ON NCP4625HSN50T1G 300 ma, 10 v, low dropout regulator Datasheet

NCP4625
300 mA, 10 V, Low Dropout
Regulator
The NCP4625 is a CMOS Linear voltage regulator with 300 mA
output current capability. The device is capable of operating with input
voltages up to 10 V, with high output voltage accuracy and low
temperature−drift coefficient. The NCP4625 is easy to use, with
output current fold−back protection and a thermal shutdown circuit
included. A Chip Enable function is included to save power by
lowering supply current.
http://onsemi.com
MARKING
DIAGRAMS
Features
•
•
•
•
•
•
•
•
•
•
•
Operating Input Voltage Range: 2.6 V to 10 V
Output Voltage Range: 1.2 to 6.0 V (available in 0.1 V steps)
Low Supply Current: 23 mA
Very Low Dropout:
♦ 200 mV (IOUT = 100 mA, VIN = 3.0 V)
♦ 770 mV (IOUT = 300 mA, VIN = 2.8 V)
High PSRR: 70 dB at 1 kHz
Line Regulation 0.02%/V Typ
Current Fold Back Protection
Thermal Shutdown Protection
Stable with Ceramic Capacitors
Available in SC−70, SOT89 and SOT−23 Package
These are Pb−Free Devices
Typical Applications
•
•
•
•
VIN
1m
CE
XXX
XMM
SOT−89 5
CASE 528AB
XXXMM
SOT−23−5
CASE 1212
1
VOUT
VOUT
ORDERING INFORMATION
C2
GND
1
(*Note: Microdot may be in either location)
NCP4625x
C1
1
XX, XXX= Specific Device Code
M, MM = Date Code
A
= Assembly Location
Y
= Year
W
= Work Week
G
= Pb−Free Package
Battery products powered by Two Lithium Ion cells
Networking and Communication Equipment
Cameras, DVRs, STB and Camcorders
Toys, industrial applications
VIN
XXX MG
G
SC−70
CASE 419A
See detailed ordering and shipping information in the package
dimensions section on page 14 of this data sheet.
1m
Figure 1. Typical Application Schematic
© Semiconductor Components Industries, LLC, 2012
February, 2012 − Rev. 2
1
Publication Order Number:
NCP4625/D
NCP4625
VIN
VOUT VIN
Vref
Vref
Current Limit
Thermal Shutdown
CE
VOUT
CE
Current Limit
Thermal Shutdown
GND
GND
NCP4625Hxxxx
NCP4625Dxxxx
Figure 2. Simplified Schematic Block Diagram
PIN FUNCTION DESCRIPTION
Pin No.
SOT89
Pin No.
SC−70
Pin No.
SOT23
Pin Name
5
5
1
VIN
Input pin
2
3
2
GND
Ground
3
1
3
CE
1
4
5
VOUT
4
2
4
NC
Description
Chip enable pin (Active “H”)
Output pin
No connection
ABSOLUTE MAXIMUM RATINGS
Rating
Symbol
Input Voltage (Note 1)
Value
Unit
VIN
12.0
V
Output Voltage
VOUT
−0.3 to VIN + 0.3
V
Chip Enable Input
VCE
12.0
V
Output Current
IOUT
330
mA
PD
900
mW
Power Dissipation SOT89
Power Dissipation SC−70
380
Power Dissipation SOT23
420
Junction Temperature
TJ
−40 to 150
°C
Storage Temperature
TSTG
−55 to 125
°C
ESD Capability, Human Body Model (Note 2)
ESDHBM
2000
V
ESD Capability, Machine Model (Note 2)
ESDMM
200
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
2. This device series incorporates ESD protection and is tested by the following methods:
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.
http://onsemi.com
2
NCP4625
THERMAL CHARACTERISTICS
Symbol
Value
Unit
Thermal Characteristics, SOT89
Thermal Resistance, Junction−to−Air
Rating
RqJA
111
°C/W
Thermal Characteristics, SOT23
Thermal Resistance, Junction−to−Air
RqJA
238
°C/W
Thermal Characteristics, SC−70
Thermal Resistance, Junction−to−Air
RqJA
263
°C/W
ELECTRICAL CHARACTERISTICS −40°C ≤ TA ≤ 85°C; VIN = VOUT(NOM) + 1 V; IOUT = 1 mA, CIN = COUT = 0.47 mF, unless
otherwise noted. Typical values are at TA = +25°C.
Parameter
Test Conditions
Symbol
Min
Max
Unit
VIN
2.6
10
V
VOUT
x0.99
x1.01
V
VOUT ≤ 1.5 V
−15
15
mV
VOUT > 1.5 V
x0.974
x1.023
V
VOUT ≤ 1.5 V
−40
35
mV
Operating Input Voltage
Output Voltage
TA = +25°C
VOUT > 1.5 V
−40°C ≤ TA ≤ 85°C
Output Voltage Temp.
Coefficient
−40°C ≤ TA ≤ 85°C
Typ
ppm/°C
±80
Line Regulation
VOUT(NOM) + 0.5 V or 2.6 V (whichever is higher)
≤ VIN ≤ 10 V
LineReg
0.02
0.2
%/V
Load Regulation
IOUT = 0.1 mA to 300 mA
LineReg
10
70
mV
VDO
1.40
1.80
V
1.3 V ≤ VOUT < 1.5 V
1.35
1.75
1.5 V ≤ VOUT < 1.8 V
1.20
1.55
1.8 V ≤ VOUT < 2.3 V
0.98
1.30
2.3 V ≤ VOUT < 3.0 V
0.77
1.08
3.0 V ≤ VOUT < 4.0 V
0.60
0.85
4.0 V ≤ VOUT < 6.0 V
0.50
0.75
Dropout Voltage
IOUT = 300 mA
1.2 V ≤ VOUT < 1.3 V
Output Current
Short Current Limit
IOUT
VOUT = 0 V
CE Pin Threshold Voltage
mA
ISC
40
IQ
23
40
mA
VIN = 10 V, VCE = 0 V, TA = 25°C
ISTB
0.1
1.0
mA
CE Input Voltage “H”
VCEH
CE Input Voltage “L”
VCEL
Quiescent Current
Standby Current
300
CE Pull Down Current
mA
V
1.7
0.8
ICEPD
0.3
mA
VIN = VOUT + 1 V or 3.0 V whichever is higher,
ΔVIN = 0.2 Vpk−pk, IOUT = 30 mA, f = 1 kHz
PSRR
70
dB
f = 10 Hz to 100 kHz
VN
85
mVrms
VIN = 7 V, VCE = 0 V, VOUT = 1.2 V, VIN = 2.6 V,
IOUT = 30 mA
RLOW
250
W
Thermal Shutdown Temperature
TTSD
165
°C
Thermal Shutdown Release
TTSR
110
°C
Power Supply Rejection Ratio
Output Noise Voltage
Low Output N−channel Tr. On
Resistance
http://onsemi.com
3
NCP4625
TYPICAL CHARACTERISTICS
1.4
3.0
1.2
2.5
3.0 V
0.6
4.0 V
5.0 V
VIN = 3.0 V
1.5
1.0
0.4
0.5
0.2
0.0
4.0 V
3.3 V
2.0
VIN = 2.6 V
0.8
VOUT (V)
VOUT (V)
1.0
3.6 V
0
100
200
300
IOUT (mA)
400
500
0.0
600
0
Figure 3. Output Voltage vs. Output Current
1.2 V Version (TJ = 255C)
100
200
300
IOUT (mA)
400
500
600
Figure 4. Output Voltage vs. Output Current
2.8 V Version (TJ = 255C)
1.75
6.0
8.0 V
1.50
5.0
VIN = 5.3 V
6.0 V
VDO (V)
VOUT (V)
1.25
5.6 V
4.0
7.0 V
3.0
2.0
0.75
0.25
0
100
200
300
400
500
0.00
600
0
50
100
200
250
IOUT (mA)
Figure 5. Output Voltage vs. Output Current
5.0 V Version (TJ = 255C)
Figure 6. Dropout Voltage vs. Output Current
1.2 V Version
300
0.50
0.60
0.40
TJ = 25°C
0.50
VDO (V)
105°C
0.40
0.30
−40°C
TJ = 25°C
0.30
105°C
0.20
−40°C
0.20
0.10
0.10
0.00
150
IOUT (mA)
0.70
VDO (V)
1.00
0.50
1.0
0.0
105°C
TJ = −40°C and TJ = 25°C
0
50
100
150
IOUT (mA)
200
250
0.00
300
0
Figure 7. Dropout Voltage vs. Output Current
2.8 V Version
50
100
150
200
IOUT (mA)
250
Figure 8. Dropout Voltage vs. Output Current
5.0 V Version
http://onsemi.com
4
300
NCP4625
TYPICAL CHARACTERISTICS
1.30
1.26
2.86
1.24
2.84
1.22
2.82
1.20
1.18
2.80
2.78
1.16
2.76
1.14
2.74
1.12
2.72
1.10
−40
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
VIN = 3.8 V
2.88
VOUT (V)
VOUT (V)
2.90
VIN = 2.6 V
1.28
2.70
−40
80
Figure 9. Output Voltage vs. Temperature,
1.2 V Version
40
VIN = 6.0 V
5.08
35
5.06
30
5.02
IGND (mA)
VOUT (V)
5.04
5.00
4.98
4.96
VOUT = 5 V
25
2.8 V
20
1.2 V
15
10
4.94
5
4.92
4.90
−40
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
0
80
0
Figure 11. Output Voltage vs. Temperature,
5.0 V Version
2
3
4
VIN, OUTPUT VOLTAGE (V)
5
6
1.4
1.2
25
2.8 V
5.0 V
1 mA
1.0
VOUT (V)
20
IGND (mA)
1
Figure 12. Supply Current vs. Input Voltage
30
VOUT = 1.2 V
10
20 mA
50 mA
0.8
100 mA
0.6
IOUT = 200 mA
0.4
5
0
−40
80
Figure 10. Output Voltage vs. Temperature,
2.8 V Version
5.10
15
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
0.2
−20
0
20
40
60
TJ, JUNCTION TEMPERATURE (°C)
0.0
80
0
Figure 13. Supply Current vs. Temperature,
1.2 V Version
2
4
6
VIN, INPUT VOLTAGE (V)
8
Figure 14. Output Voltage vs. Input Voltage,
1.2 V Version
http://onsemi.com
5
10
NCP4625
TYPICAL CHARACTERISTICS
6.0
3.0
1 mA
2.5
2.0
4.0
100 mA
VOUT (V)
VOUT (V)
5.0
20 mA
50 mA
1.5
IOUT = 200 mA
1.0
20 mA
3.0
50 mA
2.0
100 mA
1 mA
0.0
0
2
4
6
VIN, INPUT VOLTAGE (V)
8
0.0
10
0
Figure 15. Output Voltage vs. Input Voltage,
2.8 V Version
90
IOUT = 100 mA
80
70
30 mA
70
60
PSRR (dB)
PSRR (dB)
80
1 mA
50
40
8
10
20
10
10
100
0
0.01
1000
1 mA
40
20
1
10
FREQUENCY (kHz)
30 mA
50
30
0.1
IOUT = 100 mA
60
30
Figure 17. PSRR, 1.2 V Version, VIN = 2.6 V
0.1
1
10
FREQUENCY (kHz)
100
1000
Figure 18. PSRR, 1.2 V Version, VIN = 3.0 V
100
100
90
90
IOUT = 100 mA
80
70
PSRR (dB)
40
60
40
30
20
20
10
10
1
10
FREQUENCY (kHz)
100
0
0.01
1000
1 mA
50
30
0.1
30 mA
70
1 mA
50
IOUT = 100 mA
80
30 mA
60
0
0.01
4
6
VIN, INPUT VOLTAGE (V)
100
90
0
0.01
2
Figure 16. Output Voltage vs. Input Voltage,
5.0 V Version
100
PSRR (dB)
IOUT = 200 mA
1.0
0.5
Figure 19. PSRR, 2.8 V Version, VIN = 3.8 V
0.1
1
10
FREQUENCY (kHz)
100
Figure 20. PSRR, 2.8 V Version, VIN = 4.8 V
http://onsemi.com
6
1000
NCP4625
TYPICAL CHARACTERISTICS
100
100
90
90
80
80
60
1 mA
50
IOUT = 100 mA
40
40
30
20
10
10
0.1
1
10
100
0
0.01
1000
1 mA
IOUT = 100 mA
50
20
0.1
1
10
100
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 21. PSRR, 5.0 V Version, VIN = 6.0 V
Figure 22. PSRR, 5.0 V Version, VIN = 7.0 V
1000
9.0
3.0
8.0
2.5
7.0
VN (mVrms/√Hz)
2.0
1.5
1.0
6.0
5.0
4.0
3.0
2.0
0.5
1.0
0.0
0.01
0.1
1
10
100
0.0
0.01
1000
0.1
1
10
100
1000
FREQUENCY (kHz)
FREQUENCY (kHz)
Figure 23. Output Voltage Noise, 1.2 V Version,
VIN = 2.6 V
Figure 24. Output Voltage Noise, 2.8 V Version,
VIN = 3.8 V
12
10
VN (mVrms/√Hz)
VN (mVrms/√Hz)
60
30
0
0.01
30 mA
70
30 mA
PSRR (dB)
PSRR (dB)
70
8.0
6.0
4.0
2.0
0.0
0.01
0.1
1
10
FREQUENCY (kHz)
100
1000
Figure 25. Output Voltage Noise, 5.0 V Version,
VIN = 6.0 V
http://onsemi.com
7
NCP4625
TYPICAL CHARACTERISTICS
5
4
3
1.220
1
1.215
0
1.210
VIN (V)
VOUT (V)
2
1.205
1.200
1.195
1.190
0
10
20
30
40
50
t (ms)
60
70
80
90
100
Figure 26. Line Transients, 1.2 V Version,
tR = tF = 5 ms, IOUT = 30 mA
6
5
4
2
2.815
1
2.810
VIN (V)
VOUT (V)
3
2.820
2.805
2.800
2.795
2.790
0
10
20
30
40
50
t (ms)
60
70
80
90
100
Figure 27. Line Transients, 2.8 V Version,
tR = tF = 5 ms, IOUT = 30 mA
8
7
6
5.010
4
5.005
3
5.000
4.995
4.990
4.985
4.980
0
10
20
30
40
50
60
70
80
90
t (ms)
Figure 28. Line Transients, 5.0 V Version,
tR = tF = 5 ms, IOUT = 30 mA
http://onsemi.com
8
100
VIN (V)
VOUT (V)
5
NCP4625
TYPICAL CHARACTERISTICS
200
150
50
0
1.24
IOUT (mA)
VOUT (V)
100
1.22
1.20
1.18
1.16
1.14
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 29. Load Transients, 1.2 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 2.6 V
200
150
100
0
2.83
2.81
IOUT (mA)
VOUT (V)
50
2.79
2.77
2.75
2.73
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 30. Load Transients, 2.8 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 3.8 V
200
150
100
0
5.05
5.03
5.01
4.99
4.97
4.95
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 31. Load Transients, 5.0 V Version,
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V
http://onsemi.com
9
IOUT (mA)
VOUT (V)
50
NCP4625
TYPICAL CHARACTERISTICS
200
150
100
0
1.40
1.30
IOUT (mA)
VOUT (V)
50
1.20
1.10
1.00
0.99
0
50
100 150 200 250 300 350 400 450 500
t (ms)
Figure 32. Load Transients, 1.2 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 2.6 V
200
150
100
0
2.90
2.80
IOUT (mA)
VOUT (V)
50
2.70
2.60
2.50
2.40
0
50
100 150 200 250 300 350 400 450 500
t (ms)
Figure 33. Load Transients, 2.8 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 3.8 V
200
150
100
0
5.20
5.10
5.00
4.90
4.80
4.70
0
50
100 150 200 250 300 350 400 450 500
t (ms)
Figure 34. Load Transients, 5.0 V Version,
IOUT = 1 – 150 mA, tR = tF = 0.5 ms, VIN = 6.0 V
http://onsemi.com
10
IOUT (mA)
VOUT (V)
50
NCP4625
TYPICAL CHARACTERISTICS
4
Chip Enable
3
2
0
2.0
1.5
IOUT = 30 mA
1.0
VCE (V)
VOUT (V)
1
IOUT = 300 mA
IOUT = 1 mA
0.5
0.0
−0.5
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 35. Start−up, 1.2 V Version, VIN = 2.6 V
5
Chip Enable
4
3
2
4
0
3
IOUT = 30 mA
2
IOUT = 300 mA
1
VCE (V)
VOUT (V)
1
IOUT = 1 mA
0
−1
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 36. Start−up, 2.8 V Version, VIN = 3.8 V
10
8
Chip Enable
6
2
8
0
6
IOUT = 30 mA
IOUT = 300 mA
IOUT = 1 mA
4
2
0
−2
0
20
40
60
80
100 120 140 160 180 200
t (ms)
Figure 37. Start−up, 5.0 V Version, VIN = 6.0 V
http://onsemi.com
11
VCE (V)
VOUT (V)
4
NCP4625
TYPICAL CHARACTERISTICS
4
3
2
VOUT (V)
2.0
0
IOUT = 1 mA
1.5
1.0
VEN (V)
1
Chip Enable
IOUT = 30 mA
0.5
0.0
−0.5
0.0
IOUT = 300 mA
0.2
0.4
0.6
0.8
1.0 1.2
t (ms)
1.4
1.6
1.8
2.0
Figure 38. Shutdown, 1.2 V Version D,
VIN = 2.6 V
5
4
3
1
Chip Enable
4
IOUT = 1 mA
3
2
VEN (V)
VOUT (V)
2
IOUT = 30 mA
1
0
−1
0.0
IOUT = 300 mA
0.2
0.4
0.6
0.8
1.0 1.2
t (ms)
1.4
1.6
1.8
2.0
Figure 39. Shutdown, 2.8 V Version D,
VIN = 3.8 V
10
8
6
2
Chip Enable
8
6
IOUT = 1 mA
4
IOUT = 30 mA
2
0
−2
0.0
0
IOUT = 300 mA
0.2
0.4
0.6
0.8
1.0 1.2
t (ms)
1.4
1.6
1.8
Figure 40. Shutdown, 5.0 V Version D,
VIN = 6.0 V
http://onsemi.com
12
2.0
VEN (V)
VOUT (V)
4
NCP4625
APPLICATION INFORMATION
Enable Operation
A typical application circuit for NCP4625 series is shown
in Figure 41.
NCP4625x
VIN
VIN
C1
1m
CE
The enable pin CE may be used for turning the regulator
on and off. The IC is switched on when a high level voltage
is applied to the CE pin. The enable pin has an internal pull
down current source. If the enable function is not needed
connect CE pin to VIN.
VOUT
VOUT
C2
GND
1m
Output Discharger
The D version includes a transistor between VOUT and
GND that is used for faster discharging of the output
capacitor. This function is activated when the IC goes into
disable mode.
Figure 41. Typical Application Schematic
Thermal
As a power across the IC increase, it might become
necessary to provide some thermal relief. The maximum
power dissipation supported by the device is dependent
upon board design and layout. Mounting pad configuration
on the PCB, the board material, and also the ambient
temperature affect the rate of temperature increase for the
part. When the device has good thermal conductivity
through the PCB the junction temperature will be relatively
low in high power dissipation applications.
Input Decoupling Capacitor (C1)
A 1 mF ceramic input decoupling capacitor should be
connected as close as possible to the input and ground pin of
the NCP4625. Higher values and lower ESR improves line
transient response.
Output Decoupling Capacitor (C2)
A 1 mF ceramic output decoupling capacitor is enough to
achieve stable operation of the IC. If a tantalum capacitor is
used, and its ESR is high, loop oscillation may result. The
capacitors should be connected as close as possible to the
output and ground pins. Larger values and lower ESR
improves dynamic parameters.
PCB Layout
Make the VIN and GND line as large as practical. If their
impedance is high, noise pickup or unstable operation may
result. Connect capacitors C1 and C2 as close as possible to
the IC, and make wiring as short as possible.
http://onsemi.com
13
NCP4625
ORDERING INFORMATION
Nominal Output
Voltage
Description
Marking
Package
Shipping†
NCP4625DSN12T1G
1.2 V
Auto discharge
FBA
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625DSN18T1G
1.8 V
Auto discharge
FBH
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625DSN28T1G
2.8 V
Auto discharge
FBU
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625DSN30T1G
3.0 V
Auto discharge
FBX
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625DSN33T1G
3.3 V
Auto discharge
GBA
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625DSN50T1G
5.0 V
Auto discharge
GBT
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN12T1G
1.2 V
Standard
FAA
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN18T1G
1.8 V
Standard
FAH
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN28T1G
2.8 V
Standard
FAU
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN30T1G
3.0 V
Standard
FAX
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN33T1G
3.3 V
Standard
GAA
SOT−23
(Pb−Free)
3000 / Tape & Reel
NCP4625HSN50T1G
5.0 V
Standard
GAT
SOT−23
(Pb−Free)
3000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
14
NCP4625
PACKAGE DIMENSIONS
SC−88A (SC−70−5/SOT−353)
CASE 419A−02
ISSUE K
A
NOTES:
1. DIMENSIONING AND TOLERANCING
PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. 419A−01 OBSOLETE. NEW STANDARD
419A−02.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD FLASH, PROTRUSIONS, OR GATE
BURRS.
G
5
4
−B−
S
1
2
DIM
A
B
C
D
G
H
J
K
N
S
3
D 5 PL
0.2 (0.008)
M
B
M
N
J
C
H
K
http://onsemi.com
15
INCHES
MIN
MAX
0.071
0.087
0.045
0.053
0.031
0.043
0.004
0.012
0.026 BSC
--0.004
0.004
0.010
0.004
0.012
0.008 REF
0.079
0.087
MILLIMETERS
MIN
MAX
1.80
2.20
1.15
1.35
0.80
1.10
0.10
0.30
0.65 BSC
--0.10
0.10
0.25
0.10
0.30
0.20 REF
2.00
2.20
NCP4625
PACKAGE DIMENSIONS
SOT−89, 5 LEAD
CASE 528AB−01
ISSUE O
D
E
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. LEAD THICKNESS INCLUDES LEAD FINISH.
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH, PROTRUSIONS, OR GATE BURRS.
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEASURED AT DATUM PLANE C.
H
DIM
A
b
b1
c
D
D2
E
e
H
L
L2
L3
L4
L5
1
TOP VIEW
c
A
0.10 C
C
SIDE VIEW
e
b1
L
1
e
b
2
L3
L4
RECOMMENDED
MOUNTING FOOTPRINT*
L2
4X
3
4
0.57
1.75
L5
5
MILLIMETERS
MIN
MAX
1.40
1.60
0.32
0.52
0.37
0.57
0.30
0.50
4.40
4.60
1.40
1.80
2.40
2.60
1.40
1.60
4.25
4.45
1.10
1.50
0.80
1.20
0.95
1.35
0.65
1.05
0.20
0.60
2.79
1.50
0.45
4.65
D2
BOTTOM VIEW
1.30
1
1.65
2X
2X
1.50
0.62
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
16
NCP4625
PACKAGE DIMENSIONS
SOT−23 5−LEAD
CASE 1212−01
ISSUE A
A
5
E
1
L1
A1
4
2
L
3
5X
e
A2
0.05 S
B
D
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSIONS: MILLIMETERS.
3. DATUM C IS THE SEATING PLANE.
A
E1
b
0.10
C
M
C B
S
A
S
C
RECOMMENDED
SOLDERING FOOTPRINT*
3.30
DIM
A
A1
A2
b
c
D
E
E1
e
L
L1
MILLIMETERS
MIN
MAX
--1.45
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.70
3.10
2.50
3.10
1.50
1.80
0.95 BSC
0.20
--0.45
0.75
5X
0.85
5X
0.95
PITCH
0.56
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
17
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP4625/D
Similar pages