NTE NTE889 Integrated circuit dual, low power, jfet op amplifier Datasheet

NTE889M
Integrated Circuit
Dual, Low Power, JFET OP Amplifier
Description:
The NTE889M is a JFET–input operational amplifier in an 8–Lead DIP type package designed for low
power applications and features high input impedance, low input bias current, and low input offset
current. Advanced design techniques allow for higher slew rates, gain bandwidth products, and output swing.
Features:
D Low Supply Current: 200µA/Amplifier
D Low Input Bias Current: 5pA
D High Gain Bandwidth: 2MHz
D High Slew rate: 6V/µs
D High Input Impedance: 1012Ω
D Large Output Voltage Swing: ±14V
D Output Short Circuit Protection
Absolute Maximum Ratings:
Supply Voltage (From VCC to VEE), VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36V
Input Differential Input Voltage (Note 1), VIDR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±30V
Input Voltage Range (Note 1, Note 2), VIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15V
Output Short–Circuit Duration (Note 3), ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indefinite Seconds
Operating Junction Temperature (Note 3), TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0° to +70°C
Storage Temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C
Storage temperature Range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –60° to +150°C
Note 1. Differential voltages are at the non–inverting input terminal with respect to the inverting input
terminal.
Note 2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage
or 15V, whchever is less.
Note 3. Power dissipation must be considered to ensure maximun junction temperature (TJ) is not
exceeded.
DC Electrical Characteristics: (VCC = +15V, VEE = –15V unless otherwise specified)
Parameter
Input Offset Voltage
Temperature Coefficient of
Input Offset Voltage
Input Offset Current
Input Bias Current
Common–Mode Input Voltage Range
Symbol
VIO
aVIO
IIO
IIB
VICR
Test Conditions
Min
Typ
Max
Unit
TA = +25°C
–
3
15
mV
TA = 0° to +70°C
–
–
20
mV
VO = 0, RS = 50Ω, TA = 0° to +70°C
–
10
–
µV/°C
VCM = 0, VO = 0
TA = +25°C
–
5
200
pA
TA = 0° to +70°C
–
–
5
nA
TA = +25°C
–
30
200
pA
TA = 0° to +70°C
–
–
10
nA
–
+14.5
+11
V
–11
–12
–
V
RL = 10kΩ, TA = +25°C
±10.0
±14
–
V
RL = 10kΩ, TA = 0° to +70°C
±10.0
–
–
V
TA = +25°C
3
58
–
V/mV
TA = 0° to +70°C
3
–
–
V/mV
VO = 0,
RS = 50Ω
Ω
VCM = 0, VO = 0
TA = +25°C
TA = 0° to +70°C
Maximim Peak Output Voltage Swing
Large–Signal Differential Voltage
Amplification
Gain Bandwidth Product
Input Resistance
VOM
AVD
VO = ±10V,
RL ≥ 10kΩ
Ω
GBW
f = 200kHz
–
2
–
MHz
ri
TA = +25°C
–
1012
–
Ω
Common–Mode Rejection Ratio
CMRR
VCM = VICRmin, VO = 0, RS = 50Ω,
TA = +25°C
70
84
–
dB
Supply Volatge Rejection Ratio
PSRR
VCM = 0, VO = 0, RS = 50Ω,
TA = +25°C
70
86
–
dB
Total Power Dissipation (Each Amp)
PD
No Load, VO = 0, TA = +25°C
–
6.0
7.5
mW
Power Supply Current (Each Amp)
ID
No Load, VO = 0, TA = +25°C
–
200
250
µA
Channel Separation
CS
f = 10kHz
–
120
–
dB
Slew Rate
SR
Vin = –10V to +10V, RL = 10kΩ,
CL = 100pF, AV = +1.0
2
6
–
V/µs
Rise Time
tr
–
0.1
–
µs
Overshoot
OS
Vin = 20mV, RL = 10kΩ,
CL = 100pF, AV = +1.0
–
10
–
%
to within 10mV
–
1.6
–
µs
to within 1.0mV
–
2.2
–
µs
–
47
–
nV/ǨHz
Setting Time
Equivalent Input Noise
tS
en
VCC = +15V,
VEE = –15V,
AV = –1.0,
RL = 10kΩ,
VO = 0 to 10V
step
RS = 100Ω, f = 1kHz
Pin Connection Diagram
8 VCC (+)
Output 1 1
Inverting Input 1 2
7
Output 2
Non–Inverting Input 1 3
6
Invert Input 2
VCC (–) 4
5
Non–Invert Input 2
8
5
.260 (6.6)
1
4
.300
(7.62)
.390 (9.9)
Max
.155
(3.93)
.100 (2.54)
.145 (3.68)
.300 (7.62)
Similar pages