IRF IRFS4615PBF High efficiency synchronous rectification in smp Datasheet

PD -96202
IRFS4615PbF
IRFSL4615PbF
HEXFET® Power MOSFET
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
D
G
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
l Lead-Free
VDSS
RDS(on) typ.
max.
ID
150V
34.5m:
42m:
33A
D
D
S
G
G
D2Pak
IRFS4615PbF
D
S
TO-262
IRFSL4615PbF
G
D
S
Gate
Drain
Source
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
c
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
e
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
d
Units
33
24
140
144
0.96
± 20
38
-55 to + 175
A
W
W/°C
V
V/ns
°C
300
109
See Fig. 14, 15, 22a, 22b,
c
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθJA
www.irf.com
Parameter
j
Junction-to-Case
Junction-to-Ambient (PCB Mount)
i
Typ.
Max.
Units
–––
–––
1.045
40
°C/W
1
12/18/08
IRFS/SL4615PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
RG
Min. Typ. Max. Units
Conditions
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
150
–––
–––
3.0
–––
–––
–––
–––
–––
0.19
34.5
–––
–––
–––
–––
–––
–––
V VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 5mA
42
mΩ VGS = 10V, ID = 21A
5.0
V VDS = VGS, ID = 100µA
20
VDS = 150V, VGS = 0V
µA
250
VDS = 150V, VGS = 0V, TJ = 125°C
VGS = 20V
100
nA
-100
VGS = -20V
Internal Gate Resistance
–––
2.7
–––
c
f
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Total Gate Charge Sync. (Qg - Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
g
h
35
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
26
8.6
9.0
17
15
35
25
20
1750
155
40
179
382
–––
40
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Conditions
S
VDS = 50V, ID = 21A
ID = 21A
VDS = 75V
nC
VGS = 10V
ID = 21A, VDS =0V, VGS = 10V
VDD = 98V
ID = 21A
ns
RG = 7.3Ω
VGS = 10V
VGS = 0V
VDS = 50V
pF ƒ = 1.0MHz (See Fig.5)
VGS = 0V, VDS = 0V to 120V (See Fig.11)
VGS = 0V, VDS = 0V to 120V
f
f
h
g
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
c
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
‚ Limited by TJmax, starting TJ = 25°C, L = 0.51mH
RG = 25Ω, IAS = 21A, VGS =10V. Part not recommended for use
above this value .
ƒ ISD ≤ 21A, di/dt ≤ 549A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
„ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
–––
–––
33
A
–––
–––
140
Conditions
D
MOSFET symbol
showing the
integral reverse
G
p-n junction diode.
TJ = 25°C, IS = 21A, VGS = 0V
VR = 100V,
TJ = 25°C
IF = 21A
TJ = 125°C
di/dt = 100A/µs
TJ = 25°C
S
f
––– –––
1.3
V
–––
70
–––
ns
–––
83
–––
––– 177 –––
nC
TJ = 125°C
––– 247 –––
–––
4.9
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
f
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
† Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application
note #AN-994
ˆ Rθ is measured at TJ approximately 90°C
www.irf.com
IRFS/SL4615PbF
1000
1000
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
1
5.0V
0.1
100
BOTTOM
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
10
5.0V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
0.01
0.1
1
10
0.1
100
Fig 1. Typical Output Characteristics
100
3.0
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 2. Typical Output Characteristics
1000
TJ = 175°C
TJ = 25°C
10
1
VDS = 50V
≤60µs PULSE WIDTH
0.1
ID = 21A
VGS = 10V
2.5
2.0
1.5
1.0
0.5
2
4
6
8
10
12
14
16
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
14.0
VGS, Gate-to-Source Voltage (V)
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
10000
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Ciss
1000
Coss
Crss
100
10
ID= 21A
12.0
VDS= 120V
VDS= 75V
10.0
VDS= 30V
8.0
6.0
4.0
2.0
0.0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
35
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFS/SL4615PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 175°C
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
1msec
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
1.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
1.6
35
ID, Drain Current (A)
30
25
20
15
10
5
0
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
40
75
190
Id = 5mA
185
180
175
170
165
160
155
150
145
140
-60 -40 -20 0 20 40 60 80 100120140160180
T C , Case Temperature (°C)
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Drain-to-Source Breakdown Voltage
3.0
EAS , Single Pulse Avalanche Energy (mJ)
500
2.5
Energy (µJ)
2.0
1.5
1.0
0.5
0.0
-20
0
20
40
60
80 100 120 140 160
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4
1000
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode
Forward Voltage
50
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
25
10
ID
TOP
2.8A
5.3A
BOTTOM 21A
450
400
350
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFS/SL4615PbF
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
R1
R1
0.10
0.1
τJ
0.05
0.02
0.01
0.01
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
τi (sec)
0.02324
0.000008
0.26212
0.000106
0.50102
0.001115
0.25880
0.005407
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
120
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 21A
100
80
60
40
20
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
5
IRFS/SL4615PbF
30
25
IF = 14A
V R = 100V
20
TJ = 25°C
TJ = 125°C
5.5
5.0
4.5
4.0
3.5
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
6.0
ID = 100µA
3.0
ID = 250uA
10
ID = 1.0mA
ID = 1.0A
2.5
2.0
15
5
1.5
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
diF /dt (A/µs)
Fig. 17 - Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
800
35
30
25
IF = 21A
V R = 100V
700
TJ = 25°C
TJ = 125°C
600
20
QRR (A)
IRRM (A)
400
15
IF = 14A
V R = 100V
TJ = 25°C
TJ = 125°C
500
400
10
300
5
200
100
0
0
200
400
600
800
0
1000
200
400
600
800
1000
diF /dt (A/µs)
diF /dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
1000
IF = 21A
V R = 100V
900
800
TJ = 25°C
TJ = 125°C
QRR (A)
700
600
500
400
300
200
100
0
200
400
600
800
1000
diF /dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFS/SL4615PbF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
www.irf.com
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
7
IRFS/SL4615PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8
www.irf.com
IRFS/SL4615PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFS/SL4615PbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
10
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/2008
www.irf.com
Similar pages