AD ADM3077E 3.3 v, â±15 kv esd-protected, half- and full-duplex, rs-485/rs-422 transceiver Datasheet

3.3 V, ±15 kV ESD-Protected, Half- and
Full-Duplex, RS-485/RS-422 Transceivers
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TIA/EIA RS-485/RS-422 compliant
±15 kV ESD protection on RS-485 input/output pins
Data rates
ADM3070E/ADM3071E/ADM3072E: 250 kbps
ADM3073E/ADM3074E/ADM3075E: 500 kbps
ADM3076E/ADM3077E/ADM3078E: 16 Mbps
Half- and full-duplex options
True fail-safe receiver inputs
Up to 256 nodes on the bus
−40°C to +125°C temperature option
Hot-swap input structure on DE and RE pins
Reduced slew rates for low EMI
Low power shutdown current (all except
ADM3071E/ADM3074E/ADM3077E)
Outputs high-Z when disabled or powered off
Common-mode input range: −7 V to +12 V
Thermal shutdown and short-circuit protection
8-lead and 14-lead narrow SOIC packages
FUNCTIONAL BLOCK DIAGRAMS
VCC
ADM3070E/
ADM3073E/
ADM3076E
R
RO
A
B
RE
DE
DI
D
Z
Y
06285-001
FEATURES
GND
Figure 1.
VCC
ADM3071E/
ADM3074E/
ADM3077E
R
RO
A
B
APPLICATIONS
The devices have an ⅛ unit load receiver input impedance,
which allows up to 256 transceivers on a bus. Because only one
driver should be enabled at any time, the output of a disabled or
powered-down driver is tristated to avoid overloading the bus.
Y
GND
.
Figure 2.
VCC
ADM3072E/
ADM3075E/
ADM3078E
GENERAL DESCRIPTION
The ADM3070E to ADM3078E are 3.3 V, low power data
transceivers with ±15 kV ESD protection suitable for full- and
half-duplex communication on multipoint bus transmission
lines. They are designed for balanced data transmission, and they
comply with TIA/EIA standards RS-485 and RS-422.
Z
D
06285-002
DI
R
RO
RE
A
DE
DI
B
D
GND
06285-003
Power/energy metering
Industrial control
Lighting systems
Telecommunications
Security systems
Instrumentation
Figure 3.
The receiver inputs have a true fail-safe feature, which
eliminates the need for external bias resistors and ensures a
logic high output level when the inputs are open or shorted.
This guarantees that the receiver outputs are in a known state
before communication begins and when communication ceases.
(continued on Page 3)
Rev. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2006 Analog Devices, Inc. All rights reserved.
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TABLE OF CONTENTS
Features .............................................................................................. 1
Circuit Description......................................................................... 15
Applications....................................................................................... 1
Function Tables........................................................................... 15
General Description ......................................................................... 1
Receiver Fail-Safe ....................................................................... 15
Functional Block Diagrams............................................................. 1
Hot-Swap Capability .................................................................. 16
Revision History ............................................................................... 2
Line Length vs. Data Rate ......................................................... 16
Specifications..................................................................................... 4
±15 kV ESD Protection ............................................................. 16
Timing Specifications—ADM3070E/ADM3071E/
ADM3072E.................................................................................... 5
Human Body Model .................................................................. 16
Timing Specifications—ADM3073E/ADM3074E/
ADM3075E.................................................................................... 6
Reduced EMI and Reflections .................................................. 16
Timing Specifications—ADM3076E/ADM3077E/
ADM3078E.................................................................................... 7
Driver Output Protection.......................................................... 17
Absolute Maximum Ratings............................................................ 8
ESD Caution.................................................................................. 8
Pin Configurations and Function Descriptions ........................... 9
256 Transceivers on the Bus...................................................... 16
Low Power Shutdown Mode..................................................... 17
Typical Applications................................................................... 17
Outline Dimensions ....................................................................... 19
Ordering Guide .......................................................................... 20
Test Circuits and Switching Characteristics................................ 10
Typical Performance Characteristics ........................................... 12
REVISION HISTORY
10/06—Rev. 0 to Rev. A
Added ADM3077E and ADM3078E ...............................Universal
Changes to Figure 2 and Figure 3................................................... 1
Changes to Figure 5 and Figure 6................................................... 9
Changes to Figure 34 and Figure 35............................................. 17
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 20
8/06—Revision 0: Initial Version
Rev. A | Page 2 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
GENERAL DESCRIPTION
(continued from Page 1)
The driver outputs of the 250 kbps and 500 kbps devices are
slew rate limited, in order to reduce EMI and data errors caused
by reflections from improperly terminated buses. Excessive
power dissipation caused by bus contention or by output
shorting is prevented with a thermal shutdown circuit.
The parts are fully specified over the industrial temperature ranges and are available in 8-lead and 14-lead
narrow SOIC packages.
Table 1. Selection Table
Part No.
ADM3070E
ADM3071E
ADM3072E
ADM3073E
ADM3074E
ADM3075E
ADM3076E
ADM3077E
ADM3078E
Half/Full
Duplex
Full
Full
Half
Full
Full
Half
Full
Full
Half
Data Rate
(Mbps)
0.25
0.25
0.25
0.5
0.5
0.5
16
16
16
Slew Rate
Limited
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
Driver/Receiver
Enable
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Rev. A | Page 3 of 20
Low Power
Shutdown
Yes
No
Yes
Yes
No
Yes
Yes
No
Yes
Nodes on
Bus
256
256
256
256
256
256
256
256
256
±15 kV ESD
on Bus Pins
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Pin
Count
14
8
8
14
8
8
14
8
8
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
SPECIFICATIONS
VCC = 3.3 V ± 10%, TA = TMIN to TMAX, unless otherwise noted.
Table 2. ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
Parameter
DRIVER
Differential Outputs
Differential Output Voltage
Symbol
Min
VOD
2.0
1.5
Δ|VOD| for Complementary Output States 1
Common-Mode Output Voltage
Δ|VOC| for Complementary Output States1
Short-Circuit Output Current
ΔVOD
VOC
ΔVOC
IOSD
Short-Circuit Foldback Output Current
IOSDF
Output Leakage (Y, Z) Full Duplex
IO
Typ
VCC/2
40
−250
20
Max
Unit
Test Conditions/Comments
VCC
VCC
VCC
0.2
3
0.2
250
−40
V
V
V
V
V
V
mA
mA
mA
mA
μA
μA
RL = 100 Ω (RS-422) (see Figure 7)
RL = 54 Ω (RS-485) (see Figure 7)
No load
R = 54 Ω or 100 Ω (see Figure 7)
R = 54 Ω or 100 Ω (see Figure 7)
R = 54 Ω or 100 Ω (see Figure 7)
0 V < VOUT < 12 V
−7 V < VOUT < VCC
(VCC − 1 V) < VOUT < 12 V
−7 V < VOUT < +1 V
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V, VIN = 12 V
DE = 0 V, RE = 0 V, VCC = 0 V or 3.6 V, VIN = −7 V
V
V
mV
μA
kΩ
°C
°C
DE, DI, RE
DE, DI, RE
DE, DI, RE
DE, DI, RE
DE
mV
mV
kΩ
μA
μA
−7 V < VCM < +12 V
V A + VB = 0 V
−7 V < VCM < +12 V
DE = 0 V, VCC = 0 V or 3.6 V, VIN = 12 V
DE = 0 V, VCC = 0 V or 3.6 V, VIN = −7 V
0.4
±80
±1
V
V
mA
μA
IOUT = −1 mA
IOUT = 1 mA
0 V < VRO < VCC
VCC = 3.6 V, 0 V < VOUT < VCC
1.5
1.5
1.5
10
mA
mA
mA
μA
No load, DE = VCC, RE = 0 V
No load, DE = VCC, RE = VCC
No load, DE = 0 V, RE = 0 V
DE = 0 V, RE = VCC
kV
kV
Human body model
Human body model
−20
125
−100
Logic Inputs
Input High Voltage
Input Low Voltage
Input Hysteresis
Logic Input Current
Input Impedance First Transition
Thermal Shutdown Threshold
Thermal Shutdown Hysteresis
RECEIVER
Differential Inputs
Differential Input Threshold Voltage
Input Hysteresis
Input Resistance (A, B)
Input Current (A, B)
VIH
VIL
VHYS
IIN1
2.0
0.8
100
±1
10
1
TTS
TTSH
VTH
ΔVTH
RIN
IA, B
175
15
−200
−125
−50
15
96
125
−100
RO Logic Output
Output High Voltage
Output Low Voltage
Short-Circuit Output Current
Tristate Output Leakage Current
POWER SUPPLY
Supply Current
Shutdown Current
ESD PROTECTION
A, B, Y, Z Pins
All Pins Except A, B, Y, Z Pins
1
VOH
VOL
IOSR
IOZR
ICC
ISHDN
VCC − 0.6
0.8
0.8
0.8
0.05
±15
±4
Δ|VOD| and Δ|VOC| are the changes in VOD and VOC, respectively, when the DI input changes state.
Rev. A | Page 4 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TIMING SPECIFICATIONS—ADM3070E/ADM3071E/ADM3072E
VCC = 3.3 V ± 10%, TA = TMIN to TMAX, unless otherwise noted.
Table 3.
Parameter
DRIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
Rise Time/Fall Time
|tDPLH − tDPHL| Differential Driver Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
RECEIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
|tRPLH − tRPHL| Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
TIME TO SHUTDOWN
Symbol
tDPLH
tDPHL
tDR/tDF
tDSKEW
tDZH
tDZL
tDLZ
tDHZ
tDZH(SHDN)
tDZL(SHDN)
Min
Typ
250
250
250
350
Max
Unit
Test Conditions/Comments
1500
1500
1600
200
2500
2500
100
100
5500
5500
kbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
(See Figure 10)
(See Figure 11)
(See Figure 11)
(See Figure 10)
(See Figure 10)
(See Figure 11)
200
200
30
50
50
50
50
4000
4000
600
kbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
250
tRPLH
tRPHL
tRSKEW
tRZH
tRZL
tRLZ
tRHZ
tRZH(SHDN)
tRZL(SHDN)
tSHDN
50
200
Rev. A | Page 5 of 20
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TIMING SPECIFICATIONS—ADM3073E/ADM3074E/ADM3075E
VCC = 3.3 V ± 10%, TA = TMIN to TMAX, unless otherwise noted.
Table 4.
Parameter
DRIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
Rise Time/Fall Time
|tDPLH − tDPHL| Differential Driver Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
RECEIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
|tRPLH − tRPHL| Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
TIME TO SHUTDOWN
Symbol
tDPLH
tDPHL
tDR/tDF
tDSKEW
tDZH
tDZL
tDLZ
tDHZ
tDZH(SHDN)
tDZL(SHDN)
Min
Typ
500
180
180
200
Max
Unit
Test Conditions/Comments
800
800
800
100
2500
2500
100
100
4500
4500
kbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
(See Figure 10)
(See Figure 11)
(See Figure 11)
(See Figure 10)
(See Figure 10)
(See Figure 11)
200
200
30
50
50
50
50
4000
4000
600
kbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
500
tRPLH
tRPHL
tRSKEW
tRZH
tRZL
tRLZ
tRHZ
tRZH(SHDN)
tRZL(SHDN)
tSHDN
50
200
Rev. A | Page 6 of 20
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TIMING SPECIFICATIONS—ADM3076E/ADM3077E/ADM3078E
VCC = 3.3 V ± 10%, TA = TMIN to TMAX, unless otherwise noted.
Table 5.
Parameter
DRIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
Rise Time/Fall Time
|tDPLH − tDPHL| Differential Driver Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
RECEIVER
Maximum Data Rate
Propagation Delay, Low to High Level
Propagation Delay, High to Low Level
|tRPLH − tRPHL| Output Skew
Enable to Output High
Enable to Output Low
Disable Time from Low
Disable Time from High
Enable Time from Shutdown to High
Enable Time from Shutdown to Low
TIME TO SHUTDOWN
Symbol
Min
Typ
Max
Unit
Test Conditions/Comments
1250
1250
50
50
15
8
150
150
100
100
1800
1800
Mbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
CL = 50 pF, RL = 54 Ω (see Figure 8 and Figure 9)
(See Figure 10)
(See Figure 11)
(See Figure 11)
(See Figure 10)
(See Figure 10)
(See Figure 11)
75
75
8
50
50
50
50
1800
1800
600
Mbps
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
16
tDPLH
tDPHL
tDR/tDF
tDSKEW
tDZH
tDZL
tDLZ
tDHZ
tDZH(SHDN)
tDZL(SHDN)
16
tRPLH
tRPHL
tRSKEW
tRZH
tRZL
tRLZ
tRHZ
tRZH(SHDN)
tRZL(SHDN)
tSHDN
40
40
50
200
Rev. A | Page 7 of 20
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
CL = 15 pF (see Figure 12 and Figure 13)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
(See Figure 14)
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Rating
−0.3 V to +6 V
−0.3 V to +6 V
−0.3 V to (VCC + 0.3 V)
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
−8 V to +13 V
±250 mA
ESD CAUTION
Table 6.
Parameter
VCC to GND
Digital Input/Output Voltage (DE, RE, DI)
Receiver Output Voltage (RO)
Driver Output (A, B, Y, Z)/Receiver
Input (A, B) Voltage
Driver Output Current
Operating Temperature Range
ADM307xEA_
ADM307xEY_
Storage Temperature Range
θJA Thermal Impedance
8-Lead SOIC_N
14-Lead SOIC_N
Lead Temperature, Soldering (20 sec)
−40°C to +85°C
−40°C to +125°C
−65°C to +150°C
158°C/W
120°C/W
260°C
Rev. A | Page 8 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
14
VCC
13
NC
12
A
11
B
10
Z
VCC 1
9
Y
RO 2
8
NC
DE 4
DI 5
GND 6
ADM3070E/
ADM3073E/
ADM3076E
TOP VIEW
(Not to Scale)
GND 7
NC = NO CONNECT
DI 3
06285-004
RE 3
GND 4
Figure 4. ADM3070E/ADM3073E/ADM3076E
Pin Configuration
ADM3071E/
ADM3074E/
ADM3077E
8
A
RO 1
7
B
RE 2
TOP VIEW
(Not to Scale)
6
Z
DE 3
5
Y
06285-005
NC 1
RO 2
Figure 5. ADM3071E/ADM3074E/ADM3077E
Pin Configuration
DI 4
ADM3072E/
ADM3075E/
ADM3078E
TOP VIEW
(Not to Scale)
8
VCC
7
B
6
A
5
GND
06285-006
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
Figure 6. ADM3072E/ADM3075E/ADM3078E
Pin Configuration
Table 7. Pin Function Descriptions
ADM3070E/
ADM3073E/
ADM3076E
Pin No.
2
ADM3071E/
ADM3074E/
ADM3077E
Pin No.
2
ADM3072E/
ADM3075E/
ADM3078E
Pin No.
1
Mnemonic
RO
3
N/A
2
RE
4
N/A
3
DE
5
3
4
DI
6, 7
9
N/A
12
10
N/A
11
14
4
5
N/A
8
6
N/A
7
1
5
N/A
6
N/A
N/A
7
N/A
8
GND
Y
A
A
Z
B
B
VCC
1, 8, 13
N/A
N/A
NC
Description
Receiver Output. When enabled, if (A − B) ≥ −50 mV, RO is high. If
(A − B) ≤ −200 mV, RO is low.
Receiver Output Enable. A low level enables the receiver output.
A high level places it in a high impedance state. If RE is high and DE
is low, the device enters a low power shutdown mode.
Driver Output Enable. A high level enables the driver differential
A and B outputs. A low level places it in a high impedance state. If
RE is high and DE is low, the device enters a low power shutdown mode.
Driver Input. With a half-duplex part when the driver is enabled, a
logic low on DI forces A low and B high; a logic high on DI forces
A high and B low. With a full-duplex part when the driver is enabled,
a logic low on DI forces Y low and Z high; a logic high on DI forces
Y high and Z low.
Ground.
Noninverting Driver Output.
Noninverting Receiver Input A and Noninverting Driver Output A.
Noninverting Receiver Input A.
Inverting Driver Output.
Inverting Receiver Input B and Inverting Driver Output B.
Inverting Receiver Input B.
Power Supply, 3.3 V ± 10%. Bypass VCC to GND with a 0.1 μF
capacitor.
No Connect. Not internally connected. Can be connected to GND.
Rev. A | Page 9 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TEST CIRCUITS AND SWITCHING CHARACTERISTICS
Y
RL/2
RL/2
VOC
Z
06285-007
VOD
VCC
0V OR 3V
3V
D
Y
VOD
GENERATOR
CL
RL
50Ω
06285-008
Z
OUT
+ CL
50pF
DE
DI
RL
500Ω
S1
Figure 7. Driver DC Test Load
VCC
Figure 8. Driver Timing Test Circuit
DE
VCC/2
tDZL, tDZL(SHDN)
0V
VCC
tDLZ
VCC/2
tDPLH
VCC
tDPHL
VOM = (VOL + VCC)/2
OUT
1/2VO
VOL
Z
06285-011
DI
0V
0.25V
VO
Figure 11. Driver Enable and Disable Times (tDZL, tDLZ, tDZL(SHDN))
Y
1/2VO
VDIFF = V (Y) – V (Z)
90%
90%
10%
10%
tDF
06285-009
tDR
tDSKEW = |tDPLH – tDPHL |
RECEIVER
OUTPUT
B
Figure 9. Driver Propagation Delays
ATE
VID
R
A
S1
GENERATOR
D
+ CL
50pF
OUT
Figure 12. Receiver Propagation Delay Test Circuit
RL
500Ω
50Ω
A
VCC
DE
B
VCC/2
tDZH, tDZH(SHDN)
–1V
tRPLH
0V
VOL
1.5V
VOH
RO
0V
NOTES
1. THE RISE TIME AND FALL TIME OF INPUT A AND INPUT B < 4ns.
06285-010
VOM = (0 + VOH)/2
tDHZ
tRPHL
VOH
0.25V
OUT
+1V
Figure 13. Receiver Propagation Delays
Figure 10. Driver Enable and Disable Times (tDHZ, tDZH, tDZH(SHDN))
Rev. A | Page 10 of 20
06285-013
0V OR 3V
06285-012
+VO
VDIFF 0V
–VO
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
+1.5V
S3
–1.5V
S1
VID
GENERATOR
S1 OPEN
S2 CLOSED
S3 = +1.5V
VCC
1kΩ
+ CL
15pF
S2
50Ω
S1 CLOSED
S2 OPEN
S3 = –1.5V
3V
3V
1.5V
RE
RE
0V
0V
tRZL, tRZL(SHDN)
VOH
VOH/2
RO
VCC
RO
(VOL + VCC)/2
VOL
0V
S1 OPEN
S2 CLOSED
S3 = +1.5V
RE
S1 CLOSED
S2 OPEN
S3 = –1.5V
3V
RE
1.5V
0V
0V
tRLZ
tRHZ
VCC
VOH
RO
0.25V
3V
1.5V
RO
VOL
0V
0.25V
Figure 14. Receiver Enable and Disable Times
Rev. A | Page 11 of 20
06285-014
tRZH, tRZH(SHDN)
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
TYPICAL PERFORMANCE CHARACTERISTICS
1.2
3.30
3.25
OUTPUT HIGH VOLTAGE (V)
1.0
0.9
0.8
0.7
3.10
20
50
110
80
3.00
–50
TEMPERATURE (°C)
–25
0
25
50
75
100
125
TEMPERATURE (°C)
Figure 15. Supply Current vs. Temperature
06285-023
–10
06285-020
0.5
–40
Figure 18. Receiver Output High Voltage vs. Temperature
0.7
–18
–16
IRO = 1mA
0.6
OUTPUT LOW VOLTAGE (V)
–14
–12
–10
–8
–6
–4
0.5
0.4
0.3
0.2
0.1
–2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
OUTPUT HIGH VOLTAGE (V)
0
–50
06285-021
0
–25
0
25
50
75
100
125
06285-024
OUTPUT CURRENT (mA)
3.15
3.05
0.6
0
3.20
3.5
06285-025
SUPPLY CURRENT (mA)
1.1
IRO = –1mA
TEMPERATURE (°C)
Figure 16. Output Current vs. Receiver Output High Voltage
Figure 19. Receiver Output Low Voltage vs. Temperature
25
100
90
OUTPUT CURRENT (mA)
80
15
10
5
70
60
50
40
30
20
10
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
OUTPUT LOW VOLTAGE (V)
06285-022
OUTPUT CURRENT (mA)
20
Figure 17. Output Current vs. Receiver Output Low Voltage
0
0
0.5
1.0
1.5
2.0
2.5
3.0
DIFFERENTIAL OUTPUT VOLTAGE (V)
Figure 20. Driver Output Current vs. Differential Output Voltage
Rev. A | Page 12 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
0.9
RL = 54Ω
2.5
0.8
SHUTDOWN CURRENT (µA)
2.4
2.3
2.2
2.1
2.0
1.9
1.8
0.7
0.6
0.5
0.4
0.3
0.2
1.6
–50
–25
0
25
50
75
125
100
TEMPERATURE (°C)
0
–50
120
1200
100
1000
PROPAGATION DELAY (ns)
50
75
100
125
80
60
40
tDPHL
800
tDPLH
600
400
–6
–5
–4
–3
–2
–1
0
1
2
3
4
OUTPUT HIGH VOLTAGE (V)
0
06285-027
0
–7
–40
25
125
TEMPERATURE (°C)
Figure 22. Output Current vs. Driver Output High Voltage
06285-030
200
Figure 25. ADM3070E/ADM3071E/ADM3072E Driver
Propagation Delay vs. Temperature (250 kbps)
700
100
600
PROPAGATION DELAY (ns)
120
80
60
40
20
tDPHL
500
tDPLH
400
300
200
0
2
4
6
8
10
OUTPUT LOW VOLTAGE (V)
12
06285-028
100
0
–40
25
125
TEMPERATURE (°C)
Figure 26. ADM3073E/ADM3074E/ADM3075E Driver
Propagation Delay vs. Temperature (500 kbps)
Figure 23. Output Current vs. Driver Output Low Voltage
Rev. A | Page 13 of 20
06285-031
OUTPUT CURRENT (mA)
25
Figure 24. Shutdown Current vs. Temperature
20
OUTPUT CURRENT (mA)
0
TEMPERATURE (°C)
Figure 21. Driver Differential Output Voltage vs. Temperature
0
–25
06285-029
0.1
1.7
06285-026
DIFFERENTIAL OUTPUT VOLTAGE (V)
2.6
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
35
tDPLH
PROPAGATION DELAY (ns)
30
DI
tDPHL
3
25
20
M1
15
10
VY – VZ
–25
0
25
50
75
125
100
TEMPERATURE (°C)
06285-032
0
–50
06285-036
5
CH3 2.0V
M400s 125MS/s
MATH1 2.01V 400ns
Figure 27. ADM3076E/ADM3077E/ADM3078E Driver
Propagation Delay vs. Temperature (16 Mbps)
8ns/pt
A CH2
1.24V
Figure 30. ADM3073E/ADM3074E/ADM3075E Driver
Propagation Delay (500 kbps)
70
tDPLH
PROPAGATION DELAY (ns)
60
tDPHL
50
M1
VY – VZ
40
30
20
0
–50
–25
0
25
50
75
125
100
TEMPERATURE (°C)
06285-033
3
DI
06285-037
10
CH3 2.0V Ω
MATH1 1.0V
M20ns 1.25GS/s
20ns
IT 400ps/pt A CH3
1.64V
Figure 31. ADM3076E/ADM3077E/ADM3078E Driver
Propagation Delay (16 Mbps)
Figure 28. Receiver Propagation Delay vs. Temperature
DI
3
VA – VB
M1
M1
VY – VZ
CH3 2.0V
M1.0µs 50MS/s
MATH1 2.01V 1.0µs
20ns/pt
A CH2
06285-035
06285-034
RO
3
1.24V
CH3 2.0V Ω M200ns 250MS/s
MATH1 2.01V 200ns
Figure 29. ADM3070E/ADM3071E/ADM3072E Driver
Propagation Delay (250 kbps)
4ns/pt
A CH2
Figure 32. Receiver Propagation Delay
Rev. A | Page 14 of 20
1.24V
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
CIRCUIT DESCRIPTION
The ADM307xE series are high speed transceivers for RS­485
and RS-422 communications. Each device contains one driver
and one receiver. All devices feature fail-safe circuitry, which
guarantees a logic high receiver output when the receiver inputs
are open or shorted or when they are connected to a terminated
transmission line with all drivers disabled (see the Receiver FailSafe section). The ADM307xE also feature a hot-swap capability, allowing line insertion without erroneous data transfer
(see the Hot-Swap Capability section). The ADM3070E/
ADM3071E/ADM3072E feature reduced slew rate drivers that
minimize EMI and reduce reflections caused by improperly
terminated cables, allowing for error-free data transmission at
rates up to 250 kbps.
The ADM3073E/ADM3074E/ADM3075E also offer slew rate
limits, allowing transmit speeds up to 500 kbps. The ADM3076E/
ADM3077E/ADM3078E driver slew rates are not limited,
making possible transmit speeds of up to 16 Mbps. The
ADM3072E/ADM3075E/ADM3078E are half-duplex transceivers; the ADM3070E/ADM3071E/ADM3073E/ADM3074E/
ADM3076E/ADM3077E are each full-duplex transceivers. All
devices operate from a single 3.3 V supply. Drivers are output
short-circuit current limited, and thermal shutdown circuitry
protects drivers against excessive power dissipation. When
activated, the thermal shutdown circuitry places the driver
outputs into a high impedance state.
ADM3070E/ADM3073E/ADM3076E
1
2
Transmitting Inputs
DE
DI
1
1
0
0
Transmitting Outputs
Y
Z
1
0
X1
X1
1
0
High-Z2
Shutdown
0
1
High-Z2
Shutdown
Table 9. Receiving Truth Table
Receiving Inputs
DE
A–B
Receiving Outputs
RO
0
0
0
1
X1
X1
X1
1
≥ −50 mV
≤ −200 mV
Open/shorted
X1
1
0
1
High-Z2
1
0
X1
Shutdown
1
2
X = don't care.
High-Z = high impedance.
Y
1
0
Transmitting Outputs
Z
0
1
Table 11. Receiving Truth Table
Receiving Input
A–B
≥ −50 mV
≤ −200 mV
Open/shorted
Receiving Output
RO
1
0
1
ADM3072E/ADM3075E/ADM3078E
Table 12. Transmitting Truth Table
RE
X1
X1
0
1
1
2
Transmitting Inputs
DE
DI
1
1
1
0
0
X1
0
X1
Transmitting Outputs
A, Y
B, Z
1
0
0
1
High-Z2
High-Z2
Shutdown
Shutdown
X = don't care.
High-Z = high impedance.
0
0
0
1
1
1
2
Receiving Inputs
DE
A–B
0
≥ −50 mV
0
≤ −200 mV
0
Open/shorted
1
X1
0
X1
Receiving Output
RO
1
0
1
High-Z2
Shutdown
X = don't care.
High-Z = high impedance.
RECEIVER FAIL-SAFE
X = don't care.
High-Z = high impedance.
RE
Transmitting Input
DI
1
0
RE
Table 8. Transmitting Truth Table
X1
X1
0
1
Table 10. Transmitting Truth Table
Table 13. Receiving Truth Table
FUNCTION TABLES
RE
ADM3071E/ADM3074E/ADM3077E
The ADM307xE family guarantees a logic high receiver output
when the receiver inputs are shorted, open, or connected to a
terminated transmission line with all drivers disabled. This is
done by setting the receiver input threshold between −50 mV
and −200 mV. If the differential receiver input voltage (A − B) is
greater than or equal to −50 mV, RO is logic high. If A − B is
less than or equal to −200 mV, RO is logic low. In the case of a
terminated bus with all transmitters disabled, the receiver
differential input voltage is pulled to 0 V by the termination.
With the receiver thresholds of the ADM307xE family, this
results in a logic high with a 50 mV minimum noise margin.
Rev. A | Page 15 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
HOT-SWAP CAPABILITY
(ALL EXCEPT ADM3071E/ADM3074E/ADM3077E)
Hot-Swap Inputs
When a circuit board is inserted into a hot, or powered,
backplane, differential disturbances to the data bus can lead to
data errors. During this period, processor logic output drivers
are high impedance and are unable to drive the DE and RE
inputs of the RS-485 transceivers to a defined logic level.
Leakage currents up to ±10 μA from the high impedance state
of the processor logic drivers can cause standard CMOS enable
inputs of a transceiver to drift to an incorrect logic level.
Additionally, parasitic circuit board capacitance can cause
coupling of VCC or GND to the enable inputs. Without the hotswap capability, these factors can improperly enable the driver
or receiver of the transceiver. When VCC rises, an internal pulldown circuit holds DE low and RE high. After the initial powerup sequence, the pull-down circuit becomes transparent,
resetting the hot-swap tolerable input.
carried out while device power is applied. This type of testing is
more representative of a real-world input/output discharge,
which occurs when equipment is operating normally.
The transmitter outputs and receiver inputs of the ADM307xE
family are characterized for protection to a ±15 kV limit using
the human body model.
HUMAN BODY MODEL
Figure 33 shows the human body model and the current
waveform it generates when discharged into a low impedance.
This model consists of a 100 pF capacitor charged to the ESD
voltage of interest, which is then discharged into the test device
through a 1.5 kΩ resistor.
HIGH
VOLTAGE
GENERATOR
R2
R1
DEVICE
UNDER
TEST
C1
LINE LENGTH VS. DATA RATE
The RS-485/RS-422 standard covers line lengths up to 4000 feet.
For line lengths greater than 4000 feet, Figure 37 illustrates an
example line repeater.
ESD TEST METHOD
R2
C1
HUMAN BODY MODEL
ESD ASSOC. STD 55.1
1.5kΩ
100pF
100%
90%
Although very little energy is contained within an ESD pulse,
the extremely fast rise time, coupled with high voltages, can
cause failures in unprotected semiconductors. Catastrophic
destruction can occur immediately as a result of arcing or
heating. Even if catastrophic failure does not occur immediately,
the device can suffer from parametric degradation that can
result in degraded performance. The cumulative effects of
continuous exposure can eventually lead to complete failure.
Input/output lines are particularly vulnerable to ESD damage.
Simply touching or connecting an input/output cable can result
in a static discharge that damages or completely destroys the
interface product connected to the input/output port. It is
extremely important, therefore, to have high levels of ESD
protection on the input/output lines.
The ESD discharge can induce latch-up in the device under test,
so it is important that ESD testing on the input/output pins be
36.8%
10%
tRL
tDL
TIME t
06285-015
Two coupling methods are used for ESD testing: contact
discharge and air-gap discharge. Contact discharge calls for a
direct connection to the unit being tested. Air-gap discharge
uses a higher test voltage but does not make direct contact with
the test unit. With air-gap discharge, the discharge gun is
moved toward the unit under test, developing an arc across the
air gap, therefore the term air-gap discharge. This method is
influenced by humidity, temperature, barometric pressure,
distance, and rate of closure of the discharge gun. The contact
discharge method, while less realistic, is more repeatable and is
gaining acceptance and preference over the air-gap method.
IPEAK
±15 kV ESD PROTECTION
Figure 33. Human Body Model and Current Waveform
256 TRANSCEIVERS ON THE BUS
The standard RS-485 receiver input impedance is 12 kΩ
(1 unit load), and the standard driver can drive up to 32 unit
loads. The ADM307xE family of transceivers has an ⅛ unit
load receiver input impedance (96 kΩ), allowing up to 256
transceivers to be connected in parallel on one communication line. Any combination of these devices and other RS-485
transceivers with a total of 32 unit loads or fewer can be
connected to the line.
REDUCED EMI AND REFLECTIONS
The ADM3070E/ADM3071E/ADM3072E feature reduced slew
rate drivers that minimize EMI and reduce reflections caused by
improperly terminated cables, allowing for error-free data
transmission at rates up to 250 kbps. The ADM3073E/
ADM3074E/ADM3075E offer higher driver output slew rate
limits, allowing for transmit speeds of up to 500 kbps.
Rev. A | Page 16 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
LOW POWER SHUTDOWN MODE
(ALL EXCEPT ADM3071E/ADM3074E/ADM3077E)
Low power shutdown mode is initiated by bringing both RE
high and DE low. In shutdown mode, the device draws less than
1 μA of supply current. RE and DE can be driven simultaneously, but the parts are guaranteed not to enter shutdown if
RE is high and DE is low for fewer than 50 ns. If the inputs are
in this state for 600 ns or more, the parts are guaranteed to enter
shutdown. Enable times tZH and tZL assume the part was not
originally in a low power shutdown state (see the Test Circuits
and Switching Characteristics section). Enable times tZH(SHDN)
and tZL(SHDN) assume the part was originally shut down. It takes
drivers and receivers longer to become enabled from low power
shutdown mode (tZH(SHDN), tZL(SHDN)) than from driver/receiver
disable mode (tZH, tZL).
DRIVER OUTPUT PROTECTION
The ADM307xE family features two methods to prevent
excessive output current and power dissipation caused by faults
or by bus contention. Current limit protection on the output
stage provides immediate protection against short circuits over
the whole common-mode voltage range (see Figure 12 and
Figure 13). In addition, a thermal shutdown circuit forces the
driver outputs into a high impedance state if the die temperature rises excessively.
TYPICAL APPLICATIONS
The ADM3072E/ADM3075E/ADM3078E transceivers are
designed for bidirectional data communications on multipoint
bus transmission lines. Figure 34 shows a typical network
applications circuit. The ADM3071E/ADM3074E/ADM3077E
transceivers are designed for point-to-point transmission lines
(see Figure 35). The ADM3070E/ADM3073E/ADM3076E
transceivers are designed for full-duplex RS-485 networks (see
Figure 36).
To minimize reflections, terminate the line at both ends
with a termination resistor (the value of the termination
resistor should be equal to the characteristic impedance of
the cable used) and keep stub lengths off the main line as
short as possible.
ADM3072E/
ADM3075E/
ADM3078E
R
RO
ADM3072E/
ADM3075E/
ADM3078E
A
RE
A
RT
R
RO
RE
RT
DE
DE
DI
D
B
B
A
A
B
ADM3072E/
ADM3075E/
ADM3078E
R
RE
DE
RO
DI
D
RE
DI
DE
06285-016
RO
R
D
NOTES
1. MAXIMUM NUMBER OF NODES: 256.
2. RT IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.
Figure 34. ADM3072E/ADM3075E/ADM3078E Typical Half-Duplex RS-485 Network
MASTER
SLAVE
ADM3071E/
ADM3074E/
ADM3077E
ADM3071E/
ADM3074E/
ADM3077E
A
Y
B
Z
Z
B
Y
A
R
D
D
R
DI
RO
06285-017
DI
DI
B
ADM3072E/
ADM3075E/
ADM3078E
RO
D
Figure 35. ADM3071E/ADM3074E/ADM3077E Full-Duplex Point-to-Point Applications
Rev. A | Page 17 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
SLAVE
MASTER
ADM3070E/
ADM3073E/
ADM3076E
R
RO
A
B
Y
RT
Z
ADM3070E/
ADM3073E/
ADM3076E
D
DE
DI
RE
DE
DI
B
Z
D
RT
Y
A
R
RO
RE
A
ADM3070E/
ADM3073E/
ADM3076E
B
R
A
Y
Z
B
R
D
RO RE DE
Z
DI
RO
Y
SLAVE
ADM3070E/
ADM3073E/
ADM3076E
D
RE DE
DI
06285-019
SLAVE
NOTES
1. MAXIMUM NUMBER OF NODES: 32.
2. RT IS EQUAL TO THE CHARACTERISTIC IMPEDANCE OF THE CABLE USED.
Figure 36. ADM3070E/ADM3073E/ADM3076E Full-Duplex RS-485 Network
ADM3070E/
ADM3073E/
ADM3076E
A
R
B
RO
RT
DATA IN
RT
DATA OUT
RE
DE
Z
D
Y
NOTES
1. RT IS EQUAL TO THE CHARACTERISTIC
IMPEDANCE OF THE CABLE USED.
06285-018
DI
Figure 37. Line Repeater for ADM3070E/ADM3073E/ADM3076E
Rev. A | Page 18 of 20
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
8
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2440)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
SEATING
PLANE
0.50 (0.0196)
0.25 (0.0099)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
060506-A
4.00 (0.1574)
3.80 (0.1497)
Figure 38. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
8.75 (0.3445)
8.55 (0.3366)
8
14
1
7
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
0.51 (0.0201)
0.31 (0.0122)
6.20 (0.2441)
5.80 (0.2283)
0.50 (0.0197)
0.25 (0.0098)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 39. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
Rev. A | Page 19 of 20
060606-A
4.00 (0.1575)
3.80 (0.1496)
ADM3070E/ADM3071E/ADM3072E/ADM3073E/ADM3074E/ADM3075E/ADM3076E/ADM3077E/ADM3078E
ORDERING GUIDE
Model
ADM3070EARZ 1
ADM3070EARZ-REEL71
ADM3070EYRZ1
ADM3070EYRZ-REEL71
ADM3071EARZ1
ADM3071EARZ-REEL71
ADM3071EYRZ1
ADM3071EYRZ-REEL71
ADM3072EARZ1
ADM3072EARZ-REEL71
ADM3072EYRZ1
ADM3072EYRZ-REEL71
ADM3073EARZ1
ADM3073EARZ-REEL71
ADM3073EYRZ1
ADM3073EYRZ-REEL71
ADM3074EARZ1
ADM3074EARZ-REEL71
ADM3074EYRZ1
ADM3074EYRZ-REEL71
ADM3075EARZ1
ADM3075EARZ-REEL71
ADM3075EYRZ1
ADM3075EYRZ-REEL71
ADM3076EARZ1
ADM3076EARZ-REEL71
ADM3076EYRZ1
ADM3076EYRZ-REEL71
ADM3077EARZ1
ADM3077EARZ-REEL71
ADM3077EYRZ1
ADM3077EYRZ-REEL71
ADM3078EARZ1
ADM3078EARZ-REEL71
ADM3078EYRZ1
ADM3078EYRZ-REEL71
1
Temperature
Range
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
–40°C to +85°C
–40°C to +85°C
–40°C to +125°C
–40°C to +125°C
Package Description
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
14-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
8-Lead Standard Small Outline Package (SOIC_N)
Z = Pb-free part.
©2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06285-0-10/06(A)
Rev. A | Page 20 of 20
Package Option
R-14
R-14
R-14
R-14
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-14
R-14
R-14
R-14
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-14
R-14
R-14
R-14
R-8
R-8
R-8
R-8
R-8
R-8
R-8
R-8
Ordering Quantity
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
Similar pages