CEP540A/CEB540A N-Channel Enhancement Mode Field Effect Transistor FEATURES 100V, 36A, RDS(ON) = 48mΩ @VGS = 10V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit 100 Units V VGS ±20 V ID 36 A IDM 120 A 140 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed S a Maximum Power Dissipation @ TC = 25 C PD - Derate above 25 C 0.91 W/ C Single Pulsed Avalanche Energy d EAS 310 mJ Single Pulsed Avalanche Current d IAS 18 A TJ,Tstg -55 to 175 C Symbol Limit Units Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Case RθJC 1.1 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Specification and data are subject to change without notice . 4 - 94 Rev .1 2006.March http://www.cetsemi.com CEP540A/CEB540A Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 100 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 100V, VGS = 0V 25 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA 4 V 48 mΩ Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) VGS = VDS, ID = 250µA RDS(on) VGS = 10V, ID = 18A Forwand Transconductance gFS VDS = 25V, ID = 18A Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Static Drain-Source On-Resistance 2 40 Dynamic Characteristics c VDS = 25V, VGS = 0V, f = 1.0 MHz 14 S 832 pF 240 pF 105 pF Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) VDD = 50V, ID = 18A, VGS = 10V, RGEN = 5.1Ω 13 40 ns 11 35 ns 32 65 ns Turn-Off Fall Time tf 15 45 ns Total Gate Charge Qg 37.5 48 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 80V, ID = 18A, VGS = 10V 6 nC 18 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 18A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature. b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 1.9mH, IAS = 18A, VDD = 50V, RG = 25Ω, Starting TJ = 25 C 4 - 95 36 A 1.3 V 4 CEP540A/CEB540A 80 60 60 ID, Drain Current (A) ID, Drain Current (A) VGS=10,9V VGS=8V 40 VGS=7V 20 VGS=6V 50 40 30 20 25 C 10 0 0 1 2 3 4 5 2 6 Figure 2. Transfer Characteristics RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) C, Capacitance (pF) 800 600 400 Coss 200 Crss 0 0 5 10 15 20 25 3.0 2.5 ID=18A VGS=10V 2.0 1.5 1.0 0.5 0.0 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) VTH, Normalized Gate-Source Threshold Voltage 8 Figure 1. Output Characteristics Ciss ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 6 VGS, Gate-to-Source Voltage (V) 1000 1.2 4 VDS, Drain-to-Source Voltage (V) 1200 1.3 -55 C TJ=125 C VGS=5V 0 VGS=0V 10 10 10 -25 0 25 50 75 100 125 150 2 1 0 0.4 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 4 - 96 10 10 VDS=80V ID=18A 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP540A/CEB540A 6 4 2 0 10 10 20 30 40 RDS(ON)Limit 4 2 10µs 100µs 10 1 1ms 10 10 0 3 10ms 0 TC=25 C TJ=175 C Single Pulse -1 10 0 10 1 10 2 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 PDM 0.1 -1 0.05 0.02 t1 t2 0.01 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 Single Pulse 10 -2 10 -2 10 -1 10 0 10 1 10 2 Square Wave Pulse Duration (msec) Figure 11. Normalized Thermal Transient Impedance Curve 4 - 97 10 3 10 4 3