PD -96299 IRFH5406PbF HEXFET® Power MOSFET VDS 60 V 14.4 mΩ nC RG (typical) 23 1.1 ID 40 A RDS(on) max (@VGS = 10V) Qg (typical) (@Tc(Bottom) = 25°C) Ω PQFN 5X6 mm Applications • • • • Secondary Side Synchronous Rectification Inverters for DC Motors DC-DC Brick Applications Boost Converters Features and Benefits Features Benefits Low RDSon (< 14.4 mΩ) Low Thermal Resistance to PCB (< 2.7°C/W) 100% Rg tested Low Profile (<0.9 mm) results in ⇒ Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Lower Conduction Losses Enables better thermal dissipation Increased Reliability Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Orderable part number IRFH5406TRPBF IRFH5406TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Standard Pack Form Quantity Tape and Reel 4000 400 Tape and Reel Note Absolute Maximum Ratings VDS VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC(Bottom) = 25°C ID @ TC(Bottom) = 100°C IDM PD @TA = 25°C PD @ TC(Bottom) = 25°C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range Notes through www.irf.com g g c g Max. 60 ± 20 11 9 40 25 160 3.6 46 Units 0.029 -55 to + 150 W/°C V A W °C are on page 8 1 04/12/10 IRFH5406PbF Static @ TJ = 25°C (unless otherwise specified) BVDSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) ∆VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Min. 60 ––– ––– 2.0 ––– ––– ––– ––– ––– 27 ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.07 11.4 ––– -8.6 ––– ––– ––– ––– ––– 23 3.4 1.7 7.1 11 8.8 7.4 Conditions Max. Units ––– V VGS = 0V, ID = 250uA ––– V/°C Reference to 25°C, ID = 1.0mA 14.4 mΩ VGS = 10V, ID = 24A 4.0 V VDS = VGS, ID = 50µA ––– mV/°C VDS = 60V, VGS = 0V 20 µA 250 VDS = 60V, VGS = 0V, TJ = 125°C VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 25V, ID = 24A 35 ––– VDS = 30V VGS = 10V ––– nC ––– ID = 24A ––– ––– ––– nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– 1.1 5.4 8.7 12 3.5 1256 206 92 ––– ––– ––– ––– ––– ––– ––– ––– Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e Ω ns pF VDD = 30V, VGS = 10V ID = 24A RG=1.7Ω VGS = 0V VDS = 25V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c Typ. ––– ––– d Units mJ A Max. 45 24 Diode Characteristics Parameter Continuous Source Current IS ISM VSD trr Qrr ton (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. ––– ––– Max. Units 40 A c ––– ––– 160 Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 24A, VGS = 0V TJ = 25°C, IF = 24A, VDD = 30V di/dt = 500A/µs ––– ––– 1.3 V ––– 20 30 ns ––– 74 111 nC Time is dominated by parasitic Inductance S e e Thermal Resistance RθJC (Bottom) RθJC (Top) RθJA RθJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g Typ. ––– ––– ––– ––– Max. 2.7 15 35 22 Units °C/W www.irf.com IRFH5406PbF VGS 15V 10V 8.00V 5.50V 5.00V 4.50V 4.00V 3.75V ID, Drain-to-Source Current (A) TOP 100 10 BOTTOM 1000 ≤60µs PULSE WIDTH Tj = 25°C VGS 15V 10V 8.00V 5.50V 5.00V 4.50V 4.00V 3.75V TOP ID, Drain-to-Source Current (A) 1000 1 0.1 100 BOTTOM 10 3.75V 1 ≤60µs PULSE WIDTH 3.75V 0.01 Tj = 150°C 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 100 Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current (A) 10 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 T J = 150°C 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 2 3 4 5 6 7 8 9 ID = 24A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.1 -60 -40 -20 0 10 Fig 4. Normalized On-Resistance Vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 24A C oss = C ds + C gd 10000 Ciss 1000 Coss Crss 100 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 1 12 VDS= 48V VDS= 30V VDS= 12V 10 8 6 4 2 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage www.irf.com 0 5 10 15 20 25 30 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage 3 IRFH5406PbF 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) T J = 150°C 100 T J = 25°C 10 100 100µsec 10 1msec 10msec 1 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1.0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.10 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 5.0 40 4.5 VGS(th), Gate threshold Voltage (V) 45 35 ID, Drain Current (A) 1 30 25 20 15 10 5 4.0 3.5 3.0 2.5 2.0 1.5 ID = 1.0A ID = 1.0mA ID = 250µA ID = 50µA 1.0 0.5 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.1 0.10 0.02 0.01 0.05 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 35 200 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRFH5406PbF ID = 24A 30 25 TJ = 125°C 20 15 10 T J = 25°C 5 ID TOP 3.1A 6.7A BOTTOM 24A 150 100 50 0 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01Ω tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5406PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5406PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5406PbF PQFN 5x6 Outline "B" Tape and Reel Qualification information† Qualification level Moisture Sensitivity Level Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm RoHS compliant †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.156mH, RG = 50Ω, IAS = 24A. Pulse width ≤ 400µs; duty cycle ≤ 2%. Rθ is measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/2010 8 www.irf.com