AUIRLR3636 D-Pak AUIRLR3636 Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * Description Specifically designed for Automotive applications, thi MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D G S VDSS RDS(on) typ. max. ID (Silicon Limited) ID (Package Limited) 60V 5.4m: 6.8m: 99A 50A c Absolute Maximum Ratings Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolutemaximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Symbol ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS IAR EAR Parameter Max. 99 70 50 396 143 0.95 ±16 170 d Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Avalanche Current Repetitive Avalanche Energy d f e d A W See Fig.14, 15, 22a, 22b 22 Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) dv/dt TJ TSTG Units c c Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) W/°C V mJ A mJ V/ns -55 to + 175 °C 300 Thermal Resistance Symbol RθJC RθJA RθJA 2014-8-24 k Parameter Junction-to-Case Junction-to-Ambient (PCB Mount) Junction-to-Ambient j 1 Typ. Max. Units ––– ––– ––– 1.05 50 110 °C/W www.kersemi.com AUIRLR3636 Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS Drain-to-Source Breakdown Voltage ΔV(BR)DSS/ΔTJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs RG(int) IDSS Gate Threshold Voltage Forward Transconductance Internal Gate Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 60 ––– ––– ––– 1.0 31 ––– ––– ––– ––– ––– ––– 0.07 5.4 6.6 ––– ––– 0.6 ––– ––– ––– ––– Conditions ––– V VGS = 0V, ID = 250μA ––– V/°C Reference to 25°C, ID = 5mA 6.8 VGS = 10V, ID = 50A mΩ VGS = 4.5V, ID = 50A 8.3 2.5 V VDS = VGS, ID = 100μA ––– S VDS = 25V, ID = 50A ––– Ω 20 VDS = 60V, VGS = 0V μA 250 VDS = 60V, VGS = 0V, TJ = 125°C VGS = 16V 100 nA VGS = -16V -100 d g g Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Parameter Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units i h Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 33 11 15 18 45 216 43 69 3779 332 163 437 636 49 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Conditions ID = 50A VDS = 30V nC VGS = 4.5V ID = 50A, VDS =0V, VGS = 4.5V VDD = 39V ID = 50A ns RG = 7.5 Ω VGS = 4.5V VGS = 0V VDS = 50V pF ƒ = 1.0MHz VGS = 0V, VDS = 0V to 48V ,See Fig.11 VGS = 0V, VDS = 0V to 48V g g i h Diode Characteristics Symbol IS Parameter Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM d Notes: Calcuted continuous current based on maximum allowable junction temperature Bond wire current limit is 50A. Note that current limitation arising from heating of the device leds may occur with some lead mounting arrangements. Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.136 mH RG = 25Ω, IAS = 50A, VGS =10V. Part not recommended for use above this value . ISD ≤ 50A, di/dt ≤ 1109 A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. 2014-8-24 Min. Typ. Max. Units ––– ––– ––– ––– 99 c 396 Conditions MOSFET symbol A showing the integral reverse D G p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V TJ = 25°C VR = 51V, TJ = 125°C IF = 50A di/dt = 100A/μs TJ = 25°C S g ––– ––– 1.3 V ––– 27 ––– ns ––– 32 ––– ––– 31 ––– nC TJ = 125°C ––– 43 ––– ––– 2.1 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g Pulse width ≤ 400μs; duty cycle ≤ 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniquea refer to applocation note # AN- 994 echniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. 2 www.kersemi.com AUIRLR3636 Qualification Information † Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model ESD Human Body Model Charged Device Model †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D-PAK MSL1 Class M4 (+/- 600V) AEC-Q101-002 ††† Class H1C (+/- 2000V) AEC-Q101-001 Class C5 (+/- 2000V) AEC-Q101-005 RoHS Compliant ††† ††† Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report. Highest passing voltage. 2014-8-24 3 www.kersemi.com AUIRLR3636 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V 10 2.7V 1 100 ≤60μs PULSE WIDTH Tj = 25°C 1 10 2.7V 10 ≤60μs PULSE WIDTH Tj = 175°C 1 0.1 0.1 BOTTOM 0.1 100 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 100 T J = 175°C T J = 25°C 10 1 VDS = 25V ≤60μs PULSE WIDTH 0.1 ID = 50A VGS = 10V 2.0 1.5 1.0 0.5 1 2 3 4 5 6 7 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 5.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) 10000 Ciss 1000 ID= 50A 4.5 C oss = C ds + C gd C, Capacitance (pF) VGS 15V 10V 4.5V 4.0V 3.5V 3.3V 3.0V 2.7V Coss Crss VDS= 48V VDS= 30V VDS= 12V 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 100 1 10 0 100 10 15 20 25 30 35 40 QG, Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 2014-8-24 5 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 4 www.kersemi.com AUIRLR3636 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) T J = 175°C 100 T J = 25°C 10 1 100μsec 100 LIMITED BY PACKAGE 10 1msec 10msec 1 VGS = 0V 0.1 0.1 0.1 0.4 0.7 1 1.3 1.6 0.1 1.9 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) 110 Limited By Package ID, Drain Current (A) 90 80 70 60 50 40 30 20 10 0 25 50 75 100 125 150 175 100 80 Id = 5mA 75 70 65 60 55 50 -60 -40 -20 0 20 40 60 80 100120140160180 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 0.8 EAS , Single Pulse Avalanche Energy (mJ) 800 0.6 Energy (μJ) 10 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 100 1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 0.4 0.2 0.0 ID 5.69A 10.64A BOTTOM 50A 700 TOP 600 500 400 300 200 100 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 2014-8-24 DC Tc = 25°C Tj = 175°C Single Pulse Fig 12. Maximum Avalanche Energy vs. DrainCurrent 5 www.kersemi.com AUIRLR3636 Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.02 0.01 0.1 τJ 0.01 1E-005 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ1 τ2 τ3 τ2 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 R1 R1 0.0001 τ3 τ4 τ4 Ri (°C/W) τi (sec) 0.02028 0.000011 0.29406 0.000158 0.49179 0.001393 0.24336 0.00725 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) 100 0.01 0.05 10 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 200 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1.0% Duty Cycle ID = 50A 150 100 50 0 25 50 75 100 125 150 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 175 Starting T J , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature 2014-8-24 6 www.kersemi.com AUIRLR3636 14 IF = 20A V R = 51V 12 2.5 TJ = 25°C TJ = 125°C 10 2.0 IRRM (A) VGS(th) , Gate threshold Voltage (V) 3.0 1.5 ID = 100μA ID = 250μA ID = 1.0mA 1.0 8 6 4 ID = 1.0A 0.5 2 0.0 0 -75 -50 -25 0 25 50 75 100 125 150 175 0 200 T J , Temperature ( °C ) 600 800 1000 Fig. 17 - Typical Recovery Current vs. dif/dt Fig 16. Threshold Voltage vs. Temperature 350 16 IF = 30A V R = 51V 14 TJ = 25°C TJ = 125°C 250 QRR (A) 10 IF = 20A V R = 51V 300 TJ = 25°C TJ = 125°C 12 IRRM (A) 400 diF /dt (A/μs) 8 6 200 150 100 4 50 2 0 0 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/μs) diF /dt (A/μs) Fig. 18 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Stored Charge vs. dif/dt 350 IF = 30A V R = 51V 300 TJ = 25°C TJ = 125°C QRR (A) 250 200 150 100 50 0 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Stored Charge vs. dif/dt 2014-8-24 7 www.kersemi.com AUIRLR3636 Driver Gate Drive D.U.T - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG VGS 20V + V - DD IAS A 0.01Ω tp I AS Fig 22b. Unclamped Inductive Waveforms Fig 22a. Unclamped Inductive Test Circuit RD VDS VDS 90% VGS D.U.T. RG + - VDD V10V GS 10% VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % td(on) Fig 23a. Switching Time Test Circuit tr t d(off) Fig 23b. Switching Time Waveforms Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V tf .2μF .3μF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 24a. Gate Charge Test Circuit 2014-8-24 Qgd Qgodr Fig 24b. Gate Charge Waveform 8 www.kersemi.com AUIRLR3636 D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information Part Number AULR3636 YWWA Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code 2014-8-24 9 www.kersemi.com AUIRLR3636 D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION TRL FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. 2014-8-24 10 www.kersemi.com AUIRLR3636 Ordering Information Base part number AUIRLR3636 2014-8-24 Package Type Dpak Standard Pack Form Tube Tape and Reel Tape and Reel Left Tape and Reel Right 11 Complete Part Number Quantity 75 2000 3000 3000 AUIRLR3636 AUIRLR3636TR AUIRLR3636TRL AUIRLR3636TRR www.kersemi.com