Freescale Semiconductor Technical Data Document Number: MRF7S27130H Rev. 0, 9/2007 RF Power Field Effect Transistors MRF7S27130HR3 MRF7S27130HSR3 N - Channel Enhancement - Mode Lateral MOSFETs Designed for WiMAX base station applications with frequencies up to 2700 MHz. Suitable for WiMAX, WiBro, BWA, and OFDM multicarrier Class AB and Class C amplifier applications. • Typical WiMAX Performance: VDD = 28 Volts, IDQ = 1500 mA, Pout = 23 Watts Avg., f = 2500 and 2700 MHz, 802.16d, 64 QAM 3/4, 4 bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF. Power Gain — 16.5 dB Drain Efficiency — 20% Device Output Signal PAR — 8.2 dB @ 0.01% Probability on CCDF ACPR @ 5.25 MHz Offset — - 49 dBc in 0.5 MHz Channel Bandwidth • Capable of Handling 10:1 VSWR, @ 32 Vdc, 2600 MHz, 105 Watts CW Peak Tuned Output Power Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 56 mm, 13 inch Reel. 2500- 2700 MHz, 23 W AVG., 28 V WiMAX LATERAL N - CHANNEL RF POWER MOSFETs CASE 465 - 06, STYLE 1 NI - 780 MRF7S27130HR3 CASE 465A - 06, STYLE 1 NI - 780S MRF7S27130HSR3 Table 1. Maximum Ratings Symbol Value Unit Drain- Source Voltage Rating VDS - 0.5, +65 Vdc Gate- Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature (1,2) TJ 225 °C CW 150 0.83 W °C/W Symbol Value (2,3) Unit CW Operation @ TC = 25°C Derate above 25°C Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 104 W CW Case Temperature 69°C, 23 W CW RθJC 0.32 0.36 °C/W 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Design Tools (Software & Tools)/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. Freescale Semiconductor, Inc., 2007. All rights reserved. RF Device Data Freescale Semiconductor MRF7S27130HR3 MRF7S27130HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 µAdc Zero Gate Voltage Drain Leakage Current (VDS = 28 Vdc, VGS = 0 Vdc) IDSS — — 1 µAdc Gate- Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 µAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 348 µAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDS = 28 Vdc, ID = 1500 mAdc) VGS(Q) — 2.7 — Vdc Fixture Gate Quiescent Voltage (1) (VDD = 28 Vdc, ID = 1500 mAdc, Measured in Functional Test) VGG(Q) 4 5.4 7 Vdc Drain- Source On - Voltage (VGS = 10 Vdc, ID = 3.4 Adc) VDS(on) 0.1 0.24 0.3 Vdc Reverse Transfer Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 10.4 — pF Output Capacitance (VDS = 28 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 711 — pF Input Capacitance (VDS = 28 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 326 — pF Characteristic Off Characteristics On Characteristics Dynamic Characteristics (2) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg., f = 2500 MHz and f = 2700 MHz, WiMAX Signal, 802.16d, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. ACPR measured in 0.5 MHz Channel Bandwidth @ ±5.25 MHz Offset. Power Gain Gps 15 16.5 18.5 dB Drain Efficiency ηD 18 20 23 % PAR 7.5 8.2 — dB ACPR — - 49 - 46 dBc IRL — -8 -5 dB Output Peak - to - Average Ratio @ 0.01% Probability on CCDF Adjacent Channel Power Ratio Input Return Loss 1. VGG = 2 x VGS(Q). Parameter measured on Freescale Test Fixture, due to resistive divider network on the board. Refer to Test Circuit schematic. 2. Part internally matched both on input and output. (continued) MRF7S27130HR3 MRF7S27130HSR3 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Performances OFDM Signal (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg., f = 2500 MHz and f = 2700 MHz, WiMAX Signal, OFDM Single - Carrier, 7 MHz Channel Bandwidth, 64 QAM 3/4, 4 Bursts, PAR = 9.5 dB @ 0.01% Probability on CCDF. Mask System Type G @ Pout = 23 W Avg. Mask Point B at 3.5 MHz Offset Point C at 5 MHz Offset Point D at 7.4 MHz Offset Point E at 14 MHz Offset Point F at 17.5 MHz Offset dBc — — — — — - 27 - 40 - 44 - 60 - 60 — — — — — Relative Constellation Error @ Pout = 23 W Avg. (1) RCE — - 33 — dB (1) EVM — 2.2 — % rms Error Vector Magnitude (Typical EVM Performance @ Pout = 23 W Avg. with OFDM 802.16d Signal Call) Typical Performances (In Freescale Test Fixture, 50 ohm system) VDD = 28 Vdc, IDQ = 1500 mA, 2500 - 2700 MHz Bandwidth Video Bandwidth @ 130 W PEP Pout where IM3 = - 30 dBc (Tone Spacing from 100 kHz to VBW) ∆IMD3 = IMD3 @ VBW frequency - IMD3 @ 100 kHz <1 dBc (both sidebands) VBW MHz — 40 — Gain Flatness in 200 MHz Bandwidth @ Pout = 23 W Avg. GF — 1.2 — dB Average Deviation from Linear Phase in 200 MHz Bandwidth @ Pout = 105 W CW Φ — 135 — ° Delay — 1.5 — ns Part - to - Part Insertion Phase Variation @ Pout = 105 W CW, f = 2600 MHz, Six Sigma Window ∆Φ — 81.3 — ° Gain Variation over Temperature ( - 30°C to +85°C) ∆G — 0.013 — dB/°C ∆P1dB — 0.01 — dBm/°C Average Group Delay @ Pout = 105 W CW, f = 2600 MHz Output Power Variation over Temperature ( - 30°C to +85°C) 1. RCE = 20Log(EVM/100) MRF7S27130HR3 MRF7S27130HSR3 RF Device Data Freescale Semiconductor 3 R1 Z18 R3 VBIAS VSUPPLY + R2 C2 C3 C4 C6 C7 C8 C12 Z17 Z9 RF INPUT Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z10 Z8 Z11 Z12 Z13 Z14 Z15 RF Z16 OUTPUT C13 C1 DUT Z19 C5 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 0.320″ x 0.084″ Microstrip 0.380″ x 0.240″ Microstrip 0.046″ x 0.084″ Microstrip 0.273″ x 0.084″ Microstrip 0.360″ x 0.600″ Microstrip 0.260″ x 0.394″ Microstrip 0.145″ x 0.922″ Microstrip 0.455″ x 0.922″ Microstrip 0.106″ x 0.716″ Microstrip 0.413″ x 0.716″ Microstrip Z11 Z12 Z13 Z14 Z15 Z16 Z17* Z18, Z19* PCB C10 C11 C9 0.251″ x 0.084″ Microstrip 0.160″ x 0.162″ Microstrip 0.566″ x 0.084″ Microstrip 0.059″ x 0.084″ Microstrip 0.080″ x 0.123″ Microstrip 0.583″ x 0.084″ Microstrip 0.950″ x 0.100″ Microstrip 0.560″ x 0.100″ Microstrip Taconix TLX8 - 0300, 0.030″, εr = 2.55 * Variable for tuning Figure 1. MRF7S27130HR3(HSR3) Test Circuit Schematic Table 5. MRF7S27130HR3(HSR3) Test Circuit Component Designations and Values Part Description Part Number Manufacturer C1 2 pF Chip Capacitor ATC100B2R0BT500XT ATC C2, C6, C7, C8, C9, C10, C11 10 µF, 50 V Chip Capacitors C5750X5R1H106M TDK C3 3 pF Chip Capacitor ATC100B3R0BT500XT ATC C4, C5 3.6 pF Chip Capacitors ATC100B3R6BT500XT ATC C12 470 µF, 63 V Electrolytic Capacitor, Radial EKME630ELL471MK255 Multicomp C13 5.6 pF Chip Capacitor ATC100B5R6BT500XT ATC R1, R2 2 KΩ, 1/4 W Chip Resistors CRCW12062001FKEA Vishay R3 10 Ω, 1/4 W Chip Resistor CRCW120610R1FKEA Vishay MRF7S27130HR3 MRF7S27130HSR3 4 RF Device Data Freescale Semiconductor C6 C7 C8 VGS VDD C4 R1 C12 C3 R3 C2 C1 CUT OUT AREA R2 C13 C11 C9 C5 C10 MRF7S27130H/HS Rev. 0 Figure 2. MRF7S27130HR3(HSR3) Test Circuit Component Layout MRF7S27130HR3 MRF7S27130HSR3 RF Device Data Freescale Semiconductor 5 Gps, POWER GAIN (dB) 17.8 17.7 21 17.5 17.4 Gps 17.3 23 22 ηD 17.6 24 20 −5 −46 −6 −47 IRL 17.2 −48 −49 17.1 17 2500 ACPR 2525 2550 2575 2600 2625 2650 2675 ACPR (dBc) 17.9 25 VDD = 28 Vdc, Pout = 23 W (Avg.), IDQ = 1500 mA 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF −50 2700 −7 −8 −9 −10 IRL, INPUT RETURN LOSS (dB) 18 ηD, DRAIN EFFICIENCY (%) TYPICAL CHARACTERISTICS f, FREQUENCY (MHz) Gps, POWER GAIN (dB) 17.5 33 VDD = 28 Vdc, Pout = 43 W (Avg.), IDQ = 1500 mA 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 17.4 29 17.2 Gps 17.1 28 −5 −36 −6 −37 17 IRL 16.9 −38 −39 16.8 16.7 2500 31 30 ηD 17.3 32 ACPR 2525 2550 2575 2600 2625 2650 2675 ACPR (dBc) 17.6 −40 2700 −7 −8 −9 −10 IRL, INPUT RETURN LOSS (dB) 17.7 ηD, DRAIN EFFICIENCY (%) Figure 3. WiMAX Broadband Performance @ Pout = 23 Watts Avg. f, FREQUENCY (MHz) Figure 4. WiMAX Broadband Performance @ Pout = 43 Watts Avg. 19 −10 Gps, POWER GAIN (dB) 18 17 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) IDQ = 2250 mA 2000 mA 1500 mA 1200 mA 16 1000 mA VDD = 28 Vdc, IDQ = 1500 mA f1 = 2595 MHz, f2 = 2605 MHz Two−Tone Measurements, 10 MHz Tone Spacing 15 14 −20 VDD = 28 Vdc, IDQ = 1500 mA f1 = 2595 MHz, f2 = 2605 MHz Two−Tone Measurements, 10 MHz Tone Spacing −30 IDQ = 2250 mA 1000 mA −40 −50 1500 mA 2000 mA 1200 mA −60 1 10 100 Pout, OUTPUT POWER (WATTS) PEP Figure 5. Two - Tone Power Gain versus Output Power 500 1 100 10 200 Pout, OUTPUT POWER (WATTS) PEP Figure 6. Third Order Intermodulation Distortion versus Output Power MRF7S27130HR3 MRF7S27130HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS VDD = 28 Vdc, IDQ = 1500 mA f1 = 2595 MHz, f2 = 2605 MHz Two−Tone Measurements, 10 MHz Tone Spacing −40 3rd Order −50 5th Order −60 7th Order −70 −80 1 100 10 VDD = 28 Vdc, Pout = 130 W (PEP), IDQ = 1500 mA Two−Tone Measurements (f1 + f2)/2 = Center Frequency of 2600 MHz −10 −20 IM3−U −30 IM3−L −40 IM5−U IM5−L IM7−L −50 IM7−U −60 10 1 200 100 TWO−TONE SPACING (MHz) Figure 8. Intermodulation Distortion Products versus Tone Spacing ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PEP Figure 7. Intermodulation Distortion Products versus Output Power 55 −10 VDD = 28 Vdc, IDQ = 1500 mA f = 2600 MHz, 802.16d, 64 QAM 3/4 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 50 45 40 35 −30_C 25_C −15 85_C −20 85_C −25 25_C 30 −30 −35 −30_C −40 25 Gps 20 TC = −30_C −45 −50 15 10 ηD 85_C ACPR 5 25_C −55 −60 −65 300 0 1 10 ACPR (dBc) −30 0 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) −20 100 Pout, OUTPUT POWER (WATTS) AVG. WiMAX Figure 9. WiMAX, ACPR, Power Gain and Drain Efficiency versus Output Power 25_C 50 85_C 25_C 17 40 Gps 16 30 85_C 15 20 14 VDD = 28 Vdc IDQ = 1500 mA f = 2600 MHz ηD 13 1 10 10 100 0 300 IDQ = 1500 mA f = 2600 MHz 17 Gps, POWER GAIN (dB) −30_C 18 Gps, POWER GAIN (dB) 18 60 TC = −30_C ηD, DRAIN EFFICIENCY (%) 19 16 15 32 V 14 VDD = 24 V 28 V 13 0 25 50 75 100 125 150 175 Pout, OUTPUT POWER (WATTS) CW Pout, OUTPUT POWER (WATTS) CW Figure 10. Power Gain and Drain Efficiency versus CW Output Power Figure 11. Power Gain versus Output Power 200 MRF7S27130HR3 MRF7S27130HSR3 RF Device Data Freescale Semiconductor 7 TYPICAL CHARACTERISTICS 109 MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 28 Vdc, Pout = 23 W Avg., and ηD = 20%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu− lators by product. Figure 12. MTTF versus Junction Temperature WiMAX TEST SIGNAL 100 −10 7 MHz Channel BW −20 10 −40 −50 0.1 (dB) PROBABILITY (%) Compressed Output Signal @ 23 W Avg. Pout 1 System Type G −30 Input Signal 0.01 −70 802.16d, 64 QAM 3/4, 4 Bursts, 7 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF 0.001 0.0001 0 2 4 −60 −80 Point B Point C −90 6 8 PEAK−TO−AVERAGE (dB) Figure 13. OFDM 802.16d Test Signal 10 Point B Point C −100 Point D Point D −110 −9 −7.2 −5.4 −3.6 −1.8 0 1.8 3.6 5.4 7.2 9 f, FREQUENCY (MHz) Figure 14. WiMAX Spectrum Mask Specifications MRF7S27130HR3 MRF7S27130HSR3 8 RF Device Data Freescale Semiconductor Zo = 5 Ω f = 2700 MHz Zsource f = 2500 MHz f = 2700 MHz Zload f = 2500 MHz VDD = 28 Vdc, IDQ = 1500 mA, Pout = 23 W Avg. f MHz Zsource W Zload W 2500 4.499 - j2.335 2.936 - j4.876 2525 4.382 - j1.944 2.885 - j4.666 2550 4.294 - j1.567 2.838 - j4.467 2575 4.234 - j1.194 2.797 - j4.273 2600 4.209 - j0.820 2.763 - j4.084 2625 4.219 - j0.447 2.733 - j3.903 2650 4.248 - j0.090 2.706 - j3.732 2675 4.304 + j0.261 2.678 - j3.570 2700 4.390 + j0.612 2.652 - j3.410 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 15. Series Equivalent Source and Load Impedance MRF7S27130HR3 MRF7S27130HSR3 RF Device Data Freescale Semiconductor 9 PACKAGE DIMENSIONS B G 2X 1 Q bbb M T A M B M NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. 3 B K 2 (FLANGE) D bbb M T A B M M M bbb N R (INSULATOR) M T A B M M ccc M T A S (LID) ccc H (LID) B M M T A B M aaa M M T A M DIM A B C D E F G H K M N Q R S aaa bbb ccc M (INSULATOR) B M C F E A T A SEATING PLANE INCHES MIN MAX 1.335 1.345 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 1.100 BSC 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 .118 .138 0.365 0.375 0.365 0.375 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 33.91 34.16 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 27.94 BSC 1.45 1.70 4.32 5.33 19.66 19.96 19.60 20.00 3.00 3.51 9.27 9.53 9.27 9.52 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 3. SOURCE (FLANGE) CASE 465 - 06 ISSUE G NI - 780 MRF7S27130HR3 4X U (FLANGE) 4X Z (LID) B 1 K 2X 2 B (FLANGE) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M−1994. 2. CONTROLLING DIMENSION: INCH. 3. DELETED 4. DIMENSION H IS MEASURED 0.030 (0.762) AWAY FROM PACKAGE BODY. D bbb M T A M B M N (LID) ccc M R M T A M B M ccc M T A S (INSULATOR) bbb M T A M M B M aaa M T A M (LID) B M (INSULATOR) B M H C 3 E A A F T SEATING PLANE (FLANGE) CASE 465A - 06 ISSUE H NI - 780S MRF7S27130HSR3 DIM A B C D E F H K M N R S U Z aaa bbb ccc INCHES MIN MAX 0.805 0.815 0.380 0.390 0.125 0.170 0.495 0.505 0.035 0.045 0.003 0.006 0.057 0.067 0.170 0.210 0.774 0.786 0.772 0.788 0.365 0.375 0.365 0.375 −−− 0.040 −−− 0.030 0.005 REF 0.010 REF 0.015 REF MILLIMETERS MIN MAX 20.45 20.70 9.65 9.91 3.18 4.32 12.57 12.83 0.89 1.14 0.08 0.15 1.45 1.70 4.32 5.33 19.61 20.02 19.61 20.02 9.27 9.53 9.27 9.52 −−− 1.02 −−− 0.76 0.127 REF 0.254 REF 0.381 REF STYLE 1: PIN 1. DRAIN 2. GATE 5. SOURCE MRF7S27130HR3 MRF7S27130HSR3 10 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date 0 Sept. 2007 Description • Initial Release of Data Sheet MRF7S27130HR3 MRF7S27130HSR3 RF Device Data Freescale Semiconductor 11 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800- 521- 6274 or +1 - 480- 768- 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800- 441- 2447 or 303 - 675- 2140 Fax: 303 - 675- 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. Freescale Semiconductor, Inc. 2007. All rights reserved. MRF7S27130HR3 MRF7S27130HSR3 Document Number: MRF7S27130H Rev. 0, 9/2007 12 RF Device Data Freescale Semiconductor