CET CEP30N15L N-channel enhancement mode field effect transistor Datasheet

CEP30N15L/CEB30N15L
N-Channel Enhancement Mode Field Effect Transistor
FEATURES
150V, 30A, RDS(ON) = 70mΩ @VGS = 10V.
RDS(ON) = 80mΩ @VGS = 5V.
Super high dense cell design for extremely low RDS(ON).
High power and current handing capability.
D
Lead free product is acquired.
TO-220 & TO-263 package.
D
G
G
S
CEB SERIES
TO-263(DD-PAK)
G
D
S
ABSOLUTE MAXIMUM RATINGS
Parameter
CEP SERIES
TO-220
S
Tc = 25 C unless otherwise noted
Symbol
Limit
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
Drain Current-Continuous @ TC = 25 C
ID
@ TC = 100 C
Drain Current-Pulsed a
IDM
150
Units
V
±20
V
30
A
21
A
120
A
150
W
TJ,Tstg
1.2
-55 to 175
W/ C
C
Symbol
Limit
Units
Maximum Power Dissipation @ TC = 25 C
PD
- Derate above 25 C
Operating and Store Temperature Range
Thermal Characteristics
Parameter
Thermal Resistance, Junction-to-Case
RθJC
1
C/W
Thermal Resistance, Junction-to-Ambient
RθJA
50
C/W
Rev 3. 2010.Dec
http://www.cetsemi.com
Details are subject to change without notice .
1
CEP30N15L/CEB30N15L
Electrical Characteristics
Parameter
Tc = 25 C unless otherwise noted
Symbol
Test Condition
Min
Typ
Max
Units
Drain-Source Breakdown Voltage
BVDSS
VGS = 0V, ID = 250µA
150
165
Zero Gate Voltage Drain Current
IDSS
VDS = 150V, VGS = 0V
1
µA
Gate Body Leakage Current, Forward
IGSSF
VGS = 20V, VDS = 0V
100
nA
Gate Body Leakage Current, Reverse
IGSSR
VGS = -20V, VDS = 0V
-100
nA
Off Characteristics
V
On Characteristics b
Gate Threshold Voltage
VGS(th)
Static Drain-Source
RDS(on)
On-Resistance
Dynamic Characteristics
VGS = VDS, ID = 250µA
1.5
3
V
VGS = 10V, ID = 15A
1
55
70
mΩ
VGS = 5V, ID = 12A
60
80
mΩ
c
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
VDS = 25V, VGS = 0V,
f = 1.0 MHz
2320
pF
245
pF
30
pF
Switching Characteristics c
Turn-On Delay Time
td(on)
Turn-On Rise Time
tr
Turn-Off Delay Time
td(off)
VDD = 75V, ID = 20A,
VGS = 10V, RGEN = 1Ω
16
32
ns
3
6
ns
60
120
ns
Turn-Off Fall Time
tf
3
6
ns
Total Gate Charge
Qg
72
94
nC
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
VDS = 120V, ID = 20A,
VGS = 10V
5
nC
14
nC
Drain-Source Diode Characteristics and Maximun Ratings
Drain-Source Diode Forward Current
IS
Drain-Source Diode Forward Voltage b
VSD
VGS = 0V, IS = 30A
Notes :
a.Repetitive Rating : Pulse width limited by maximum junction temperature.
b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%.
c.Guaranteed by design, not subject to production testing.
2
30
A
1.2
V
CEP30N15L/CEB30N15L
50
VGS=10,9,8,5V
10
ID, Drain Current (A)
ID, Drain Current (A)
12
8
6
4
2
0
VGS=2V
0
1
2
3
4
5
-55 C
0
1.5
3
4.5
6
7.5
Figure 1. Output Characteristics
Figure 2. Transfer Characteristics
RDS(ON), Normalized
RDS(ON), On-Resistance(Ohms)
Ciss
1500
1000
500
Coss
Crss
0
5
10
15
20
25
2.2
1.9
ID=15A
VGS=10V
1.6
1.3
1.0
0.7
0.4
-100
-50
0
50
100
150
200
VDS, Drain-to-Source Voltage (V)
TJ, Junction Temperature( C)
Figure 3. Capacitance
Figure 4. On-Resistance Variation
with Temperature
VDS=VGS
ID=250µA
1.1
1.0
0.9
0.8
0.7
0.6
-50
TJ=125 C
10
VGS, Gate-to-Source Voltage (V)
IS, Source-drain current (A)
C, Capacitance (pF)
VTH, Normalized
Gate-Source Threshold Voltage
20
0
2000
1.2
30
VDS, Drain-to-Source Voltage (V)
2500
1.3
40
6
3000
0
25 C
-25
0
25
50
75
100
125
150
VGS=0V
10
2
10
1
10
0
0.4
0.6
0.8
1.0
1.2
1.4
TJ, Junction Temperature( C)
VSD, Body Diode Forward Voltage (V)
Figure 5. Gate Threshold Variation
with Temperature
Figure 6. Body Diode Forward Voltage
Variation with Source Current
3
10 V =120V
DS
ID=20A
10
8
-ID, Drain Current (A)
-VGS, Gate to Source Voltage (V)
CEP30N15L/CEB30N15L
6
4
2
0
0
20
40
60
RDS(ON)Limit
10
2
100ms
10
10
80
3
1ms
10ms
DC
1
TC=25 C
TJ=175 C
Single Pulse
0
10
0
10
1
10
2
10
Qg, Total Gate Charge (nC)
-VDS, Drain-Source Voltage (V)
Figure 7. Gate Charge
Figure 8. Maximum Safe
Operating Area
VDD
t on
RL
V IN
D
VGS
RGEN
toff
tr
td(on)
td(off)
tf
90%
90%
VOUT
VOUT
10%
INVERTED
10%
G
90%
S
VIN
50%
50%
10%
PULSE WIDTH
Figure 10. Switching Waveforms
r(t),Normalized Effective
Transient Thermal Impedance
Figure 9. Switching Test Circuit
10
0
D=0.5
0.2
10
-1
PDM
0.1
t1
0.05
0.02
0.01
1. RθJC (t)=r (t) * RθJC
2. RθJC=See Datasheet
3. TJM-TC = P* RθJC (t)
4. Duty Cycle, D=t1/t2
Single Pulse
10
-2
10
-2
t2
10
-1
10
0
10
1
10
2
Square Wave Pulse Duration (msec)
Figure 11. Normalized Thermal Transient Impedance Curve
4
10
3
10
4
3
Similar pages