PD - 96906C IRFB4610 IRFS4610 IRFSL4610 Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability HEXFET® Power MOSFET VDSS RDS(on) typ. max. ID D G S G DS G DS G DS D2Pak TO-220AB IRFB4610 100V 11m: 14m: 73A TO-262 IRFSL4610 IRFS4610 Absolute Maximum Ratings Symbol Parameter ID @ TC = 25°C Continuous Drain Current, VGS @ 10V Max. Units 73 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 52 IDM Pulsed Drain Current f 290 PD @TC = 25°C Maximum Power Dissipation 190 W W/°C V Linear Derating Factor 1.3 VGS Gate-to-Source Voltage ± 20 dV/dt TJ Peak Diode Recovery e 7.6 Operating Junction and -55 to + 175 TSTG Storage Temperature Range V/ns °C 300 Soldering Temperature, for 10 seconds (1.6mm from case) 10lbxin (1.1Nxm) Mounting torque, 6-32 or M3 screw Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy d IAR Avalanche Currentc EAR Repetitive Avalanche Energy f mJ 370 See Fig. 14, 15, 16a, 16b, A mJ Thermal Resistance Symbol Parameter Typ. Max. RθJC Junction-to-Case j ––– 0.77 RθCS Case-to-Sink, Flat Greased Surface , TO-220 0.50 ––– RθJA Junction-to-Ambient, TO-220 j ––– 62 RθJA Junction-to-Ambient (PCB Mount) , D2Pak ij ––– 40 www.irf.com Units °C/W 1 5/22/08 IRF/B/S/SL4610 Static @ TJ = 25°C (unless otherwise specified) Symbol V(BR)DSS Parameter Min. Typ. Max. Units ––– ––– ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance ––– 0.085 ––– V/°C Reference to 25°C, ID = 1mAc ––– 11 14 mΩ VGS = 10V, ID = 44A f VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V IDSS Drain-to-Source Leakage Current μA RG ––– ––– 20 ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 200 Gate-to-Source Reverse Leakage ––– ––– -200 Gate Input Resistance ––– 1.5 ––– V Conditions 100 IGSS Drain-to-Source Breakdown Voltage VGS = 0V, ID = 250μA VDS = VGS, ID = 100μA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions gfs Qg Forward Transconductance 73 ––– ––– S Total Gate Charge ––– 90 140 nC Qgs Gate-to-Source Charge ––– 20 ––– Qgd Gate-to-Drain ("Miller") Charge ––– 36 ––– td(on) Turn-On Delay Time ––– 18 ––– tr Rise Time ––– 87 ––– ID = 44A td(off) Turn-Off Delay Time ––– 53 ––– RG = 5.6Ω tf Fall Time ––– 70 ––– Ciss Input Capacitance ––– 3550 ––– Coss Output Capacitance ––– 260 ––– VDS = 50V Reverse Transfer Capacitance ––– Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 150 ––– ƒ = 1.0MHz 330 ––– VGS = 0V, VDS = 0V to 80V h, See Fig.11 380 ––– VGS = 0V, VDS = 0V to 80V g, See Fig. 5 Crss VDS = 50V, ID = 44A ID = 44A VDS = 80V VGS = 10V f ns VDD = 65V VGS = 10V f pF VGS = 0V Diode Characteristics Symbol Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 73 ISM (Body Diode) Pulsed Source Current ––– ––– 290 VSD (Body Diode)c Diode Forward Voltage trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.39mH RG = 25Ω, IAS = 44A, VGS =10V. Part not recommended for use above this value. ISD ≤ 44A, di/dt ≤ 660A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 ––– A 1.3 V ––– 35 53 ns ––– 42 63 ––– 44 66 65 98 ––– 2.1 ––– D MOSFET symbol showing the integral reverse ––– ––– Conditions S p-n junction diode. TJ = 25°C, IS = 44A, VGS = 0V f VR = 85V, TJ = 25°C TJ = 125°C nC G TJ = 25°C IF = 44A di/dt = 100A/μs f TJ = 125°C A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recom mended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C www.irf.com IRF/B/S/SL4610 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM 10 4.5V ≤ 60μs PULSE WIDTH Tj = 25°C 1 BOTTOM 100 4.5V ≤ 60μs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 1000.0 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100.0 TJ = 175°C 10.0 TJ = 25°C 1.0 VDS = 25V ≤ 60μs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 7.0 ID = 73A VGS = 10V 2.5 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 6000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd 4000 Ciss 3000 2000 1000 Coss Crss 10 100 VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com ID= 44A VDS = 80V 16 VDS= 50V VDS= 20V 12 8 4 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 5000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 0 20 40 60 80 100 120 140 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRF/B/S/SL4610 1000 100.0 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 TJ = 175°C 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 100μsec 100 10 1msec 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 1 2.0 V(BR)DSS , Drain-to-Source Breakdown Voltage ID , Drain Current (A) 80 60 40 20 0 50 75 100 125 150 1000 125 120 115 110 105 100 175 -60 -40 -20 TJ , Junction Temperature (°C) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 1600 EAS, Single Pulse Avalanche Energy (mJ) 2.0 1.5 Energy (μJ) 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 10 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) 1.0 0.5 ID 4.6A 6.3A BOTTOM 44A TOP 1200 800 400 0 0.0 0 20 40 60 80 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 DC 0.1 0.1 100 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent www.irf.com IRF/B/S/SL4610 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.10 0.1 0.05 R1 R1 0.02 0.01 τJ 0.01 τJ τ1 R2 R2 τ2 τ1 τC τ Ri (°C/W) τi (sec) 0.4367 0.001016 0.3337 τ2 0.009383 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case Avalanche Current (A) 1000 Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ΔTj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 10 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 400 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 44A 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 IRF/B/S/SL4610 16 ID = 1.0A ID = 1.0mA ID = 250μA ID = 100μA 4.0 12 IRRM - (A) VGS(th) Gate threshold Voltage (V) 5.0 3.0 8 IF = 29A VR = 85V 4 2.0 TJ = 125°C TJ = 25°C 0 1.0 -75 -50 -25 0 25 50 75 100 200 300 400 500 600 700 800 900 1000 100 125 150 175 dif / dt - (A / μs) TJ , Temperature ( °C ) Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage Vs. Temperature 16 300 12 QRR - (nC) IRRM - (A) 200 8 100 4 IF = 44A VR = 85V IF = 29A VR = 85V TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 300 QRR - (nC) 200 100 0 IF = 44A VR = 85V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRF/B/S/SL4610 D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1μs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgodr Fig 24b. Gate Charge Waveform 7 IRF/B/S/SL4610 TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF 1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in as s embly line pos ition indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com IRF/B/S/SL4610 TO-262 Package Outline (Dimensions are shown in millimeters (inches)) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = AS S EMBLY S IT E CODE Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 9 IRF/B/S/SL4610 D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L AS S EMBLY LOT CODE T HIS IS AN IRF530S WIT H LOT CODE 8024 For GB Production AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO LOT CODE 10 PART NUMBER F530S DAT E CODE www.irf.com IRF/B/S/SL4610 D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 5/08 www.irf.com 11