500µA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-125°C) 3.0 IC = 6.0A VGE = 15V 3.7 V IC = 6.0A VGE = 15V TJ = 125°C 6.0 V VCE = VGE, IC = 250µA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-125°C) ––– S VCE = 50V, IC = 6.0A, PW=80µs 100 µA VGE = 0V, VCE = 1200V 200 VGE = 0V, VCE = 1200V, TJ = 125°C 2.45 IF = 6.0A TJ = 125°C 2.75 V IF = 6.0A ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Erec t rr I rr Ref.Fig. Max. Units Conditions 23 38 IC = 6.0A 5.6 nC VCC = 800V CT1 20 VGE = 15V CT4 440 µJ IC = 6.0A, VCC = 600V 440 VGE = 15V,RG = 50Ω, L =3.7mH 880 Ls = 150nH TJ = 25°C CT4 29 IC = 6.0A, VCC = 600V 27 VGE = 15V, RG = 50Ω L =3.7mH 120 ns Ls = 150nH, TJ = 25°C 25 CT4 660 IC = 6.0A, VCC = 600V 13,15 560 µJ VGE = 15V,RG = 50Ω, L =3.7mH WF1WF2 1220 Ls = 150nH TJ = 125°C 14, 16 27 IC = 6.0A, VCC = 600V CT4 25 VGE = 15V, RG = 50Ω L =3.7mH 150 ns Ls = 150nH, TJ = 125°C WF1 29 WF2 ––– VGE = 0V 22 ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 24A, Vp =1200V Reverse Bias Safe Operting Area FULL SQUARE VCC = 1000V, VGE = +15V to 0V, RG=50Ω CT2 CT3 µs TJ = 150°C, Vp =1200V, RG = 50Ω Short Circuit Safe Operting Area 10 ––– ––– WF4 VCC = 900V, VGE = +15V to 0V 17,18,19 Reverse Recovery energy of the diode ––– 360 ––– µJ TJ = 125°C 20, 21 Diode Reverse Recovery time ––– 160 ––– ns VCC = 600V, IF = 6.0A, L = 2.0mH CT4,WF3 Diode Peak Reverse Recovery Current ––– 9.0 ––– A VGE = 15V,RG = 50Ω, Ls = 150nH Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 25 3.7 13 390 330 720 22 19 100 19 440 370 810 21 18 110 22 370 33 11 Note: VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω. Energy losses include "tail" and diode reverse recovery. 2 www.irf.com IRGB5B120KDPbF 100 14 12 80 10 Ptot (W) IC (A) 8 6 60 40 4 20 2 0 0 0 20 40 60 80 0 100 120 140 160 50 100 150 200 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 1 100 µs IC A) IC (A) 10 µs 1 DC 1ms 0.1 10ms 0 0.01 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB5B120KDPbF 20 20 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 16 ICE (A) 12 ICE (A) VGE = 18V VGE = 15V 8 4 VGE = 12V VGE = 10V 12 VGE = 8.0V 8 4 0 0 0 2 4 6 8 0 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 8 20 VGE = 18V VGE = 15V 16 VGE = 12V VGE = 10V 12 -40°C 25°C 125°C 16 12 VGE = 8.0V IF (A) ICE (A) 6 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs 20 8 8 4 4 0 0 0 2 4 6 8 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 4 4 VCE (V) 0.0 1.0 2.0 3.0 4.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80µs www.irf.com IRGB5B120KDPbF 20 20 16 ICE = 6.0A ICE = 12A 14 ICE = 24A 18 ICE = 6.0A 16 ICE = 12A ICE = 24A 14 12 VCE (V) VCE (V) 18 10 8 12 10 8 6 6 4 4 2 2 0 5 10 15 5 20 10 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 50 ICE = 6.0A ICE = 12A 18 16 T J = 25°C T J = 125°C 40 ICE = 24A 14 12 ICE (A) VCE (V) 15 VGE (V) VGE (V) 10 30 20 8 6 T J = 125°C 10 4 T J = 25°C 2 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 125°C www.irf.com 20 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGB5B120KDPbF 1200 1000 EON 1000 600 Swiching Time (ns) Energy (µJ) 800 EOFF 400 tdOFF 100 tF 200 tdON tR 0 0 4 8 12 16 10 20 4 IC (A) 6 8 10 12 14 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 125°C; L=3.7mH; VCE= 600V RG= 50Ω; VGE= 15V 1400 1000 1200 Swiching Time (ns) Energy (µJ) tdOFF EON 1000 800 EOFF 600 400 tR 100 tdON 200 tF 0 10 0 100 200 300 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V 6 400 0 100 200 300 400 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 125°C; L=3.7mH; VCE= 600V ICE= 6.0A; VGE= 15V www.irf.com IRGB5B120KDPbF 10 10 RG = 50 Ω 8 6 RG = 150 Ω IRR (A) IRR (A) 8 4 6 4 RG = 270 Ω 2 2 RG = 470 Ω 0 0 0 2 4 6 8 10 0 12 100 200 400 500 RG (Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 125°C; IF = 6.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 125°C 1.6 10 8 6 4 50Ω 9.0A 150Ω 1.2 QRR (µC) IRR (A) 300 270Ω 6.0A 470Ω 0.8 3.0A 0.4 2 0 0 0 100 200 300 400 diF /dt (A/µs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 600V; VGE= 15V; IF = 6.0A; TJ = 125°C www.irf.com 500 0 100 200 300 400 500 600 diF /dt (A/µs) Fig. 20 - Typical Diode QRR VCC= 600V; VGE= 15V;TJ = 125°C 7 IRGB5B120KDPbF 500 Energy (µJ) 400 300 50 Ω 150 Ω 270 Ω 470 Ω 200 100 0 0 2 4 6 8 10 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 125°C 16 1000 Cies 14 600V 12 800V 10 VGE (V) Capacitance (pF) 100 Coes Cres 10 8 6 4 2 0 1 0 20 40 60 80 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 5 10 15 20 25 30 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 6.0A; L = 600µH www.irf.com IRGB5B120KDPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ2 τ1 Ri (°C/W) τi (sec) 1.024 0.001014 τ 0.378 τ2 0.017595 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 τ2 Ci= τi/Ri Ci i/Ri 0.01 R3 R3 τ3 τC τ τ3 Ri (°C/W) 1.045 τi (sec) 0.000395 1.214 0.540 0.001078 1.1386 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGB5B120KDPbF L L VCC DUT 0 80 V DUT Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver D C 1000V L - 5V 900V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGB5B120KDPbF 800 8 1800 18 700 7 1600 16 1400 6 90% Ice 1200 5 3 5% Vce 200 2 5% Ice 8 600 6 1 200 0 0 0 0.4 0.6 Time (uS) 0.8 1 1000 6 900 4 800 -100 2 700 -200 0 600 -300 -2 100 10% Pe a k IRR -4 Vce (V) tr r IF (A) Q RR -500 -600 -8 200 -700 -1 0 100 0 .0 5 time ( µ s ) 0 .2 0 -1 2 0 .3 5 Fig.WF3-Typ. Diode Recovery Waveform @ TJ =125°C using Fig. CT4 www.irf.com 0.5 0.6 0.7 -2 0.8 100 VCE 80 60 400 300 - 0 .1 0 0.4 500 -6 -800 - 0 .2 5 Eon Loss Fig.WF2-Typ. Turn-on Loss Waveform @ TJ =125°C using Fig. CT4 8 Pe a k Irr 2 Tim e (uS) 200 -400 5% VCE 4 0 0.3 Fig.WF2-Typ. Turn-off Loss Waveform @ TJ =125°C using Fig. CT4 0 tr -200 -1 0.2 10% test current 400 Eoff Loss VF (V) 800 100 -100 10 Ice (A) 300 Vce (V) 4 14 12 TEST CURRENT 1000 tf 400 Ice (A) Vce (V) 500 90% test current Ice (A) 600 0 0.00 40 20 ICE 10.00 20.00 30.00 40.00 0 50.00 Time(uS) Fig.WF4-Typ. S.C. Waveform @ TC =150°C using Fig. CT3 11 IRGB5B120KDPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 1.40 (.055) 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 LOT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y LINE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C TO-220AB package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 08/04 12 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/