Freescale K40P144M100SF2 K40 sub-family data sheet Datasheet

Freescale Semiconductor
Data Sheet: Product Preview
K40 Sub-Family Data Sheet
Document Number: K40P144M100SF2
Rev. 1, 11/2010
K40P144M100SF2
Pr
el
im
in
ar
y
Supports the following:
MK40X128VLQ100,
MK40X128VMD100,
MK40X256VLQ100,
MK40X256VMD100,
MK40N512VLQ100,
MK40N512VMD100
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 100 MHz ARM Cortex-M4 core with DSP
instructions delivering 1.25 Dhrystone MIPS per
MHz
• Memories and memory interfaces
– Up to 512 KB program flash memory on nonFlexMemory devices
– Up to 256 KB program flash memory on
FlexMemory devices
– Up to 256 KB FlexNVM on FlexMemory devices
– 4 KB FlexRAM on FlexMemory devices
– Up to 128 KB RAM
– Serial programming interface (EzPort)
– FlexBus external bus interface
• Clocks
– 1 to 32 MHz crystal oscillator
– 32 kHz crystal oscillator
– Multi-purpose clock generator
• System peripherals
– 10 low-power modes to provide power optimization
based on application requirements
– Memory protection unit with multi-master
protection
– 16-channel DMA controller, supporting up to 64
request sources
– External watchdog monitor
– Software watchdog
– Low-leakage wakeup unit
• Security and integrity modules
– Hardware CRC module to support fast cyclic
redundancy checks
– 128-bit unique identification (ID) number per chip
• Human-machine interface
– Segment LCD controller supporting up to 40
frontplanes and 8 backplanes, or 44 frontplanes and
4 backplanes
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– 16-bit SAR ADC with PGA (x64)
– 12-bit DAC
– Analog comparator (CMP) containing a 6-bit DAC
and programmable reference input
– Voltage reference
• Timers
– Programmable delay block
– Eight-channel motor control/general purpose/PWM
timers
– Two-channel quadrature decoder/general purpose
timers
– Periodic interrupt timers
– 16-bit low-power timer
– Carrier modulator transmitter
– Real-time clock
This document contains information on a product under development. Freescale
reserves the right to change or discontinue this product without notice.
© 2010–2010 Freescale Semiconductor, Inc.
Preliminary
Pr
el
im
in
ar
y
• Communication interfaces
– USB full-/low-speed On-the-Go controller with on-chip transceiver
– Controller Area Network (CAN) module
– SPI modules
– I2C modules
– UART modules
– Secure Digital host controller (SDHC)
– I2S
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
2
Preliminary
Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................5
6 Peripheral operating requirements and behaviors....................20
1.1 Determining valid orderable parts......................................5
6.1 Core modules....................................................................20
2 Part identification......................................................................5
6.1.1
Debug trace timing specifications.........................20
2.1 Description.........................................................................5
6.1.2
JTAG electricals....................................................21
2.2 Format...............................................................................5
6.2 System modules................................................................24
2.3 Fields.................................................................................5
6.3 Clock modules...................................................................24
2.4 Example............................................................................6
6.3.1
MCG Specifications...............................................24
3 Terminology and guidelines......................................................6
6.3.2
Oscillator Electrical Characteristics.......................26
6.3.2.1
Oscillator DC Electrical Specifications 26
3.2 Definition: Operating behavior...........................................7
6.3.2.2
Oscillator frequency specifications......27
Pr
el
im
in
ar
y
3.1 Definition: Operating requirement......................................6
3.3 Definition: Attribute............................................................7
6.3.3
3.4 Definition: Rating...............................................................8
32kHz Oscillator Electrical Characteristics............28
6.3.3.1
3.5 Result of exceeding a rating..............................................8
32kHz Oscillator DC Electrical
Specifications......................................28
3.6 Relationship between ratings and operating
6.3.3.2
32kHz Oscillator Frequency
requirements......................................................................8
Specifications......................................28
3.7 Guidelines for ratings and operating requirements............9
6.4 Memories and memory interfaces.....................................29
3.8 Definition: Typical value.....................................................9
6.4.1
3.9 Typical Value Conditions...................................................10
Flash (FTFL) Electrical Characteristics.................29
6.4.1.1
4 Ratings......................................................................................10
Flash Timing Parameters — Program
and Erase............................................29
4.1 Thermal handling ratings...................................................10
6.4.1.2
4.2 Moisture handling ratings..................................................11
Flash Timing Parameters —
Commands..........................................29
4.3 ESD handling ratings.........................................................11
6.4.1.3
4.4 Voltage and current operating ratings...............................11
Flash (FTFL) Current and Power
Parameters..........................................31
5 General.....................................................................................12
6.4.1.4
Reliability Characteristics....................31
5.1 Nonswitching electrical specifications...............................12
6.4.1.5
Write Endurance to FlexRAM for
5.1.1
Voltage and Current Operating Requirements......12
5.1.2
LVD and POR operating requirements.................13
6.4.2
EzPort Switching Specifications............................33
5.1.3
Voltage and current operating behaviors..............14
6.4.3
Flexbus Switching Specifications..........................34
5.1.4
Power mode transition operating behaviors..........14
6.5 Security and integrity modules..........................................36
5.1.5
Power consumption operating behaviors..............15
6.6 Analog...............................................................................36
5.1.5.1
EEPROM.............................................32
Diagram: Typical IDD_RUN operating
6.6.1
ADC electrical specifications.................................36
behavior...............................................17
6.6.1.1
16-bit ADC operating conditions..........37
5.1.6
EMC radiated emissions operating behaviors.......18
6.6.1.2
16-bit ADC electrical characteristics....39
5.1.7
Designing with radiated emissions in mind...........19
6.6.1.3
16-bit ADC with PGA operating
5.1.8
Capacitance attributes..........................................19
conditions............................................42
5.2 Switching electrical specifications.....................................19
5.3 Thermal specifications.......................................................19
5.3.1
Thermal operating requirements...........................20
5.3.2
Thermal attributes.................................................20
6.6.1.4
16-bit ADC with PGA characteristics...43
6.6.2
CMP and 6-bit DAC electrical specifications.........44
6.6.3
12-bit DAC electrical characteristics.....................45
6.6.3.1
12-bit DAC operating requirements.....45
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
3
6.6.3.2
6.6.4
12-bit DAC operating behaviors..........46
Voltage Reference Electrical Specifications..........48
6.8.7
I2S Switching Specifications.................................55
6.9 Human-machine interfaces (HMI)......................................57
6.7 Timers................................................................................49
6.9.1
General Switching Specifications..........................57
6.8 Communication interfaces.................................................49
6.9.2
TSI Electrical Specifications..................................58
6.9.3
LCD electrical characteristics................................58
6.8.1
USB electrical specifications.................................50
6.8.2
USB DCD Electrical Specifications.......................50
7 Dimensions...............................................................................59
6.8.3
USB Voltage Regulator Electrical Specifications. .50
7.1 Obtaining package dimensions.........................................60
6.8.4
DSPI Switching Specifications for Low-speed
6.8.5
8 Pinout........................................................................................60
Operation..............................................................51
8.1 K40 Signal Multiplexing and Pin Assignments..................60
DSPI Switching Specifications (High-speed
8.2 K40 Pinouts.......................................................................65
6.8.6
9 Revision History........................................................................67
Pr
el
im
in
ar
y
mode)....................................................................52
SDHC Specifications.............................................54
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
4
Preliminary
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Pr
el
im
in
ar
y
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to www.freescale.com and perform a part number search for
the following device numbers: PK40 and MK40.
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q K## M FFF T PP CCC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
K##
Kinetis family
• K40
M
Flash memory type
• N = Program flash only
• X = Program flash and FlexMemory
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
5
Terminology and guidelines
Field
Description
Values
Program flash memory size
•
•
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
512 = 512 KB
1M0 = 1 MB
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
•
•
•
•
•
•
•
•
•
•
•
•
•
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LF = 48 LQFP (7 mm x 7 mm)
FX = 64 QFN (9 mm x 9 mm)
LH = 64 LQFP (10 mm x 10 mm)
LK = 80 LQFP (12 mm x 12 mm)
MB = 81 MAPBGA (8 mm x 8 mm)
LL = 100 LQFP (14 mm x 14 mm)
ML = 104 MAPBGA (8 mm x 8 mm)
LQ = 144 LQFP (20 mm x 20 mm)
MD = 144 MAPBGA (13 mm x 13 mm)
MF = 196 MAPBGA (15 mm x 15 mm)
MJ = 256 MAPBGA (17 mm x 17 mm)
CCC
Maximum CPU frequency (MHz)
•
•
•
•
•
50 = 50 MHz
72 = 72 MHz
100 = 100 MHz
120 = 120 MHz
150 = 150 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
Pr
el
im
in
ar
y
FFF
2.4 Example
This is an example part number:
MK40X256VMD100
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
6
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
1.0 V core supply volt‐
age
Min.
0.9
Max.
1.1
Unit
V
Pr
el
im
in
ar
y
VDD
Description
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Min.
Input capacitance: digi‐ —
tal pins
Max.
7
Unit
pF
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
7
Terminology and guidelines
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
Pr
el
im
in
ar
y
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
Min.
1.0 V core supply volt‐
age
–0.3
Max.
1.2
Unit
V
3.5 Result of exceeding a rating
Failures in time (ppm)
40
30
20
10
0
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
Operating rating
Measured characteristic
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
8
Preliminary
Freescale Semiconductor, Inc.
Terminology and guidelines
3.6 Relationship between ratings and operating requirements
mi
g(
era
Op
g
tin
h
or
g
dlin
an
in
rat
n.)
ing
t
era
Op
x.)
ma
.)
)
in.
t (m
en
m
re
ax
t (m
en
m
re
ui
req
g
tin
era
Op
g
dlin
an
ui
req
g
tin
(
ing
rat
h
or
era
Op
Fatal
range
Limited
operating
range
Normal
operating
range
Limited
operating
range
Fatal
range
- Probable permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- Probable permanent failure
Handling range
Pr
el
im
in
ar
y
- No permanent failure
–∞
∞
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
IWP
Description
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
9
Ratings
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
5000
4500
4000
TJ
150 °C
3000
Pr
el
im
in
ar
y
IDD_STOP (μA)
3500
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.05
1.00
1.10
VDD (V)
3.9 Typical Value Conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
10
Preliminary
Freescale Semiconductor, Inc.
Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
Solder temperature, leaded
—
245
Pr
el
im
in
ar
y
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 85°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
185
mA
VDIO
Digital input voltage (except RESET, EXTAL, and XTAL)
–0.3
5.5
V
VAIO
Analog, RESET, EXTAL, and XTAL input voltage
–0.3
VDD + 0.3
V
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
11
General
Symbol
ID
Description
Min.
Max.
Unit
Instantaneous maximum current single pin limit (applies to all
port pins)
–25
25
mA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
IDDA
Analog supply current1
TBD
TBD
mA
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
VBAT
RTC battery supply voltage
–0.3
3.8
V
VRAM
VDD voltage required to retain RAM
1.2
—
V
TBD
—
V
VRFVBAT
Pr
el
im
in
ar
y
VDDA
VBAT voltage required to retain the VBAT register file
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
5 General
5.1 Nonswitching electrical specifications
5.1.1 Voltage and Current Operating Requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
0.06 × VDD
—
V
VIH
VIL
VHYS
Notes
Input high voltage
Input low voltage
Input hysteresis
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
12
Preliminary
Freescale Semiconductor, Inc.
General
Table 1. Voltage and current operating requirements (continued)
Symbol
IIC
Description
Min.
Max.
Unit
DC injection current — single pin
Notes
1
• VIN > VDD
0
2
mA
• VIN < VSS
0
–0.2
mA
DC injection current — total MCU limit, includes sum
of all stressed pins
• VIN > VDD
1
• VIN < VSS
0
25
mA
0
–5
mA
Pr
el
im
in
ar
y
1. All functional non-supply pins are internally clamped to VSS and VDD. Input must be current limited to the value specified.
To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp
voltages, then use the larger of the two values. Power supply must maintain regulation within operating VDD range during
instantaneous and operating maximum current conditions. If positive injection current (VIn > VDD) is greater than IDD, the
injection current may flow out of VDD and could result in external power supply going out of regulation. Ensure external
VDD load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not
consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall
power consumption).
5.1.2 LVD and POR operating requirements
Table 2. LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
TBD
1.1
TBD
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
TBD
2.56
TBD
V
Low-voltage warning thresholds — high range
VLVW1
• Level 1 falling (LVWV=00)
TBD
2.70
TBD
V
VLVW2
• Level 2 falling (LVWV=01)
TBD
2.80
TBD
V
VLVW3
• Level 3 falling (LVWV=10)
TBD
2.90
TBD
V
VLVW4
• Level 4 falling (LVWV=11)
TBD
3.00
TBD
V
VHYS
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
60
TBD
TBD
Notes
1
mV
TBD
V
Low-voltage warning thresholds — low range
1
VLVW1
• Level 1 falling (LVWV=00)
TBD
1.80
TBD
V
VLVW2
• Level 2 falling (LVWV=01)
TBD
1.90
TBD
V
VLVW3
• Level 3 falling (LVWV=10)
TBD
2.00
TBD
V
VLVW4
• Level 4 falling (LVWV=11)
TBD
2.10
TBD
V
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
13
General
Table 2. LVD and POR operating requirements (continued)
Symbol
Description
Min.
Typ.
Max.
40
Unit
VHYS
Low-voltage inhibit reset/recover hysteresis —
low range
VBG
Bandgap voltage reference
TBD
1.00
TBD
V
tLPO
Internal low power oscillator period
TBD
1000
TBD
μs
Notes
mV
factory trimmed
Pr
el
im
in
ar
y
1. Rising thresholds are falling threshold + VHYS
5.1.3 Voltage and current operating behaviors
Table 3. Voltage and current operating behaviors
Symbol
Min.
Max.
Unit
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA
VDD – 0.5
—
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA
VDD – 0.5
—
V
—
100
mA
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA
—
0.5
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin)
—
1
μA
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
Internal weak pullup and pulldown resistors
30
50
kΩ
VOH
Description
Notes
Output high voltage — high drive strength
Output high voltage — low drive strength
IOHT
Output high current total for all ports
VOL
Output low voltage — high drive strength
Output low voltage — low drive strength
IOLT
RPU and
RPD
1
1. Measured at VIL max and VDD min
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
14
Preliminary
Freescale Semiconductor, Inc.
General
5.1.4 Power mode transition operating behaviors
In the table below, all specifications except tPOR, assume the following clock
configuration:
• CPU and system clocks = 100MHz
• Bus and FlexBus clocks = 50 MHz
• Flash clock = 25 MHz
Table 4. Power mode transition operating behaviors
tPOR
Description
Min.
Max.
Unit
Pr
el
im
in
ar
y
Symbol
After a POR event, amount of time from the point VDD
reaches 1.8V to execution of the first instruction
across the operating temperature range of the chip.
—
300
μs
• RUN → VLLS1
—
4.1
μs
• VLLS1 → RUN
—
123.8
μs
• RUN → VLLS2
—
4.1
μs
• VLLS2 → RUN
—
49.3
μs
• RUN → VLLS3
—
4.1
μs
• VLLS3 → RUN
—
49.2
μs
• RUN → LLS
—
4.1
μs
• LLS → RUN
—
5.9
μs
• RUN → STOP
—
4.1
μs
• STOP → RUN
—
4.2
μs
• RUN → VLPS
—
4.1
μs
• VLPS → RUN
—
5.8
μs
Notes
1
RUN → VLLS1 → RUN
RUN → VLLS2 → RUN
RUN → VLLS3 → RUN
RUN → LLS → RUN
RUN → STOP → RUN
RUN → VLPS → RUN
1. Normal boot (FTFL_OPT[LPBOOT]=1)
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
15
General
5.1.5 Power consumption operating behaviors
Table 5. Power consumption operating behaviors
Symbol
Description
Min.
IDD_RUN
Run mode current — all peripheral clocks disa‐
bled, code executing from flash
• @ 1.8V
• @ 3.0V
IDD_RUN
Typ.
Max.
Unit
1
—
40
TBD
mA
—
42
TBD
mA
Run mode current — all peripheral clocks ena‐
bled, code executing from flash
• @ 1.8V
2
—
55
TBD
mA
Pr
el
im
in
ar
y
• @ 3.0V
—
IDD_RUN_M Run mode current — all peripheral clocks ena‐
bled and peripherals active, code executing from
AX
flash
• @ 1.8V
• @ 3.0V
Notes
56
TBD
mA
—
85
TBD
mA
—
85
TBD
mA
3
IDD_WAIT
Wait mode current at 3.0 V — all peripheral
clocks disabled
—
15
TBD
mA
IDD_STOP
Stop mode current at 3.0 V
—
1.4
TBD
mA
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks disabled
—
1.25
TBD
mA
5
IDD_VLPR
Very-low-power run mode current at 3.0 V — all
peripheral clocks enabled
—
TBD
TBD
mA
6
IDD_VLPW
Very-low-power wait mode current at 3.0 V
—
1.05
TBD
mA
7
IDD_VLPS
Very-low-power stop mode current at 3.0 V
—
30
TBD
μA
IDD_LLS
Low leakage stop mode current at 3.0 V
—
12
TBD
μA
• 128KB RAM devices
—
8
TBD
μA
• 64KB RAM devices
—
6
TBD
μA
• 32KB RAM devices
—
5
TBD
μA
IDD_VLLS3
4
Very low-leakage stop mode 3 current at 3.0 V
IDD_VLLS2
Very low-leakage stop mode 2 current at 3.0 V
—
4
TBD
μA
IDD_VLLS1
Very low-leakage stop mode 1 current at 3.0 V
—
2
TBD
μA
IDD_VBAT
Average current when CPU is not accessing
RTC registers at 3.0 V
—
550
TBD
nA
1. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.
All peripheral clocks disabled.
2. 100MHz core and system clock, 50MHz bus and FlexBus clocks, and 25MHz flash clock. MCG configured for FEI mode.
All peripheral clocks enabled, but peripherals are not in active operation.
3. 100MHz core and system clock, 50MHz bus and FlexBus clocks, and 25MHz flash clock. MCG configured for FEI mode.
All peripheral clocks enabled, and peripherals are in active operation.
4. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clocks. MCG configured for FEI mode.
5. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks disabled. Code executing from flash.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
16
Preliminary
Freescale Semiconductor, Inc.
General
6. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks enabled but peripherals are not in active operation. Code executing from flash.
7. 2 MHz core, system, bus and FlexBus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral
clocks disabled.
5.1.5.1
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)
All peripheral clocks disabled except FTFL
LVD disabled, USB regulator disabled
No GPIOs toggled
Code execution from flash
Pr
el
im
in
ar
y
•
•
•
•
•
Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled
The following data was measured under these conditions:
• MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)
• All peripheral clocks enabled but peripherals are not in active operation
• LVD disabled, USB regulator disabled
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
17
General
Pr
el
im
in
ar
y
• No GPIOs toggled
• Code execution from flash
Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled
5.1.6 EMC radiated emissions operating behaviors
Table 6. EMC radiated emissions operating behaviors
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
dBμV
1, 2
—
2, 3
VRE1
Radiated emissions voltage, band 1
0.15–50
TBD
VRE2
Radiated emissions voltage, band 2
50–150
TBD
VRE3
Radiated emissions voltage, band 3
150–500
TBD
VRE4
Radiated emissions voltage, band 4
500–1000
TBD
0.15–1000
TBD
VRE_IEC_SAE IEC and SAE level
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/
Wideband TEM (GTEM) Cell Method.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
18
Preliminary
Freescale Semiconductor, Inc.
General
2. VDD = 3 V, TA = 25 °C, fOSC = 16 MHz (crystal), fBUS = 20 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated
Circuits—TEM/Wideband TEM (GTEM) Cell Method.
5.1.7 Designing with radiated emissions in mind
Pr
el
im
in
ar
y
1. To find application notes that provide guidance on designing your system to
minimize interference from radiated emissions, go to www.freescale.com and
perform a keyword search for “EMC design.”
5.1.8 Capacitance attributes
Table 7. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.2 Switching electrical specifications
Table 8. Device clock specifications
Symbol
Description
Min.
Max.
Unit
Notes
Normal run mode
fSYS
System and core clock
—
100
MHz
fBUS
Bus clock
—
50
MHz
FlexBus clock
—
50
MHz
Flash clock
—
25
MHz
FB_CLK
fFLASH
VLPR mode
fSYS
System and core clock
—
2
MHz
fBUS
Bus clock
—
2
MHz
FlexBus clock
—
2
MHz
Flash clock
—
1
MHz
FB_CLK
fFLASH
5.3 Thermal specifications
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
19
Peripheral operating requirements and behaviors
5.3.1 Thermal operating requirements
Table 9. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
Board
type
Pr
el
im
in
ar
y
5.3.2 Thermal attributes
Symbol
Description
144
LQFP
144
Unit
MAPBGA
Notes
Singlelayer (1s)
RθJA
Thermal resistance, junction to ambient (natural
convection)
52
50
°C/W
1
Four-layer
(2s2p)
RθJA
Thermal resistance, junction to ambient (natural
convection)
44
30
°C/W
1
Singlelayer (1s)
RθJMA
Thermal resistance, junction to ambient (200 ft./
min. air speed)
43
41
°C/W
1
Four-layer
(2s2p)
RθJMA
Thermal resistance, junction to ambient (200 ft./
min. air speed)
38
27
°C/W
1
—
RθJB
Thermal resistance, junction to board
33
17
°C/W
2
—
RθJC
Thermal resistance, junction to case
11
10
°C/W
3
—
ΨJT
Thermal characterization parameter, junction to
package top outside center (natural convection)
2
2
°C/W
4
6 Peripheral operating requirements and behaviors
6.1 Core modules
1.
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions
—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental
Conditions—Natural Convection (Still Air).
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
20
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.1.1 Debug trace timing specifications
Table 10. Debug trace operating behaviors
Description
Min.
Max.
Unit
Tcyc
Clock period
Frequency dependent
MHz
Twl
Low pulse width
2
—
ns
Twh
High pulse width
2
—
ns
Tr
Clock and data rise time
—
3
ns
Tf
Clock and data fall time
—
3
ns
Ts
Data setup
3
—
ns
Th
Data hold
Pr
el
im
in
ar
y
Symbol
2
—
ns
Figure 3. TRACE_CLKOUT specifications
TRACE_CLKOUT
Ts
TRACE_D[3:0]
Th
Ts
Th
Figure 4. Trace data specifications
6.1.2 JTAG electricals
Table 11. JTAG electricals
Symbol
J1
J2
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
TCLK frequency of operation
MHz
• JTAG and CJTAG
0
25
• Serial Wire Debug
0
50
1/J1
—
TCLK cycle period
ns
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
21
Peripheral operating requirements and behaviors
Table 11. JTAG electricals (continued)
Symbol
J3
Description
Min.
Max.
TCLK clock pulse width
Unit
ns
20
—
• Serial Wire Debug
10
—
J4
TCLK rise and fall times
—
3
ns
J5
Boundary scan input data setup time to TCLK rise
20
—
ns
J6
Boundary scan input data hold time after TCLK rise
0
—
ns
J7
TCLK low to boundary scan output data valid
—
30
ns
J8
TCLK low to boundary scan output high-Z
—
30
ns
J9
TMS, TDI input data setup time to TCLK rise
16
—
ns
J10
TMS, TDI input data hold time after TCLK rise
1
—
ns
J11
TCLK low to TDO data valid
—
4
ns
J12
TCLK low to TDO high-Z
—
4
ns
J13
TRST assert time
100
—
ns
J14
TRST setup time (negation) to TCLK high
8
—
ns
Pr
el
im
in
ar
y
• JTAG and CJTAG
J2
J3
J3
TCLK (input)
J4
J4
Figure 5. Test clock input timing
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
22
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
TCLK
J5
Data inputs
J6
Input data valid
J7
Data outputs
Output data valid
Pr
el
im
in
ar
y
J8
Data outputs
J7
Data outputs
Output data valid
Figure 6. Boundary scan (JTAG) timing
TCLK
J9
TDI/TMS
J10
Input data valid
J11
TDO
Output data valid
J12
TDO
J11
TDO
Output data valid
Figure 7. Test Access Port timing
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
23
Peripheral operating requirements and behaviors
TCLK
J14
J13
TRST
Figure 8. TRST timing
Pr
el
im
in
ar
y
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG Specifications
Table 12. MCG specifications
Symbol
Description
Min.
Typ.
Max.
Unit
fints_ft
Internal reference frequency (slow clock) — facto‐
ry trimmed at nominal VDD and 25°C
—
32.768
—
kHz
fints_t
Internal reference frequency (slow clock) — user
trimmed
31.25
—
39.0625
kHz
tirefsts
Internal reference (slow clock) startup time
—
TBD
4
µs
Resolution of trimmed DCO output frequency at
fixed voltage and temperature — using SCTRIM
and SCFTRIM
—
± 0.1
± 0.3
%fdco
Δfdco_res_t Resolution of trimmed DCO output frequency at
fixed voltage and temperature — using SCTRIM
only
—
± 0.2
± 0.5
%fdco
Total deviation of trimmed DCO output frequency
over voltage and temperature
—
+ 0.5
± 3.5
%fdco
Δfdco_t
Total deviation of trimmed DCO output frequency
over fixed voltage and temperature range of 0–
70°C
—
± 0.5
± TBD
%fdco
fintf_ft
Internal reference frequency (fast clock) — factory
trimmed at nominal VDD and 25°C
3.875
4
4.125
MHz
fintf_t
Internal reference frequency (fast clock) — user
trimmed
3
—
5
MHz
Δfdco_res_t
Δfdco_t
Notes
- 1.0
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
24
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 12. MCG specifications (continued)
Symbol
tirefstf
Description
Internal reference startup time (fast clock)
Min.
Typ.
Max.
Unit
—
TBD
TBD
µs
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
20
20.97
25
MHz
Notes
FLL
DCO output fre‐
quency range —
user trimmed
and DMX32=0
Low range (DRS=00)
1, 2
640 × fints_t
Pr
el
im
in
ar
y
fdco_t
Mid range (DRS=01)
40
41.94
50
MHz
60
62.91
75
MHz
80
83.89
100
MHz
—
23.99
—
MHz
—
47.97
—
MHz
—
71.99
—
MHz
—
95.98
—
MHz
1280 × fints_t
Mid-high range (DRS=10
192)0 × fints_t
High range (DRS=11)
2560 × fints_t
fdco_t_DMX3 DCO output fre‐
quency range —
2
reference =
32,768Hz and
DMX32=1
Low range (DRS=00)
3
732 × fints_t
Mid range (DRS=01)
1464 × fints_t
Mid-high range (DRS=10)
2197 × fints_t
High range (DRS=11)
2929 × fints_t
Jcyc_fll
FLL period jitter
—
TBD
TBD
ps
Jacc_fll
FLL accumulated jitter of DCO output over a 1µs
time window
—
TBD
TBD
ps
FLL target frequency acquisition time
—
—
1
ms
VCO operating frequency
48.0
—
100
MHz
fpll_ref
PLL reference frequency range
2.0
—
4.0
MHz
Jcyc_pll
PLL period jitter
—
400
—
ps
6, 7
Jacc_pll
PLL accumulated jitter over 1µs window
—
TBD
—
ps
6,7
tfll_acquire
4
5
PLL
fvco
Dlock
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
tpll_lock
Lock detector detection time
—
—
0.15 +
1075(1/
fpll_ref)
ms
8
1. The resulting system clock frequencies should not exceed their maximum specified values.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
25
Peripheral operating requirements and behaviors
2.
3.
4.
5.
This specification includes the 2% precision of the internal reference frequency (slow clock).
The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
This specification was obtained at TBD frequency.
This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
6. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
7. This specification was obtained at internal frequency of TBD.
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
Pr
el
im
in
ar
y
6.3.2 Oscillator Electrical Characteristics
This section provides the electrical characteristics of the module.
6.3.2.1
Oscillator DC Electrical Specifications
Table 13. Oscillator DC electrical specifications, (VSSOSC= 0 VDC) (TA = TL to TH)
Symbol
VDD33OSC
IDDOSC
IDDOSC
Description
Min.
Typ.
Max.
Unit
3.3 V supply voltage
1.71
—
3.6
V
Supply current — low-power mode
• 32 kHz
—
500
—
nA
• 1 MHz
—
100
—
μA
• 4 MHz
—
200
—
μA
• 8 MHz
—
300
—
μA
• 16 MHz
—
700
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode
• 32 kHz
—
25
—
μA
• 1 MHz
—
200
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz
—
800
—
μA
• 16 MHz
—
1.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Notes
1
1
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2,3
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
26
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 13. Oscillator DC electrical specifications, (VSSOSC= 0 VDC) (TA = TL to TH)
(continued)
RF
RS
Description
Min.
Typ.
Max.
Unit
Notes
Feedback resistor — low-frequency, low-power
mode
—
—
—
MΩ
2,3
Feedback resistor — low-frequency, high-gain
mode
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (1 – 8 MHz, 8 – 32 MHz)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (1 – 8 MHz, 8 – 32 MHz)
—
1
—
MΩ
Pr
el
im
in
ar
y
Symbol
Series resistor — low-frequency, low-power
mode
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode
—
—
—
kΩ
—
6.6
—
kΩ
—
3.3
—
kΩ
—
0
—
kΩ
—
0
—
kΩ
—
0
—
kΩ
—
0
—
kΩ
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
0.75 ×
VDD33OSC
VDD33OSC
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
0.75 ×
VDD33OSC
VDD33OSC
—
V
Series resistor — high-frequency, high-gain
mode
• 1 MHz resonator
• 2 MHz resonator
• 4 MHz resonator
• 8 MHz resonator
• 16 MHz resonator
• 20 MHz resonator
• 32 MHz resonator
Vpp
1. VDD33OSC=3.3 V, Temperature =27 °C, Cx/Cy=20 pF
2. See crystal or resonator manufacturer's recommendation
3. RF and Cx,Cy are integrated in low-frequency, low-power mode and must not be attached externally
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
27
Peripheral operating requirements and behaviors
6.3.2.2
Oscillator frequency specifications
Table 14. Oscillator frequency specifications, (VDD33OSC = VDD33OSC (min) to
VDD33OSC (max), TA = TL to TH)
Symbol
Description
Min.
Typ.
Max.
Unit
Oscillator crystal or resonator frequency — low
frequency mode
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
1
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
8
—
32
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Crystal start-up time — 32 kHz low-frequency,
low-power mode
—
TBD
—
ms
Crystal start-up time — 32 kHz low-frequency,
high-gain mode
—
800
—
ms
Crystal start-up time — 8 MHz high-frequency,
low-power mode
—
4
—
ms
Crystal start-up time — 8 MHz high-frequency,
high-gain mode
—
3
—
ms
tcst
Pr
el
im
in
ar
y
fosc_lo
Notes
1, 2, 3
1. This parameter is characterized before qualification rather than 100% tested.
2. Proper PC board layout procedures must be followed to achieve specifications.
3. Crystal start up time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S
register being set.
6.3.3 32kHz Oscillator Electrical Characteristics
This section describes the module electrical characteristics.
6.3.3.1
32kHz Oscillator DC Electrical Specifications
Table 15. 32kHz Oscillator Module DC Electrical Specifications (VSSOSC= 0 VDC)
(TA = TL to TH)
Symbol
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
Internal feedback resistor
—
100
—
MΩ
Cpara
Parasitical capacitance of EXTAL32 and XTAL32
—
2.5
—
pF
Cload
Internal load capacitance (programmable)
—
15
—
pF
Peak-to-peak amplitude of oscillation
—
0.6
—
V
VBAT
RF
Vpp
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
28
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.3.2
32kHz Oscillator Frequency Specifications
Table 16. 32kHz oscillator frequency specifications (VDD33OSC = VDD33OSC (min)
to VDD33OSC (max), TA = TL to TH)
Symbol
fosc_lo
tstart
Description
Min.
Typ.
Max.
Unit
Oscillator crystal
—
32
—
kHz
Crystal start-up time
—
1000
—
ms
Notes
1, 2
Pr
el
im
in
ar
y
1. This parameter is characterized before qualification rather than 100% tested.
2. Proper PC board layout procedures must be followed to achieve specifications.
6.4 Memories and memory interfaces
6.4.1 Flash (FTFL) Electrical Characteristics
This section describes the electrical characteristics of the FTFL module.
6.4.1.1
Flash Timing Parameters — Program and Erase
The following characteristics represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 17. NVM program/erase timing characteristics
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
Notes
Longword Program high-voltage time
—
20
TBD
μs
thversscr
Sector Erase high-voltage time
—
20
100
ms
1
thversblk
Erase Block high-voltage time
—
160
800
ms
1
Notes
1. Maximum time based on expectations at cycling end-of-life.
6.4.1.2
Flash Timing Parameters — Commands
Table 18. Flash command timing characteristics
Symbol
Min.
Typ.
Max.
Unit
Read 1s Block execution time
—
—
1.4
ms
trd1sec2k
Read 1s Section execution time (2 KB flash sec‐
tor)
—
—
40
μs
tpgmchk
Program Check execution time
—
—
35
μs
trd1blk
Description
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
29
Peripheral operating requirements and behaviors
Table 18. Flash command timing characteristics (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
1
Read Resource execution time
—
—
35
μs
tpgm4
Program Longword execution time
—
50
TBD
μs
tersblk
Erase Flash Block execution time
—
160
800
ms
2
tersscr
Erase Flash Sector execution time
—
20
100
ms
2
Program Section execution time (2 KB flash sec‐
tor)
—
TBD
TBD
ms
trd1all
Read 1s All Blocks execution time
—
—
2.8
ms
trdonce
Read Once execution time
—
—
35
μs
Program Once execution time
—
50
TBD
μs
tersall
Erase All Blocks execution time
—
320
1600
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
35
μs
1
Program Partition for EEPROM execution time
—
175
TBD
ms
tsetram32k
Set FlexRAM Function execution time for 32 KB
of EEPROM backup
—
TBD
TBD
ms
tsetram256k
Set FlexRAM Function execution time for 256
KB of EEPROM backup
—
TBD
TBD
ms
tpgmsec2k
tpgmonce
tpgmpart
Pr
el
im
in
ar
y
trdrsrc
1
Byte-write to FlexRAM for EEPROM operation
teewr8bers
Byte-write to erased FlexRAM location execution
time
—
100
TBD
μs
teewr8b32k
Byte-write to FlexRAM execution time (32 KB
EEPROM backup)
—
TBD
TBD
ms
teewr8b64k
Byte-write to FlexRAM execution time (64 KB
EEPROM backup)
—
TBD
1.5
ms
teewr8b128k Byte-write to FlexRAM execution time (128 KB
EEPROM backup)
—
TBD
TBD
ms
teewr8b256k Byte-write to FlexRAM execution time (256 KB
EEPROM backup)
—
TBD
2.5
ms
3
Word-write to FlexRAM for EEPROM operation
teewr16bers
Word-write to erased FlexRAM location execu‐
tion time
—
100
TBD
μs
teewr16b32k Word-write to FlexRAM execution time (32 KB
EEPROM backup)
—
TBD
TBD
ms
teewr16b64k Word-write to FlexRAM execution time (64 KB
EEPROM backup)
—
TBD
1.5
ms
teewr16b128k Word-write to FlexRAM execution time (128 KB
EEPROM backup)
—
TBD
TBD
ms
teewr16b256k Word-write to FlexRAM execution time (256 KB
EEPROM backup)
—
TBD
2.5
ms
Longword-write to FlexRAM for EEPROM operation
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
30
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 18. Flash command timing characteristics (continued)
Min.
Typ.
Max.
Unit
—
200
TBD
μs
teewr16b32k Longword-write to FlexRAM execution time (32
KB EEPROM backup)
—
TBD
TBD
ms
teewr16b64k Longword-write to FlexRAM execution time (64
KB EEPROM backup)
—
TBD
2.7
ms
teewr32b128k Longword-write to FlexRAM execution time (128
KB EEPROM backup)
—
TBD
TBD
ms
teewr32b256k Longword-write to FlexRAM execution time (256
KB EEPROM backup)
—
TBD
3.7
ms
teewr32bers
Description
Longword-write to erased FlexRAM location exe‐
cution time
Pr
el
im
in
ar
y
Symbol
Notes
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.
6.4.1.3
Flash (FTFL) Current and Power Parameters
Table 19. Flash (FTFL) current and power parameters
Symbol
Description
IDD_PGM
Worst case programming current in program flash
6.4.1.4
Typ.
Unit
10
mA
Reliability Characteristics
Table 20. NVM reliability characteristics
Symbol
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k
Data retention after up to 10 K cycles
5
TBD
—
years
2
tnvmretp1k
Data retention after up to 1 K cycles
10
TBD
—
years
2
tnvmretp100
Data retention after up to 100 cycles
15
TBD
—
years
2
10 K
TBD
—
cycles
3
nnvmcycp
Cycling endurance
Data Flash
tnvmretd10k
Data retention after up to 10 K cycles
5
TBD
—
years
2
tnvmretd1k
Data retention after up to 1 K cycles
10
TBD
—
years
2
tnvmretd100
Data retention after up to 100 cycles
15
TBD
—
years
2
10 K
TBD
—
cycles
3
TBD
—
years
2
nnvmcycd
Cycling endurance
FlexRAM as EEPROM
tnvmretee100 Data retention up to 100% of write endurance
5
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
31
Peripheral operating requirements and behaviors
Table 20. NVM reliability characteristics (continued)
Symbol
Description
Min.
Typ.1
Max.
Unit
Notes
Data retention up to 10% of write endurance
10
TBD
—
years
2
tnvmretee1
Data retention up to 1% of write endurance
15
TBD
—
years
2
nnvmwree16 Write endurance with an EEPROM backup to
FlexRAM ratio of 16
35 K
TBD
—
writes
4
nnvmwree128 Write endurance with an EEPROM backup to
FlexRAM ratio of 128
315 K
TBD
—
writes
4
nnvmwree512 Write endurance with an EEPROM backup to
FlexRAM ratio of 512
1.27 M
TBD
—
writes
4
nnvmwree4k Write endurance with an EEPROM backup to
FlexRAM ratio of 4096
10 M
TBD
—
writes
4
nnvmwree32k Write endurance with an EEPROM backup to
FlexRAM ratio of 32,768
80 M
TBD
—
writes
4
Pr
el
im
in
ar
y
tnvmretee10
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to
25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin
EB618.
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C
4. Write endurance represents the number of writes to FlexRAM at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of
the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value assumes all
byte-writes to FlexRAM.
6.4.1.5
Write Endurance to FlexRAM for EEPROM
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size
can be set to any of several non-zero values.
The bytes not assigned to data flash via the FlexNVM partition code are used by the
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in
EEPROM record management system raises the number of program/erase cycles that can
be attained prior to device wear-out by cycling the EEPROM data through a larger
EEPROM NVM storage space.
While different partitions of the FlexNVM are available, the intention is that a single
choice for the FlexNVM partition code and EEPROM data set size are used throughout
the entire lifetime of a given application. The EEPROM endurance equation and graph
shown below assume that only one configuration is ever used.
Writes_subsystem =
EEPROM – 2 × EEESPLIT × EEESIZE
EEESPLIT × EEESIZE
× Write_efficiency × nnvmcycd
where
• Writes_subsystem — minimum writes to FlexRAM for subsystem (each subsystem
can have different endurance)
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
32
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;
entered with Program Partition command
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program
Partition command
• EEESIZE — total allocated FlexRAM based on DEPART; entered with Program
Partition command
• Write_efficiency —
• 0.25 for 8-bit writes to FlexRAM
• 0.50 for 16-bit or 32-bit writes to FlexRAM
Pr
el
im
in
ar
y
• nnvmcycd — data flash cycling endurance
Figure 9. EEPROM backup writes to FlexRAM
6.4.2 EzPort Switching Specifications
Table 21. EzPort switching specifications
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
33
Peripheral operating requirements and behaviors
Table 21. EzPort switching specifications (continued)
Description
Min.
Max.
Unit
EP1
EZP_CK frequency of operation (all commands except
READ)
—
fSYS/2
MHz
EP1a
EZP_CK frequency of operation (READ command)
—
fSYS/8
MHz
EP2
EZP_CS negation to next EZP_CS assertion
2 x tEZP_CK
—
ns
EP3
EZP_CS input valid to EZP_CK high (setup)
5
—
ns
EP4
EZP_CK high to EZP_CS input invalid (hold)
5
—
ns
EP5
EZP_D input valid to EZP_CK high (setup)
2
—
ns
EP6
EZP_CK high to EZP_D input invalid (hold)
5
—
ns
EP7
EZP_CK low to EZP_Q output valid (setup)
—
12
ns
EP8
EZP_CK low to EZP_Q output invalid (hold)
0
—
ns
EP9
EZP_CS negation to EZP_Q tri-state
—
12
ns
EZP_CK
Pr
el
im
in
ar
y
Num
EP3
EZP_CS
EP9
EP7
EZP_Q (output)
EP5
EZP_D (input)
EP2
EP4
EP8
EP6
Figure 10. EzPort Timing Diagram
6.4.3 Flexbus Switching Specifications
All processor bus timings are synchronous; input setup/hold and output delay are given in
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be
the same as the internal system bus frequency or an integer divider of that frequency.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
34
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
The following timing numbers indicate when data is latched or driven onto the external
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be
derived from these values.
Table 22. Flexbus switching specifications
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
Frequency of operation
—
50
Mhz
FB1
Clock period
20
—
ns
FB2
Address, data, and control output valid
TBD
11.5
ns
1
FB3
Address, data, and control output hold
0
—
ns
1
FB4
Data and FB_TA input setup
8.5
—
ns
2
FB5
Data and FB_TA input hold
0.5
—
ns
2
Pr
el
im
in
ar
y
Num
Notes
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], and FB_TS.
2. Specification is valid for all FB_AD[31:0] and FB_TA.
FB1
FB_CLK
FB5
FB_A[Y]
FB3
Address
FB4
FB2
FB_D[X]
Address
Data
FB_RW
FB_TS
AA=1
FB_CSn
AA=0
FB_OEn
FB_BE/BWEn
FB4
FB5
AA=1
FB_TA
AA=0
FB_TSIZ[1:0]
TSIZ
Figure 11. FlexBus read timing diagram
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
35
Peripheral operating requirements and behaviors
FB1
FB_CLK
FB3
FB_A[Y]
Address
FB2
FB_D[X]
Address
Data
Pr
el
im
in
ar
y
FB_RW
FB_TS
AA=1
FB_CSn
AA=0
FB_OEn
FB_BE/BWEn
FB4
FB5
AA=1
FB_TA
FB_TSIZ[1:0]
AA=0
TSIZ
Figure 12. FlexBus write timing diagram
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the
differential pins (ADCx_DP0, ADCx_DM0, ADC, ADCx_DP1, ADCx_DM1,
ADCx_DP3, and ADCx_DP3). The ADCx_DP2 and ADCx_DM2 ADC inputs are used
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
36
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
as the PGA inputs and are not direct device pins. Accuracy specifications for these pins
are defined in Table 25 and Table 26. All other ADC channels meet the 13-bit
differential/12-bit single-ended accuracy specifications.
6.6.1.1
16-bit ADC operating conditions
Table 23. 16-bit ADC operating conditions
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDDVDDA)
-100
0
+100
mV
ΔVSSA
Ground voltage
Delta to VSS (VSSVSSA)
-100
0
+100
mV
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
VREFL
Reference volt‐
age low
VSSA
VSSA
VSSA
V
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input capaci‐
tance
• 16 bit modes
—
8
10
pF
• 8/10/12 bit
modes
—
4
5
—
2
5
RADIN
Pr
el
im
in
ar
y
Description
Symbol
Input resistance
Notes
2
2
kΩ
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
37
Peripheral operating requirements and behaviors
Table 23. 16-bit ADC operating conditions (continued)
Symbol
RAS
Description
Conditions
Analog source
resistance
16 bit modes
Min.
Typ.1
Max.
Unit
Notes
External to MCU
• fADCK > 8MHz
—
—
0.5
kΩ
• fADCK = 4–8MHz
—
—
1
kΩ
• fADCK < 4MHz
—
—
2
kΩ
• fADCK > 16MHz
—
—
0.5
kΩ
• fADCK > 8MHz
—
—
1
kΩ
Assumes
ADLSMP=0
Pr
el
im
in
ar
y
13/12 bit modes
• fADCK = 4–8MHz
—
—
2
kΩ
• fADCK < 4MHz
—
—
5
kΩ
• fADCK > 8MHz
—
—
2
kΩ
• fADCK = 4–8MHz
—
—
5
kΩ
• fADCK < 4MHz
—
—
10
kΩ
—
—
5
kΩ
—
—
10
kΩ
• 16 bit modes
1.0
—
TBD
MHz
• ≤13 bit modes
1.0
—
TBD
MHz
1.0
—
8.0
MHz
1.0
—
12.0
MHz
• 16 bit modes
1.0
—
5.0
MHz
• ≤13 bit modes
1.0
—
8.0
MHz
• 16 bit modes
1.0
—
2.5
MHz
• ≤13 bit modes
1.0
—
5.0
MHz
11/10 bit modes
9/8 bit modes
• fADCK > 8MHz
• fADCK < 8MHz
fADCK
ADC conversion
clock frequency
ADLPC=0, ADHSC=1
ADLPC=0, ADHSC=0
• 16 bit modes
• ≤13 bit modes
ADLPC=1, ADHSC=1
ADLPC=1, ADHSC=0
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
38
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
Pr
el
im
in
ar
y
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 13. ADC input impedance equivalency diagram
6.6.1.2
16-bit ADC electrical characteristics
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
IDDA
fADACK
Conditions1
Min.
Typ.2
Max.
Unit
Notes
• ADLPC=1, ADHSC=0
—
215
—
μA
• ADLPC=1, ADHSC=1
—
340
—
μA
ADLSMP=
0
• ADLPC=0, ADHSC=0
—
470
—
μA
• ADLPC=0, ADHSC=1
—
610
—
μA
Supply current
• Stop, reset, module off
—
0.01
0.8
μA
ADC asynchro‐
nous clock
source
• ADLPC=1, ADHSC=0
TBD
2.4
TBD
MHz
• ADLPC=1, ADHSC=1
TBD
4.0
TBD
MHz
• ADLPC=0, ADHSC=0
TBD
5.2
TBD
MHz
• ADLPC=0, ADHSC=1
TBD
6.2
TBD
MHz
Description
Supply current
Sample Time
ADCO=1
tADACK = 1/
fADACK
See Reference Manual chapter for sample times
Conversion Time See Reference Manual chapter for conversion times
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
39
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
TUE
DNL
INL
EZS
Conditions1
Description
Total unadjusted
error
Min.
Typ.2
Max.
Unit
Notes
• 16 bit differential
—
±14.0
±TBD
LSB3
• 16 bit single-ended
—
±13.0
±TBD
• 13 bit differential
—
±1.5
±TBD
• 12 bit single-ended
—
±TBD
±TBD
Max hard‐
ware aver‐
aging
(AVGE =
%1, AVGS
= %11)
• 11 bit differential
—
±0.8
±TBD
• 10 bit single-ended
—
±TBD
±TBD
• 9 bit differential
—
±0.5
±1.0
• 8 bit single-ended
—
±0.5
±1.0
Pr
el
im
in
ar
y
Symbol
Differential nonlinearity
Integral non-line‐
arity
Zero-scale error
• 16 bit differential
—
±2.5
±TBD
• 16 bit single-ended
—
±2.5
±TBD
• 13 bit differential
—
±0.7
±TBD
• 12 bit single-ended
—
±0.7
±TBD
• 11 bit differential
—
±0.5
±TBD
• 10 bit single-ended
—
±TBD
±TBD
• 9 bit differential
—
±0.2
±0.5
• 8 bit single-ended
—
±0.2
±0.5
• 16 bit differential
—
-6 to +2.5
—
• 16 bit single-ended
—
-2 to +12
—
• 13 bit differential
—
±1.0
±TBD
• 12 bit single-ended
—
±1.0
±TBD
• 11 bit differential
—
±0.5
±TBD
• 10 bit single-ended
—
±0.5
±TBD
• 9 bit differential
—
±0.3
±0.5
• 8 bit single-ended
—
±0.3
±0.5
• 16 bit differential
—
±4.0
—
• 16 bit single-ended
—
±4.0
—
• 13 bit differential
—
±0.7
±TBD
• 12 bit single-ended
—
±0.7
±TBD
• 11 bit differential
—
±0.4
±TBD
• 10 bit single-ended
—
±0.4
±TBD
• 9 bit differential
—
±0.2
±0.5
• 8 bit single-ended
—
±0.2
±0.5
LSB3
Max hard‐
ware aver‐
aging
(AVGE =
%1, AVGS
= %11)
LSB3
Max aver‐
aging
LSB3
VADIN =
VSSA
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
40
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
EFS
EQ
ENOB
Conditions1
Description
Full-scale error
Min.
Typ.2
Max.
Unit
Notes
• 16 bit differential
—
0 to +10
—
LSB3
• 16 bit single-ended
—
0 to +14
—
VADIN =
VDDA
• 13 bit differential
—
±1.0
±TBD
• 12 bit single-ended
—
±TBD
±TBD
• 11 bit differential
—
±0.4
±TBD
• 10 bit single-ended
—
±0.4
±TBD
• 9 bit differential
—
±0.2
±0.5
• 8 bit single-ended
—
±0.2
±0.5
Pr
el
im
in
ar
y
Symbol
Quantization er‐
ror
• 16 bit modes
—
-1 to 0
—
• ≤13 bit modes
—
—
±0.5
Effective number 16 bit differential mode
of bits
• Avg=32
LSB3
TBD
13.6
TBD
bits
• Avg=16
TBD
TBD
TBD
bits
• Avg=8
TBD
14.1
TBD
bits
• Avg=4
TBD
TBD
TBD
bits
• Avg=1
TBD
13.2
TBD
bits
TBD
TBD
TBD
bits
TBD
TBD
TBD
bits
TBD
TBD
TBD
bits
TBD
TBD
TBD
bits
TBD
TBD
TBD
bits
4
16 bit single-ended mode
• Avg=32
• Avg=16
• Avg=8
• Avg=4
• Avg=1
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16 bit differential mode
6.02 × ENOB + 1.76
• Avg=32
dB
—
-94
TBD
dB
—
TBD
TBD
dB
4
16 bit single-ended mode
• Avg=32
SFDR
Spurious free dy‐ 16 bit differential mode
namic range
• Avg=32
4
TBD
95
—
dB
TBD
TBD
—
dB
16 bit single-ended mode
• Avg=32
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
41
Peripheral operating requirements and behaviors
Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
EIL
Conditions1
Description
Typ.2
Min.
Input leakage er‐
ror
Max.
IIn × RAS
Unit
Notes
mV
IIn = leak‐
age cur‐
rent
(refer to
the MCU's
voltage
and cur‐
rent oper‐
ating rat‐
ings)
VTEMP25
• –40°C to 25°C
—
TBD
—
mV/°C
• 25°C to 105°C
—
TBD
—
mV/°C
—
TBD
—
mV
Pr
el
im
in
ar
y
Temp sensor
slope
Temp sensor
voltage
25°C
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. 1 LSB = (VREFH - VREFL)/2N
4. Input data is 1 kHz sine wave.
6.6.1.3
16-bit ADC with PGA operating conditions
Table 25. 16-bit ADC with PGA operating conditions
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
VREFPGA
PGA ref voltage
Symbol
VADIN
Input voltage
RPGA
Input impedance
RPGAD
Differntial input
impedance
VREFOUT VREFOUT VREFOUT
V
VSSA
—
VDDA
V
Gain = 1, 2, 4, 8
TBD
64
TBD
kΩ
Gain = 16, 32
TBD
32
TBD
Gain = 64
TBD
16
TBD
Gain = 1, 2, 4, 8
TBD
128
TBD
Gain = 16, 32
TBD
64
TBD
Gain = 64
TBD
32
TBD
—
100
1.25
—
RAS
Analog source
resistance
Gain = 16, 32
TS
ADC sampling
time
Gain = 64
Notes
2, 3
kΩ
IN+ to IN-
—
Ω
4
—
µs
5
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. ADC must be configured to use the internal voltage reference (VREFOUT)
3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output
of the VREF module, the VREF module must be disabled.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
42
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
4. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.
5. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at
8 MHz ADC clock. The ADLSTS bits can be adjusted for different ADC clock frequency
6.6.1.4
16-bit ADC with PGA characteristics
Table 26. 16-bit ADC with PGA characteristics
Symbol
Description
IDDA_PGA
Supply current
G
Leakage current
Gain2
Typ.1
Max.
Unit
TBD
590
TBD
μA
—
<1
TBD
μA
• PGAG=0
TBD
1
TBD
dB
• PGAG=1
TBD
2
TBD
dB
• PGAG=2
TBD
3.9
TBD
dB
• PGAG=3
TBD
TBD
TBD
dB
• PGAG=4
TBD
TBD
TBD
dB
• PGAG=5
TBD
29.9
TBD
dB
• PGAG=6
TBD
TBD
TBD
dB
—
—
±0.5
dB
—
—
4
kHz
—
—
40
kHz
TBD
TBD
—
dB
VDDA= 3V
±100mV,
fVDDA= 50Hz,
60Hz
• Gain=1
TBD
TBD
—
dB
• Gain=64
TBD
TBD
—
dB
VCM=
500mVpp,
fVCM= 50Hz,
100Hz
PGA disabled
Pr
el
im
in
ar
y
ILKG
Min.
Conditions
GA
Gain error
BW
Input signal band‐
width
PSRR
Power supply re‐
jection ration
CMRR
Common mode
rejection ratio
• 16-bit modes
• < 16-bit modes
Gain=1
Notes
RAS < 100Ω
RAS < 100Ω
VOFS
Input offset volt‐
age
—
0.2
TBD
mV
Gain=1, ADC
Averaging=32
TGSW
Gain switching
settling time
—
TBD
10
µs
3
dG/dT
Gain drift over
temperature
—
TBD
TBD
ppm/°C
0 to 50°C
—
TBD
TBD
ppm/°C
—
TBD
TBD
ppm/°C
0 to 50°C, ADC
Averaging=32
—
TBD
TBD
%/V
—
TBD
TBD
%/V
VDDA from 1.71
to 3.6V
dVOFS/dT
Offset drift over
temperature
dG/dVDDA
Gain drift over
supply voltage
• Gain=1
• Gain=64
Gain=1
• Gain=1
• Gain=64
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
43
Peripheral operating requirements and behaviors
Table 26. 16-bit ADC with PGA characteristics (continued)
Symbol
EIL
Description
Conditions
Input leakage er‐
ror
All modes
Min.
Typ.1
Max.
IIn × RAS
Unit
Notes
mV
IIn = leakage
current
(refer to the
MCU's voltage
and current op‐
erating ratings)
SNR
THD
SFDR
ENOB
SINAD
Maximum differ‐
ential input signal
swing
[(VREFPGA × 2.33) - 0.2] / (2 ×
Gain)
V
4
Average=32
Signal-to-noise
ratio
• Gain=1
• Gain=64
TBD
8.3
—
dB
TBD
57.7
—
dB
Total harmonic
distortion
• Gain=1
• Gain=64
TBD
87.3
—
dB
TBD
85.3
—
dB
Spurious free dy‐
namic range
• Gain=1
• Gain=64
TBD
92.42
—
dB
TBD
92.54
—
dB
Effective number
of bits
• Gain=1, Average=4
TBD
12.3
—
bits
• Gain=1, Average=8
TBD
12.7
—
bits
• Gain=64, Average=4
TBD
8.4
—
bits
• Gain=64, Average=8
TBD
8.7
—
bits
• Gain=1, Average=32
TBD
13.4
—
bits
• Gain=2, Average=32
TBD
13.1
—
bits
• Gain=4, Average=32
TBD
12.6
—
bits
• Gain=8, Average=32
TBD
11.8
—
bits
• Gain=16, Average=32
TBD
11.1
—
bits
• Gain=32, Average=32
TBD
10.2
—
bits
• Gain=64, Average=32
TBD
9.3
—
bits
Pr
el
im
in
ar
y
VPP,DIFF
Signal-to-noise
plus distortion ra‐
tio
See ENOB
6.02 × ENOB + 1.76
Average=32,
fin=100Hz
Average=32,
fin=100Hz
dB
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.
2. Gain = 2PGAGx
3. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain
switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC
sampling rate and time of the switching).
4. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the
PGA reference voltage and gain setting.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
44
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.2 CMP and 6-bit DAC electrical specifications
Table 27. Comparator and 6-bit DAC electrical specifications
Symbol
VDD
Description
Min.
Typ.
Max.
Unit
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, High-speed mode (EN=1, PMODE=1,
VDDA >= VLVI_trip)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN=1, PMODE=0)
—
—
20
μA
IDDOFF
Supply current, OFF Mode (EN=0,)
—
—
100
nA
VSS – 0.3
—
VDD
V
Analog input voltage
VAIO
Analog input offset voltage
VH
Pr
el
im
in
ar
y
VAIN
—
—
20
mV
• HYSTCTR = 00
—
5
—
mV
• HYSTCTR = 01
—
10
—
mV
• HYSTCTR = 10
—
20
—
mV
• HYSTCTR = 11
—
30
—
mV
Analog comparator hysteresis
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN=1,
PMODE=1)
20
50
120
ns
tDLS
Propagation delay, low-speed mode (EN=1,
PMODE=1)
120
250
420
ns
Analog comparator initialization delay
—
—
TBD
ns
6-bit DAC current adder (enabled)
—
—
8
μA
IDAC6b
INL
6-bit DAC integral non-Llnearity
–0.5
—
0.5
LSB1
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
Notes
1. 1 LSB = Vreference/64
6.6.3 12-bit DAC electrical characteristics
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 28. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.15
3.6
V
Temperature
−40
105
°C
TA
1
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
45
Peripheral operating requirements and behaviors
Table 28. 12-bit DAC operating requirements (continued)
Symbol
Desciption
Min.
Max.
Unit
Notes
2
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
6.6.3.2
Table 29. 12-bit DAC operating behaviors
Min.
Typ.
Max.
Unit
12
—
12
b
IDDA_DACLP Supply current — low-power mode
—
—
150
μA
IDDA_DACH Supply current — high-speed mode
—
—
700
μA
n
P
Description
Pr
el
im
in
ar
y
Symbol
12-bit DAC operating behaviors
Resolution
Notes
tDACLP
Full-scale settling time (0x080 to 0xF7F) — lowpower mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) — highpower mode
—
15
30
μs
1
tCCDACLP
Code-to-code settling time (0xBF8 to 0xC08) —
low-power mode
—
—
5
μs
1
tCCDACHP
Code-to-code settling time (0xBF8 to 0xC08) —
high-speed mode
1
TBD
—
μs
1
Vdacoutl
DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
0
100
—
mV
Vdacouth
DAC output voltage range high — high-speed
mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed mode
±3
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2 V
±0.5
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR = VRE‐
FO (1.15 V)
±0.5
—
±1
LSB
4
VOFFSET
Offset error
±0.4
—
±0.8
%FSR
5
EG
Gain error
±0.1
—
±0.6
%FSR
5
90
dB
PSRR
Power supply rejection ratio, VDDA > = 2.4 V
60
TCO
Temperature coefficient offset voltage
—
TBD
—
μV/C
TGE
Temperature coefficient gain error
—
TBD
—
ppm of
FSR/C
AC
Offset aging coefficient
—
—
TBD
μV/yr
Output resistance load = 3 kΩ
—
—
250
Ω
Rop
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
46
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 29. 12-bit DAC operating behaviors (continued)
Symbol
SR
Min.
Typ.
Max.
Slew rate -80h→ F7Fh→ 80h
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
—
—
-80
Channel to channel cross talk
BW
3dB bandwidth
Notes
V/μs
• High power (SPHP)
CT
Unit
dB
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Pr
el
im
in
ar
y
1.
2.
3.
4.
5.
Description
Settling within ±1 LSB
The INL is measured for 0+100mV to VDACR−100 mV
The DNL is measured for 0+100 mV to VDACR−100 mV
The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V
Calculated by a best fit curve from VSS+100 mV to VREF−100 mV
Figure 14. Typical INL error vs. digital code
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
47
Pr
el
im
in
ar
y
Peripheral operating requirements and behaviors
Figure 15. Offset at half scale vs. temperature
6.6.4 Voltage Reference Electrical Specifications
Table 30. VREF full-range operating requirements
Symbol
Description
Min.
Max.
Unit
Supply voltage
1.71
3.6
V
TA
Temperature
−40
105
°C
CL
Output load capacitance
—
100
nF
VDDA
Notes
Table 31. VREF full-range operating behaviors
Symbol
Description
Min.
Typ.
Max.
Unit
Vout
Voltage reference output with factory trim
TBD
1.2
TBD
V
Vout
Voltage reference output without factory trim
1.15
—
1.24
V
Vdrift
Temperature drift (Vmax -Vmin across the full
temperature range)
—
—
7
mV
Notes
See Fig‐
ure 16
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
48
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 31. VREF full-range operating behaviors (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Tc
Temperature coefficient
—
—
TBD
ppm/°C
Ac
Aging coefficient
—
—
TBD
ppm/year
Ioff
Powered down current (off mode, VREFEN = 0,
VRSTEN = 0)
—
—
0.10
µA
Ibg
Bandgap only (MODE_LV = 00) current
—
TBD
75
µA
Itr
Tight-regulation buffer (MODE_LV =10) current
—
—
1.1
mA
Load regulation (MODE_LV = 10) current
—
—
100
µV/mA
100
—
TBD
µs
—
—
TBD
mV
–60
—
TBD
dB
Buffer startup time
DC
Line regulation (power supply rejection)
Pr
el
im
in
ar
y
Tstup
Notes
Table 32. VREF limited-range operating requirements
Symbol
Description
Min.
Max.
Unit
TA
Temperature
0
50
°C
Notes
Table 33. VREF limited-range operating behaviors
Symbol
Vout
Description
Min.
Max.
Unit
Voltage reference output with factory trim
TBD
TBD
µA
TBD
Notes
Figure 16. Typical output vs.temperature
TBD
Figure 17. Typical output vs. VDD
6.7 Timers
See General Switching Specifications.
6.8 Communication interfaces
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
49
Peripheral operating requirements and behaviors
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
6.8.2 USB DCD Electrical Specifications
Pr
el
im
in
ar
y
Table 34. USB DCD specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDP_SRC
USB_DP source voltage (up to 250 μA)
TBD
TBD
TBD
V
0.8
—
2.0
V
VLGC
Threshold voltage for logic high
IDP_SRC
USB_DP source current
7
10
13
μA
IDM_SINK
USB_DM sink current
50
100
150
μA
RDM_DWN
D- pulldown resistance for data pin contact detect
14.25
—
24.8
kΩ
VDAT_REF
Data detect voltage
0.25
TBD
0.4
V
6.8.3 USB Voltage Regulator Electrical Specifications
Table 35. USB voltage regulator electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero
—
120
—
μA
IDDstby
Quiescent current — Standby mode, load cur‐
rent equal zero
—
TBD
—
μA
IDDoff
Quiescent current — Shutdown mode
—
—
500
nA
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
TBD
mA
VReg33out
Regulator output voltage — Input supply (VRE‐
GIN) > 3.6 V
• Run mode
• Standby mode
• Pass-through mode
Notes
1
3
3.3
3.6
V
TBD
TBD
TBD
V
2.3
—
3.6
V
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
50
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 35. USB voltage regulator electrical specifications (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series re‐
sistance
1
—
100
mΩ
ILIM
Current limitation threshold
185
290
395
mA
Notes
1. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
Pr
el
im
in
ar
y
6.8.4 DSPI Switching Specifications for Low-speed Operation
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 36. Master Mode DSPI Timing (Low-speed mode)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
Notes
1.71
3.6
V
1
—
12.5
MHz
4 x tBCLK
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS3
DSPI_PCSn to DSPI_SCK output valid
(tSCK/2) - 4
—
ns
DS4
DSPI_SCK to DSPI_PCSn output hold
(tSCK/2) - 4
—
ns
DS5
DSPI_SCK to DSPI_SOUT valid
—
10
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
-2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
15
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage
range the maximum frequency of operation is reduced.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
51
Peripheral operating requirements and behaviors
DSPI_PCSn
DS3
DS1
DS2
DS4
DSPI_SCK
DS8
DS7
(CPOL=0)
DSPI_SIN
Data
First data
Last data
DS5
DSPI_SOUT
DS6
First data
Data
Last data
Pr
el
im
in
ar
y
Figure 18. DSPI Classic SPI Timing — Master Mode
Table 37. Slave Mode DSPI Timing (Low-speed Mode)
Num
Description
Operating voltage
Frequency of operation
Min.
Max.
Unit
1.71
3.6
V
—
6.25
MHz
8 x tBCLK
—
ns
(tSCK/2) - 4
(tSCK/2) + 4
ns
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
—
20
ns
DS12
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
5
—
ns
DS14
DSPI_SCK to DSIP_SIN input hold
15
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
15
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
15
ns
DSPI_SS
DS10
DS9
DSPI_SCK
(CPOL=0)
DS15
DSPI_SOUT
First data
DS13
DSPI_SIN
DS12
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 19. DSPI Classic SPI Timing — Slave Mode
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
52
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.8.5 DSPI Switching Specifications (High-speed mode)
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with
master and slave operations. Many of the transfer attributes are programmable. The tables
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the
DSPI chapter of the Reference Manual for information on the modified transfer formats
used for communicating with slower peripheral devices.
Table 38. Master Mode DSPI Timing (High-speed mode)
Num
Description
Max.
Unit
2.7
3.6
V
Pr
el
im
in
ar
y
Operating voltage
Min.
Frequency of operation
—
25
MHz
2 x tBCLK
—
ns
DS1
DSPI_SCK output cycle time
DS2
DSPI_SCK output high/low time
(tSCK/2) − 2
(tSCK/2) + 2
ns
DS3
DSPI_PCSn to DSPI_SCK output valid
(tSCK/2) − 2
—
ns
DS4
DSPI_SCK to DSPI_PCSn output hold
(tSCK/2) − 2
—
ns
DS5
DSPI_SCK to DSPI_SOUT valid
—
8.5
ns
DS6
DSPI_SCK to DSPI_SOUT invalid
−2
—
ns
DS7
DSPI_SIN to DSPI_SCK input setup
TBD
—
ns
DS8
DSPI_SCK to DSPI_SIN input hold
0
—
ns
DSPI_PCSn
DS3
DSPI_SCK
(CPOL=0)
DSPI_SIN
DSPI_SOUT
DS1
DS2
DS4
DS8
DS7
Data
First data
Last data
DS5
First data
DS6
Data
Last data
Figure 20. DSPI Classic SPI Timing — Master Mode
Table 39. Slave Mode DSPI Timing (High-speed mode)
Num
Description
Operating voltage
Min.
Max.
Unit
2.7
3.6
V
12.5
MHz
4 x tBCLK
—
ns
(tSCK/2) − 2
(tSCK/2 + 2
ns
—
TBD
ns
Frequency of operation
DS9
DSPI_SCK input cycle time
DS10
DSPI_SCK input high/low time
DS11
DSPI_SCK to DSPI_SOUT valid
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
53
Peripheral operating requirements and behaviors
Table 39. Slave Mode DSPI Timing (High-speed mode) (continued)
Num
Description
Min.
Max.
Unit
DSPI_SCK to DSPI_SOUT invalid
0
—
ns
DS13
DSPI_SIN to DSPI_SCK input setup
2
—
ns
DS14
DSPI_SCK to DSIP_SIN input hold
7
—
ns
DS15
DSPI_SS active to DSPI_SOUT driven
—
14
ns
DS16
DSPI_SS inactive to DSPI_SOUT not driven
—
14
ns
Pr
el
im
in
ar
y
DS12
DSPI_SS
DS10
DSPI_SCK
DS15
(CPOL=0)
DSPI_SOUT
DS12
First data
DS13
DSPI_SIN
DS9
DS16
DS11
Data
Last data
DS14
First data
Data
Last data
Figure 21. DSPI Classic SPI Timing — Slave Mode
6.8.6 SDHC Specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
Table 40. SDHC switching specifications
Num
Symbol
Description
Min.
Max.
Unit
Card input clock
SD1
fpp
Clock frequency (low speed)
0
400
kHz
fpp
Clock frequency (SD\SDIO full speed)
0
25
MHz
fpp
Clock frequency (MMC full speed)
0
20
MHz
fOD
Clock frequency (identification mode)
0
400
kHz
SD2
tWL
Clock low time
7
—
ns
SD3
tWH
Clock high time
7
—
ns
SD4
tTLH
Clock rise time
—
3
ns
SD5
tTHL
Clock fall time
—
3
ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
54
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 40. SDHC switching specifications (continued)
Num
Symbol
SD6
tOD
Description
Min.
Max.
Unit
-5
6.5
ns
SDHC output delay (output valid)
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7
tTHL
SDHC input setup time
5
—
ns
SD8
tTHL
SDHC input hold time
0
—
ns
SD3
SD2
SD1
SDHC_CLK
Pr
el
im
in
ar
y
SD6
Output SDHC_CMD
Output SDHC_DAT[3:0]
SD7
SD8
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 22. SDHC timing
6.8.7 I2S Switching Specifications
This section provides the AC timings for the I2S in master (clocks driven) and slave
modes (clocks input). All timings are given for non-inverted serial clock polarity
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync
(I2S_FS) shown in the figures below.
Table 41. I2S master mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
S1
I2S_MCLK cycle time
2 x tSYS
S2
I2S_MCLK pulse width high/low
S3
I2S_BCLK cycle time
S4
I2S_BCLK pulse width high/low
ns
45%
55%
MCLK period
5 x tSYS
—
ns
45%
55%
BCLK period
Table continues on the next page...
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
55
Peripheral operating requirements and behaviors
Table 41. I2S master mode timing (continued)
Num
Description
Min.
Max.
Unit
—
15
ns
-2.5
—
ns
I2S_BCLK to I2S_FS output valid
S6
I2S_BCLK to I2S_FS output invalid
S7
I2S_BCLK to I2S_TXD valid
—
15
ns
S8
I2S_BCLK to I2S_TXD invalid
-3
—
ns
S9
I2S_RXD/I2S_FS input setup before I2S_BCLK
20
—
ns
S10
I2S_RXD/I2S_FS input hold after I2S_BCLK
0
—
ns
Pr
el
im
in
ar
y
S5
S1
I2S_MCLK (output)
S2
S2
S3
I2S_BCLK (output)
S4
S4
S5
I2S_FS (output)
S10
S9
I2S_FS (input)
S7
S8
S7
I2S_TXD
S9
I2S_RXD
S6
S8
S10
Figure 23. I2S timing — master mode
Table 42. I2S alave mode timing
Num
Description
Min.
Max.
Unit
Operating voltage
2.7
3.6
V
8 x tSYS
—
ns
S11
I2S_BCLK cycle time (input)
S12
I2S_BCLK pulse width high/low (input)
45%
55%
MCLK period
S13
I2S_FS input setup before I2S_BCLK
10
—
ns
S14
I2S_FS input hold after I2S_BCLK
3
—
ns
S15
I2S_BCLK to I2S_TXD/I2S_FS output valid
—
20
ns
S16
I2S_BCLK to I2S_TXD/I2S_FS output invalid
0
—
ns
S17
I2S_RXD setup before I2S_BCLK
10
—
ns
S18
I2S_RXD hold after I2S_BCLK
2
—
ns
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
56
Preliminary
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
S11
S12
I2S_BCLK (input)
S12
S15
S16
I2S_FS (output)
S13
S14
I2S_FS (input)
S15
S16
S15
S16
I2S_TXD
S17
S18
Pr
el
im
in
ar
y
I2S_RXD
Figure 24. I2S timing — slave modes
6.9 Human-machine interfaces (HMI)
6.9.1 General Switching Specifications
These general purpose specifications apply to all signals configured for GPIO, SCI,
FlexCAN, CMT, I2C, and IEEE 1588 timer signals.
Table 43. General switching specifications
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter disa‐
bled) — Synchronous path
1.5
—
Bus clock
cycles
1
GPIO pin interrupt pulse width (digital glitch filter disa‐
bled, analog filter enabled) — Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width (digital glitch filter disa‐
bled, analog filter disabled) — Asynchronous path
16
—
ns
2
External reset pulse width (digital glitch filter disabled)
TBD
—
Mode select (EZP_CS) hold time after reset deasser‐
tion
2
—
Bus clock
cycles
Port rise and fall time (high drive strength)
3
• Slew disabled
—
12
ns
• Slew enabled
—
36
ns
Port rise and fall time (low drive strength)
4
• Slew disabled
—
32
ns
• Slew enabled
—
36
ns
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
57
Peripheral operating requirements and behaviors
3. 75pF load
4. 15pF load
6.9.2 TSI Electrical Specifications
Table 44. Touch Sensing Input module specifications
Description
Min.
Typ.
Max.
Unit
VDDTSI
Operating voltage
1.71
—
3.6
V
Target electrode capacitance range
1
20
500
pF
fREFmax
Reference oscillator frequency
—
5.5
TBD
MHz
fELEmax
Electrode oscillator frequency
—
0.5
TBD
MHz
Internal reference capacitor
TBD
1
TBD
pF
Oscillator delta voltage
TBD
600
TBD
mV
IREF
Reference oscillator current source base current
TBD
1
TBD
μA
2
IELE
Electrode oscillator current source base current
TBD
1
TBD
μA
3
Pres5
Electrode capacitance measurement precision
—
TBD
TBD
%
4
Pres20
Electrode capacitance measurement precision
—
TBD
TBD
%
5
Pres100
Electrode capacitance measurement precision
—
TBD
TBD
%
6
Max‐
Sens20
Max sensitivity @ 20pF electrode
0.15
0.326
600
fF
7
Maximum sensitivity
0.006
0.326
24
fF
8
Resolution
—
—
16
bits
Response time @ 20pF
—
30
—
μs
Current added in run mode
—
TBD
—
μA
Low power mode current adder
—
1
TBD
μA
CELE
CREF
VDELTA
MaxSens
Res
TCon20
ITSI_RUN
ITSI_LP
Pr
el
im
in
ar
y
Symbol
Notes
1
9
1. The TSI module is functional with capacitance values outside of this range. However, optimal performance is not
guaranteed.
2. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current
3. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current
4. Measured with a 5pF electrode, reference oscillator frequency of 10MHz, PS = 128, NCSC = 8; Iext = 16
5. Measured with a 20pF electrode, reference oscillator frequency of 10MHz, PS = 128, NCSC = 2; Iext = 16
6. Measured with a 20pF electrode, reference oscillator frequency of 10MHz, PS = 16, NCSC = 3; Iext = 16
7. 6.2ms scan time
8. 1pF electrode capacitance with 4.96ms scan time
9. Time that takes to do one complete measurement of the electrode. Sensitivity resolution of 0.0133pF
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
58
Preliminary
Freescale Semiconductor, Inc.
Dimensions
6.9.3 LCD electrical characteristics
Table 45. LCD electricals
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
fFrame
LCD frame frequency
28
30
58
Hz
CLCD
LCD charge pump capacitance — nominal value
—
100
—
nF
1
CBYLCD
LCD bypass capacitance — nominal value
—
100
—
nF
1
CGlass
LCD glass capacitance
—
2000
8000
pF
VIREG
VIREG — HREFSEL = 0
—
• HREFSEL = 0
0.89
1.00
1.15
V
• HREFSEL = 1
1.49
1.67
1.85
V
3.0
—
—
% VIREG
• HREFSEL = 0
—
—
30
mV
• HREFSEL = 1
—
—
50
mV
—
1
—
µA
Pr
el
im
in
ar
y
ΔRTRIM
VIREG TRIM resolution
VIREG ripple
IVIREG
VIREG current adder — RVEN = 1
IRBIAS
RBIAS current adder
RRBIAS
2
• HREFSEL = 0
—
10
—
µA
• HREFSEL = 1
—
1
—
µA
—
0.28
—
MΩ
—
2.98
—
MΩ
• HREFSEL = 0
2.0 − 5%
2.0
—
V
• HREFSEL = 1
3.3 − 5%
3.3
—
V
• HREFSEL = 0
3.0 − 5%
3.0
—
V
• HREFSEL = 1
5 − 5%
5
—
V
• LADJ = 10 or 11 — High load (LCD glass
capacitance ≤ 8000 pF)
VLL3
3
RBIAS resistor values
• LADJ = 00 or 01 — Low load (LCD glass
capacitance ≤ 2000 pF)
VLL2
3
VLL2 voltage
VLL3 voltage
1. The actual value used could vary with tolerance.
2. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V
3. 2000 pF load LCD, 32 Hz frame frequency
7 Dimensions
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
59
Pinout
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to www.freescale.com and perform a keyword search for
the drawing’s document number:
If you want the drawing for this package
Then use this document number
98ASS23177W
144-pin MAPBGA
98ASA00222D
8 Pinout
Pr
el
im
in
ar
y
144-pin LQFP
8.1 K40 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
144 144
QFP BGA
Default
ALT0
—
L5
NC
—
M5
NC
1
D3
ADC1_SE4a
2
D2
ADC1_SE5a
3
D1
ADC1_SE6a
4
E4
ADC1_SE7a
5
E5
VDD
VDD
6
F6
VSS
VSS
7
E3
8
9
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
NC
NC
ADC1_SE4a
PTE0
SPI1_PCS1
UART1_TX
SDHC0_D1
FB_AD27
I2C1_SDA
ADC1_SE5a
PTE1
SPI1_SOUT
UART1_RX
SDHC0_D0
FB_AD26
I2C1_SCL
ADC1_SE6a
PTE2
SPI1_SCK
UART1_CTS
_b
SDHC0_DCL FB_AD25
K
ADC1_SE7a
PTE3
SPI1_SIN
UART1_RTS
_b
SDHC0_CMD FB_AD24
DISABLED
PTE4
SPI1_PCS0
UART3_TX
SDHC0_D3
FB_CS3_b/
FB_TA_b
FB_BE7_0_B
LS31_24_b
E2
DISABLED
PTE5
SPI1_PCS2
UART3_RX
SDHC0_D2
FB_TBST_b/
FB_CS2_b/
FB_BE15_8_
BLS23_16_b
E1
DISABLED
PTE6
SPI1_PCS3
UART3_CTS
_b
I2S0_MCLK
FB_ALE/
FB_CS1_b/
FB_TS_b
I2S0_CLKIN
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
60
Preliminary
Freescale Semiconductor, Inc.
Pinout
144 144
QFP BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
F4
DISABLED
PTE7
UART3_RTS
_b
I2S0_RXD
FB_CS0_b
11
F3
DISABLED
PTE8
UART5_TX
I2S0_RX_FS
FB_AD4
12
F2
DISABLED
PTE9
UART5_RX
I2S0_RX_BC FB_AD3
LK
13
F1
DISABLED
PTE10
UART5_CTS
_b
I2S0_TXD
FB_AD2
14
G4
DISABLED
PTE11
UART5_RTS
_b
I2S0_TX_FS
FB_AD1
15
G3
DISABLED
PTE12
I2S0_TX_BC
LK
FB_AD0
16
E6
VDD
17
F7
VSS
18
H3
VSS
19
H1
USB0_DP
20
H2
USB0_DM
21
G1
VOUT33
22
G2
VREGIN
23
J1
ADC0_DP1
24
J2
ADC0_DM1
25
K1
ADC1_DP1
26
K2
ADC1_DM1
27
L1
PGA0_DP/
ADC0_DP0/
ADC1_DP3
28
L2
PGA0_DM/
ADC0_DM0/
ADC1_DM3
29
M1
PGA1_DP/
ADC1_DP0/
ADC0_DP3
30
M2
PGA1_DM/
ADC1_DM0/
ADC0_DM3
31
H5
VDDA
VDDA
32
G5
VREFH
VREFH
33
G6
VREFL
VREFL
34
H6
VSSA
VSSA
35
K3
ADC1_SE16
ADC1_SE16
36
J3
ADC0_SE16
ADC0_SE16
37
M3
VREF_OUT
VREF_OUT
38
L3
DAC0_OUT
DAC0_OUT
39
L4
DAC1_OUT
DAC1_OUT
40
M7
XTAL32
XTAL32
41
M6
EXTAL32
EXTAL32
ALT7
EzPort
Pr
el
im
in
ar
y
10
ALT6
VDD
VSS
VSS
USB0_DP
USB0_DM
VOUT33
VREGIN
ADC0_DP1
ADC0_DM1
ADC1_DP1
ADC1_DM1
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
PGA1_DP/
ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
61
Pinout
144 144
QFP BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
EzPort
42
L6
VBAT
VBAT
43
—
VDD
VDD
44
—
VSS
VSS
45
M4
ADC0_SE17
ADC0_SE17
PTE24
CAN1_TX
UART4_TX
46
K5
ADC0_SE18
ADC0_SE18
PTE25
CAN1_RX
UART4_RX
FB_AD23
EWM_IN
47
K4
DISABLED
PTE26
UART4_CTS
_b
FB_AD22
RTC_CLKOU USB_CLKIN
T
48
J4
DISABLED
PTE27
UART4_RTS
_b
FB_AD21
49
H4
DISABLED
PTE28
50
J5
JTAG_TCLK/ TSI0_CH1
SWD_CLK/
EZP_CLK
PTA0
UART0_CTS
_b
FTM0_CH5
JTAG_TCLK/ EZP_CLK
SWD_CLK
51
J6
JTAG_TDI/
EZP_DI
TSI0_CH2
PTA1
UART0_RX
FTM0_CH6
JTAG_TDI
EZP_DI
52
K6
JTAG_TDO/
TRACE_SW
O/EZP_DO
TSI0_CH3
PTA2
UART0_TX
FTM0_CH7
JTAG_TDO/
TRACE_SW
O
EZP_DO
53
K7
JTAG_TMS/
SWD_DIO
TSI0_CH4
PTA3
UART0_RTS
_b
FTM0_CH0
JTAG_TMS/
SWD_DIO
54
L7
NMI_b/
EZP_CS_b
TSI0_CH5
PTA4
FTM0_CH1
NMI_b
55
M8
JTAG_TRST
PTA5
FTM0_CH2
CMP2_OUT
56
E7
VDD
57
G7
VSS
58
J7
DISABLED
PTA6
FTM0_CH3
FB_CLKOUT
TRACE_CLK
OUT
59
J8
ADC0_SE10
ADC0_SE10
PTA7
FTM0_CH4
FB_AD18
TRACE_D3
60
K8
ADC0_SE11
ADC0_SE11
PTA8
FTM1_CH0
FB_AD17
FTM1_QD_P
HA
TRACE_D2
61
L8
DISABLED
PTA9
FTM1_CH1
FB_AD16
FTM1_QD_P
HB
TRACE_D1
62
M9
DISABLED
PTA10
FTM2_CH0
FB_AD15
FTM2_QD_P
HA
TRACE_D0
63
L9
DISABLED
PTA11
FTM2_CH1
FB_OE_b
FTM2_QD_P
HB
64
K9
CMP2_IN0
CMP2_IN0
PTA12
CAN0_TX
FTM1_CH0
FB_CS5_b/
I2S0_TXD
FB_TSIZ1/
FB_BE23_16
_BLS15_8_b
FTM1_QD_P
HA
65
J9
CMP2_IN1
CMP2_IN1
PTA13
CAN0_RX
FTM1_CH1
FB_CS4_b/
I2S0_TX_FS
FB_TSIZ0/
FB_BE31_24
_BLS7_0_b
FTM1_QD_P
HB
66
L10 DISABLED
PTA14
SPI0_PCS0
UART0_TX
FB_AD31
EWM_OUT_b
Pr
el
im
in
ar
y
FB_AD20
EZP_CS_b
I2S0_RX_BC JTAG_TRST
LK
VDD
VSS
I2S0_TX_BC
LK
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
62
Preliminary
Freescale Semiconductor, Inc.
Pinout
144 144
QFP BGA
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
67
L11 DISABLED
PTA15
SPI0_SCK
UART0_RX
FB_AD30
I2S0_RXD
68
K10 DISABLED
PTA16
SPI0_SOUT
UART0_CTS
_b
FB_AD29
I2S0_RX_FS
69
K11 ADC1_SE17
ADC1_SE17
PTA17
SPI0_SIN
UART0_RTS
_b
FB_AD28
I2S0_MCLK
70
E8
VDD
VDD
71
G8
VSS
VSS
72
M12 EXTAL
EXTAL
PTA18
FTM0_FLT2
FTM_CLKIN0
73
M11 XTAL
XTAL
PTA19
FTM1_FLT0
FTM_CLKIN1
74
L12 RESET_b
RESET_b
75
K12 DISABLED
76
J12
DISABLED
77
J11
DISABLED
78
J10
DISABLED
79
H12 DISABLED
80
H11 DISABLED
81
H10 LCD_P0/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
82
H9
ALT7
I2S0_CLKIN
Pr
el
im
in
ar
y
LPT0_ALT1
PTA24
FB_AD14
PTA25
FB_AD13
PTA26
FB_AD12
PTA27
FB_AD11
PTA28
FB_AD10
PTA29
FB_AD19
LCD_P0/
ADC0_SE8/
ADC1_SE8/
TSI0_CH0
PTB0
I2C0_SCL
FTM1_CH0
FTM1_QD_P
HA
LCD_P0
LCD_P1/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
PTB1
I2C0_SDA
FTM1_CH1
FTM1_QD_P
HB
LCD_P1
83
G12 LCD_P2/
LCD_P2/
PTB2
ADC0_SE12/ ADC0_SE12/
TSI0_CH7
TSI0_CH7
I2C0_SCL
UART0_RTS
_b
FTM0_FLT3
LCD_P2
84
G11 LCD_P3/
LCD_P3/
PTB3
ADC0_SE13/ ADC0_SE13/
TSI0_CH8
TSI0_CH8
I2C0_SDA
UART0_CTS
_b
FTM0_FLT0
LCD_P3
85
G10 LCD_P4/
ADC1_SE10
86
G9
87
LCD_P1/
ADC0_SE9/
ADC1_SE9/
TSI0_CH6
LCD_P4/
ADC1_SE10
PTB4
FTM1_FLT0
LCD_P4
LCD_P5/
ADC1_SE11
PTB5
FTM2_FLT0
LCD_P5
F12 LCD_P6/
ADC1_SE12
LCD_P6/
ADC1_SE12
PTB6
LCD_P6
88
F11 LCD_P7/
ADC1_SE13
LCD_P7/
ADC1_SE13
PTB7
LCD_P7
89
F10 LCD_P8
LCD_P8
PTB8
90
F9
LCD_P9
PTB9
91
E12 LCD_P10/
ADC1_SE14
LCD_P10/
ADC1_SE14
92
E11 LCD_P11/
ADC1_SE15
LCD_P11/
ADC1_SE15
93
H7
VSS
LCD_P5/
ADC1_SE11
LCD_P9
VSS
EzPort
UART3_RTS
_b
LCD_P8
SPI1_PCS1
UART3_CTS
_b
LCD_P9
PTB10
SPI1_PCS0
UART3_RX
FTM0_FLT1
LCD_P10
PTB11
SPI1_SCK
UART3_TX
FTM0_FLT2
LCD_P11
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
63
Pinout
144 144
QFP BGA
Default
VDD
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
ALT6
ALT7
LCD_P12
94
F5
95
E10 LCD_P12/
TSI0_CH9
LCD_P12/
TSI0_CH9
PTB16
SPI1_SOUT
UART0_RX
EWM_IN
96
E9
LCD_P13/
TSI0_CH10
LCD_P13/
TSI0_CH10
PTB17
SPI1_SIN
UART0_TX
EWM_OUT_b LCD_P13
97
D12 LCD_P14/
TSI0_CH11
LCD_P14/
TSI0_CH11
PTB18
CAN0_TX
FTM2_CH0
I2S0_TX_BC
LK
FTM2_QD_P
HA
LCD_P14
98
D11 LCD_P15/
TSI0_CH12
LCD_P15/
TSI0_CH12
PTB19
CAN0_RX
FTM2_CH1
I2S0_TX_FS
FTM2_QD_P
HB
LCD_P15
VDD
D10 LCD_P16
LCD_P16
PTB20
SPI2_PCS0
CMP0_OUT
LCD_P16
D9
LCD_P17
PTB21
SPI2_SCK
CMP1_OUT
LCD_P17
101
C12 LCD_P18
LCD_P18
PTB22
SPI2_SOUT
CMP2_OUT
LCD_P18
102
C11 LCD_P19
LCD_P19
PTB23
SPI2_SIN
SPI0_PCS5
103
B12 LCD_P20/
LCD_P20/
PTC0
ADC0_SE14/ ADC0_SE14/
TSI0_CH13 TSI0_CH13
SPI0_PCS4
PDB0_EXTR
G
I2S0_TXD
LCD_P20
104
B11 LCD_P21/
LCD_P21/
PTC1
ADC0_SE15/ ADC0_SE15/
TSI0_CH14 TSI0_CH14
SPI0_PCS3
UART1_RTS
_b
FTM0_CH0
LCD_P21
105
A12 LCD_P22/
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
LCD_P22/
PTC2
ADC0_SE4b/
CMP1_IN0/
TSI0_CH15
SPI0_PCS2
UART1_CTS
_b
FTM0_CH1
LCD_P22
106
A11 LCD_P23/
CMP1_IN1
LCD_P23/
CMP1_IN1
PTC3
SPI0_PCS1
UART1_RX
FTM0_CH2
LCD_P23
LCD_P24
PTC4
SPI0_PCS0
UART1_TX
FTM0_CH3
CMP1_OUT
LCD_P24
LPT0_ALT2
CMP0_OUT
LCD_P25
VSS
Pr
el
im
in
ar
y
99
100
LCD_P17
EzPort
107
H8
108
C10 VLL3
109
C9
VLL2
110
B9
VLL1
111
B10 VCAP2
112
A10 VCAP1
113
A9
LCD_P24
114
D8
LCD_P25
LCD_P25
PTC5
SPI0_SCK
115
C8
LCD_P26/
CMP0_IN0
LCD_P26/
CMP0_IN0
PTC6
SPI0_SOUT
116
B8
LCD_P27/
CMP0_IN1
LCD_P27/
CMP0_IN1
PTC7
SPI0_SIN
117
A8
LCD_P28/
LCD_P28/
PTC8
ADC1_SE4b/ ADC1_SE4b/
CMP0_IN2
CMP0_IN2
118
D7
LCD_P29/
LCD_P29/
PTC9
ADC1_SE5b/ ADC1_SE5b/
CMP0_IN3
CMP0_IN3
119
C7
LCD_P30/
LCD_P30/
PTC10
ADC1_SE6b/ ADC1_SE6b/
CMP0_IN4
CMP0_IN4
LCD_P19
VSS
VLL3
VLL2
VLL1
VCAP2
VCAP1
PDB0_EXTR
G
LCD_P26
LCD_P27
I2S0_MCLK
I2S0_CLKIN
I2S0_RX_BC
LK
I2C1_SCL
LCD_P28
FTM2_FLT0
I2S0_RX_FS
LCD_P29
LCD_P30
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
64
Preliminary
Freescale Semiconductor, Inc.
Pinout
Default
ALT0
ALT1
ALT2
ALT3
ALT5
ALT6
B7
LCD_P31/
ADC1_SE7b
LCD_P31/
ADC1_SE7b
PTC11
121
A7
LCD_P32
LCD_P32
PTC12
UART4_RTS
_b
LCD_P32
122
D6
LCD_P33
LCD_P33
PTC13
UART4_CTS
_b
LCD_P33
123
C6
LCD_P34
LCD_P34
PTC14
UART4_RX
LCD_P34
124
B6
LCD_P35
LCD_P35
PTC15
UART4_TX
LCD_P35
125
A6
LCD_P36
LCD_P36
PTC16
CAN1_RX
UART3_RX
LCD_P36
126
D5
LCD_P37
LCD_P37
PTC17
CAN1_TX
UART3_TX
LCD_P37
127
C5
LCD_P38
128
B5
LCD_P39
129
A5
LCD_P40
130
D4
LCD_P41/
ADC0_SE5b
131
C4
LCD_P42
132
B4
LCD_P43
133
A4
LCD_P44
134
A3
LCD_P45/
ADC0_SE6b
135
A2
LCD_P46/
ADC0_SE7b
136
M10 VSS
F8
VDD
138
A1
LCD_P47
139
B3
DISABLED
140
B2
DISABLED
I2S0_RXD
ALT7
120
137
I2C1_SDA
ALT4
Pr
el
im
in
ar
y
144 144
QFP BGA
EzPort
LCD_P31
LCD_P38
PTC18
UART3_RTS
_b
LCD_P38
LCD_P39
PTC19
UART3_CTS
_b
LCD_P39
LCD_P40
PTD0
SPI0_PCS0
UART2_RTS
_b
LCD_P40
LCD_P41/
ADC0_SE5b
PTD1
SPI0_SCK
UART2_CTS
_b
LCD_P41
LCD_P42
PTD2
SPI0_SOUT
UART2_RX
LCD_P42
LCD_P43
PTD3
SPI0_SIN
UART2_TX
LCD_P43
LCD_P44
PTD4
SPI0_PCS1
UART0_RTS
_b
FTM0_CH4
EWM_IN
LCD_P45/
ADC0_SE6b
PTD5
SPI0_PCS2
UART0_CTS
_b
FTM0_CH5
EWM_OUT_b LCD_P45
LCD_P46/
ADC0_SE7b
PTD6
SPI0_PCS3
UART0_RX
FTM0_CH6
FTM0_FLT0
LCD_P46
PTD7
CMT_IRO
UART0_TX
FTM0_CH7
FTM0_FLT1
LCD_P47
LCD_P44
VSS
VDD
LCD_P47
PTD10
PTD11
SPI2_PCS0
UART5_RTS
_b
FB_AD9
UART5_CTS
_b
SDHC0_CLKI FB_AD8
N
141
B1
DISABLED
PTD12
SPI2_SCK
SDHC0_D4
FB_AD7
142
C3
DISABLED
PTD13
SPI2_SOUT
SDHC0_D5
FB_AD6
143
C2
DISABLED
PTD14
SPI2_SIN
SDHC0_D6
FB_AD5
144
C1
DISABLED
PTD15
SPI2_PCS1
SDHC0_D7
FB_RW_b
8.2 K40 Pinouts
The below figure shows the pinout diagram for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
65
PTD15
PTD14
PTD13
PTD12
PTD11
PTD10
PTD7
VDD
VSS
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
PTC19
PTC18
PTC17
PTC16
PTC15
PTC14
PTC13
PTC12
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6
PTC5
PTC4
VCAP1
VCAP2
VLL1
VLL2
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
Pinout
1
108
VLL3
2
107
VSS
PTE2
3
106
PTC3
PTE3
4
105
PTC2
VDD
5
104
PTC1
VSS
6
103
PTC0
PTE4
7
102
PTB23
PTE5
8
101
PTB22
PTE6
9
100
PTB21
PTE7
10
99
PTB20
PTE8
11
98
PTB19
PTE9
12
97
PTB18
PTE10
13
96
PTB17
PTE11
14
95
PTB16
PTE12
15
94
VDD
VDD
16
93
VSS
VSS
17
92
PTB11
VSS
18
91
PTB10
USB0_DP
19
90
PTB9
USB0_DM
20
89
PTB8
VOUT33
21
88
PTB7
VREGIN
22
87
PTB6
ADC0_DP1
23
86
PTB5
ADC0_DM1
24
85
PTB4
ADC1_DP1
25
84
PTB3
ADC1_DM1
26
83
PTB2
PGA0_DP/ADC0_DP0/ADC1_DP3
27
82
PTB1
PGA0_DM/ADC0_DM0/ADC1_DM3
28
81
PTB0
PGA1_DP/ADC1_DP0/ADC0_DP3
29
80
PTA29
PGA1_DM/ADC1_DM0/ADC0_DM3
30
79
PTA28
VDDA
31
78
PTA27
VREFH
32
77
PTA26
VREFL
33
76
PTA25
VSSA
34
75
PTA24
ADC1_SE16
35
74
RESET_b
ADC0_SE16
36
73
PTA19
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VREF_OUT
DAC0_OUT
DAC1_OUT
XTAL32
EXTAL32
VBAT
VDD
VSS
PTE24
PTE25
PTE26
PTE27
PTE28
PTA0
PTA1
PTA2
PTA3
PTA4
PTA5
VDD
VSS
PTA6
PTA7
PTA8
PTA9
PTA10
PTA11
PTA12
PTA13
PTA14
PTA15
PTA16
PTA17
VDD
VSS
PTA18
Pr
el
im
in
ar
y
PTE0
PTE1
Figure 25. K40 144 LQFP Pinout Diagram
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
66
Preliminary
Freescale Semiconductor, Inc.
Revision History
2
3
4
5
6
7
8
9
10
11
12
A
PTD7
PTD6
PTD5
PTD4
PTD0
PTC16
PTC12
PTC8
PTC4
VCAP1
PTC3
PTC2
A
B
PTD12
PTD11
PTD10
PTD3
PTC19
PTC15
PTC11
PTC7
VLL1
VCAP2
PTC1
PTC0
B
C
PTD15
PTD14
PTD13
PTD2
PTC18
PTC14
PTC10
PTC6
VLL2
VLL3
PTB23
PTB22
C
D
PTE2
PTE1
PTE0
PTD1
PTC17
PTC13
PTC9
PTC5
PTB21
PTB20
PTB19
PTB18
D
E
PTE6
PTE5
PTE4
PTE3
VDD
VDD
VDD
VDD
PTB17
PTB16
PTB11
PTB10
E
F
PTE10
PTE9
PTE8
PTE7
VDD
VSS
VSS
VDD
PTB9
PTB8
PTB7
PTB6
F
G
VOUT33
VREGIN
PTE12
PTE11
VREFH
VREFL
VSS
VSS
PTB5
PTB4
PTB3
PTB2
G
H
USB0_DP
USB0_DM
VSS
PTE28
VDDA
VSSA
VSS
VSS
PTB1
PTB0
PTA29
PTA28
H
J
ADC0_DP1
ADC0_DM1
ADC0_SE16
PTE27
PTA0
PTA1
PTA6
PTA7
PTA13
PTA27
PTA26
PTA25
J
K
ADC1_DP1
ADC1_DM1
ADC1_SE16
PTE26
PTE25
PTA2
PTA3
PTA8
PTA12
PTA16
PTA17
PTA24
K
L
PGA0_DP/
ADC0_DP0/
ADC1_DP3
PGA0_DM/
ADC0_DM0/
ADC1_DM3
DAC0_OUT
DAC1_OUT
NC
VBAT
PTA4
PTA9
PTA11
PTA14
PTA15
RESET_b
L
PGA1_DP/
M ADC1_DP0/
ADC0_DP3
PGA1_DM/
ADC1_DM0/
ADC0_DM3
VREF_OUT
PTE24
NC
EXTAL32
XTAL32
PTA5
PTA10
VSS
PTA19
PTA18
M
2
3
4
5
6
7
8
9
10
11
12
1
Pr
el
im
in
ar
y
1
Figure 26. K40 144 MAPBGA Pinout Diagram
9 Revision History
The following table provides a revision history for this document.
Table 46. Revision History
Rev. No.
Date
1
11/2010
Substantial Changes
Initial public revision
K40 Sub-Family Data Sheet Data Sheet, Rev. 1, 11/2010.
Freescale Semiconductor, Inc.
Preliminary
67
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Japan:
Pr
el
im
in
ar
y
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. ARM is the registered trademark of ARM Limited. ARM
Cortex-M4 is the trademark of ARM Limited. All other product or service
names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010. All rights reserved.
K40P144M100SF2
Rev. 1
11/2010
Similar pages