CEP30N15L/CEB30N15L N-Channel Enhancement Mode Field Effect Transistor FEATURES 150V, 30A, RDS(ON) = 70mΩ @VGS = 10V. RDS(ON) = 80mΩ @VGS = 5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 S Tc = 25 C unless otherwise noted Symbol Limit Drain-Source Voltage VDS Gate-Source Voltage VGS Drain Current-Continuous @ TC = 25 C ID @ TC = 100 C Drain Current-Pulsed a IDM 150 Units V ±20 V 30 A 21 A 120 A 150 W TJ,Tstg 1.2 -55 to 175 W/ C C Symbol Limit Units Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Case RθJC 1 C/W Thermal Resistance, Junction-to-Ambient RθJA 50 C/W Rev 3. 2010.Dec http://www.cetsemi.com Details are subject to change without notice . 1 CEP30N15L/CEB30N15L Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Typ Max Units Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 150 165 Zero Gate Voltage Drain Current IDSS VDS = 150V, VGS = 0V 1 µA Gate Body Leakage Current, Forward IGSSF VGS = 20V, VDS = 0V 100 nA Gate Body Leakage Current, Reverse IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Dynamic Characteristics VGS = VDS, ID = 250µA 1.5 3 V VGS = 10V, ID = 15A 1 55 70 mΩ VGS = 5V, ID = 12A 60 80 mΩ c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 25V, VGS = 0V, f = 1.0 MHz 2320 pF 245 pF 30 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 75V, ID = 20A, VGS = 10V, RGEN = 1Ω 16 32 ns 3 6 ns 60 120 ns Turn-Off Fall Time tf 3 6 ns Total Gate Charge Qg 72 94 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 120V, ID = 20A, VGS = 10V 5 nC 14 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 30A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. 2 30 A 1.2 V CEP30N15L/CEB30N15L 50 VGS=10,9,8,5V 10 ID, Drain Current (A) ID, Drain Current (A) 12 8 6 4 2 0 VGS=2V 0 1 2 3 4 5 -55 C 0 1.5 3 4.5 6 7.5 Figure 1. Output Characteristics Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) Ciss 1500 1000 500 Coss Crss 0 5 10 15 20 25 2.2 1.9 ID=15A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 TJ=125 C 10 VGS, Gate-to-Source Voltage (V) IS, Source-drain current (A) C, Capacitance (pF) VTH, Normalized Gate-Source Threshold Voltage 20 0 2000 1.2 30 VDS, Drain-to-Source Voltage (V) 2500 1.3 40 6 3000 0 25 C -25 0 25 50 75 100 125 150 VGS=0V 10 2 10 1 10 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 3 10 V =120V DS ID=20A 10 8 -ID, Drain Current (A) -VGS, Gate to Source Voltage (V) CEP30N15L/CEB30N15L 6 4 2 0 0 20 40 60 RDS(ON)Limit 10 2 100ms 10 10 80 3 1ms 10ms DC 1 TC=25 C TJ=175 C Single Pulse 0 10 0 10 1 10 2 10 Qg, Total Gate Charge (nC) -VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D VGS RGEN toff tr td(on) td(off) tf 90% 90% VOUT VOUT 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 0.02 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -2 t2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 10 3 10 4 3