IRFP240, SiHFP240 FEATURES PRODUCT SUMMARY VDS (V) • • • • • • • 200 RDS(on) (Ω) VGS = 10 V 0.18 Qg (Max.) (nC) 70 Qgs (nC) 13 Qgd (nC) 39 Configuration Single D Available RoHS* COMPLIANT DESCRIPTION TO-247 Third generation Power MOSFETs from Vishay provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because its isolated mounting hole. It also provides greater creepage distances between pins to meet the requirements of most safety specifications. G S D G Dynamic dV/dt Rating Repetitive Avalanche Rated Isolated Central Mounting Hole Fast Switching Ease of Paralleling Simple Drive Requirements Lead (Pb)-free Available S N-Channel MOSFET ORDERING INFORMATION Package TO-247 IRFP240PbF SiHFP240-E3 IRFP240 SiHFP240 Lead (Pb)-free SnPb ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 200 Gate-Source Voltage VGS ± 20 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID UNIT V 20 12 A IDM 80 1.2 W/°C Single Pulse Avalanche Energyb EAS 510 mJ Repetitive Avalanche Currenta IAR 20 A Repetitive Avalanche Energya EAR 15 mJ Linear Derating Factor Maximum Power Dissipation TC = 25 °C Peak Diode Recovery dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) Mounting Torque for 10 s 6-32 or M3 screw PD 150 W dV/dt 5.0 V/ns TJ, Tstg - 55 to + 150 300d °C 10 lbf · in 1.1 N·m Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. VDD = 50 V, starting TJ = 25 °C, L = 1.9 mH, RG = 25 Ω, IAS = 20 A (see fig. 12). c. ISD ≤ 18 A, dI/dt ≤ 150 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. d. 1.6 mm from case. www.kersemi.com 1 IRFP240, SiHFP240 THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 40 Case-to-Sink, Flat, Greased Surface RthCS 0.24 - Maximum Junction-to-Case (Drain) RthJC - 0.83 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage VDS VGS = 0 V, ID = 250 µA 200 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.29 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.0 V Gate-Source Leakage IGSS VGS = ± 20 V - - ± 100 nA Zero Gate Voltage Drain Current IDSS VDS = 200 V, VGS = 0 V - - 25 VDS = 160 V, VGS = 0 V, TJ = 125 °C - - 250 Drain-Source On-State Resistance Forward Transconductance RDS(on) gfs ID = 12 Ab VGS = 10 V VDS = 50 V, ID = 12 Ab µA - - 0.18 Ω 6.9 - - S - 1300 - - 400 - - 130 - - - 70 - - 13 - - 39 - 14 - - 51 - - 45 - - 36 - - 5.0 - - 13 - - - 20 - - 80 - - 2.0 - 300 610 ns - 3.4 7.1 µC Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Total Gate Charge Qg Gate-Source Charge Qgs Gate-Drain Charge Qgd Turn-On Delay Time td(on) Rise Time Turn-Off Delay Time Fall Time tr td(off) VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 VGS = 10 V ID = 18 A, VDS = 160 V, see fig. 6 and 13b VDD = 100 V, ID = 18 A, RG = 9.1 Ω, RD = 5.4 Ω, see fig. 10b tf Internal Drain Inductance LD Internal Source Inductance LS Between lead, 6 mm (0.25") from package and center of die contact D pF nC ns nH G S Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current IS Pulsed Diode Forward Currenta ISM Body Diode Voltage VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode A G S TJ = 25 °C, IS = 20 A, VGS = 0 Vb TJ = 25 °C, IF = 18 A, dI/dt = 100 A/µsb Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. www.kersemi.com 2 D V IRFP240, SiHFP240 Fig. 1 - Typical Output Characteristics, TC = 25 °C Fig. 2 - Typical Output Characteristics, TC = 150 °C Fig. 3 - Typical Transfer Characteristics Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFP240, SiHFP240 Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.kersemi.com 4 Fig. 7 - Typical Source-Drain Diode Forward Voltage Fig. 8 - Maximum Safe Operating Area IRFP240, SiHFP240 RD VDS VGS D.U.T. RG + - VDD 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % Fig. 10a - Switching Time Test Circuit VDS 90 % 10 % VGS td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature tr td(off) tf Fig. 10b - Switching Time Waveforms Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case www.kersemi.com 5 IRFP240, SiHFP240 L Vary tp to obtain required IAS VDS VDS tp VDD D.U.T RG + - IAS V DD VDS 10 V 0.01 Ω tp Fig. 12a - Unclamped Inductive Test Circuit IAS Fig. 12b - Unclamped Inductive Waveforms Fig. 12c - Maximum Avalanche Energy vs. Drain Current Current regulator Same type as D.U.T. 50 kΩ QG 10 V 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 Fig. 13b - Gate Charge Test Circuit IRFP240, SiHFP240 Peak Diode Recovery dV/dt Test Circuit + D.U.T. Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7