ON NCP585DSAN09T1G Tri-mode 300 ma cmos ldo regulator with enable Datasheet

NCP585
Tri-Mode 300 mA CMOS
LDO Regulator with Enable
The NCP585 series of low dropout regulators are designed for
portable battery powered applications which require precise output
voltage accuracy, low quiescent current, and high ripple rejection.
These devices feature an enable function which lowers current
consumption significantly and are offered in the SOT23−5 and the
HSON−6 packages, in fixed output voltages between 0.8 V and 3.3 V.
This series of devices have three modes. Chip Enable (CE mode),
Fast Transient Mode (FT mode), and Low Power Mode (LP mode).
Both the FT and LP mode are utilized via the ECO pin.
http://onsemi.com
MARKING
DIAGRAMS
Features
5
• Tri−mode Operation
• Low Dropout Voltage:
•
•
•
•
•
•
•
•
•
•
1
Typ 550 mV at 300 mA, Output Voltage = 0.9 V
Typ 480 mV at 300 mA, Output Voltage = 1.0 V
Typ 310 mV at 300 mA, Output Voltage = 1.5 V
Excellent Line Regulation of 0.01%/V (0.05%/V LP Mode)
Excellent Load Regulation of 15 mV (40 mV FT Mode)
High Output Voltage Accuracy of "2% ("3% LP mode)
Ultra−Low Iq Current of:
3.5 mA (LP mode, Output Voltage < 1.6 V)
80 mA (FT mode, Output Voltage < 1.8 V)
60 mA (FT mode, Output Voltage = 1.8 V)
Very Low Shutdown Current of 0.1 mA
Excellent Power Supply Rejection Ratio of 70 dB at f = 1.0 kHz
Low Temperature Drift Coefficient on the Output Voltage of
"100 ppm/°C
Fold Back Protection Circuit
Input Voltage up to 6.5 V
These are Pb−Free Devices
SOT23−5
SN SUFFIX
CASE 1212
5
XXXTT
1
6
6
1
HSON−6
SAN SUFFIX
CASE 506AE
XXX
XTT
1
XXX = Specific Device Code
TT = Traceability Information
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 11 of this data sheet.
*Additional voltage options may be available between
0.8 V and 3.3 V in 100 mV steps.
Typical Applications
• Portable Equipment
• Hand−Held Instrumentation
• Camcorders and Cameras
© Semiconductor Components Industries, LLC, 2009
July, 2009 − Rev. 14
1
Publication Order Number:
NCP585/D
NCP585
ECO
ECO
Vin
Vout
Vin
Vout
+
+
Vref
Vref
Current Limit
Current Limit
CE
GND
CE
Figure 1. Simplified Block Diagram for Active Low
GND
Figure 2. Simplified Block Diagram for Active High
ECO
Vin
Vout
+
Vref
Current Limit
CE
GND
Figure 3. Simplified Block Diagram for Active High
with Auto Discharge
PIN FUNCTION DESCRIPTION
HSON−6
SOT23−5
Pin Name
Description
1
1
Vin
Power supply input voltage.
2
−
NC
No Connect.
3
5
Vout
Regulated output voltage.
4
4
ECO
Mode alternative pin. (VECO = Vin for FT mode; VECO = GND for LP mode)
5
2
GND
Power supply ground.
6
3
CE or CE
Chip enable pin.
http://onsemi.com
2
NCP585
MAXIMUM RATINGS
Rating
Input Voltage
Input Voltage (CE or CE Pin)
Symbol
Value
Unit
Vin
6.5
V
VCE
−0.3 to 6.5
V
VECO
−0.3 to 6.5
V
Output Voltage
Vout
−0.3 to Vin +0.3
V
Output Current
Iout
350
mA
PD
250
400
mW
ESD Capability, Human Body Model, C = 100 pF, R = 1.5 kW
ESDHBM
2000
V
ESD Capability, Machine Model, C = 200 pF, R = 0 W
ESDMM
150
V
TA
−40 to +85
°C
TJ(max)
125
°C
Tstg
−55 to +150
°C
Input Voltage (ECO Pin)
Power Dissipation
SOT23−5
HSON−6
Operating Ambient Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.0 V, TA = 25°C, unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Input Voltage
Characteristic
Vin
1.4
−
6.0
V
Output Voltage (1.0 mA ≤ Iout ≤ 30 mA)
VECO = Vin
VECO = GND
Vout
Vout x 0.980
Vout x 0.970
−
−
Vout x 1.020
Vout x 1.030
−
−
0.01
0.05
0.15
0.20
−
−
40
15
70
30
Line Regulation (Iout = 30 mA, Vout + 0.5 V ≤ Vin ≤ 6.0 V)
FT Mode VECO = Vin
LP Mode VECO = GND
Regline
Load Regulation
FT Mode (1.0 mA ≤ Iout ≤ 300 mA), VECO = Vin
LP Mode (1.0 mA ≤ Iout ≤ 100 mA), VECO = GND
Regload
Dropout Voltage (Iout = 300 mA)
Vout = 0.9 V
1.0 V v Vout v 1.25 V
1.5 V v Vout v 2.5 V
2.8 V v Vout v 3.3 V
VDO
Quiescent Current (Iout = 0 mA)
FT Mode, VECO = Vin
Vout < 1.8 V
Vout ≥ 1.8 V
LP Mode, VECO = GND
Vout < 1.6 V
Vout ≥ 1.8 V
Iq
Output Current (Vin − Vout = 1.0 V)
Shutdown Current (VCE = Vin)
Output Short Circuit Current (Vout = 0 V)
−
−
−
−
ECO = H
0.55
0.48
0.31
0.23
ECO = L
0.59
0.51
0.32
0.24
ECO = H
0.78
0.70
0.45
0.35
V
%/V
mV
ECO = L
0.80
0.75
0.48
0.375
V
mA
−
−
80
60
111
90
−
−
3.5
4.5
8.0
9.0
Iout
300
−
−
mA
ISD
−
0.1
1.0
mA
Ilim
−
50
−
mA
Vthenh
Vthenl
1.0
0.0
−
−
Vin
0.3
V
Vn
−
30
−
mVrm
s
N−Channel On Resistance for Auto Discharge
RLow
−
60
−
W
Ripple Rejection
(Iout = 50 mA, Vout = 0.9 V, Vin − Vout = 1.0 V)
f = 120 Hz
f = 1.0 kHz
f = 10 kHz
RR
Enable Input Threshold Voltage − High
Enable Input Threshold Voltage − Low
Output Noise Voltage (10 Hz − 100 kHz)
Output Voltage Temperature Coefficient
(Iout = 30 mA, −40°C ≤ TA ≤ 85°C)
dB
DVout/
DT
−
−
−
75
70
65
−
−
−
−
"100
−
http://onsemi.com
3
ppm/
°C
NCP585
1.6
1.4
1.4
Vin = Vout nominal +2.0 V
1.2
1.0
0.8
0.6
Vin = Vout nominal +0.3 V
0.4
Vout = Vout nominal
ECO = H
0.2
0.0
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
1.6
0
400
200
1.2
0.8
0.6
Vin = Vout nominal +0.3 V
0.4
0.2
Vout = Vout nominal
ECO = L
0
Figure 4. Output Voltage vs. Output Current
Figure 5. Output Voltage vs. Output Current
1.0
1.0
0.9
0.8
0.7
0.6
Iout = 1.0 mA
0.5
Iout = 30 mA
0.4
Iout = 50 mA
0.3
Vout = 0.9 V
ECO = H
0.2
1.1
2.1
3.1
4.1
5.1
0.9
0.8
0.7
0.6
Iout = 1.0 mA
0.5
Iout = 30 mA
0.4
Iout = 50 mA
0.3
Vout = 0.9 V
ECO = L
0.2
0.1
0.1
6.1
1.1
INPUT VOLTAGE, Vin (V)
1.7
1.7
OUTPUT VOLTAGE, Vout (V)
1.9
1.5
1.3
1.1
0.9
Iout = 1.0 mA
Iout = 30 mA
0.5
Vout = 1.8 V
ECO = H
Iout = 50 mA
1.3
2.3
3.3
4.3
3.1
4.1
5.1
6.1
Figure 7. Output Voltage vs. Input Voltage
1.9
0.7
2.1
INPUT VOLTAGE, Vin (V)
Figure 6. Output Voltage vs. Input Voltage
OUTPUT VOLTAGE, Vout (V)
600
OUTPUT CURRENT, Iout (mA)
1.1
0.3
0.3
400
200
OUTPUT CURRENT, Iout (mA)
1.1
0.1
0.1
Vin = Vout nominal +2.0 V
1.0
0.0
600
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
TYPICAL CHARACTERISTICS
5.3
1.5
1.3
1.1
0.9
Iout = 30 mA
0.5
0.3
0.3
6.3
Iout = 1.0 mA
0.7
Vout = 1.8 V
ECO = L
Iout = 50 mA
1.3
2.3
3.3
4.3
5.3
INPUT VOLTAGE, Vin (V)
INPUT VOLTAGE, Vin (V)
Figure 8. Output Voltage vs. Input Voltage
Figure 9. Output Voltage vs. Input Voltage
http://onsemi.com
4
6.3
NCP585
100
8
90
7
QUIESCENT CURRENT, Iq (mA)
QUIESCENT CURRENT, Iq (mA)
TYPICAL CHARACTERISTICS
80
70
60
50
40
30
20
Vout = 0.9 V
ECO = H
10
0
0.1
1.1
2.1
3.1
4.1
5.1
6
5
4
3
2
0
0.1
6.1
Vout = 0.9 V
ECO = L
1
1.1
INPUT VOLTAGE, Vin (V)
70
7
QUIESCENT CURRENT, Iq (mA)
QUIESCENT CURRENT, Iq (mA)
8
60
50
40
30
20
Vout = 1.8 V
ECO = H
1.3
2.3
3.3
4.3
5.3
4
3
2
Vout = 1.8 V
ECO = L
1
0
0.3
6.3
1.3
0.92
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
0.92
0.91
0.90
0.89
Vout = 0.9 V
ECO = H
25
50
3.3
4.3
5.3
6.3
Figure 13. Quiescent Current vs. Input Voltage
0.93
0
2.3
INPUT VOLTAGE, Vin (V)
0.93
−25
6.1
5
Figure 12. Quiescent Current vs. Input Voltage
0.87
−50
5.1
6
INPUT VOLTAGE, Vin (V)
0.88
4.1
Figure 11. Quiescent Current vs. Input Voltage
80
0
0.3
3.1
INPUT VOLTAGE, Vin (V)
Figure 10. Quiescent Current vs. Input Voltage
10
2.1
75
100
0.91
0.90
0.89
0.88
0.87
−50
TEMPERATURE (°C)
Vout = 0.9 V
ECO = L
−25
0
25
50
75
TEMPERATURE (°C)
Figure 14. Output Voltage vs. Temperature
Figure 15. Output Voltage vs. Temperature
http://onsemi.com
5
100
NCP585
1.23
1.22
1.22
1.21
1.20
1.19
1.18
1.17
1.16
−50
DROPOUT VOLTAGE, VDO (V)
OUTPUT VOLTAGE, VDO (V)
1.23
Vout = 1.2 V
ECO = H
−25
0
25
50
75
1.21
1.20
1.19
1.18
1.17
1.16
−50
100
−25
50
75
100
Figure 17. Output Voltage vs. Temperature
0.7
0.7
0.6
85°C
0.5
0.4
0.3
−40°C
25°C
0.2
Vout = 0.9 V
ECO = H
0.1
0.0
50
100
150
200
250
85°C
0.6
0.5
0.4
25°C
0.3
−40°C
0.2
Vout = 0.9 V
ECO = L
0.1
0.0
0
300
50
OUTPUT CURRENT, Iout (mA)
0.6
0.6
DROPOUT VOLTAGE, VDO (V)
0.7
0.5
85°C
0.3
25°C
0.2
−40°C
0.1
Vout = 1.2 V
ECO = H
50
100
150
200
150
250
200
300
Figure 19. Dropout Voltage vs. Output Current
0.7
0.4
100
OUTPUT CURRENT, Iout (mA)
Figure 18. Dropout Voltage vs. Output Current
DROPOUT VOLTAGE, VDO (V)
25
Figure 16. Output Voltage vs. Temperature
0.8
0.0
0
0
TEMPERATURE (°C)
0.8
0
Vout = 1.2 V
ECO = L
TEMPERATURE (°C)
DROPOUT VOLTAGE, VDO (V)
OUTPUT VOLTAGE, VDO (V)
TYPICAL CHARACTERISTICS
250
300
0.5
85°C
0.4
0.3
25°C
0.2
−40°C
0.1
0.0
0
50
100
150
Vout = 1.2 V
ECO = L
200
250
OUTPUT CURRENT, Iout (mA)
OUTPUT CURRENT, Iout (mA)
Figure 21. Dropout Voltage vs. Output Current
Figure 20. Dropout Voltage vs. Output Current
http://onsemi.com
6
300
NCP585
0.40
0.40
0.35
0.35
DROPOUT VOLTAGE, VDO (V)
DROPOUT VOLTAGE, VDO (V)
TYPICAL CHARACTERISTICS
0.30
85°C
0.25
0.20
25°C
0.15
−40°C
0.10
Vout = 1.8 V
ECO = H
0.05
0.00
0
50
100
150
200
250
0.30
85°C
0.25
0.20
25°C
0.15
0.10
−40°C
0.05
0.00
0
300
RIPPLE REJECTION, RR (dB)
90
80
70
60
Iout = 1.0 mA
50
40
Iout = 50 mA
30
Vout = 0.9 V
Vin = 1.9 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
1
10
RIPPLE REJECTION, RR (dB)
90 I = 30 mA
out
80
30
10
Iout = 50 mA
1
10
100
FREQUENCY, f (kHz)
FREQUENCY, f (kHz)
Figure 24. Ripple Rejection vs. Frequency
Figure 25. Ripple Rejection vs. Frequency
Iout = 30 mA
60
Iout = 1.0 mA
50
40
Iout = 50 mA
30
0
0
Iout = 30 mA
20
90
10
Iout = 1.0 mA
40
0
0
100
Vout = 0.9 V
Vin = 1.9 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = L
50
90
20
300
60
100
70
250
70
100
80
200
100
RIPPLE REJECTION, RR (dB)
RIPPLE REJECTION, RR (dB)
100
0
0
150
Figure 23. Dropout Voltage vs. Output Current
Figure 22. Dropout Voltage vs. Output Current
10
100
OUTPUT CURRENT, Iout (mA)
OUTPUT CURRENT, Iout (mA)
20
50
Vout = 1.8 V
ECO = L
Vout = 1.2 V
Vin = 2.2 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
1
10
80
70
60
50
Iout = 1.0 mA
40
30
Iout = 30 mA
20
10
0
0
100
Vout = 1.2 V
Vin = 2.2 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = L
Iout = 50 mA
1
10
FREQUENCY, f (kHz)
FREQUENCY, f (kHz)
Figure 27. Ripple Rejection vs. Frequency
Figure 26. Ripple Rejection vs. Frequency
http://onsemi.com
7
100
NCP585
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE, Vout (V)
0.96
3.1
0.94
2.1
0.92
1.1
Output Voltage
0.90
ECO = H, Iout = 30 mA
Cout = Tantalum 1.0 mF
Vout = 0.9 V
0.88
0.86
0
0.1
10
20
30
40
50
60
70
80
90
−1.1
3.1
4.1
Input Voltage
2.6
INPUT VOLTAGE, Vin (V)
OUTPUT VOLTAGE, Vout (V)
Input Voltage
2.1
2.1
1.6
1.1
Output Voltage
1.1
0.1
0.0
0.4
0.8
0.1
ECO = L, Iout = 30 mA −1.1
Cout = Tantalum 1.0 mF
Vout = 0.9 V
−2.1
1.6 2.0 2.4 2.8 3.2 3.6 4.0
0.6
−2.1
100
3.1
INPUT VOLTAGE, Vin (V)
4.1
0.98
1.2
TIME, t (ms)
TIME, t (ms)
Figure 28. Input Transient Response
1.0
0.9
50
ECO = H, Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 1.0 mF
Vout = 0.9 V
0
−50
Output Voltage
0.8
0.7
0
1.2
1.1
10
15
20
25
30
35
0.9
0.8
−150
40
−90
0.7
0
5
10
15
OUTPUT VOLTAGE, Vout (V)
30
Load Current
0
ECO = H, Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 2.2 mF
Vout = 0.9 V
−30
−60
Output Voltage
0.8
0.7
0
−90
5
10
15
20
20
25
30
35
25
30
35
3.1
OUTPUT CURRENT, Iout (mA)
OUTPUT VOLTAGE, Vout (V)
60
1.2
0.9
−60
40
−120
Time, t (ms)
1.3
1.0
−30
Output Voltage
Time, t (ms)
1.1
0
ECO = H, Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 1.0 mF
Vout = 0.9 V
1.0
−100
5
30
Load Current
20
2.6
10
Load Current
2.1
1.6
1.1
0
ECO = H, Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 1.0 mF
Vout = 0.9 V
−120
40
0.1
0
−10
−20
Output Voltage
0.6
0.5
1.0
1.5
Time, t (ms)
2.0
Time, t (ms)
Figure 29. Load Transient Response
http://onsemi.com
8
OUTPUT CURRENT, Iout (mA)
1.1
100
Load Current
OUTPUT CURRENT, Iout (mA)
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
1.2
60
1.3
OUTPUT CURRENT, Iout (mA)
150
1.3
−30
2.5
3.0
3.5
−40
4.0
NCP585
2.6
1.9
2.1
VCE = 0 V → 1.9 V
1.0
1.6
0.1
1.1
ECO = H
Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 1.0 mF
Iout = 300 mA
−1.0
−1.9
10
20
30
40
50
0.1
60
2.6
1.9
2.1
VCE = 0 V → 1.9 V
1.0
1.6
0.1
1.1
ECO = L
Vin = 1.9 V
Cin = Tantalum 1.0 mF
Cout = Tantalum 1.0 mF
Iout = 300 mA
−1.0
−1.9
−2.8
−0.3 −0.2 −.01
−0.6
70
0
TIME, t (ms)
0.1 0.2
0.3
TIME, t (ms)
Figure 30. Turn−On Speed with CE Pin, Vout = 0.8 V
Vin = 1.9 V, Cin = Tantalum 1.0 mF, Cout = Tantalum 1.0 mF, Vout = 0.9 V
3.1
VECO = 0 V to 1.9 V
2.1
1.1
0.1
0.91
0.90
Iout = 1 mA
0.89
0.91
0.90
Iout = 10 mA
0.89
0.91
0.90
0.89
Iout = 50 mA
Iout = 100 mA
0.91
0.90
0.89
Iout = 200 mA
0.91
0.90
0.89
0.91
0.90
0.89
0.88
−0.2
ECO INPUT VOLTAGE, VECO (V)
0
OUTPUT VOLTAGE, Vout (V)
−2.8
−30 −20 −10
0.6
2.8
Iout = 300 mA
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
TIME, t (ms)
Figure 31. Output Voltage at Mode Alternative Point
http://onsemi.com
9
0.4
0.5
0.6
0.6
0.1
OUTPUT VOLTAGE, Vout (V)
2.8
OUTPUT VOLTAGE, Vout (V)
CE INPUT VOLTAGE, VCE (V)
CE INPUT VOLTAGE, VCE (V)
TYPICAL CHARACTERISTICS
−0.6
0.7
NCP585
TYPICAL CHARACTERISTICS
100000
Unstable
10000 Region
OUTPUT CAPACITOR ESR (W)
1000
100
Stable Region
10
1
0.1
0.01
0
No unstable region in LP Mode
50
100
150
200
250
1000
100
Stable Region
10
1
0.1
0.01
0
300
Cout = 1.0 mF
Vout = 1.8 V
FT Mode
No unstable region in LP Mode
100
50
150
200
250
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 32. Output Stability, Output Capacitor ESR
vs. Output Load Current (0.1 mF)
Figure 33. Output Stability, Output Capacitor
ESR vs. Output Load Current (1.0 mF)
100000
Unstable
10000 Region
OUTPUT CAPACITOR ESR (W)
100000
Cout = 0.1 mF
Vout = 1.8 V
FT Mode
100000
Unstable
10000 Region
Cout = 10 mF
Vout = 1.8 V
FT Mode
OUTPUT CAPACITOR ESR (W)
OUTPUT CAPACITOR ESR (W)
Unstable
10000 Region
1000
100
Stable Region
10
1
0.1
0.01
0
No unstable region in LP Mode
50
100
150
200
250
300
300
Cout = 100 mF
Vout = 1.8 V
FT Mode
1000
100
Stable Region
10
1
0.1
0.01
0
No unstable region in LP Mode
100
50
OUTPUT CURRENT (mA)
150
200
250
300
OUTPUT CURRENT (mA)
Figure 35. Output Stability, Output Capacitor ESR
vs. Output Load Current (100 mF)
Figure 34. Output Stability, Output Capacitor
ESR vs. Output Load Current (10 mF)
APPLICATION INFORMATION
Input Decoupling
Output Decoupling
A 1.0 mF ceramic capacitor is the recommended value to
be connected between Vin and GND. For PCB layout
considerations, the traces on Vin and GND should be
sufficiently wide in order to minimize noise and prevent
unstable operation.
It is best to use a 1.0 mF capacitor value on the Vout pin.
For better performance, select a capacitor with low
Equivalent Series Resistance (ESR). For PCB layout
considerations, place the output capacitor close to the
output pin and keep the leads short as possible.
http://onsemi.com
10
NCP585
ORDERING INFORMATION
Device
Output Type / Features
Nominal
Output Voltage
Marking
Package
Shipping†
NCP585DSAN09T1G
Active High w/Auto Discharge,
LP and FT Mode
0.9
B09D
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585DSAN12T1G
Active High w/Auto Discharge,
LP and FT Mode
1.2
B12D
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585DSAN18T1G
Active High w/Auto Discharge,
LP and FT Mode
1.8
B18D
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585DSN09T1G
Active High w/Auto Discharge,
LP and FT Mode
0.9
R09
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN12T1G
Active High w/Auto Discharge,
LP and FT Mode
1.2
R12
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN125T1G
Active High w/Auto Discharge,
LP and FT Mode
1.25
R01
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN15T1G
Active High w/Auto Discharge,
LP and FT Mode
1.5
R15
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN18T1G
Active High w/Auto Discharge,
LP and FT Mode
1.8
R18
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN25T1G
Active High w/Auto Discharge,
LP and FT Mode
2.5
R25
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN28T1G
Active High w/Auto Discharge,
LP and FT Mode
2.8
R28
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN30T1G
Active High w/Auto Discharge,
LP and FT Mode
3.0
R30
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585DSN33T1G
Active High w/Auto Discharge,
LP and FT Mode
3.3
R33
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585HSAN09T1G
Active High,
LP and FT Mode
0.9
B09B
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585HSAN12T1G
Active High,
LP and FT Mode
1.2
B12B
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585HSAN18T1G
Active High,
LP and FT Mode
1.8
B18B
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585HSN09T1G
Active High,
LP and FT Mode
0.9
Q09
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585HSN10T1G
Active High,
LP and FT Mode
1.0
Q10
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585HSN12T1G
Active High,
LP and FT Mode
1.2
Q12
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585HSN18T1G
Active High,
LP and FT Mode
1.8
Q18
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585HSN30T1G
Active High,
LP and FT Mode
3.0
Q30
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585LSAN09T1G
Active Low,
LP and FT Mode
0.9
B09A
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585LSAN12T1G
Active Low,
LP and FT Mode
1.2
B12A
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585LSAN18T1G
Active Low,
LP and FT Mode
1.8
B18A
HSON−6
(Pb−Free)
3000 Tape & Reel
NCP585LSN09T1G
Active Low,
LP and FT Mode
0.9
P09
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585LSN12T1G
Active Low,
LP and FT Mode
1.2
P12
SOT23−5
(Pb−Free)
3000 Tape & Reel
NCP585LSN18T1G
Active Low,
LP and FT Mode
1.8
P18
SOT23−5
(Pb−Free)
3000 Tape & Reel
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Other voltages are available. Consult your ON Semiconductor representative.
http://onsemi.com
11
NCP585
PACKAGE DIMENSIONS
SOT23−5
SN SUFFIX
CASE 1212−01
ISSUE O
A
5
E
1
A2
0.05 S
B
D
A1
4
2
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DATUM C IS A SEATING PLANE.
DIM
A1
A2
B
C
D
E
E1
e
e1
L
L1
L
3
E1
L1
B
e
e1
C
5X
0.10
M
C B
S
A
C
S
SOLDERING FOOTPRINT*
0.95
0.037
1.9
0.074
2.4
0.094
1.0
0.039
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
12
MILLIMETERS
MIN
MAX
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.80
3.00
2.50
3.10
1.50
1.80
0.95 BSC
1.90 BSC
0.20
--0.45
0.75
NCP585
PACKAGE DIMENSIONS
HSON−6
SAN SUFFIX
CASE 506AE−01
ISSUE A
A
D
PIN ONE
REFERENCE
6
B
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION:
MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.10 AND 0.15 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE
EXPOSED PAD AS WELL AS THE
TERMINALS.
4
E1
2X
E
0.20 C
1
2X
3
0.20 C
TOP VIEW
DIM
A
A3
b
D
D2
E
E1
E2
e
L
0.10 C
A
6X
0.08 C
SEATING
PLANE
(A3)
C
SIDE VIEW
MILLIMETERS
MIN
MAX
0.70
0.90
0.15 REF
0.20
0.40
2.90 BSC
1.40
1.60
3.00 BSC
2.80 BSC
1.50
1.70
0.95 BSC
0.15
0.25
D2
1
L
e
3
6X
EXPOSED PAD
E2
6
4
b
BOTTOM VIEW
6X
NOTE 3
0.10 C A B
0.05 C
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca
Sales Representative
NCP585/D
Similar pages