IRF IR2104 Half-bridge driver Datasheet

Data Sheet No. PD60046-S
IR2104(S) & (PbF)
HALF-BRIDGE DRIVER
Features
Product Summary
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Internally set deadtime
High side output in phase with input
Shut down input turns off both channels
Matched propagation delay for both channels
Also available LEAD-FREE
VOFFSET
600V max.
IO+/-
130 mA / 270 mA
VOUT
10 - 20V
ton/off (typ.)
680 & 150 ns
Deadtime (typ.)
520 ns
Packages
Description
The IR2104(S) are high voltage, high speed power
8 Lead SOIC
MOSFET and IGBT drivers with dependent high and low
8 Lead PDIP
IR2104S
side referenced output channels. Proprietary HVIC and
IR2104
latch immune CMOS technologies enable ruggedized
monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic.
The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The
floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which
operates from 10 to 600 volts.
Typical Connection
up to 600V
VCC
VCC
VB
IN
IN
HO
SD
SD
VS
COM
LO
TO
LOAD
(Refer to Lead Assignment for correct pin configuration) This/These diagram(s) show electrical
connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2104(S) & (PbF)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage
parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are
measured under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High side floating absolute voltage
-0.3
625
VS
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage (IN & SD )
-0.3
VCC + 0.3
—
50
dVs/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-55
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Min.
Max.
VB
High side floating supply absolute voltage
Definition
VS + 10
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VHO
High side floating output voltage
VS
VB
VCC
Low side and logic fixed supply voltage
10
20
VLO
Low side output voltage
0
VCC
VIN
Logic input voltage (IN & SD )
0
VCC
TA
Ambient temperature
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2104(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
ton
Turn-on propagation delay
—
680
820
VS = 0V
toff
Turn-off propagation delay
—
150
220
VS = 600V
tsd
tr
Shutdown propagation delay
—
160
220
Turn-on rise time
—
100
170
Turn-off fall time
—
50
90
tf
DT
Deadtime, LS turn-off to HS turn-on &
HS turn-on to LS turn-off
400
520
650
MT
Delay matching, HS & LS turn-on/off
—
—
60
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” (HO) & Logic “0” (LO) input voltage
3
—
—
VIL
Logic “0” (HO) & Logic “1” (LO) input voltage
—
—
0.8
VCC = 10V to 20V
VCC = 10V to 20V
V
VSD,TH+
SD input positive going threshold
3
—
—
VSD,TH-
SD input negative going threshold
—
—
0.8
VOH
High level output voltage, VBIAS - VO
—
—
100
VOL
Low level output voltage, VO
—
—
100
ILK
Offset supply leakage current
—
—
50
IQBS
Quiescent VBS supply current
—
30
55
IQCC
Quiescent VCC supply current
—
150
270
IIN+
Logic “1” input bias current
—
3
10
VIN = 5V
IIN-
VIN = 0V
Logic “0” input bias current
—
—
1
VCCUV+
VCC supply undervoltage positive going
threshold
8
8.9
9.8
VCCUV-
VCC supply undervoltage negative going
threshold
7.4
8.2
9
IO+
Output high short circuit pulsed current
130
210
—
IO-
Output low short circuit pulsed current
270
360
—
www.irf.com
VCC = 10V to 20V
VCC = 10V to 20V
mV
IO = 0A
IO = 0A
VB = VS = 600V
VIN = 0V or 5V
µA
VIN = 0V or 5V
V
mA
VO = 0V
PW ≤ 10 µs
VO = 15V
PW ≤ 10 µs
3
IR2104(S) & (PbF)
Functional Block Diagram
VB
HV
LEVEL
SHIFT
Q
PULSE
FILTER
HO
R
S
VS
IN
PULSE
GEN
UV
DETECT
DEAD TIME &
SHOOT-THROUGH
PREVENTION
VCC
LO
SD
COM
Lead Definitions
Symbol Description
IN
Logic input for high and low side gate driver outputs (HO and LO), in phase with HO
SD
VB
Logic input for shutdown
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
High side floating supply
LO
Low side gate drive output
COM
Low side return
Lead Assignments
VCC
VB
2
IN
HO
3
SD
VS
6
4
COM
LO
5
1
4
8
7
VCC
VB
8
IN
HO
7
3
SD
VS
6
4
COM
LO
5
1
2
8 Lead PDIP
8 Lead SOIC
IR2104
IR2104S
www.irf.com
IR2104(S) & (PbF)
IN(LO)
IN
50%
50%
SD
IN(HO)
ton
toff
tr
90%
HO
LO
HO
LO
Figure 1. Input/Output Timing Diagram
90%
10%
10%
Figure 2. Switching Time Waveform Definitions
50%
SD
tf
50%
IN
50%
90%
tsd
HO
LO
90%
HO
10%
DT
LO
DT
90%
Figure 3. Shutdown Waveform Definitions
10%
Figure 4. Deadtime Waveform Definitions
IN (LO)
50%
50%
IN (HO)
LO
HO
10%
MT
MT
90%
LO
HO
Figure 5. Delay Matching Waveform Definitions
www.irf.com
5
1 40 0
1400
1 20 0
1200
Turn-On Delay Time (ns)
T urn -O n D e lay T im e (n s)
IR2104(S) & (PbF)
1 00 0
M a x.
8 00
6 00
T yp .
4 00
2 00
Max.
1000
800
Typ.
600
400
200
0
0
-50
-25
0
25
50
75
1 00
10
1 25
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 6A. Turn-On Time vs Temperature
Figure 6B. Turn-On Time vs Supply Voltage
1000
5 00
800
Turn-Off Delay Time (ns)
Turn-On Delay Time (ns)
Max.
600
Typ.
400
200
4 00
3 00
M ax .
2 00
1 00
T yp .
0
0
0
2
4
6
8
10
12
14
16
18
-50
20
-25
0
Input Voltage (V)
500
1000
400
800
Max.
200
Typ.
100
0
75
1 00
1 25
600
Ma x .
400
200
Typ
0
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 7B. Turn-Off Time vs Supply Voltage
6
50
Figure 7A. Turn-Off Time vs Temperature
Turn-Off Delay Time (ns
Turn-Off Delay Time (ns)
Figure 6C. Turn-On Time vs Input Voltage
300
25
Temperature (°C)
0
2
4
6
8
10
12 14
16 18
20
Input Voltage (V)
Figure 7C. Turn-Off Time vs Input Voltage
www.irf.com
IR2104(S) & (PbF)
500
Shutdown Delay Time (ns)
Shutdown Delay Time (ns)
500
400
300
M ax.
200
100
T y p.
0
400
Max.
300
200
Typ.
100
0
-5 0
-2 5
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 8A. Shutdown Time vs Temperature
16
18
20
Figure 8B. Shutdown Time vs Voltage
500
500
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
14
VBIAS Supply Voltage (V)
400
300
200
M ax.
100
400
300
M ax.
200
100
Typ.
Typ.
0
0
-5 0
-2 5
0
25
50
75
100
10
125
12
Temperature (°C)
Figure 9A. Turn-On Rise Time
vs Temperature
16
18
20
Figure 9B. Turn-On Rise Time vs Voltage
200
Turn-Off Fall Time (ns)
20 0
Turn-Off Fall Time (ns)
14
VBIAS Supply Voltage (V)
15 0
10 0
M ax.
50
150
M ax.
100
50
Typ.
Ty p.
0
0
-50
-25
0
25
50
75
10 0
Temperature (°C)
Figure 10A. Turn-Off Fall Time
vs Temperature
www.irf.com
12 5
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 10B. Turn-Off Fall Time vs Voltage
7
1400
1400
1200
1200
Deadtime (ns)
Deadtime (ns)
IR2104(S) & (PbF)
1000
800
M ax.
600
Typ.
400
M ax.
800
600
Typ.
400
M in .
M in .
200
1000
200
0
0
-5 0
-2 5
0
25
50
75
100
125
10
12
Temperature (°C)
8
8
7
7
6
5
M in.
3
2
20
6
5
4
M in.
3
2
0
0
-50
-25
0
25
50
75
100
10
125
12
Figure 12A. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Temperature
16
18
20
Figure 12B. Logic "1" (HO) & Logic “0” (LO)
& Inactive SD Input Voltage
vs Voltage
4
3.2
3 .2
In p u t V o lta g e (V )
4
2.4
1.6
Max.
0.8
0
-50
14
Vcc Supply Voltage (V)
Temperature (°C)
Input Voltage (V)
18
1
1
2 .4
1 .6
M ax.
0 .8
0
-25
0
25
50
75
100
125
Temperature (°C)
Figure 13A. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Temperature
8
16
Figure 11B. Deadtime vs Voltage
In pu t V olta g e (V )
Input V oltag e (V )
Figure 11A. Deadtime vs Temperature
4
14
VBIAS Supply Voltage (V)
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 13B. Logic "0" (HO) & Logic “1” (LO)
& Active SD Input Voltage
vs Voltage
www.irf.com
IR2104(S) & (PbF)
1
High Level Output Voltage (V)
High Level Output Voltage (V)
1
0 .8
0 .6
0 .4
M ax.
0 .2
0 .8
0 .6
0 .4
M ax.
0 .2
0
0
-5 0
-2 5
0
25
50
75
100
10
125
12
1
18
20
1
Low Level Output Voltage (V)
Low Level Output Voltage (V)
16
Figure 14B. High Level Output vs Voltage
Figure 14A. High Level Output
vs Temperature
0 .8
0 .6
0 .4
0 .2
M ax.
0
-5 0
-2 5
0
25
50
75
100
0 .8
0 .6
0 .4
0 .2
M ax.
0
10
125
12
400
300
200
100
M ax.
0
0
25
50
75
100
Temperature (°C)
Figure 16A. Offset Supply Current
vs Temperature
www.irf.com
125
Offset Supply Leakage Current (µA)
500
-2 5
16
18
20
Figure 15B. Low level Output vs Voltage
Figure 15A. Low Level Output
vs Temperature
-5 0
14
Vcc Supply Voltage (V)
Temperature (°C)
Offset Supply Leakage Current (µA)
14
Vcc Supply Voltage (V)
Temperature (°C)
500
400
300
200
100
Max.
0
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 16B. Offset Supply Current
vs Voltage
9
IR2104(S) & (PbF)
150
VBS Supply Current (µA)
VBS Supply Current (µA)
1 50
1 20
90
60
M ax .
30
T yp .
0
120
90
60
Max .
30
Ty p.
0
-50
-25
0
25
50
75
1 00
1 25
10
12
Temperature (°C)
Figure 17A. VBS Supply Current
vs Temperature
16
18
20
Figure 17B. VBS Supply Current
vs Voltage
700
700
Vcc Supply Current (µA)
Vcc Supply Current (µA)
14
VBS Floating Supply Voltage (V)
600
500
400
M ax.
300
200
100
Typ.
600
500
400
300
M ax.
200
100
Typ.
0
0
-5 0
-2 5
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 18A. Vcc Supply Current
vs Temperature
18
20
30
Logic 1” Input Current (µA)
Logic 1” Input Current (µA)
16
Figure 18B. Vcc Supply Current vs Voltage
30
25
20
15
10
M ax.
5
Typ.
0
25
20
15
10
M ax.
5
Typ.
0
-5 0
-2 5
0
25
50
75
100
Temperature (°C)
Figure 19A. Logic"1" Input Current
vs Temperature
10
14
Vcc Supply Voltage (V)
125
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 19B. Logic"1" Input Current
vs Voltage
www.irf.com
IR2104(S) & (PbF)
5
Logic "0" Input Current (uA)
Logic “0” Input Current (µA)
5
4
3
2
Max.
1
4
3
2
Max.
1
0
0
-50
-25
0
25
50
75
Temperature (°C)
100
10
125
Figure 20A. Logic "0" Input Current
vs Temperature
VCC UVLO Threshold - (V)
VCC UVLO Threshold +(V)
10
Typ.
M in.
8
7
6
10
Max.
9
Typ.
8
7
Min.
6
-50
-25
0
25
50
75
100
-50
125
-25
0
Temperature (°C)
50
75
100
125
Figure 21B. Vcc Undervoltage Threshold(-)
vs Temperature
500
Output Source Current (mA)
500
Output Source Current (mA)
25
Temperature (°C)
Figure 21A. Vcc Undervoltage Threshold(+)
vs Temperature
400
Typ.
200
100
20
11
M ax.
300
14
16
18
VCC Supply Voltage (V)
Figure 20B. Logic "0" Input Current
vs Voltage
11
9
12
Min.
0
-50
400
300
200
T y p.
100
M in.
0
-25
0
25
50
75
Temperature (°C)
100
Figure 22A. Output Source Current
vs Temperature
www.irf.com
125
10
12
14
16
18
VBIAS Supply Voltage (V)
20
Figure 22B. Output Source Current
vs Voltage
11
IR2104(S) & (PbF)
70 0
6 00
Output Sink Current (mA)
Output Sink Current (mA)
7 00
T yp .
5 00
4 00
3 00
M in .
2 00
1 00
60 0
50 0
40 0
Ty p.
30 0
20 0
M in.
10 0
0
0
-50
-25
0
25
50
75
1 00
1 25
10
Figure 23A. Output Sink Current
vs Temperature
12
14
16
18
20
VBIAS Supply Voltage (V)
Temperature (°C)
Figure 23B. Output Sink Current vs Voltage
Case Outlines
8 Lead PDIP
12
01-6014
01-3003 01 (MS-001AB)
www.irf.com
IR2104(S) & (PbF)
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANC ING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
www.irf.com
MIN
.0532
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
13
IR2104(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
Date code
IRxxxxxx
YWW?
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP IR2104 order IR2104
8-Lead SOIC IR2104S order IR2104S
Leadfree Part
8-Lead PDIP IR2104 order IR2104PbF
8-Lead SOIC IR2104S order IR2104SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004
14
www.irf.com
Similar pages