ON MAX810SQ438T1G Very low supply current 3-pin microprocessor reset monitor Datasheet

MAX809 Series,
MAX810 Series
Very Low Supply Current
3-Pin Microprocessor
Reset Monitors
The MAX809 and MAX810 are cost−effective system supervisor
circuits designed to monitor VCC in digital systems and provide a reset
signal to the host processor when necessary. No external components
are required.
The reset output is driven active within 10 msec of VCC falling
through the reset voltage threshold. Reset is maintained active for a
timeout period which is trimmed by the factory after VCC rises above
the reset threshold. The MAX810 has an active−high RESET output
while the MAX809 has an active−low RESET output. Both devices
are available in SOT−23 and SC−70 packages.
The MAX809/810 are optimized to reject fast transient glitches on
the VCC line. Low supply current of 0.5 mA (VCC = 3.2 V) makes these
devices suitable for battery powered applications.
www.onsemi.com
MARKING
DIAGRAM
3
3
xxx MG
G
SOT−23
(TO−236)
CASE 318
1
1
2
SC−70
(SOT−323)
CASE 419
xx MG
G
Features
1
• Precision VCC Monitor for 1.5 V, 2.5 V, 3.0 V, 3.3 V, and 5.0 V
•
•
•
•
•
•
•
•
•
Supplies
Precision Monitoring Voltages from 1.2 V to 4.9 V Available
in 100 mV Steps
Four Guaranteed Minimum Power−On Reset Pulse Width Available
(1 ms, 20 ms, 100 ms, and 140 ms)
RESET Output Guaranteed to VCC = 1.0 V.
Low Supply Current
Compatible with Hot Plug Applications
VCC Transient Immunity
No External Components
Wide Operating Temperature: −40°C to 105°C
These Devices are Pb−Free and are RoHS Compliant
xxx
= Specific Device Code
M
= Date Code
G
= Pb−Free Package
(Note: Microdot may be in either location)
PIN CONFIGURATION
GND
1
3
RESET
RESET
Typical Applications
•
•
•
•
2
VCC
2
SOT−23/SC−70
(Top View)
Computers
Embedded Systems
Battery Powered Equipment
Critical Microprocessor Power Supply Monitoring
NOTE:
RESET is for MAX809
RESET is for MAX810
ORDERING INFORMATION
VCC
VCC
MAX809/810
RESET
RESET
GND
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
VCC
PROCESSOR
DEVICE MARKING INFORMATION
RESET
INPUT
See general marking information in the device marking
section on page 10 of this data sheet.
GND
Figure 1. Typical Application Diagram
© Semiconductor Components Industries, LLC, 2001
September, 2016 − Rev. 26
1
Publication Order Number:
MAX809S/D
MAX809 Series, MAX810 Series
3
VCC
Timeout
Counter
VCC
Oscillator
2
RESET
Vref
1 GND
Figure 2. MAX809 Series Complementary Active−Low Output
3
VCC
Timeout
Counter
VCC
Oscillator
2
RESET
Vref
1 GND
Figure 3. MAX810 Series Complementary Active−High Output
www.onsemi.com
2
MAX809 Series, MAX810 Series
PIN DESCRIPTION
Pin No.
Symbol
1
GND
Description
2
RESET (MAX809)
RESET output remains low while VCC is below the reset voltage threshold, and for a reset timeout
period after VCC rises above reset threshold
2
RESET (MAX810)
RESET output remains high while VCC is below the reset voltage threshold, and for a reset timeout
period after VCC rises above reset threshold
3
VCC
Ground
Supply Voltage (Typ)
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCC
−0.3 to 6.0
V
−0.3 to (VCC + 0.3)
V
Input Current, VCC
20
mA
Output Current, RESET
20
mA
Power Supply Voltage (VCC to GND)
RESET Output Voltage (CMOS)
dV/dt (VCC)
100
V/msec
RqJA
301
314
°C/W
Operating Junction Temperature Range
TJ
−40 to +125
°C
Storage Temperature Range
Tstg
−65 to +150
°C
Lead Temperature (Soldering, 10 Seconds)
Tsol
+260
°C
Thermal Resistance, Junction−to−Air (Note 1)
SOT−23
SC−70
ESD Protection
Human Body Model (HBM): Following Specification JESD22−A114
Machine Model (MM): Following Specification JESD22−A115
Latchup Current Maximum Rating: Following Specification JESD78 Class II
Positive
Negative
V
2000
200
ILatchup
mA
200
200
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. This based on a 35x35x1.6mm FR4 PCB with 10mm2 of 1 oz copper traces under natural convention conditions and a single component
characterization.
2. The maximum package power dissipation limit must not be exceeded.
TJ(max) * TA
with TJ(max) = 150°C
PD +
RqJA
www.onsemi.com
3
MAX809 Series, MAX810 Series
ELECTRICAL CHARACTERISTICS TA = −40°C to +105°C unless otherwise noted. Typical values are at TA = +25°C. (Note 3)
Symbol
Characteristic
VCC Range
TA = 0°C to +70°C
TA = −40°C to +105°C (Note 4)
Min
Typ
Max
1.0
1.2
−
−
5.5
5.5
Unit
V
Supply Current
VCC = 3.3 V
TA = −40°C to +85°C
TA = 85°C to +105°C (Note 5)
VCC = 5.5 V
TA = −40°C to +85°C
TA = 85°C to +105°C (Note 5)
ICC
Reset Threshold (Vin Decreasing) (Note 6)
VTH
mA
−
−
0.5
−
1.2
2.0
−
−
0.8
−
1.8
2.5
V
MAX809SN490
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
4.83
4.78
4.66
4.9
−
−
4.97
5.02
5.14
MAX8xxLTR, MAX8xxSQ463
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
4.56
4.50
4.40
4.63
−
−
4.70
4.75
4.86
MAX809HTR
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
4.48
4.43
4.32
4.55
4.62
4.67
4.78
MAX8xxMTR, MAX8xxSQ438
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
4.31
4.27
4.16
4.38
4.45
4.49
4.60
MAX809JTR, MAX8xxSQ400
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
3.94
3.90
3.80
4.00
−
−
4.06
4.10
4.20
MAX8xxTTR, MAX809SQ308
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
3.04
3.00
2.92
3.08
−
−
3.11
3.16
3.24
MAX8xxSTR, MAX8xxSQ293
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
2.89
2.85
2.78
2.93
−
−
2.96
3.00
3.08
MAX8xxRTR, MAX8xxSQ263
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
2.59
2.56
2.49
2.63
−
−
2.66
2.70
2.77
MAX809SN232, MAX809SQ232
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
2.28
2.25
2.21
2.32
−
−
2.35
2.38
2.45
MAX809SN160
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
1.58
1.56
1.52
1.60
−
−
1.62
1.64
1.68
MAX809SN120, MAX8xxSQ120
TA = +25°C
TA = −40°C to +85°C
TA = +85°C to +105°C (Note 5)
1.18
1.17
1.14
1.20
−
−
1.22
1.23
1.26
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
3. Production testing done at TA = 25°C, over temperature limits guaranteed by design.
4. For NCV automotive devices, this temperature range is TA = −40°C to +125°C.
5. For NCV automotive devices, this temperature range is TA = +85°C to +125°C.
6. Contact your ON Semiconductor sales representative for other threshold voltage options.
www.onsemi.com
4
MAX809 Series, MAX810 Series
ELECTRICAL CHARACTERISTICS (continued) TA = −40°C to +105°C unless otherwise noted. Typical values are at
TA = +25°C. (Note 7)
Symbol
Min
Typ
Max
Unit
Detector Voltage Threshold Temperature Coefficient
−
30
−
ppm/°C
VCC to Reset Delay VCC = VTH to (VTH − 100 mV)
−
10
−
msec
1.0
20
100
140
−
−
−
−
3.3
66
330
460
Characteristic
Reset Active TimeOut Period (Note 8)
MAX8xxSN(Q)293D1
MAX8xxSN(Q)293D2
MAX8xxSN(Q)293D3
MAX8xxSN(Q)293
tRP
msec
RESET Output Voltage Low (No Load) (MAX809)
VCC = VTH − 0.2 V
1.6 V v VTH v 2.0 V, ISINK = 0.5 mA
2.1 V v VTH v 4.0 V, ISINK = 1.2 mA
4.1 V v VTH v 4.9 V, ISINK = 3.2 mA
VOL
−
−
0.3
V
RESET Output Voltage High (No Load) (MAX809)
VCC = VTH + 0.2 V
1.6 V v VTH v 2.4 V, ISOURCE = 200 mA
2.5 V v VTH v 4.9 V, ISOURCE = 500 mA
VOH
0.8 VCC
−
−
V
RESET Output Voltage High (No Load) (MAX810)
VCC = VTH − 0.2 V
1.6 V v VTH v 2.4 V, ISOURCE = 200 mA
2.5 V v VTH v 4.9 V, ISOURCE = 500 mA
VOH
0.8 VCC
−
−
V
RESET Output Voltage Low (No Load) (MAX810)
VCC = VTH + 0.2 V
1.6 V v VTH v 2.0 V, ISINK = 0.5 mA
2.1 V v VTH v 4.0 V, ISINK = 1.2 mA
4.1 V v VTH v 4.9 V, ISINK = 3.2 mA
VOL
−
−
0.3
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
7. Production testing done at TA = 25°C, over temperature limits guaranteed by design.
8. Contact your ON Semiconductor sales representative for timeout options availability for other threshold voltage options.
www.onsemi.com
5
MAX809 Series, MAX810 Series
TYPICAL OPERATING CHARACTERISTICS
0.6
0.35
VTH = 4.9 V
0.5
0.30
85°C
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
VTH = 1.2 V
0.4
25°C
0.3
−40°C
0.2
0.1
85°C
0.25
0.20
25°C
0.15
−40°C
0.10
0.05
0
0
0.5
1.5
2.5
3.5
5.5
4.5
0.5
6.5
1.5
85°C
0.30
SUPPLY CURRENT (mA)
NORMALIZED THRESHOLD VOLTAGE
VTH = 2.93 V
0.25
25°C
0.20
0.15
−40°C
0.10
0.05
0
2.5
3.5
4.5
5.5
6.5
Figure 5. Supply Current vs. Supply Voltage
0.35
1.5
3.5
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
Figure 4. Supply Current vs. Supply Voltage
0.5
2.5
4.5
5.5
6.5
1.002
1.001
1.000
0.999
VTH = 4.9 V
0.998
0.997
0.996
VTH = 1.2 V
0.995
0.994
−50
−25
SUPPLY VOLTAGE (V)
0
25
50
75
100
TEMPERATURE (°C)
Figure 6. Supply Current vs. Supply Voltage
Figure 7. Normalized Reset Threshold Voltage
vs. Temperature
0.40
0.40
0.32
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
MAX809L/M, VCC = 5.0 V
MAX809R/S/T, VCC = 3.3 V
0.24
0.16
0.08
0
−50
MAX809L/M/R/S/T, VCC = 1.0 V
0.32
MAX810L/M, VCC = 5.0 V
0.24
MAX810R/S/T, VCC = 3.3 V
0.16
MAX810L/M/R/S/T, VCC = 1.0 V
0.08
0
−25
0
25
50
75
100
−50
−25
0
25
50
75
100
TEMPERATURE (°C)
TEMPERATURE (°C)
Figure 8. Supply Current vs. Temperature
(No Load, MAX809)
Figure 9. Supply Current vs. Temperature (No
Load, MAX810)
www.onsemi.com
6
MAX809 Series, MAX810 Series
TYPICAL OPERATING CHARACTERISTICS
80
OUTPUT VOLTAGE VCC−VOH (mV)
OUTPUT VOLTAGE VCC (mV)
30
VTH = 4.90 V
ISINK = 500 mA
RESET ASSERTED
25
20
85°C
15
25°C
10
−40°C
5.0
70
VTH = 4.63 V
ISOURCE = 100 mA
RESET ASSERTED
60
50
85°C
40
25°C
30
−40°C
20
10
0
0
0.5 1.0
2.0
1.5
2.5
3.0
3.5
4.0
4.5
0.5
5.0
1.0
1.5
POWER−DOWN RESET DELAY (msec)
75
VOD = 20 mV
50
VOD = 100 mV
25
VOD = 200 mV
0
25
75
50
3.5
4.0
4.5
100
125
VOD = VCC−VTH
VOD = 10 mV
300
VOD = 20 mV
200
100
VOD = 100 mV
VOD = 200 mV
0
−50
−25
0
25
50
75
100
TEMPERATURE (°C)
Figure 12. Power−Down Reset Delay vs.
Temperature and Overdrive (VTH = 1.2 V)
Figure 13. Power−Down Reset Delay vs.
Temperature and Overdrive (VTH = 4.9 V)
1.3
1.2
1.1
1.0
0.9
0.8
0.7
−50
5.0
400
TEMPERATURE (°C)
NORMALIZED POWER−UP RESET TIMEOUT
POWER−DOWN RESET DELAY (msec)
VOD = VCC−VTH
100
−25
3.0
Figure 11. Output Voltage High vs. Supply
Voltage
125
0
−50
2.5
SUPPLY VOLTAGE (V)
SUPPLY VOLTAGE (V)
Figure 10. Output Voltage Low vs. Supply
Voltage
VOD = 10 mV
2.0
−25
0
25
50
75
TEMPERATURE (°C)
Figure 14. Normalized Power−Up Reset vs.
Temperature
www.onsemi.com
7
100
125
MAX809 Series, MAX810 Series
Detail Operation Description
The MAX809/810 series microprocessor reset
supervisory circuits are designed to monitor the power
supplies in digital systems and provide a reset signal to the
processor without any external components. Figure 2 shows
the timing diagram and a typical application below. Initially
consider that input voltage VCC is at a nominal level greater
than the voltage detector upper threshold (VTH). And the
If there is an input power interruption and VCC becomes
significantly deficient, it will fall below the lower detector
threshold (VTH−). This event causes the RESET output to be
in the low state for the MAX809, or in the high state for the
NCP810 devices. After completion of the power
interruption, VCC will rise to its nominal level and become
greater than the VTH. This sequence activates the internal
oscillator circuitry and digital counter to count. After the
count of the timeout period, the reset output will revert back
to the original state.
RESET (RESET) output voltage (Pin 2) will be in the high
state for MAX809, or in the low state for MAX 810 devices.
Input Voltage
VCC
VTH+
VTH–
VCC
Reset Output
MAX809, NCP803
Reset Output
MAX810
VTH–
0V
VCC
VTH–
0V
tRP
Figure 15. Timing Waveforms
www.onsemi.com
8
MAX809 Series, MAX810 Series
APPLICATIONS INFORMATION
VCC Transient Rejection
maintained valid to VCC = 0 V, a pull−down resistor must be
connected from RESET to ground to discharge stray
capacitances and hold the output low (Figure 17). This
resistor value, though not critical, should be chosen such that
it does not appreciably load RESET under normal operation
(100 kW will be suitable for most applications).
The MAX809 provides accurate VCC monitoring and
reset timing during power−up, power−down, and
brownout/sag conditions, and rejects negative−going
transients (glitches) on the power supply line. Figure 16
shows the maximum transient duration vs. maximum
negative excursion (overdrive) for glitch rejection. Any
combination of duration and overdrive which lies under the
curve will not generate a reset signal. Combinations above
the curve are detected as a brownout or power−down.
Typically, transient that goes 100 mV below the reset
threshold and lasts 5.0 ms or less will not cause a reset pulse.
Transient immunity can be improved by adding a capacitor
in close proximity to the VCC pin of the MAX809.
VCC
VCC
MAX809/810
RESET
RESET
VCC
R1
100 k
GND
VTH
Overdrive
Figure 17. Ensuring RESET Valid to VCC = 0 V
Processors With Bidirectional I/O Pins
MAXIMUM TRANSIENT DURATION (msec)
Duration
Some Microprocessor’s have bidirectional reset pins.
Depending on the current drive capability of the processor
pin, an indeterminate logic level may result if there is a logic
conflict. This can be avoided by adding a 4.7 kW resistor in
series with the output of the MAX809 (Figure 18). If there
are other components in the system which require a reset
signal, they should be buffered so as not to load the reset line.
If the other components are required to follow the reset I/O
of the Microprocessor, the buffer should be connected as
shown with the solid line.
300
250
200
VTH = 4.9 V
150
VTH = 2.93 V
100
VTH = 1.2 V
50
BUFFER
0
10
BUFFERED RESET
TO OTHER SYSTEM
COMPONENTS
VCC
60
110
160
210
260
310
360 410
RESET COMPARATOR OVERDRIVE (mV)
VCC
VCC
MAX809/810
Figure 16. Maximum Transient Duration vs.
Overdrive for Glitch Rejection at 25°C
4.7 k
RESET
RESET
RESET Signal Integrity During Power−Down
GND
The MAX809 RESET output is valid to VCC = 1.0 V.
Below this voltage the output becomes an “open circuit” and
does not sink current. This means CMOS logic inputs to the
Microprocessor will be floating at an undetermined voltage.
Most digital systems are completely shutdown well above
this voltage. However, in situations where RESET must be
Microprocessor
RESET
GND
Figure 18. Interfacing to Bidirectional Reset I/O
www.onsemi.com
9
MAX809 Series, MAX810 Series
ORDERING, MARKING AND THRESHOLD INFORMATION
Part Number
MAX809SN160T1G
VTH* (V)
1.60
Timeout* (ms)
140−460
MAX809SN232T1G
2.32
MAX809RTRG
Description
Marking
SAA
Package
SOT23−3
(Pb−Free)
140−460
SQP
2.63
140−460
SPS
NCV809RTRG
2.63
140−460
RPA
MAX809STRG
2.93
140−460
SPT
NCV809STRG
2.93
140−460
SUC
MAX809TTRG
3.08
140−460
SPU
MAX809JTRG
4.00
140−460
SPR
MAX809MTRG
4.38
140−460
SPV
NCV809MTRG
4.38
140−460
TAT
MAX809HTRG
4.55
140−460
SBD
MAX809LTRG
4.63
140−460
SPW
NCV809LTRG
4.63
140−460
STA
MAX809SN490T1G
4.90
140−460
MAX809SN120T1G
1.20
140−460
SSO
MAX809SN293D1T1G
NCV809SN293D1T1G*
MAX809SN293D2T1G
2.93
1−3.3
2.93
20−66
SSP
ACT
SSQ
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
NCV809SN293D2T1G
2.93
20−66
ACE
MAX809SN293D3T1G
2.93
100−330
SSR
MAX809SQ120T1G
1.20
140−460
ZD
MAX809SQ232T1G
2.32
140−460
ZE
MAX809SQ263T1G
2.63
140−460
ZF
MAX809SQ293T1G
2.93
140−460
ZG
MAX809SQ308T1G
3.08
140−460
ZH
MAX809SQ400T1G
4.00
140−460
SZ
MAX809SQ438T1G
4.38
140−460
ZI
MAX809SQ463T1G
4.63
140−460
ZJ
Push−Pull RESET
www.onsemi.com
10
SBH
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SOT23−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
SC70−3
(Pb−Free)
Shipping†
3000 / Tape & Reel
MAX809 Series, MAX810 Series
ORDERING, MARKING AND THRESHOLD INFORMATION
Part Number
MAX809SQ293D1T1G
VTH**
(V)
2.93
Timeout**
(ms)
1−3.3
MAX809SQ293D2T1G
2.93
MAX809SQ293D3T1G
Description
Marking
Package
ZK
SC70−3
(Pb−Free)
20−66
ZL
SC70−3
(Pb−Free)
2.93
100−330
ZM
SC70−3
(Pb−Free)
MAX810RTRG
2.63
140−460
SPX
SOT23−3
(Pb−Free)
MAX810STRG
2.93
140−460
SPY
SOT23−3
(Pb−Free)
MAX810TTRG
3.08
140−460
SPZ
SOT23−3
(Pb−Free)
MAX810MTRG
4.38
140−460
SQA
SOT23−3
(Pb−Free)
MAX810LTRG
4.63
140−460
SQB
SOT23−3
(Pb−Free)
MAX810SN120T1G
1.20
140−460
SSS
SOT23−3
(Pb−Free)
MAX810SN293D1T1G
2.93
1−3.3
SST
SOT23−3
(Pb−Free)
MAX810SN293D2T1G
2.93
20−66
SSU
SOT23−3
(Pb−Free)
MAX810SN293D3T1G
2.93
100−330
SSZ
SOT23−3
(Pb−Free)
MAX810SQ120T1G
1.20
140−460
ZN
SC70−3
(Pb−Free)
MAX810SQ263T1G
2.63
140−460
ZO
SC70−3
(Pb−Free)
MAX810SQ270T1G
2.70
20−66
ZB
SC70−3
(Pb−Free)
MAX810SQ293T1G
2.93
140−460
ZP
SC70−3
(Pb−Free)
MAX810SQ400T1G
4.00
20−66
ZC
SC70−3
(Pb−Free)
MAX810SQ438T1G
4.38
140−460
ZQ
SC70−3
(Pb−Free)
MAX810SQ463T1G
4.63
140−460
ZR
SC70−3
(Pb−Free)
MAX810SQ293D1T1G
2.93
1−3.3
ZS
SC70−3
(Pb−Free)
MAX810SQ293D2T1G
2.93
20−66
ZT
SC70−3
(Pb−Free)
MAX810SQ293D3T1G
2.93
100−330
ZU
SC70−3
(Pb−Free)
Push−Pull RESET
Shipping†
3000 / Tape & Reel
†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
**Contact your ON Semiconductor sales representative for other threshold voltage options.
www.onsemi.com
11
MAX809 Series, MAX810 Series
PACKAGE DIMENSIONS
SOT−23 (TO−236)
CASE 318−08
ISSUE AR
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF
THE BASE MATERIAL.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
PROTRUSIONS, OR GATE BURRS.
0.25
3
E
1
2
T
HE
DIM
A
A1
b
c
D
E
e
L
L1
HE
T
L
3X b
L1
VIEW C
e
TOP VIEW
A
A1
SIDE VIEW
MIN
0.89
0.01
0.37
0.08
2.80
1.20
1.78
0.30
0.35
2.10
0°
MILLIMETERS
NOM
MAX
1.00
1.11
0.06
0.10
0.44
0.50
0.14
0.20
2.90
3.04
1.30
1.40
1.90
2.04
0.43
0.55
0.54
0.69
2.40
2.64
−−−
10 °
c
SEE VIEW C
END VIEW
RECOMMENDED
SOLDERING FOOTPRINT*
3X
2.90
3X
0.90
0.95
PITCH
0.80
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
12
MIN
0.035
0.000
0.015
0.003
0.110
0.047
0.070
0.012
0.014
0.083
0°
INCHES
NOM
0.039
0.002
0.017
0.006
0.114
0.051
0.075
0.017
0.021
0.094
−−−
MAX
0.044
0.004
0.020
0.008
0.120
0.055
0.080
0.022
0.027
0.104
10°
MAX809 Series, MAX810 Series
PACKAGE DIMENSIONS
SC−70 (SOT−323)
CASE 419−04
ISSUE N
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
D
e1
DIM
A
A1
A2
b
c
D
E
e
e1
L
HE
3
E
HE
1
2
b
e
A
0.05 (0.002)
MIN
0.80
0.00
0.30
0.10
1.80
1.15
1.20
0.20
2.00
MILLIMETERS
NOM
MAX
0.90
1.00
0.05
0.10
0.70 REF
0.35
0.40
0.18
0.25
2.10
2.20
1.24
1.35
1.30
1.40
0.65 BSC
0.38
0.56
2.10
2.40
MIN
0.032
0.000
0.012
0.004
0.071
0.045
0.047
0.008
0.079
INCHES
NOM
0.035
0.002
0.028 REF
0.014
0.007
0.083
0.049
0.051
0.026 BSC
0.015
0.083
MAX
0.040
0.004
0.016
0.010
0.087
0.053
0.055
0.022
0.095
c
A2
L
A1
SOLDERING FOOTPRINT*
0.65
0.025
0.65
0.025
1.9
0.075
0.9
0.035
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage
may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer
is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of
any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or specifications can and
do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices
intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and
hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was
negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright
laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
◊
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MAX809S/D
Similar pages