IRF IRG4BC15UD-L Insulated gate bipolar transistor with ultrafast soft recovery diod Datasheet

PD - 95781
IRG4BC15UD-SPbF
IRG4BC15UD-LPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
UltraFast CoPack IGBT
C
Features
• UltraFast: Optimized for high frequencies from10 to
30 kHz in hard switching
• IGBT Co-packaged with ultra-soft-recovery
antiparallel diode
• Industry standard D2Pak & TO-262 packages
• Lead-Free
Benefits
VCES = 600V
VCE(on) typ. = 2.02V
G
@VGE = 15V, IC = 7.8A
E
n-channel
• Best Value for Appliance and Industrial Applications
• High noise immune "Positive Only" gate driveNegative bias gate drive not necessary
• For Low EMI designs- requires little or no snubbing
• Single Package switch for bridge circuit applications
• Compatible with high voltage Gate Driver IC's
• Allows simpler gate drive
D2Pak
IRG4BC15UD-S
TO-262
IRG4BC15UD-L
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Max.
Units
600
14
7.8
42
42
4.0
16
± 20
49
19
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Junction-to-Ambient (PCB Mount, steady state)†
Weight
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
–––
0.50
–––
–––
2 (0.07)
2.7
7.0
–––
80
40
–––
Units
°C/W
g (oz)
1
08/27/04
IRG4BC15UD-S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltageƒ
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
V(BR)CES
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min.
600
–––
–––
–––
–––
Gate Threshold Voltage
3.0
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance „
4.1
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.63
2.02
2.56
2.21
–––
-10
6.2
–––
–––
1.5
1.4
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.4
IC = 7.8A
VGE = 15V
–––
V
IC = 14A
–––
IC = 7.8A, TJ = 150°C
6.0
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 7.8A
250
µA
VGE = 0V, VCE = 600V
1400
VGE = 0V, VCE = 600V, TJ = 150°C
1.8
V
IC = 4.0A
1.7
IC = 4.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
23
4.0
9.6
17
20
160
83
0.24
0.26
0.50
16
21
180
220
0.76
7.5
410
37
5.3
28
38
2.9
3.7
40
70
280
240
Max. Units
Conditions
35
IC = 7.8A
6.0
nC
VCC = 400V
14
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 7.8A, VCC = 480V
240
VGE = 15V, R G = 75Ω
120
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ
0.63
–––
TJ = 150°C,
–––
ns
IC = 7.8A, VCC = 480V
–––
VGE = 15V, R G = 75Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH
Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
–––
ƒ = 1.0MHz
42
ns
TJ = 25°C
57
TJ = 125°C
IF = 4.0A
5.2
A
TJ = 25°C
6.7
TJ = 125°C
VR = 200V
60
nC
TJ = 25°C
110
TJ = 125°C
di/dt 200A/µs
––– A/µs TJ = 25°C
–––
TJ = 125°C
IRG4BC15UD-S/LPbF
12.00
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C Ta = 55°C
Gate drive as specified
Turn-on losses include effects of
reverse recovery
Power Dissipation = 11W for Heatsink Mount
Power Dissipation = 1.8W for typical
PCB socket Mount
Load Current ( A )
10.00
8.00
60% of rated
voltage
6.00
Ideal diodes
4.00
2.00
0.00
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
10
TJ = 150 °C
1
TJ = 25 °C
0.1
0.1
V GE = 15V
20µs PULSE WIDTH
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 °C
10
1
0.1
5.0
TJ = 25 °C
V CC = 50V
5µs PULSE WIDTH
10.0
15.0
20.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
IRG4BC15UD-S/LPbF
4.0
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current(A)
14
12
10
8
6
4
2
VGE = 15V
80µs PULSE WIDTH
IC = 14A
3.0
IC = 7.8A
2.0
IC = 3.9A
1.0
0
25
50
75
100
125
150
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRG4BC15UD-S/LPbF
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
800
600
Cies
400
Coes
200
Cres
0
16
12
8
4
0
1
10
100
0
5
10
15
20
25
QG , Total Gate Charge (nC)
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
0.48
10
VCC = 480V
VGE = 15V
TJ = 25°C
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 400V
I C = 7.8A
I C = 7.8A
0.46
0.44
0.42
RG = 75Ω
VGE = 15V
VCC = 480V
IC = 14A
1
IC = 7.8A
IC = 3.9A
0.1
0
10
20
30
40
RG, Gate Resistance (Ω )
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
50
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
IRG4BC15UD-S/LPbF
100
VGE = 20V
TJ = 125°
RG = 75Ω
TJ = 150°C
VGE = 15V
1.6
VCC = 480V
C, Capacitance(pF)
Total Switching Losses (mJ)
2.0
1.2
0.8
SAFE OPERATING AREA
10
0.4
1
0.0
1
2
4
6
8
10
12
14
10
16
100
VDS, Drain-to-Source Voltage (V)
IC, Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
TJ = 150°C
10
T = 125°C
J
T = 25°C
J
1
0.1
0.0
1.0
2.0
3.0
4.0
5.0
6.0
Forward Voltage Drop - V FM(V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
1000
IRG4BC15UD-S/LPbF
50
14
I F = 8.0A
45
12
I F = 4.0A
VR = 200V
TJ = 125°C
TJ = 25°C
I F = 8.0A
10
I F = 4.0A
Irr- ( A)
trr- (nC)
40
35
8
6
30
4
25
2
VR = 200V
TJ = 125°C
TJ = 25°C
20
100
di f /dt - (A/µs)
0
100
1000
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
160
I F = 8.0A
di (rec) M/dt- (A /µs)
I F = 4.0A
Qrr- (nC)
120
I F = 8.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
A
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
1000
IRG4BC15UD-S/LPbF
90% Vge
Same type
device as
D.U.T.
+Vge
Vce
430µF
80%
of Vce
D.U.T.
Ic
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
Eoff =
∫
t1+5µS
Vce
Vce icIcdtdt
t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Qrr =
Ic
∫
trr
id
Icdtdt
tx
+Vg
tx
10% Irr
10% Vcc
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRG4BC15UD-S/LPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL =
0 - 480V
480V
4 X I C @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current
Test Circuit
IRG4BC15UD-S/LPbF
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
D2Pak Part Marking Information
T HIS IS AN IRF530S WIT H
L OT CODE 8024
AS S EMB LED ON WW 02, 2000
IN T HE AS S EMB LY LINE "L "
INT ERNAT IONAL
RECT IFIER
LOGO
Note: "P" in assembly line
pos ition indicates "Lead-Free"
PART NUMB ER
F530S
AS S EMB LY
LOT CODE
OR
INT E RNAT IONAL
RE CT IF IER
LOGO
AS SE MBLY
LOT CODE
PART NUMBE R
F 530S
DAT E CODE
P = DE SIGNAT ES LE AD-FREE
PRODUCT (OPT IONAL)
YEAR 0 = 2000
WEE K 02
A = AS SE MBLY S IT E CODE
DAT E CODE
YEAR 0 = 2000
WEEK 02
L INE L
IRG4BC15UD-S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLE D ON WW 19, 1997
IN T HE AS S E MBLY LINE "C"
Note: "P" in as sembly line
position indicates "Lead-Free"
INT ERNAT IONAL
RECT IF IER
L OGO
AS S EMBLY
L OT CODE
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT E RNAT IONAL
RECT IF IER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DAT E CODE
P = DE S IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 7 = 1997
WEEK 19
A = AS S E MBLY S IT E CODE
IRG4BC15UD-S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Notes:
 Repetitive rating: VGE=20V; pulse width limited
by maximum junction temperature.
‚ VCC=80%(VCES), VGE=20V, L=10µH, RG = 75Ω
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
† This applies to D2Pak, when mounted on 1" square PCB
( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
ƒ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
„ Pulse width 5.0µs, single shot.
This only applies to TO-262 package.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
Similar pages