Holtek HT46R65 A/d with lcd type 8-bit mcu Datasheet

HT46R65/HT46C65
A/D with LCD Type 8-Bit MCU
Technical Document
· Tools Information
· FAQs
· Application Note
- HA0003E Communicating between the HT48 & HT46 Series MCUs and the HT93LC46 EEPROM
- HA0004E HT48 & HT46 MCU UART Software Implementation Method
- HA0005E Controlling the I2C bus with the HT48 & HT46 MCU Series
- HA0047E An PWM application example using the HT46 series of MCUs
Features
· Operating voltage:
· Buzzer output
fSYS=4MHz: 2.2V~5.5V
fSYS=8MHz: 3.3V~5.5V
· On-chip crystal, RC and 32768Hz crystal oscillator
· HALT function and wake-up feature reduce power
· 24 bidirectional I/O lines
consumption
· Two external interrupt input
· 16-level subroutine nesting
· Two 16-bit programmable timer/event counter with
· 8 channels 10-bit resolution A/D converter
PFD (programmable frequency divider) function
· 4-channel 8-bit PWM output shared with 4 I/O lines
· LCD driver with 41´3 or 40´4 segments
· Bit manipulation instruction
(logical output option for SEG0~SEG23)
· 16-bit table read instruction
· 8K´16 program memory
· Up to 0.5ms instruction cycle with 8MHz system clock
· 384´8 data memory RAM
· 63 powerful instructions
· Supports PFD for sound generation
· All instructions in 1 or 2 machine cycles
· Real Time Clock (RTC)
· Low voltage reset/detector function
· 8-bit prescaler for RTC
· 52-pin QFP, 56-pin SSOP, 100-pin LQFP packages
· Watchdog Timer
General Description
The HT46R65/HT46C65 are 8-bit, high performance,
RISC architecture microcontroller devices specifically
designed for A/D product applications that interface directly to analog signals and which require LCD Interface. The mask version HT46C65 is fully pin and
functionally compatible with the OTP version HT46R65
device.
Converter, Pulse Width Modulation function, HALT and
wake-up functions, in addition to a flexible and
configurable LCD interface enhance the versatility of
these devices to control a wide range of applications requiring analog signal processing and LCD interfacing,
such as electronic metering, environmental monitoring,
handheld measurement tools, motor driving, etc., for
both industrial and home appliance application areas.
The advantages of low power consumption, I/O flexibility, timer functions, oscillator options, multi-channel A/D
Rev. 2.00
1
April 13, 2011
HT46R65/HT46C65
Block Diagram
In te rru p t
C ir c u it
P ro g ra m
E P R O M
IN T C
In s tr u c tio n
R e g is te r
M
M P
M
T M R 1 C
T M R 1
P F D 1
U
X
D A T A
M e m o ry
P W
S T A T U S
A L U
P o rt D
S h ifte r
P B C
A C C
C 1
P o rt B
P B
D
L C D
M e m o ry
C 3
P A C
P o rt A
P A
L C D D R IV E R
H A L T
C O M 0 ~
C O M 2
Rev. 2.00
P D 7 /T M R 1
fS Y S /4
X
3 2 7 6 8 H z
U
Y S
/4
O S C 3
O S C 4
R T C O S C
X
P D 0
P D 4
P D 5
P D 6
P D 7
/P W
/IN
/IN
/T M
/T M
T 0
M 0 ~ P D 3 /P W
M 3
T 1
R 0
R 1
8 -C h a n n e l
A /D C o n v e rte r
S
S
Y S
W D T O S C
P D
B P
O S
R E
V D
V S
O S
U
fS
P D 6 /T M R 0
M
M
P D C
O S C 2
O S C 4
X
fS
W D T
M U X
T im in g
G e n e r a tio n
P r e s c a le r
R T C
T im e B a s e
In s tr u c tio n
D e c o d e r
U
P F D 0
S T A C K
P ro g ra m
C o u n te r
M
T M R 0 C
T M R 0
C O M 3 /
S E G 4 0
P B 0 /A N 0 ~ P B 7 /A N 7
P A 0
P A 1
P A 2
P A 3
P A 4
/B Z
/B Z
/P F D
~ P A 7
E N /D IS
L V D /L V R
S E G 0 ~
S E G 3 9
2
April 13, 2011
HT46R65/HT46C65
Pin Assignment
R E S
5 5
O S C 1
P A 2
3
5 4
O S C 2
P A 3 /P F D
4
5 3
V D D
P A 4
5
5 2
O S C 3
P A 5
6
5 1
O S C 4
P A 6
7
5 0
S E G 1 6
P A 7
8
4 9
S E G 1 7
P B 0 /A N 0
9
4 8
S E G 1 8
P B 1 /A N 1
1 0
4 7
S E G 1 9
P B 2 /A N 2
1 1
4 6
S E G 2 0
2 9
P B 3 /A N 3
1 2
4 5
S E G 2 1
3 1
P B 4 /A N 4
1 3
4 4
S E G 2 2
P B 5 /A N 5
1 4
4 3
S E G 2 3
V S S
1 5
4 2
S E G 2 4
P D 0 /P W M 0
1 6
4 1
S E G 2 5
/T M R 0
/IN T 1
/IN T 0
P D 1 /P W M 1
1 7
4 0
S E G 2 6
P D 2 /P W M 2
1 8
3 9
S E G 2 7
P D 4 /IN T 0
1 9
3 8
S E G 2 8
P D 5 /IN T 1
2 0
3 7
S E G 2 9
P D 6 /T M R 0
2 1
3 6
S E G 3 0
V L C D
2 2
3 5
S E G 3 1
V M A X
2 3
3 4
S E G 3 2
V 1
2 4
3 3
S E G 3 3
V 2
2 5
3 2
S E G 3 4
C 1
2 6
3 1
C O M 3 /S E G 4 0
C 2
2 7
3 0
C O M 2
C O M 0
2 8
2 9
C O M 1
P
5 6
2
P
1
P A 1 /B Z
S E G
S E G
S E G
C O M
C O M
C O M
C O M
V 1
V M A
V L C
P D 6
P D 5
P D 4
P A
P A 0 /B Z
S
S
E G 1
E G 1
O S C
O S C
V D
O S C
O S C
R E
A 0 /B
A 1 /B
P A
3 /P F
P A
D
D
S
Z
Z
4
3
2
1
2
4
8
7
P B 0
P B 1
P B 2
P B 3
P B 4
P B 5
P D 0 /P
P D 1 /P
P D 2 /P
P A 5
P A 6
P A 7
/A N 0
/A N 1
/A N 2
/A N 3
/A N 4
/A N 5
V S S
W M 0
W M 1
W M 2
5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0
1
3 8
3
3 7
4
3 6
5
3 5
6
H T 4 6 R 6 5 /H T 4 6 C 6 5
5 2 Q F P -A
7
8
9
1 0
1 1
1 2
1 3
1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4 2 5 2 6
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
3 9
2
3 4
3 3
3 2
3 1
3 0
2 9
2 8
2 7
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
3 0
D
2
1
0
3 2
3 3
3 4
3 /S E G 4 0
X
N
N
S E G 1
S E G 1
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
O S C
O S C
V D
O S C
O S C
R E
P A 0 /B
P A 1 /B
P A
P A 3 /P F
P A
D
D
C
C
S
Z
Z
9
8
7
6
5
4
3
2
1
0
4
3
2
1
2
4
1
0
P A
N
N
N
N
N
P
P
P
P
P
P
1 0 0 9 9 9 8 9 7 9 6 9 5 9 4 9 3 9 2 9 1 9 0 8 9 8 8 8 7 8 6 8 5 8 4 8 3 8 2 8 1 8 0 7 9 7 8 7 7 7 6
1
5
C
2
7 4
7 3
3
C
7 2
4
C
5
C
C
P A 6
P A 7
P B 0 /A N 0
P B 1 /A N 1
P B 2 /A N 2
P B 3 /A N 3
P B 4 /A N 4
P B 5 /A N 5
P B 6 /A N 6
P B 7 /A N 7
V S S
D 0 /P W M 0
D 1 /P W M 1
D 2 /P W M 2
D 3 /P W M 3
P D 4 /IN T 0
P D 5 /IN T 1
D 6 /T M R 0
D 7 /T M R 1
7 5
6
7
8
9
1 0
1 1
1 2
H T 4 6 R 6 5 /H T 4 6 C 6 5
1 0 0 L Q F P -A
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6 2 7 2 8 2 9 3 0 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 4 0 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 0
7 1
7 0
6 9
6 8
6 7
6 6
6 5
6 4
6 3
6 2
6 1
6 0
5 9
5 8
5 7
5 6
5 5
5 4
5 3
5 2
5 1
N C
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
S E
N C
G 1 2
G 1 3
G 1 4
G 1 5
G 1 6
G 1 7
G 1 8
G 1 9
G 2 0
G 2 1
G 2 2
G 2 3
G 2 4
G 2 5
G 2 6
G 2 7
G 2 8
G 2 9
H T 4 6 R 6 5 /H T 4 6 C 6 5
5 6 S S O P -A
N C
N C
N C
N C
N C
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
S E G
C O M
C O M
C O M
C O M
C 2
C 1
V 2
V 1
V M A
V L C
N C
N C
N C
N C
N C
D
2
1
0
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7
3 8
3 9
3 /S E G 4 0
X
Note:
The 52-pin QFP package does not support the charge pump (C type bias) of the LCD. The LCD bias type must
select the R type by option.
Rev. 2.00
3
April 13, 2011
HT46R65/HT46C65
Pin Description
Pin Name
PA0/BZ
PA1/BZ
PA2
PA3/PFD
PA4~PA7
PB0/AN0
PB1/AN1
PB2/AN2
PB3/AN3
PB4/AN4
PB5/AN5
PB6/AN6
PB7/AN7
I/O
Options
Description
I/O
Wake-up
Pull-high
Buzzer
PFD
Bidirectional 8-bit input/output port. Each bit can be configured as wake-up input by ROM code option. Software instructions determine the CMOS output
or Schmitt trigger input with or without pull-high resistor (determined by
pull-high options: bit option). The BZ, BZ and PFD are pin-shared with PA0,
PA1 and PA3, respectively.
Pull-high
Bidirectional 8-bit input/output port. Software instructions determine the
CMOS output, Schmitt trigger input with or without pull-high resistor (determined by pull-high option: bit option) or A/D input. Once a PB line is selected
as an A/D input (by using software control), the I/O function and pull-high resistor are disabled automatically.
I/O
PD0/PWM0
PD1/PWM1
PD2/PWM2
PD3/PWM3
I/O
Pull-high
PWM
Bidirectional 4-bit input/output port. Software instructions determine the
CMOS output, Schmitt trigger input with or without a pull-high resistor (determined by pull-high option: bit option). The PWM0/PWM1/PWM2/PWM3 output function are pin-shared with PD0/PD1/PD2/PD3 (dependent on PWM
options).
PD4/INT0
PD5/INT1
PD6/TMR0
PD7/TMR1
I/O
Pull-high
Bidirectional 4-bit input/output port. Software instructions determine the
CMOS output, Schmitt trigger input with or without a pull-high resistor (determined by pull-high option: bit option). The INT0, INT1, TMR0 and TMR1 are
pin-shared with PD4/PD5/PD6/PD7.
VSS
¾
¾
Negative power supply, ground
VLCD
I
¾
LCD power supply
VMAX
I
¾
IC maximum voltage connect to VDD, VLCD or V1
V1, V2, C1, C2
I
¾
Voltage pump
COM0~COM2
COM3/SEG40
O
1/3 or 1/4 Duty
SEG40 can be set as a segment or as a common output driver for LCD panel
by options. COM0~COM2 are outputs for LCD panel plate.
SEG0~SEG39
O
Logical Output
LCD driver outputs for LCD panel segments. SEG0~SEG23 can be optioned
as logical outputs.
OSC1
OSC2
I
O
Crystal or RC
OSC1 and OSC2 are connected to an RC network or a crystal (by options) for
the internal system clock. In the case of RC operation, OSC2 is the output terminal for 1/4 system clock. The system clock may come from the RTC oscillator. If the system clock comes from RTCOSC, these two pins can be floating.
OSC3
OSC4
I
O
RTC or
System Clock
Real time clock oscillators. OSC3 and OSC4 are connected to a 32768Hz
crystal oscillator for timing purposes or to a system clock source (depending
on the options). No built-in capacitor
VDD
¾
¾
Positive power supply
RES
I
¾
Schmitt trigger reset input, active low
Absolute Maximum Ratings
Supply Voltage ...........................VSS-0.3V to VSS+6.0V
Storage Temperature ............................-50°C to 125°C
Input Voltage..............................VSS-0.3V to VDD+0.3V
Operating Temperature...........................-40°C to 85°C
Note: These are stress ratings only. Stresses exceeding the range specified under ²Absolute Maximum Ratings² may
cause substantial damage to the device. Functional operation of this device at other conditions beyond those
listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Rev. 2.00
4
April 13, 2011
HT46R65/HT46C65
D.C. Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
VDD
VDD
IDD1
Operating Voltage
Operating Current
(Crystal OSC, RC OSC)
IDD2
Operating Current
(Crystal OSC, RC OSC)
IDD3
Operating Current
(fSYS=32768Hz)
ISTB1
ISTB2
ISTB3
ISTB4
ISTB5
ISTB6
ISTB7
Standby Current
(*fS=T1)
Standby Current
(*fS=RTC OSC)
Standby Current
(*fS=WDT OSC)
Standby Current
(*fS=RTC OSC)
Standby Current
(*fS=RTC OSC)
Standby Current
(*fS=WDT OSC)
Standby Current
(*fS=WDT OSC)
Min.
Typ.
Max.
Unit
Conditions
¾
fSYS=4MHz
2.2
¾
5.5
V
¾
fSYS=8MHz
3.3
¾
5.5
V
3V
No load, ADC Off,
fSYS=4MHz
¾
1
2
mA
¾
3
5
mA
¾
4
8
mA
¾
0.3
0.6
mA
¾
0.6
1
mA
¾
¾
1
mA
¾
¾
2
mA
¾
2.5
5
mA
¾
10
20
mA
¾
2
5
mA
¾
6
10
mA
¾
17
30
mA
¾
34
60
mA
¾
13
25
mA
¾
28
50
mA
¾
14
25
mA
¾
26
50
mA
5V
5V
No load, ADC Off,
fSYS=8MHz
3V
No load, ADC Off
5V
3V
5V
3V
5V
3V
5V
3V
5V
3V
5V
3V
5V
3V
5V
No load, system HALT,
LCD Off at HALT
No load, system HALT,
LCD On at HALT, C type
No load, system HALT,
LCD On at HALT, C type
No load, system HALT,
LCD On at HALT, R type,
1/2 bias, VLCD=VDD
(Low bias current option)
No load, system HALT,
LCD On at HALT, R type,
1/3 bias, VLCD=VDD
(Low bias current option)
No load, system HALT,
LCD On at HALT, R type,
1/2 bias, VLCD=VDD
(Low bias current option)
No load, system HALT,
LCD On at HALT, R type,
1/3 bias, VLCD=VDD
(Low bias current option)
¾
10
20
mA
¾
19
40
mA
VIL1
Input Low Voltage for I/O Ports,
TMR0, TMR1, INT0 and INT1
¾
¾
0
¾
0.3VDD
V
VIH1
Input High Voltage for I/O Ports,
TMR0, TMR1, INT0 and INT1
¾
¾
0.7VDD
¾
VDD
V
VIL2
Input Low Voltage (RES)
¾
¾
0
¾
0.4VDD
V
VIH2
Input High Voltage (RES)
¾
¾
0.9VDD
¾
VDD
V
VLVR
Low Voltage Reset Voltage
¾
¾
2.7
3.0
3.3
V
VLVD
Low Voltage Detector Voltage
¾
¾
3.0
3.3
3.6
V
IOL1
I/O Port Segment Logic Output
Sink Current
3V
6
12
¾
mA
10
25
¾
mA
I/O Port Segment Logic Output
Source Current
3V
-2
-4
¾
mA
-5
-8
¾
mA
IOH1
Rev. 2.00
VOL=0.1VDD
5V
VOH=0.9VDD
5V
5
April 13, 2011
HT46R65/HT46C65
Test Conditions
Symbol
Parameter
VDD
Min.
Typ.
Max.
Unit
210
420
¾
mA
350
700
¾
mA
-80
-160
¾
mA
-180
-360
¾
mA
100
kW
Conditions
LCD Common and Segment
Current
3V
LCD Common and Segment
Current
3V
Pull-high Resistance of I/O Ports
and INT0, INT1
3V
¾
20
60
5V
¾
10
30
50
kW
VAD
A/D Input Voltage
¾
¾
0
¾
VDD
V
EAD
A/D Conversion Integral
Nonlinearity Error
¾
¾
¾
±0.5
±1
LSB
IADC
Additional Power Consumption
if A/D Converter is Used
3V
¾
0.5
1
mA
¾
1.5
3
mA
IOL2
IOH2
RPH
Note:
VOL=0.1VDD
5V
VOH=0.9VDD
5V
¾
5V
²*fS² please refer to clock option of Watchdog Timer
A.C. Characteristics
Ta=25°C
Test Conditions
Symbol
Parameter
VDD
fSYS1
System Clock
Unit
400
¾
4000
kHz
¾
3.3V~5.5V
400
¾
8000
kHz
2.2V~5.5V
¾
32768
¾
Hz
¾
32768
¾
Hz
¾
fRTCOSC
RTC Frequency
¾
fTIMER
Timer I/P Frequency
(TMR0/TMR1)
External Reset Low Pulse Width
Max.
2.2V~5.5V
System Clock
(32768Hz Crystal OSC)
tRES
Typ.
¾
fSYS2
tWDTOSC Watchdog Oscillator Period
Min.
Conditions
¾
¾
2.2V~5.5V
0
¾
4000
kHz
¾
3.3V~5.5V
0
¾
8000
kHz
3V
¾
45
90
180
ms
5V
¾
32
65
130
ms
¾
¾
1
¾
¾
ms
¾
1024
¾
tSYS
tSST
System Start-up Timer Period
¾
Power-up or wake-up from
HALT
tLVR
Low Voltage Width to Reset
¾
¾
1
¾
¾
ms
tINT
Interrupt Pulse Width
¾
¾
1
¾
¾
ms
tAD
A/D Clock Period
¾
¾
1
¾
¾
ms
tADC
A/D Conversion Time
¾
¾
¾
76
¾
tAD
tADCS
A/D Sampling Time
¾
¾
¾
32
¾
tAD
Note:
tSYS= 1/fSYS
Rev. 2.00
6
April 13, 2011
HT46R65/HT46C65
Functional Description
Execution Flow
After accessing a program memory word to fetch an instruction code, the value of the PC is incremented by 1.
The PC then points to the memory word containing the
next instruction code.
The system clock is derived from either a crystal or an
RC oscillator or a 32768Hz crystal oscillator. It is internally divided into four non-overlapping clocks. One instruction cycle consists of four system clock cycles.
When executing a jump instruction, conditional skip execution, loading a PCL register, a subroutine call, an initial reset, an internal interrupt, an external interrupt, or
returning from a subroutine, the PC manipulates the
program transfer by loading the address corresponding
to each instruction.
Instruction fetching and execution are pipelined in such
a way that a fetch takes one instruction cycle while decoding and execution takes the next instruction cycle.
The pipelining scheme makes it possible for each instruction to be effectively executed in a cycle. If an instruction changes the value of the program counter, two
cycles are required to complete the instruction.
The conditional skip is activated by instructions. Once
the condition is met, the next instruction, fetched during
the current instruction execution, is discarded and a
dummy cycle replaces it to get a proper instruction; otherwise proceed to the next instruction.
Program Counter - PC
The program counter (PC) is 13 bits wide and it controls
the sequence in which the instructions stored in the program ROM are executed. The contents of the PC can
specify a maximum of 8192 addresses.
S y s te m
O S C 2 (R C
C lo c k
T 1
T 2
T 3
T 4
T 1
T 2
T 3
T 4
T 1
T 2
T 3
T 4
o n ly )
P C
P C
P C + 1
F e tc h IN S T (P C )
E x e c u te IN S T (P C -1 )
P C + 2
F e tc h IN S T (P C + 1 )
E x e c u te IN S T (P C )
F e tc h IN S T (P C + 2 )
E x e c u te IN S T (P C + 1 )
Execution Flow
Mode
Program Counter
*12
*11
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
Initial Reset
0
0
0
0
0
0
0
0
0
0
0
0
0
External Interrupt 0
0
0
0
0
0
0
0
0
0
0
1
0
0
External Interrupt 1
0
0
0
0
0
0
0
0
0
1
0
0
0
Timer/Event Counter 0 Overflow
0
0
0
0
0
0
0
0
0
1
1
0
0
Timer/Event Counter 1 Overflow
0
0
0
0
0
0
0
0
1
0
0
0
0
Time Base Interrupt
0
0
0
0
0
0
0
0
1
0
1
0
0
RTC Interrupt
0
0
0
0
0
0
0
0
1
1
0
0
0
Loading PCL
*12
*11
*10
*9
*8
@7
@6
@5
@4
@3
@2
@1
@0
Jump, Call Branch
#12
#11
#10
#9
#8
#7
#6
#5
#4
#3
#2
#1
#0
Return from Subroutine
S12 S11 S10
S9
S8
S7
S6
S5
S4
S3
S2
S1
S0
Skip
Program Counter+2
Program Counter
Note:
*12~*0: Program counter bits
#12~#0: Instruction code bits
Rev. 2.00
S12~S0: Stack register bits
@7~@0: PCL bits
7
April 13, 2011
HT46R65/HT46C65
· Location 008H
The lower byte of the PC (PCL) is a readable and
writeable register (06H). Moving data into the PCL performs a short jump. The destination is within 256 locations.
Location 008H is reserved for the external interrupt
service program also. If the INT1 input pin is activated,
and the interrupt is enabled, and the stack is not full,
the program begins execution at location 008H.
When a control transfer takes place, an additional
dummy cycle is required.
· Location 00CH
Location 00CH is reserved for the Timer/Event Counter 0 interrupt service program. If a timer interrupt results from a Timer/Event Counter 0 overflow, and if the
interrupt is enabled and the stack is not full, the program begins execution at location 00CH.
Program Memory - EPROM
The program memory (EPROM) is used to store the program instructions which are to be executed. It also contains data, table, and interrupt entries, and is organized
into 8192´16 bits which are addressed by the program
counter and table pointer.
· Location 010H
Location 010H is reserved for the Timer/Event Counter 1 interrupt service program. If a timer interrupt results from a Timer/Event Counter 1 overflow, and if the
interrupt is enabled and the stack is not full, the program begins execution at location 010H.
Certain locations in the ROM are reserved for special
usage:
· Location 000H
· Location 014H
Location 000H is reserved for program initialization.
After chip reset, the program always begins execution
at this location.
Location 014H is reserved for the Time Base interrupt
service program. If a Time Base interrupt occurs, and
the interrupt is enabled, and the stack is not full, the
program begins execution at location 014H.
· Location 004H
Location 004H is reserved for the external interrupt
service program. If the INT0 input pin is activated, and
the interrupt is enabled, and the stack is not full, the
program begins execution at location 004H.
0 0 0 H
· Table location
E x te r n a l in te r r u p t 0 s u b r o u tin e
0 0 8 H
0 1 0 H
Location 018H is reserved for the real time clock interrupt service program. If a real time clock interrupt occurs, and the interrupt is enabled, and the stack is not
full, the program begins execution at location 018H.
D e v ic e in itia liz a tio n p r o g r a m
0 0 4 H
0 0 C H
· Location 018H
Any location in the ROM can be used as a look-up table. The instructions ²TABRDC [m]² (the current page,
1 page=256 words) and ²TABRDL [m]² (the last page)
transfer the contents of the lower-order byte to the
specified data memory, and the contents of the
higher-order byte to TBLH (Table Higher-order byte
register) (08H). Only the destination of the lower-order
byte in the table is well-defined; the other bits of the table word are all transferred to the lower portion of
TBLH. The TBLH is read only, and the table pointer
(TBLP) is a read/write register (07H), indicating the table location. Before accessing the table, the location
should be placed in TBLP. All the table related instructions require 2 cycles to complete the operation.
These areas may function as a normal ROM depending upon the user¢s requirements.
E x te r n a l in te r r u p t 1 s u b r o u tin e
T im e r /e v e n t c o u n te r 0 in te r r u p t s u b r o u tin e
T im e r /e v e n t c o u n te r 1 in te r r u p t s u b r o u tin e
0 1 4 H
T im e B a s e In te r r u p t
0 1 8 H
P ro g ra m
M e m o ry
R T C In te rru p t
n 0 0 H
L o o k - u p ta b le ( 2 5 6 w o r d s )
n F F H
1 F 0 0 H
L o o k - u p ta b le ( 2 5 6 w o r d s )
1 F F F H
1 6 b its
N o te : n ra n g e s fro m
0 to 1 F
Program Memory
Instruction(s)
Table Location
*12
*11
*10
*9
*8
*7
*6
*5
*4
*3
*2
*1
*0
TABRDC [m]
P12
P11
P10
P9
P8
@7
@6
@5
@4
@3
@2
@1
@0
TABRDL [m]
1
1
1
1
1
@7
@6
@5
@4
@3
@2
@1
@0
Table Location
Note:
*12~*0: Table location bits
@7~@0: Table pointer bits
Rev. 2.00
P12~P8: Current program counter bits
8
April 13, 2011
HT46R65/HT46C65
Stack Register - STACK
0 0 H
0 1 H
The stack register is a special part of the memory used
to save the contents of the program counter. The stack
is organized into 16 levels and is neither part of the data
nor part of the program, and is neither readable nor
writeable. Its activated level is indexed by a stack
pointer (SP) and is neither readable nor writeable. At the
start of a subroutine call or an interrupt acknowledgment, the contents of the program counter is pushed
onto the stack. At the end of the subroutine or interrupt
routine, signaled by a return instruction (RET or RETI),
the contents of the program counter is restored to its
previous value from the stack. After chip reset, the SP
will point to the top of the stack.
0 2 H
0 3 H
0 4 H
0 5 H
0 6 H
0 7 H
0 8 H
0 9 H
0 A H
0 B H
0 C H
0 D H
0 E H
If the stack is full and a non-masked interrupt takes
place, the interrupt request flag is recorded but the acknowledgment is still inhibited. Once the SP is decremented (by RET or RETI), the interrupt is serviced. This
feature prevents stack overflow, allowing the programmer to use the structure easily. Likewise, if the stack is
full, and a ²CALL² is subsequently executed, a stack
overflow occurs and the first entry is lost (only the most
recent sixteen return addresses are stored).
0 F H
Data Memory - RAM
1 9 H
1 0 H
1 1 H
1 2 H
1 3 H
1 4 H
1 5 H
1 6 H
M P 0
In d ir e c t A d d r e s s in g R e g is te r 1
M P 1
B P
A C C
P C L
T B L P
T B L H
R T C C
S T A T U S
IN T C 0
T M R 0 H
T M R 0 L
T M R 0 C
T M R 1 H
T M R 1 L
T M R 1 C
P A
P A C
P B
S p e c ia l P u r p o s e
D a ta M e m o ry
P B C
1 7 H
1 8 H
1 A H
The data memory (RAM) is designed with 417´8 bits,
and is divided into two functional groups, namely; special function registers 33´8 bit and general purpose data
memory, Bank0: 192´8 bit and Bank2: 192´8 bit most of
which are readable/writeable, although some are read
only. The special function register are overlapped in any
banks.
1 B H
1 C H
1 D H
1 E H
1 F H
P D
P D C
P W M 0
P W M 1
P W M 2
P W M 3
IN T C 1
2 0 H
2 1 H
2 2 H
Of the two types of functional groups, the special function registers consist of an Indirect addressing register 0
(00H), a Memory pointer register 0 (MP0;01H), an Indirect addressing register 1 (02H), a Memory pointer register 1 (MP1;03H), a Bank pointer (BP;04H), an
A c c u m u lat or ( A C C ; 0 5 H ) , a P r ogr a m co u n t e r
lower-order byte register (PCL;06H), a Table pointer
(TBLP;07H), a Table higher-order byte register
(TBLH;08H), a Real time clock control register
(RTCC;09H), a Status register (STATUS;0AH), an Interrupt control register 0 (INTC0;0BH), a Timer/Event
Counter 0 (TMR0H:0CH; TMR0L:0DH), a Timer/Event
Counter 0 control register (TMR0C;0EH), a Timer/Event
Counter 1 (TMR1H:0FH;TMR1L:10H), a Timer/Event
Counter 1 control register (TMR1C; 11H), Interrupt control register 1 (INTC1;1EH) , PWM data register
(PWM0;1AH, PWM1;1BH, PWM2;1CH, PWM3;1DH),
the A/D result lower-order byte register (ADRL;24H), the
A/D result higher-order byte register (ADRH;25H), the
A/D control register (ADCR;26H), the A/D clock setting
register (ACSR;27H), I/O registers (PA;12H, PB;14H,
PD;18H) and I/O control registers (PAC;13H, PBC;15H,
PDC;19H). The remaining space before the 40H is reserved for future expanded usage and reading these loRev. 2.00
In d ir e c t A d d r e s s in g R e g is te r 0
2 3 H
2 4 H
2 5 H
2 6 H
2 7 H
2 8 H
3 F H
4 0 H
F F H
A D R L
A D R H
A D C R
A C S R
G e n e ra l P u rp o s e
D a ta M e m o ry
(3 8 4 B y te s )
: U n u s e d
R e a d a s "0 0 "
RAM Mapping
cations will get ²00H². The space before 40H is
overlapping in each bank. The general purpose data
memory, addressed from 40H to FFH (Bank0; BP=0 or
Bank2; BP=2), is used for data and control information
under instruction commands. All of the data memory areas can handle arithmetic, logic, increment, decrement
and rotate operations directly. Except for some dedicated bits, each bit in the data memory can be set and
9
April 13, 2011
HT46R65/HT46C65
Arithmetic and Logic Unit - ALU
reset by ²SET [m].i² and ²CLR [m].i². They are also indirectly accessible through memory pointer registers
(MP0;01H/MP1;03H). The space before 40H is overlapping in each bank.
This circuit performs 8-bit arithmetic and logic operations and provides the following functions:
· Arithmetic operations (ADD, ADC, SUB, SBC, DAA)
After first setting up BP to the value of ²01H² or ²02H² to
access either bank 1 or bank 2 respectively, these banks
must then be accessed indirectly using the Memory
Pointer MP1. With BP set to a value of either ²01H² or
²02H², using MP1 to indirectly read or write to the data
memory areas with addresses from 40H~FFH will result
in operations to either bank 1 or bank 2. Directly addressing the Data Memory will always result in Bank 0
being accessed irrespective of the value of BP.
· Logic operations (AND, OR, XOR, CPL)
· Rotation (RL, RR, RLC, RRC)
· Increment and Decrement (INC, DEC)
· Branch decision (SZ, SNZ, SIZ, SDZ etc.)
The ALU not only saves the results of a data operation
but also changes the status register.
Status Register - STATUS
The status register (0AH) is 8 bits wide and contains, a
carry flag (C), an auxiliary carry flag (AC), a zero flag (Z),
an overflow flag (OV), a power down flag (PDF), and a
watchdog time-out flag (TO). It also records the status
information and controls the operation sequence.
Indirect Addressing Register
Location 00H and 02H are indirect addressing registers
that are not physically implemented. Any read/write operation of [00H] and [02H] accesses the RAM pointed to
by MP0 (01H) and MP1(03H) respectively. Reading location 00H or 02H indirectly returns the result 00H.
While, writing it indirectly leads to no operation.
Except for the TO and PDF flags, bits in the status register can be altered by instructions similar to other registers. Data written into the status register does not alter
the TO or PDF flags. Operations related to the status
register, however, may yield different results from those
intended. The TO and PDF flags can only be changed
by a Watchdog Timer overflow, chip power-up, or clearing the Watchdog Timer and executing the ²HALT² instruction. The Z, OV, AC, and C flags reflect the status of
the latest operations.
The function of data movement between two indirect addressing registers is not supported. The memory pointer
registers, MP0 and MP1, are both 8-bit registers used to
access the RAM by combining corresponding indirect
addressing registers. MP0 can only be applied to data
memory, while MP1 can be applied to data memory and
LCD display memory.
On entering the interrupt sequence or executing the
subroutine call, the status register will not be automatically pushed onto the stack. If the contents of the status
is important, and if the subroutine is likely to corrupt the
status register, the programmer should take precautions
and save it properly.
Accumulator - ACC
The accumulator (ACC) is related to the ALU operations. It is also mapped to location 05H of the RAM and
is capable of operating with immediate data. The data
movement between two data memory locations must
pass through the ACC.
Bit No.
Label
Function
0
C
C is set if an operation results in a carry during an addition operation or if a borrow does not
take place during a subtraction operation; otherwise C is cleared. C is also affected by a rotate through carry instruction.
1
AC
AC is set if an operation results in a carry out of the low nibbles in addition or no borrow from
the high nibble into the low nibble in subtraction; otherwise AC is cleared.
2
Z
3
OV
OV is set if an operation results in a carry into the highest-order bit but not a carry out of the
highest-order bit, or vice versa; otherwise OV is cleared.
4
PDF
PDF is cleared by either a system power-up or executing the ²CLR WDT² instruction. PDF is
set by executing the ²HALT² instruction.
5
TO
TO is cleared by a system power-up or executing the ²CLR WDT² or ²HALT² instruction. TO
is set by a WDT time-out.
6, 7
¾
Unused bit, read as ²0²
Z is set if the result of an arithmetic or logic operation is zero; otherwise Z is cleared.
Status (0AH) Register
Rev. 2.00
10
April 13, 2011
HT46R65/HT46C65
Interrupts
sired control sequence, the contents should be saved in
advance.
The device provides two external interrupts, two internal
timer/event counter interrupts, an internal time base interrupt, and an internal real time clock interrupt. The interrupt control register 0 (INTC0;0BH) and interrupt
control register 1 (INTC1;1EH) both contain the interrupt
control bits that are used to set the enable/disable status
and interrupt request flags.
External interrupts are triggered by a an edge transition
of INT0 or INT1 (ROM code option: high to low, low to
high, low to high or high to low), and the related interrupt
request flag (EIF0; bit 4 of INTC0, EIF1; bit 5 of INTC0)
is set as well. After the interrupt is enabled, the stack is
not full, and the external interrupt is active, a subroutine
call to location 04H or 08H occurs. The interrupt request
flag (EIF0 or EIF1) and EMI bits are all cleared to disable
other maskable interrupts.
Once an interrupt subroutine is serviced, other interrupts are all blocked (by clearing the EMI bit). This
scheme may prevent any further interrupt nesting. Other
interrupt requests may take place during this interval,
but only the interrupt request flag will be recorded. If a
certain interrupt requires servicing within the service
routine, the EMI bit and the corresponding bit of the
INTC0 or of INTC1 may be set in order to allow interrupt
nesting. Once the stack is full, the interrupt request will
not be acknowledged, even if the related interrupt is enabled, until the SP is decremented. If immediate service
is desired, the stack should be prevented from becoming full.
The internal Timer/Event Counter 0 interrupt is initialized by setting the Timer/Event Counter 0 interrupt request flag (T0F; bit 6 of INTC0), which is normally
caused by a timer overflow. After the interrupt is enabled, and the stack is not full, and the T0F bit is set, a
subroutine call to location 0CH occurs. The related interrupt request flag (T0F) is reset, and the EMI bit is
cleared to disable other maskable interrupts.
Timer/Event Counter 1 is operated in the same manner
but its related interrupt request flag is T1F (bit 4 of
INTC1) and its subroutine call location is 10H.
All these interrupts can support a wake-up function. As
an interrupt is serviced, a control transfer occurs by
pushing the contents of the program counter onto the
stack followed by a branch to a subroutine at the specified location in the ROM. Only the contents of the program counter is pushed onto the stack. If the contents of
the register or of the status register (STATUS) is altered
by the interrupt service program which corrupts the de-
The time base interrupt is initialized by setting the time
base interrupt request flag (TBF; bit 5 of INTC1), that is
caused by a regular time base signal. After the interrupt
is enabled, and the stack is not full, and the TBF bit is
set, a subroutine call to location 14H occurs. The related
interrupt request flag (TBF) is reset and the EMI bit is
cleared to disable further maskable interrupts.
Bit No.
Label
0
EMI
Control the master (global) interrupt (1=enabled; 0=disabled)
Function
1
EEI0
Control the external interrupt 0 (1=enabled; 0=disabled)
2
EEI1
Control the external interrupt 1 (1=enabled; 0=disabled)
3
ET0I
Control the Timer/Event Counter 0 interrupt (1=enabled; 0=disabled)
4
EIF0
External interrupt 0 request flag (1=active; 0=inactive)
5
EIF1
External interrupt 1 request flag (1=active; 0=inactive)
6
T0F
Internal Timer/Event Counter 0 request flag (1=active; 0=inactive)
7
¾
For test mode used only.
Must be written as ²0²; otherwise may result in unpredictable operation.
INTC0 (0BH) Register
Bit No.
Label
0
ET1I
Function
Control the Timer/Event Counter 1 interrupt (1=enabled; 0=disabled)
1
ETBI
Control the time base interrupt (1=enabled; 0:disabled)
2
ERTI
Control the real time clock interrupt (1=enabled; 0:disabled)
3, 7
¾
Unused bit, read as ²0²
4
T1F
Internal Timer/Event Counter 1 request flag (1=active; 0=inactive)
5
TBF
Time base request flag (1=active; 0=inactive)
6
RTF
Real time clock request flag (1=active; 0=inactive)
INTC1 (1EH) Register
Rev. 2.00
11
April 13, 2011
HT46R65/HT46C65
The real time clock interrupt is initialized by setting the
real time clock interrupt request flag (RTF; bit 6 of
INTC1), that is caused by a regular real time clock signal. After the interrupt is enabled, and the stack is not
full, and the RTF bit is set, a subroutine call to location
18H occurs. The related interrupt request flag (RTF) is
reset and the EMI bit is cleared to disable further
maskable interrupts.
register 1 (INTC1) which is located at 1EH in the RAM.
EMI, EEI0, EEI1, ET0I, ET1I, ETBI, and ERTI are all
used to control the enable/disable status of interrupts.
These bits prevent the requested interrupt from being
serviced. Once the interrupt request flags (RTF, TBF, T0F,
T1F, EIF1, EIF0) are all set, they remain in the INTC1 or
INTC0 respectively until the interrupts are serviced or
cleared by a software instruction.
During the execution of an interrupt subroutine, other
maskable interrupt acknowledgments are all held until
the ²RETI² instruction is executed or the EMI bit and the
related interrupt control bit are set both to 1 (if the stack
is not full). To return from the interrupt subroutine, ²RET²
or ²RETI² may be invoked. RETI sets the EMI bit and enables an interrupt service, but RET does not.
It is recommended that a program should not use the
²CALL subroutine² within the interrupt subroutine. It¢s because interrupts often occur in an unpredictable manner
or require to be serviced immediately in some applications. During that period, if only one stack is left, and enabling the interrupt is not well controlled, operation of the
²call² in the interrupt subroutine may damage the original control sequence.
Interrupts occurring in the interval between the rising
edges of two consecutive T2 pulses are serviced on the
latter of the two T2 pulses if the corresponding interrupts
are enabled. In the case of simultaneous requests, the
priorities in the following table apply. These can be
masked by resetting the EMI bit.
Interrupt Source
Priority
Vector
External interrupt 0
1
04H
External interrupt 1
2
08H
Timer/Event Counter 0 overflow
3
0CH
Timer/Event Counter 1 overflow
4
10H
Time base interrupt
5
14H
Real time clock interrupt
6
18H
Oscillator Configuration
The device provides three oscillator circuits for system
clocks, i.e., RC oscillator, crystal oscillator and 32768Hz
crystal oscillator, determined by options. No matter what
type of oscillator is selected, the signal is used for the
system clock. The HALT mode stops the system oscillator (RC and crystal oscillator only) and ignores external
signal in order to conserve power. The 32768Hz crystal
oscillator still runs at HALT mode. If the 32768Hz crystal
oscillator is selected as the system oscillator, the system
oscillator is not stopped; but the instruction execution is
stopped. Since the 32768Hz oscillator is also designed
for timing purposes, the internal timing (RTC, time base,
WDT) operation still runs even if the system enters the
HALT mode.
The Timer/Event Counter 0 interrupt request flag (T0F),
external interrupt 1 request flag (EIF1), external interrupt 0 request flag (EIF0), enable Timer/Event Counter
0 interrupt bit (ET0I), enable external interrupt 1 bit
(EEI1), enable external interrupt 0 bit (EEI0), and enable master interrupt bit (EMI) make up of the Interrupt
Control register 0 (INTC0) which is located at 0BH in the
RAM. The real time clock interrupt request flag (RTF),
time base interrupt request flag (TBF), Timer/Event
Counter 1 interrupt request flag (T1F), enable real time
clock interrupt bit (ERTI), and enable time base interrupt
bit (ETBI), enable Timer/Event Counter 1 interrupt bit
(ET1I) on the other hand, constitute the Interrupt Control
Of the three oscillators, if the RC oscillator is used, an
external resistor between OSC1 and VSS is required,
and the range of the resistance should be from 30kW to
750kW. The system clock, divided by 4, is available on
OSC2 with pull-high resistor, which can be used to synchronize external logic. The RC oscillator provides the
most cost effective solution. However, the frequency of
the oscillation may vary with VDD, temperature, and the
chip itself due to process variations. It is therefore, not
suitable for timing sensitive operations where accurate
oscillator frequency is desired.
V
O S C 3
O S C 1
O S C 4
O S C 2
3 2 7 6 8 H z C r y s ta l/R T C O s c illa to r
C r y s ta l O s c illa to r
D D
4 7 0 p F
O S C 1
fS
Y S
/4
O S C 2
R C
O s c illa to r
System Oscillator
Note:
32768Hz crystal enable condition: For WDT clock source or for system clock source.
The external resistor and capacitor components connected to the 32768Hz crystal are not necessary to provide oscillation. For applications where precise RTC frequencies are essential, these components may be required to provide frequency compensation due to different crystal manufacturing tolerances.
Rev. 2.00
12
April 13, 2011
HT46R65/HT46C65
On the other hand, if the crystal oscillator is selected, a
crystal across OSC1 and OSC2 is needed to provide the
feedback and phase shift required for the oscillator, and
no other external components are required. A resonator
may be connected between OSC1 and OSC2 to replace
the crystal and to get a frequency reference, but two external capacitors in OSC1 and OSC2 are required.
nal logic. If the device operates in a noisy environment,
using the on-chip RC oscillator (WDT OSC) is strongly
recommended, since the HALT will stop the system
clock.
The WDT overflow under normal operation initializes a
²chip reset² and sets the status bit ²TO². In the HALT
mode, the overflow initializes a ²warm reset², and only
the program counter and SP are reset to zero. To clear
the contents of the WDT, there are three methods to be
adopted, i.e., external reset (a low level to RES), software instruction, and a ²HALT² instruction. There are
two types of software instructions; ²CLR WDT² and the
other set - ²CLR WDT1² and ²CLR WDT2². Of these
two types of instruction, only one type of instruction can
be active at a time depending on the options - ²CLR
WDT² times selection option. If the ²CLR WDT² is selected (i.e., CLR WDT times equal one), any execution
of the ²CLR WDT² instruction clears the WDT. In the
case that ²CLR WDT1² and ²CLR WDT2² are chosen
(i.e., CLR WDT times equal two), these two instructions
have to be executed to clear the WDT; otherwise, the
WDT may reset the chip due to time-out.
There is another oscillator circuit designed for the real
time clock. In this case, only the 32.768kHz crystal oscillator can be applied. The crystal should be connected
between OSC3 and OSC4.
The RTC oscillator circuit can be controlled to oscillate
quickly by setting the ²QOSC² bit (bit 4 of RTCC). It is
recommended to turn on the quick oscillating function
upon power on, and then turn it off after 2 seconds.
The WDT oscillator is a free running on-chip RC oscillator, and no external components are required. Although
the system enters the power down mode, the system
clock stops, and the WDT oscillator still works with a period of approximately 65ms at 5V. The WDT oscillator
can be disabled by options to conserve power.
Watchdog Timer - WDT
Multi-function Timer
The WDT clock source is implemented by a dedicated
RC oscillator (WDT oscillator) or an instruction clock
(system clock/4) or a real time clock oscillator (RTC oscillator). The timer is designed to prevent a software
malfunction or sequence from jumping to an unknown
location with unpredictable results. The WDT can be
disabled by options. But if the WDT is disabled, all executions related to the WDT lead to no operation.
The HT46R65/HT46C65 provides a multi-function timer
for the WDT, time base and RTC but with different
time-out periods. The multi-function timer consists of an
8-stage divider and a 7-bit prescaler, with the clock
source coming from the WDT OSC or RTC OSC or the
instruction clock (i.e., system clock divided by 4). The
multi-function timer also provides a selectable frequency signal (ranges from fS/22 to fS/28) for LCD driver
circuits, and a selectable frequency signal (ranging from
fS/22 to fS/29) for the buzzer output by options. It is recommended to select a nearly 4kHz signal for the LCD
driver circuits to have proper display.
Once an internal WDT oscillator (RC oscillator with period 65ms at 5V normally) is selected, it is divided by
212~215 (by ROM code option to get the WDT time-out
period). The minimum period of WDT time-out period is
about 300ms~600ms. This time-out period may vary
with temperature, VDD and process variations. By selection the WDT ROM code option, longer time-out periods can be realized. If the WDT time-out is selected 215,
the maximum time-out period is divided by 215~216about
2.1s~4.3s. If the WDT oscillator is disabled, the WDT
clock may still come from the instruction clock and operate in the same manner except that in the halt state the
WDT may stop counting and lose its protecting purpose.
In this situation the logic can only be restarted by exterS y s te m
Time Base
The time base offers a periodic time-out period to generate a regular internal interrupt. Its time-out period
ranges from 212/fS to 215/fS selected by options. If time
base time-out occurs, the related interrupt request flag
(TBF; bit 5 of INTC1) is set. But if the interrupt is enabled, and the stack is not full, a subroutine call to location 14H occurs.
C lo c k /4
R T C
O S C 3 2 7 6 8 H z
W D T
1 2 k H z
O S C
R O M
C o d e
O p tio n
fS
D iv id e r
fS /2
8
W D T
P r e s c a le r
M a s k O p tio n
C K
T
R
W D T C le a r
C K
T
R
T im e
2 15/fS
2 14/fS
2 13/fS
2 12/fS
-o u
~ 2 1
~ 2 1
~ 2 1
~ 2 1
t R e s e t
6
/fS
5 / f
S
4
/fS
3 / f
S
Watchdog Timer
Rev. 2.00
13
April 13, 2011
HT46R65/HT46C65
fs
D iv id e r
R O M
P r e s c a le r
R O M
C o d e
O p tio n
C o d e O p tio n
L C D D r iv e r ( fS /2 2 ~ fS /2 8 )
B u z z e r (fS /2 2~ fS /2 9)
T im e B a s e In te r r u p t
2 12/fS ~ 2 15/fS
Time Base
Real Time Clock - RTC
The system quits the HALT mode by an external reset,
an interrupt, an external falling edge signal on port A, or
a WDT overflow. An external reset causes device initialization, and the WDT overflow performs a ²warm reset².
After examining the TO and PDF flags, the reason for
chip reset can be determined. The PDF flag is cleared
by system power-up or by executing the ²CLR WDT² instruction, and is set by executing the ²HALT² instruction.
On the other hand, the TO flag is set if WDT time-out occurs, and causes a wake-up that only resets the program counter and SP, and leaves the others at their
original state.
The real time clock (RTC) is operated in the same manner as the time base that is used to supply a regular internal interrupt. Its time-out period ranges from fS/28 to
fS/215 by software programming . Writing data to RT2,
RT1 and RT0 (bit 2, 1, 0 of RTCC;09H) yields various
time-out periods. If the RTC time-out occurs, the related
interrupt request flag (RTF; bit 6 of INTC1) is set. But if
the interrupt is enabled, and the stack is not full, a subroutine call to location 18H occurs.
RT2
RT1
RT0
RTC Clock Divided Factor
0
0
0
2 8*
0
0
1
2 9*
0
1
0
210*
0
1
1
211*
1
0
0
212
1
0
1
213
1
1
0
214
1
1
1
215
The port A wake-up and interrupt methods can be considered as a continuation of normal execution. Each bit
in port A can be independently selected to wake up the
device by options. Awakening from an I/O port stimulus,
the program resumes execution of the next instruction.
On the other hand, awakening from an interrupt, two sequence may occur. If the related interrupt is disabled or
the interrupt is enabled but the stack is full, the program
resumes execution at the next instruction. But if the interrupt is enabled, and the stack is not full, the regular interrupt response takes place.
Note: * not recommended to be used
Power Down Operation - HALT
When an interrupt request flag is set before entering the
²HALT² status, the system cannot be awakened using
that interrupt.
The HALT mode is initialized by the ²HALT² instruction
and results in the following.
· The system oscillator turns off but the WDT oscillator
If wake-up events occur, it takes 1024 tSYS (system
clock period) to resume normal operation. In other
words, a dummy period is inserted after the wake-up. If
the wake-up results from an interrupt acknowledgment,
the actual interrupt subroutine execution is delayed by
more than one cycle. However, if the wake-up results in
the next instruction execution, the execution will be performed immediately after the dummy period is finished.
keeps running (if the WDT oscillator or the real time
clock is selected).
· The contents of the on-chip RAM and of the registers
remain unchanged.
· The WDT is cleared and start recounting (if the WDT
clock source is from the WDT oscillator or the real time
clock oscillator).
· All I/O ports maintain their original status.
To minimize power consumption, all the I/O pins should
be carefully managed before entering the HALT status.
· The PDF flag is set but the TO flag is cleared.
· LCD driver is still running (if the WDT OSC or RTC
OSC is selected).
fS
D iv id e r
P r e s c a le r
R T 2
R T 1
R T 0
8 to 1
M u x .
2 8/fS ~ 2 15/fS
R T C In te rru p t
Real Time Clock
Rev. 2.00
14
April 13, 2011
HT46R65/HT46C65
V
Reset
D D
0 .0 1 m F *
There are three ways in which reset may occur.
· RES is reset during normal operation
1 0 0 k W
· RES is reset during HALT
R E S
· WDT time-out is reset during normal operation
1 0 k W
The WDT time-out during HALT differs from other chip
reset conditions, for it can perform a ²warm reset² that
resets only the program counter and SP and leaves the
other circuits at their original state. Some registers remain unaffected during any other reset conditions. Most
registers are reset to the ²initial condition² once the reset conditions are met. Examining the PDF and TO
flags, the program can distinguish between different
²chip resets².
TO
PDF
0
0
RES reset during power-up
u
u
RES reset during normal operation
0 .1 m F *
Reset Circuit
Note:
²*² Make the length of the wiring, which is connected to the RES pin as short as possible, to
avoid noise interference.
RESET Conditions
0
1
RES Wake-up HALT
1
u
WDT time-out during normal operation
1
1
WDT Wake-up HALT
V D D
R E S
tS
S T
+ tO
P D
S S T T im e - o u t
C h ip
R e s e t
Reset Timing Chart
Note: ²u² stands for unchanged
To guarantee that the system oscillator is started and
stabilized, the SST (System Start-up Timer) provides an
extra-delay of 1024 system clock pulses when the system awakes from the HALT state or during power up.
Awaking from the HALT state or system power-up, the
SST delay is added.
H A L T
W D T
O S C 1
000H
Interrupt
Disabled
Prescaler, Divider
Cleared
WDT, RTC,
Time Base
Cleared. After master reset,
WDT starts counting
Timer/event Counter
Off
Input/output Ports
Input mode
Stack Pointer
Points to the top of the stack
Rev. 2.00
E x te rn a l
S S T
1 0 - b it R ip p le
C o u n te r
C o ld
R e s e t
P o w e r - o n D e te c tio n
The functional unit chip reset status is shown below.
Program Counter
R e s e t
T im e - o u t
R e s e t
R E S
An extra SST delay is added during the power-up period, and any wake-up from HALT may enable only the
SST delay.
W a rm
W D T
Reset Configuration
15
April 13, 2011
HT46R65/HT46C65
The register states are summarized below:
Register
Reset
(Power On)
WDT Time-out
RES Reset
(Normal Operation) (Normal Operation)
RES Reset
(HALT)
WDT Time-out
(HALT)*
MP0
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
MP1
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
BP
0000 0000
0000 0000
0000 0000
0000 0000
uuuu uuuu
ACC
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
0000H
0000H
0000H
0000H
0000H
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
TBLH
xxxx xxxx
uuuu uuuu
uuuu uuuu
uuuu uuuu
uuuu uuuu
RTCC
--00 0111
--00 0111
--00 0111
--00 0111
--uu uuuu
STATUS
--00 xxxx
--1u uuuu
--uu uuuu
--01 uuuu
--11 uuuu
INTC0
-000 0000
-000 0000
-000 0000
-000 0000
-uuu uuuu
TMR0H
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
Program
Counter
TBLP
TMR0L
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
TMR0C
00-0 1000
00-0 1000
00-0 1000
00-0 1000
uu-u uuuu
TMR1H
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
TMR1L
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
TMR1C
0000 1---
0000 1---
0000 1---
0000 1---
uuuu u---
PA
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PAC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PB
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PBC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PD
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PDC
1111 1111
1111 1111
1111 1111
1111 1111
uuuu uuuu
PWM0
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
PWM1
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
PWM2
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
PWM3
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
INTC1
-000 -000
-000 -000
-000 -000
-000 -000
-uuu -uuu
ADRL
xx-- ----
xx-- ----
xx-- ----
xx-- ----
uu-- ----
ADRH
xxxx xxxx
xxxx xxxx
xxxx xxxx
xxxx xxxx
uuuu uuuu
ADCR
0100 0000
0100 0000
0100 0000
0100 0000
uuuu uuuu
ACSR
1--- --00
1--- --00
1--- --00
---- --00
u--- --uu
Note:
²*² stands for warm reset
²u² stands for unchanged
²x² stands for unknown
Rev. 2.00
16
April 13, 2011
HT46R65/HT46C65
Timer/Event Counter
register is changed by each writing TMR0H (TMR1H)
operations. Reading TMR0H (TMR1H) will latch the
contents of TMR0H (TMR1H) and TMR0L (TMR1L)
counters to the destination and the lower-order byte
buffer, respectively. Reading the TMR0L (TMR1L) will
read the contents of the lower-order byte buffer. The
TMR0C (TMR1C) is the Timer/Event Counter 0 (1) control register, which defines the operating mode, counting
enable or disable and an active edge.
Two timer/event counters (TMR0,TMR1) are implemented in the microcontroller. The Timer/Event Counter
0 contains a 16-bit programmable count-up counter and
the clock may come from an external source or an internal clock source. An internal clock source comes from
fSYS. The Timer/Event Counter 1 contains a 16-bit programmable count-up counter and the clock may come
from an external source or an internal clock source. An
internal clock source comes from fSYS/4 or 32768Hz selected by option. The external clock input allows the
user to count external events, measure time intervals or
pulse widths, or to generate an accurate time base.
The T0M0, T0M1 (TMR0C) and T1M0, T1M1 (TMR1C)
bits define the operation mode. The event count mode is
used to count external events, which means that the
clock source is from an external (TMR0, TMR1) pin. The
timer mode functions as a normal timer with the clock
source coming from the internal selected clock source.
Finally, the pulse width measurement mode can be used
to count the high or low level duration of the external signal (TMR0, TMR1), and the counting is based on the internal selected clock source.
There are six registers related to the Timer/Event Counter 0; TMR0H (0CH), TMR0L (0DH), TMR0C (0EH) and
the Timer/Event Counter 1; TMR1H (0FH), TMR1L
(10H), TMR1C (11H). Writing TMR0L (TMR1L) will only
put the written data to an internal lower-order byte buffer
(8-bit) and writing TMR0H (TMR1H) will transfer the
specified data and the contents of the lower-order byte
buffer to TMR0H (TMR1H) and TMR0L (TMR1L) registers, respectively. The Timer/Event Counter 1/0 preload
In the event count or timer mode, the timer/event counter starts counting at the current contents in the
timer/event counter and ends at FFFFH. Once an over-
P W M
(6 + 2 ) o r (7 + 1 )
C o m p a re
fS
T o P D 0 /P D 1 /P D 2 /P D 3 c ir c u it
D a ta B u s
8 - s ta g e P r e s c a le r
Y S
f IN
8 -1 M U X
T 0 P S C 2 ~ T 0 P S C 0
L o w B y te
B u ffe r
T
T 0 M 1
T 0 M 0
T M R 0
1 6 - B it
P r e lo a d R e g is te r
T 0 E
P u ls e W id th
M e a s u re m e n t
M o d e C o n tro l
T 0 M 1
T 0 M 0
T 0 O N
H ig h B y te
L o w
R e lo a d
O v e r flo w
B y te
1 6 - B it T im e r /E v e n t C o u n te r
to In te rru p t
P F D 0
Timer/Event Counter 0
D a ta B u s
fS
Y S
/4
3 2 7 6 8 H z
T 1 S
M
U
f IN
L o w B y te
B u ffe r
T
X
T 1 M 1
T 1 M 0
T M R 1
1 6 - B it
P r e lo a d R e g is te r
T 1 E
T 1 M 1
T 1 M 0
T 1 O N
P u ls e W id th
M e a s u re m e n t
M o d e C o n tro l
H ig h B y te
L o w
R e lo a d
O v e r flo w
B y te
1 6 - B it T im e r /E v e n t C o u n te r
to In te rru p t
P F D 1
Timer/Event Counter 1
P F D 0
P F D 1
M
U
X
1 /2
P F D
P A 3 D a ta C T R L
P F D S o u r c e O p tio n
PFD Source Option
Rev. 2.00
17
April 13, 2011
HT46R65/HT46C65
flow occurs, the counter is reloaded from the timer/event
counter preload register, and generates an interrupt request flag (T0F; bit 6 of INTC0, T1F; bit 4 of INTC1). In
the pulse width measurement mode with the values of
the T0ON/T1ON and T0E/T1E bits equal to 1, after the
TMR0 (TMR1) has received a transient from low to high
(or high to low if the T0E/T1E bit is ²0²), it will start counting until the TMR0 (TMR1) returns to the original level
and resets the T0ON/T1ON. The measured result remains in the timer/event counter even if the activated
Bit No.
0
1
2
Label
T0PSC0
T0PSC1
T0PSC2
3
T0E
4
T0ON
5
¾
6
7
transient occurs again. In other words, only 1-cycle
measurement can be made until the T0ON/T1ON is set.
The cycle measurement will re-function as long as it receives further transient pulse. In this operation mode,
the timer/event counter begins counting not according
to the logic level but to the transient edges. In the case of
counter overflows, the counter is reloaded from the
timer/event counter register and issues an interrupt request, as in the other two modes, i.e., event and timer
modes.
T0M0
T0M1
Function
To define the prescaler stages.
T0PSC2, T0PSC1, T0PSC0=
000: fINT=fSYS
001: fINT=fSYS/2
010: fINT=fSYS/4
011: fINT=fSYS/8
100: fINT=fSYS/16
101: fINT=fSYS/32
110: fINT=fSYS/64
111: fINT=fSYS/128
Defines the TMR0 active edge of the timer/event counter:
In Event Counter Mode (T0M1,T0M0)=(0,1):
1:count on falling edge;
0:count on rising edge
In Pulse Width measurement mode (T0M1,T0M0)=(1,1):
1: start counting on the rising edge, stop on the falling edge;
0: start counting on the falling edge, stop on the rising edge
Enable/disable timer counting (0=disabled; 1=enabled)
Unused bit, read as ²0²
Defines the operating mode T0M1, T0M0=
01= Event count mode (External clock)
10= Timer mode (Internal clock)
11= Pulse Width measurement mode (External clock)
00= Unused
TMR0C (0EH) Register
Bit No.
Label
0~2
¾
3
T1E
4
T1ON
5
T1S
6
7
T1M0
T1M1
Function
Unused bit, read as ²0²
Defines the TMR1 active edge of the timer/event counter:
In Event Counter Mode (T1M1,T1M0)=(0,1):
1:count on falling edge;
0:count on rising edge
In Pulse Width measurement mode (T1M1,T1M0)=(1,1):
1: start counting on the rising edge, stop on the falling edge;
0: start counting on the falling edge, stop on the rising edge
Enable/disable timer counting (0= disabled; 1= enabled)
Defines the TMR1 internal clock source (0=fSYS/4; 1=32768Hz)
Defines the operating mode T1M1, T1M0=
01= Event count mode (External clock)
10= Timer mode (Internal clock)
11= Pulse Width measurement mode (External clock)
00= Unused
TMR1C (11H) Register
Rev. 2.00
18
April 13, 2011
HT46R65/HT46C65
or 18H). For output operation, all the data is latched and
remains unchanged until the output latch is rewritten.
To enable the counting operation, the Timer ON bit
(T0ON: bit 4 of TMR0C; T1ON: 4 bit of TMR1C) should
be set to 1. In the pulse width measurement mode, the
T0ON/T1ON is automatically cleared after the measurement cycle is completed. But in the other two modes, the
T0ON/T1ON can only be reset by instructions. The
overflow of the Timer/Event Counter 0/1 is one of the
wake-up sources and can also be applied to a PFD (Programmable Frequency Divider) output at PA3 by options. Only one PFD (PFD0 or PFD1) can be applied to
PA3 by options. If PA3 is set as PFD output, there are
two types of selections; One is PFD0 as the PFD output,
the other is PFD1 as the PFD output. PFD0, PFD1 are
the timer overflow signals of the Timer/Event Counter 0,
Timer/Event Counter 1 respectively. No matter what the
operation mode is, writing a 0 to ET0I or ET1I disables
the related interrupt service. When the PFD function is
selected, executing ²SET [PA].3² instruction to enable
PFD output and executing ²CLR [PA].3² instruction to
disable PFD output.
Each I/O line has its own control register (PAC, PBC,
PDC) to control the input/output configuration. With this
control register, CMOS output or Schmitt Trigger input
with or without pull-high resistor structures can be reconfigured dynamically under software control. To function as an input, the corresponding latch of the control
register must write ²1². The input source also depends
on the control register. If the control register bit is ²1²,
the input will read the pad state. If the control register bit
is ²0², the contents of the latches will move to the internal bus. The latter is possible in the ²read-modify-write²
instruction.
For output function, CMOS is the only configuration.
These control registers are mapped to locations 13H,
15H and 19H.
After a chip reset, these input/output lines remain at high
levels or floating state (depending on pull-high options).
Each bit of these input/output latches can be set or
cleared by ²SET [m].i² and ²CLR [m].i² (m=12H, 14H or
18H) instructions.
In the case of timer/event counter OFF condition, writing
data to the timer/event counter preload register also reloads that data to the timer/event counter. But if the
timer/event counter is turn on, data written to the
timer/event counter is kept only in the timer/event counter preload register. The timer/event counter still continues its operation until an overflow occurs.
Some instructions first input data and then follow the
output operations. For example, ²SET [m].i², ²CLR
[m].i², ²CPL [m]², ²CPLA [m]² read the entire port states
into the CPU, execute the defined operations
(bit-operation), and then write the results back to the
latches or the accumulator.
When the timer/event counter (reading TMR0/TMR1) is
read, the clock is blocked to avoid errors, as this may results in a counting error. Blocking of the clock should be
taken into account by the programmer. It is strongly recommended to load a desired value into the TMR0/TMR1
register first, before turning on the related timer/event
counter, for proper operation since the initial value of
TMR0/TMR1 is unknown. Due to the timer/event counter scheme, the programmer should pay special attention on the instruction to enable then disable the timer
for the first time, whenever there is a need to use the
timer/event counter function, to avoid unpredictable result. After this procedure, the timer/event function can
be operated normally.
Each line of port A has the capability of waking-up the
device.
Each I/O port has a pull-high option. Once the pull-high
option is selected, the I/O port has a pull-high resistor,
otherwise, there¢s none. Take note that a non-pull-high
I/O port operating in input mode will cause a floating
state.
The PA3 is pin-shared with the PFD signal. If the PFD
option is selected, the output signal in output mode of
PA3 will be the PFD signal generated by timer/event
counter overflow signal. The input mode always retain
its original functions. Once the PFD option is selected,
the PFD output signal is controlled by PA3 data register
only. Writing ²1² to PA3 data register will enable the PFD
output function and writing 0 will force the PA3 to remain
at ²0². The I/O functions of PA3 are shown below.
The bit0~bit2 of the TMR0C can be used to define the
pre-scaling stages of the internal clock sources of
timer/event counter. The definitions are as shown. The
overflow signal of timer/event counter can be used to
generate the PFD signal. The timer prescaler is also
used as the PWM counter.
I/O
I/P
Mode (Normal)
Input/Output Ports
PA3
There are 24 bidirectional input/output lines in the
microcontroller, labeled as PA, PB and PD, which are
mapped to the data memory of [12H], [14H] and [18H]
respectively. All of these I/O ports can be used for input
and output operations. For input operation, these ports
are non-latching, that is, the inputs must be ready at the
T2 rising edge of instruction ²MOV A,[m]² (m=12H, 14H
Rev. 2.00
Note:
Logical
Input
O/P
(Normal)
I/P
(PFD)
O/P
(PFD)
Logical
Output
Logical
Input
PFD
(Timer on)
The PFD frequency is the timer/event counter
overflow frequency divided by 2.
The PA0, PA1, PA3, PD4, PD5, PD6 and PD7 are
pin-shared with BZ, BZ, PFD, INT0, INT1, TMR0 and
TMR1 pins respectively.
19
April 13, 2011
HT46R65/HT46C65
V
C o n tr o l B it
Q
D
D a ta B u s
W r ite C o n tr o l R e g is te r
C K
D D
P u ll- h ig h
O p tio n
P A 0
P A 1
P A 2
P A 3
P A 4
P B 0
P D 0
P D 1
P D 2
P D 3
P D 4
P D 5
P D 6
P D 7
Q
S
C h ip R e s e t
R e a d C o n tr o l R e g is te r
D a ta B it
Q
D
Q
C K
W r ite D a ta R e g is te r
S
M
P A 0 /P A 1 /P A 3 /P D 0 /P D 1 /P D 2 /P D 3
B Z /B Z /P F D /P W M 0 /P W M 1 /P W M 2 /P W M 3
M
R e a d D a ta R e g is te r
U
0 fo
1 fo
0 fo
1 fo
r P D
r P D
r P D
r P D
4 o n
5 o n
6 o n
7 o n
/P F D
~ P A 7
/A N 0 ~ P B 7 /A N 7
/P W M 0
/P W M 1
/P W M 2
/P W M 3
/IN T 0
/IN T 1
/T M R 0
/T M R 1
X
P F D E N
(P A 3 )
X
S y s te m W a k e -u p
( P A o n ly )
IN T
IN T
T M R
T M R
U
/B Z
/B Z
W a k e - u p O p tio n s
ly
ly
ly
ly
Input/Output Ports
PD0~PD3 data register will enable the PWM output
function and writing ²0² will force the PD0~PD3 to remain at ²0². The I/O functions of PD0/PD1/PD2/PD3 are
as shown.
The PA0 and PA1 are pin-shared with BZ and BZ signal,
respectively. If the BZ/BZ option is selected, the output
signal in output mode of PA0/PA1 will be the buzzer signal generated by multi-function timer. The input mode
always remain in its original function. Once the BZ/BZ
option is selected, the buzzer output signal are controlled by the PA0/PA1 data register only.
I/O
Mode
PD0~
PD3
The I/O function of PA0/PA1 are shown below.
PA0 I/O
I
I
O O O O O O O O
PA1 I/O
I
O
I
PA0 Mode
X X C B B C B B B B
PA1 Mode
X C X X X C C C B B
PA0 Data
X X D 0
PA1 Data
X D X X X D1 D D X X
PA0 Pad Status
I
I
D 0
B D0 0
0
B
PA1 Pad Status
I
D
I
I D1 D D 0
B
Note:
I
I
I
1
B
0
Logical
Output
O/P
(PWM)
Logical
Input
PWM0~
PWM3
The definitions of PFD control signal and PFD output
frequency are listed in the following table.
1
Timer
PA3 Data PA3 Pad
Timer Preload
Register
State
Value
²I² input; ²O² output
²D, D0, D1² Data
²B² buzzer option, BZ or BZ
²X² don¢t care
²C² CMOS output
20
PFD
Frequency
OFF
X
0
0
X
OFF
X
1
U
X
ON
N
0
0
X
ON
N
1
PFD
fTMR/[2´(M-N)]
Note:
The PB can also be used as A/D converter inputs. The
A/D function will be described later. There is a PWM
function shared with PD0/PD1/PD2/PD3. If the PWM
function is enabled, the PWM0/PWM1/PWM2/PWM3
signal will appear on PD0/PD1/PD2/PD3 (if PD0/PD1/
PD2/PD3 is operating in output mode). Writing ²1² to
Rev. 2.00
Logical
Input
I/P
(PWM)
It is recommended that unused or not bonded out I/O
lines should be set as output pins by software instruction
to avoid consuming power under input floating state.
O O O O O
1 D0 0
I/P
O/P
(Normal) (Normal)
²X² stands for unused
²U² stands for unknown
²M² is ²65536² for PFD0 or PFD1
²N² is preload value for timer/event counter
²fTMR² is input clock frequency for timer/event
counter
April 13, 2011
HT46R65/HT46C65
PWM
register is denoted by DC which is the value of
PWM.7~PWM.2. The group 2 is denoted by AC which is
the value of PWM.1~PWM.0.
The microcontroller provides 4 channels (6+2)/(7+1)
(dependent on options) bits PWM output shared with
PD0/PD1/PD2/PD3. The PWM channels have their data
registers denoted as PWM0 (1AH), PWM1 (1BH),
PWM2 (1CH) and PWM3 (1DH). The frequency source
of the PWM counter comes from fSYS. The PWM registers are four 8-bit registers. The waveforms of PWM outputs are as shown. Once the PD0/PD1/PD2/PD3 are
selected as the PWM outputs and the output function of
PD0/PD1/PD2/PD3 are enabled (PDC.0/PDC.1/
PDC.2/PDC.3=²0²), writing ²1² to PD0/PD1/PD2/PD3
data register will enable the PWM output function and
writing ²0² will force the PD0/PD1/PD2/PD3 to stay at
²0².
In a (6+2) bits mode PWM cycle, the duty cycle of each
modulation cycle is shown in the table.
Parameter
Modulation cycle i
(i=0~3)
i<AC
i³AC
Duty Cycle
DC + 1
64
DC
64
A (7+1) bits mode PWM cycle is divided into two modulation cycles (modulation cycle0~modulation cycle 1).
Each modulation cycle has 128 PWM input clock period.
In a (7+1) bits PWM function, the contents of the PWM
register is divided into two groups. Group 1 of the PWM
register is denoted by DC which is the value of
PWM.7~PWM.1. The group 2 is denoted by AC which is
the value of PWM.0.
A (6+2) bits mode PWM cycle is divided into four modulation cycles (modulation cycle 0~modulation cycle 3).
Each modulation cycle has 64 PWM input clock period.
In a (6+2) bit PWM function, the contents of the PWM
register is divided into two groups. Group 1 of the PWM
fS
AC (0~3)
/2
Y S
[P W M ] = 1 0 0
P W M
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 5 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 6 /6 4
2 6 /6 4
2 5 /6 4
2 5 /6 4
2 6 /6 4
2 6 /6 4
2 6 /6 4
2 5 /6 4
2 6 /6 4
[P W M ] = 1 0 1
P W M
[P W M ] = 1 0 2
P W M
[P W M ] = 1 0 3
P W M
2 6 /6 4
P W M
m o d u la tio n p e r io d : 6 4 /fS
M o d u la tio n c y c le 0
Y S
M o d u la tio n c y c le 1
P W M
M o d u la tio n c y c le 2
c y c le : 2 5 6 /fS
M o d u la tio n c y c le 3
M o d u la tio n c y c le 0
Y S
(6+2) PWM Mode
fS
Y S
/2
[P W M ] = 1 0 0
P W M
5 0 /1 2 8
5 0 /1 2 8
5 0 /1 2 8
5 1 /1 2 8
5 0 /1 2 8
5 1 /1 2 8
5 1 /1 2 8
5 1 /1 2 8
5 1 /1 2 8
5 1 /1 2 8
5 2 /1 2 8
[P W M ] = 1 0 1
P W M
[P W M ] = 1 0 2
P W M
[P W M ] = 1 0 3
P W M
5 2 /1 2 8
P W M
m o d u la tio n p e r io d : 1 2 8 /fS
Y S
M o d u la tio n c y c le 0
M o d u la tio n c y c le 1
P W M
c y c le : 2 5 6 /fS
M o d u la tio n c y c le 0
Y S
(7+1) PWM Mode
Rev. 2.00
21
April 13, 2011
HT46R65/HT46C65
to set PB configurations. PB can be an analog input or
as digital I/O line decided by these 3 bits. Once a PB line
is selected as an analog input, the I/O functions and
pull-high resistor of this I/O line are disabled and the A/D
converter circuit is powered-on. The EOCB bit (bit6 of
the ADCR) is end of A/D conversion flag. Check this bit
to know when A/D conversion is completed. The START
bit of the ADCR is used to begin the conversion of the
A/D converter. Giving START bit a rising edge and falling edge means that the A/D conversion has started. In
order to ensure that the A/D conversion is completed,
the START should remain at ²0² until the EOCB is
cleared to ²0² (end of A/D conversion).
In a (7+1) bits mode PWM cycle, the duty cycle of each
modulation cycle is shown in the table.
Parameter
AC (0~1)
Duty Cycle
i<AC
DC + 1
128
i³AC
DC
128
Modulation cycle i
(i=0~1)
The modulation frequency, cycle frequency and cycle
duty of the PWM output signal are summarized in the
following table.
PWM
Modulation Frequency
PWM
Cycle
Frequency
PWM
Cycle
Duty
fSYS/64 for (6+2) bits mode
fSYS/128 for (7+1) bits mode
fSYS/256
[PWM]/256
Bit 7 of the ACSR register is used for test purposes only
and must not be used for other purposes by the application program. Bit1 and bit0 of the ACSR register are
used to select the A/D clock source.
The EOCB bit is set to ²1² when the START bit is set
from ²0² to ²1².
A/D Converter
Important Note for A/D initialization:
Special care must be taken to initialize the A/D converter each time the Port B A/D channel selection bits
are modified, otherwise the EOCB flag may be in an undefined condition. An A/D initialization is implemented
by setting the START bit high and then clearing it to zero
within 10 instruction cycles of the Port B channel selection bits being modified. Note that if the Port B channel
selection bits are all cleared to zero then an A/D initialization is not required.
The 8 channels and 10 bits resolution A/D converter are
implemented in this microcontroller. The reference voltage is VDD. The A/D converter contains 4 special registers which are; ADRL (24H), ADRH (25H), ADCR (26H)
and ACSR (27H). The ADRH and ADRL are A/D result
register higher-order byte and lower-order byte and are
read-only. After the A/D conversion is completed, the
ADRH and ADRL should be read to get the conversion
result data. The ADCR is an A/D converter control register, which defines the A/D channel number, analog
channel select, start A/D conversion control bit and the
end of A/D conversion flag. If the users want to start an
A/D conversion, define PB configuration, select the converted analog channel, and give START bit a rising edge
and falling edge (0®1®0). At the end of A/D conversion, the EOCB bit is cleared. The ACSR is A/D clock
setting register, which is used to select the A/D clock
source.
Bit No.
0
1
The A/D converter control register is used to control the
A/D converter. The bit2~bit0 of the ADCR are used to
select an analog input channel. There are a total of eight
channels to select. The bit5~bit3 of the ADCR are used
Rev. 2.00
Label
Function
Selects the A/D converter clock
source
ADCS0 00= system clock/2
ADCS1 01= system clock/8
10= system clock/32
11= undefined
2~6
¾
Unused bit, read as ²0²
7
TEST
For test mode used only
ACSR (27H) Register
22
April 13, 2011
HT46R65/HT46C65
Bit No.
Label
Function
0
1
2
ACS0
ACS1
ACS2
Defines the analog channel select.
3
4
5
PCR0
PCR1
PCR2
Defines the port B configuration select. If PCR0, PCR1 and PCR2 are all zero, the ADC circuit is
power off to reduce power consumption
6
EOCB
Indicates end of A/D conversion. (0 = end of A/D conversion)
Each time bits 3~5 change state the A/D should be initialized by issuing a START signal, otherwise the EOCB flag may have an undefined condition. See ²Important note for A/D initialization².
7
START Starts the A/D conversion. (0®1®0= start; 0®1= Reset A/D converter and set EOCB to ²1²)
ADCR (26H) Register
PCR2
PCR1
PCR0
7
6
5
4
3
2
1
0
0
0
0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
0
0
1
PB7
PB6
PB5
PB4
PB3
PB2
PB1
AN0
0
1
0
PB7
PB6
PB5
PB4
PB3
PB2
AN1
AN0
0
1
1
PB7
PB6
PB5
PB4
PB3
AN2
AN1
AN0
1
0
0
PB7
PB6
PB5
PB4
AN3
AN2
AN1
AN0
1
0
1
PB7
PB6
PB5
AN4
AN3
AN2
AN1
AN0
1
1
0
PB7
PB6
AN5
AN4
AN3
AN2
AN1
AN0
1
1
1
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
Port B Configuration
ACS2
ACS1
ACS0
Analog Channel
0
0
0
AN0
0
0
1
AN1
0
1
0
AN2
0
1
1
AN3
1
0
0
AN4
1
0
1
AN5
1
1
0
AN6
1
1
1
AN7
Analog Input Channel Selection
Register
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
ADRL (24H)
D1
D0
¾
¾
¾
¾
¾
¾
ADRH (25H)
D9
D8
D7
D6
D5
D4
D3
D2
Note: D0~D9 is A/D conversion result data bit LSB~MSB.
ADRL (24H), ADRH (25H) Register
Rev. 2.00
23
April 13, 2011
HT46R65/HT46C65
The following programming example illustrates how to setup and implement an A/D conversion. The method of polling
the EOCB bit in the ADCR register is used to detect when the conversion cycle is complete.
Example: using EOCB Polling Method to detect end of conversion
mov
a,00000001B
mov
ACSR,a
; setup the ACSR register to select fSYS/8 as the A/D clock
mov
a,00100000B
; setup ADCR register to configure Port PB0~PB3 as A/D inputs
mov
ADCR,a
; and select AN0 to be connected to the A/D converter
:
:
; As the Port B channel bits have changed the following START
; signal (0-1-0) must be issued within 10 instruction cycles
:
Start_conversion:
clr
START
set
START
; reset A/D
clr
START
; start A/D
Polling_EOC:
sz
EOCB
; poll the ADCR register EOCB bit to detect end of A/D conversion
jmp
polling_EOC
; continue polling
mov
a,ADRH
; read conversion result high byte value from the ADRH register
mov
adrh_buffer,a
; save result to user defined memory
mov
a,ADRL
; read conversion result low byte value from the ADRL register
mov
adrl_buffer,a
; save result to user defined memory
:
:
jmp
start_conversion
; start next A/D conversion
M in im u m
o n e in s tr u c tio n c y c le n e e d e d , M a x im u m
te n in s tr u c tio n c y c le s a llo w e d
S T A R T
E O C B
A /D
tA
P C R 2 ~
P C R 0
s a m p lin g tim e
A /D
tA
D C S
0 0 0 B
s a m p lin g tim e
A /D
tA
D C S
1 0 0 B
1 0 0 B
s a m p lin g tim e
D C S
1 0 1 B
0 0 0 B
1 . P B p o rt s e tu p a s I/O s
2 . A /D c o n v e r te r is p o w e r e d o ff
to r e d u c e p o w e r c o n s u m p tio n
A C S 2 ~
A C S 0
0 0 0 B
P o w e r-o n
R e s e t
0 1 0 B
0 0 0 B
0 0 1 B
S ta rt o f A /D
c o n v e r s io n
S ta rt o f A /D
c o n v e r s io n
S ta rt o f A /D
c o n v e r s io n
R e s e t A /D
c o n v e rte r
R e s e t A /D
c o n v e rte r
E n d o f A /D
c o n v e r s io n
1 : D e fin e P B c o n fig u r a tio n
2 : S e le c t a n a lo g c h a n n e l
A /D
N o te :
A /D
tA D
tA
c lo c k m u s t b e fS
= 3 2 tA D
= 7 6 tA D
C S
D C
Y S
/2 , fS
tA D C
c o n v e r s io n tim e
Y S
/8 o r fS
Y S
R e s e t A /D
c o n v e rte r
E n d o f A /D
c o n v e r s io n
A /D
tA D C
c o n v e r s io n tim e
d o n 't c a r e
E n d o f A /D
c o n v e r s io n
A /D
tA D C
c o n v e r s io n tim e
/3 2
A/D Conversion Timing
Rev. 2.00
24
April 13, 2011
HT46R65/HT46C65
LCD Display Memory
C O M
The device provides an area of embedded data memory
for LCD display. This area is located from 40H to 68H of
the RAM at Bank 1. Bank pointer (BP; located at 04H of
the RAM) is the switch between the RAM and the LCD
display memory. When the BP is set as ²1², any data
written into 40H~68H will effect the LCD display. When
the BP is cleared to ²0² or ²2², any data written into
40H~68H means to access the general purpose data
memory. The LCD display memory can be read and
written to only by indirect addressing mode using MP1.
When data is written into the display data area, it is automatically read by the LCD driver which then generates
the corresponding LCD driving signals. To turn the display on or off, a ²1² or a ²0² is written to the corresponding bit of the display memory, respectively. The figure
illustrates the mapping between the display memory
and LCD pattern for the device.
4 0 H
4 1 H
4 2 H
4 3 H
6 6 H
6 7 H
6 8 H
0
B it
0
1
1
2
2
3
3
S E G M E N T
0
1
2
3
3 8
3 9
4 0
Display Memory
1/4 duty). The bias type LCD driver can be ²R² type or
²C² type. If the ²R² bias type is selected, no external capacitor is required. If the ²C² bias type is selected, a capacitor mounted between C1 and C2 pins is needed.
The LCD driver bias voltage can be 1/2 bias or 1/3 bias
by option. If 1/2 bias is selected, a capacitor mounted
between V2 pin and ground is required. If 1/3 bias is selected, two capacitors are needed for V1 and V2 pins.
Refer to application diagram.
LCD Driver Output
The output number of the device LCD driver can be
41´2 or 41´3 or 40´4 by option (i.e., 1/2 duty, 1/3 duty or
V A
V B
V C
C O M 0
V S S
V A
V B
V C
C O M 1
V S S
V A
V B
V C
C O M 2
V S S
V A
V B
C O M 3
V C
V S S
V A
V B
V C
L C D s e g m e n ts O N
C O M 2 s id e lig h te d
V S S
N o te : 1 /4 d u ty , 1 /3 b ia s , C
ty p e : " V A " 3 /2 V L C D , " V B " V L C D , " V C " 1 /2 V L C D
1 /4 d u ty , 1 /3 b ia s , R
ty p e : "V A " V L C D , "V B " 2 /3 V L C D , "V C " 1 /3 V L C D
LCD Driver Output
Rev. 2.00
25
April 13, 2011
HT46R65/HT46C65
D u r in g a R e s e t P u ls e
C O M 0 ,C O M 1 ,C O M 2
A ll L C D
d r iv e r o u tp u ts
N o r m a l O p e r a tio n M o d e
*
*
*
C O M 0
C O M 1
C O M 2 *
L C D s e g m e n ts O N
C O M 0 ,1 , 2 s id e s a r e u n lig h te d
O n ly L C D s e g m e n ts O N
C O M 0 s id e a r e lig h te d
O n ly L C D s e g m e n ts O N
C O M 1 s id e a r e lig h te d
O n ly L C D s e g m e n ts O N
C O M 2 s id e a r e lig h te d
L C D s e g m e n ts O N
C O M 0 ,1 s id e s a r e lig h te d
L C D s e g m e n ts O N
C O M 0 , 2 s id e s a r e lig h te d
L C D s e g m e n ts O N
C O M 1 , 2 s id e s a r e lig h te d
L C D s e g m e n ts O N
C O M 0 ,1 , 2 s id e s a r e lig h te d
H A L T M o d e
C O M 0 , C O M 1 , C O M 2
A ll lc d d r iv e r o u tp u ts
N o te : " * " O m it th e C O M 2 s ig n a l, if th e 1 /2 d u ty L C D
V L
1 /2
V S
V L
1 /2
V S
C D
V L C D
S
C D
V L C D
S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
V L
1 /2
V S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
C D
V L
S
V L
1 /2
V S
V L
1 /2
V S
C D
V L C D
S
C D
V L C D
S
C D
C D
C D
C D
C D
C D
C D
C D
C D
C D
C D
is u s e d .
LCD Driver Output (1/3 Duty, 1/2 Bias, R/C Type)
Note:
The 52-pin QFP package does not support the charge pump (C type bias) of the LCD. The LCD bias type must
select the R type by option.
LCD Segments as Logical Output
The SEG0~SEG23 also can be optioned as logical output, once an LCD segment is optioned as a logical output, the
content of bit0 of the related segment address in LCD RAM will appear on the segment.
SEG0~SEG7 and SEG8~SEG15 are together byte optioned as logical output, SEG16~SEG23 are bit individually
optioned as logical outputs.
LCD Type
LCD Bias Type
VMAX
Rev. 2.00
R Type
1/2 bias
1/3 bias
C Type
1/2 bias
If VDD>VLCD, then VMAX connect to VDD,
else VMAX connect to VLCD
26
1/3 bias
3
If VDD> VLCD, then VMAX connect to VDD,
2
else VMAX connect to V1
April 13, 2011
HT46R65/HT46C65
Low Voltage Reset/Detector Functions
There is a low voltage detector (LVD) and a low voltage reset circuit (LVR) implemented in the microcontroller. These
two functions can be enabled/disabled by options. Once the LVD options is enabled, the user can use the RTCC.3 to
enable/disable (1/0) the LVD circuit and read the LVD detector status (0/1) from RTCC.5; otherwise, the LVD function is
disabled.
The RTCC register definitions are listed below.
Bit No.
Label
Function
0~2
RT0~RT2
3
LVDC
LVD enable/disable (1/0)
4
QOSC
32768Hz OSC quick start-up oscillating
0/1: quickly/slowly start
5
LVDO
LVD detection output (1/0)
1: low voltage detected, read only
6, 7
¾
8 to 1 multiplexer control inputs to select the real clock prescaler output
Unused bit, read as ²0²
RTCC (09H) Register
The LVR has the same effect or function with the external RES signal which performs chip reset. During HALT
state, both LVR and LVD are disabled.
The relationship between VDD and VLVR is shown below.
V D D
5 .5 V
The microcontroller provides low voltage reset circuit in
order to monitor the supply voltage of the device. If the
supply voltage of the device is within the range
0.9V~VLVR, such as changing a battery, the LVR will automatically reset the device internally.
V
O P R
5 .5 V
V
L V R
3 .0 V
2 .2 V
The LVR includes the following specifications:
· The low voltage (0.9V~VLVR) has to remain in their
original state to exceed 1ms. If the low voltage state
does not exceed 1ms, the LVR will ignore it and do not
perform a reset function.
0 .9 V
Note: VOPR is the voltage range for proper chip
operation at 4MHz system clock.
· The LVR uses the ²OR² function with the external RES
signal to perform chip reset.
V
D D
5 .5 V
V
L V R
L V R
D e te c t V o lta g e
0 .9 V
0 V
R e s e t S ig n a l
R e s e t
N o r m a l O p e r a tio n
*1
R e s e t
*2
Low Voltage Reset
Note:
*1: To make sure that the system oscillator has stabilized, the SST provides an extra delay of 1024 system
clock pulses before entering the normal operation.
*2: Since low voltage state has to be maintained in its original state for over 1ms, therefore after 1ms delay,
the device enters the reset mode.
Rev. 2.00
27
April 13, 2011
HT46R65/HT46C65
Options
The following shows the options in the device. All these options should be defined in order to ensure proper functioning
system.
Options
OSC type selection. This option is to decide if an RC or crystal or 32768Hz crystal oscillator is chosen as system
clock.
WDT, RTC and time base clock source selection.
There are three types of selections: system clock/4 or RTC OSC or WDT OSC.
WDT enable/disable selection. WDT can be enabled or disabled by option.
WDT time-out period selection. There are four types of selection: WDT clock source divided by 212/fS~213/fS,
213/fS~214/fS, 214/fS~215/fS or 215/fS~216/fS.
CLR WDT times selection. This option defines the method to clear the WDT by instruction. ²One time² means that
the ²CLR WDT² can clear the WDT. ²Two times² means only if both of the ²CLR WDT1² and ²CLR WDT2² have been
executed, the WDT can be cleared.
Time Base time-out period selection. The Time Base time-out period ranges from 212/fS to 215/fS. ²fS² means the clock
source selected by options.
Buzzer output frequency selection. There are eight types of frequency signals for buzzer output: fS/22~fS/29. ²fS²
means the clock source selected by options.
Wake-up selection. This option defines the wake-up capability. External I/O pins (PA only) all have the capability to
wake-up the chip from a HALT by a falling edge (bit option).
Pull-high selection. This option is to decide whether the pull-high resistance is visible or not in the input mode of the
I/O ports. PA, PB and PD can be independently selected (bit option).
I/O pins share with other function selections.
PA0/BZ, PA1/BZ: PA0 and PA1 can be set as I/O pins or buzzer outputs.
LCD common selection. There are three types of selections: 2 common (1/2 duty) or 3 common (1/3 duty) or 4 common (1/4 duty). If the 4 common is selected, the segment output pin ²SEG40² will be set as a common output.
LCD bias power supply selection.
There are two types of selections: 1/2 bias or 1/3 bias
LCD bias type selection. This option is to determine what kind of bias is selected, R type or C type.
LCD driver clock frequency selection.
There are seven types of frequency signals for the LCD driver circuits: fS/22~fS/28. ²fS² stands for the clock source selection by options.
LCD ON/OFF at HALT selection.
LCD Segments as logical output selection, (byte, byte, bit, bit, bit, bit, bit, bit, bit, bit option)
[SEG0~SEG7], [SEG8~SEG15], SEG16, SEG17, SEG18, SEG19, SEG20, SEG21, SEG22, or SEG23
LVR selection. LVR has enable or disable options
LVD selection. LVD has enable or disable options
PFD selection. If PA3 is set as PFD output, there are two types of selections; One is PFD0 as the PFD output, the
other is PFD1 as the PFD output. PFD0, PFD1 are the timer overflow signals of the Timer/Event Counter 0,
Timer/Event Counter 1 respectively.
PWM selection: (7+1) or (6+2) mode
PD0: level output or PWM0 output
PD1: level output or PWM1 output
PD2: level output or PWM2 output
PD3: level output or PWM3 output
INT0 or INT1 triggering edge selection: disable; high to low; low to high; low to high or high to low.
LCD bias current selection: low/high driving current (for R type only).
Rev. 2.00
28
April 13, 2011
HT46R65/HT46C65
Application Circuits
V
D D
0 .0 1 m F *
C O M 0 ~ C O M 2
C O M 3 /S E G 4 0
S E G 0 ~ S E G 3 9
V D D
1 0 0 k W
0 .1 m F
R E S
V L C D
1 0 k W
L C D
P A N E L
L C D
P o w e r S u p p ly
V M A X
0 .1 m F *
V S S
C 1
0 .1 m F
V
C 2
O S C
C ir c u it
O S C 1
4 7 0 p F
V 1
O S C 2
0 .1 m F
S e e r ig h t s id e
3 2 7 6 8 H z
D D
R
V 2
O S C
O S C 1
fS
C 1
0 .1 m F
P
P
P D 4 /IN T 0
P D 5 /IN T 1
P D 6 /T M R 0
Z
P
R 1
2
/4
O S C 2
C ry s ta l S y s te m
F o r th e v a lu e s ,
s e e ta b le b e lo w
O s c illa to r
O S C 2
D
7
O S C 1
0
3 2 7 6 8 H z C ry s ta l S y s te m
O s c illa to r
O S C 1 a n d O S C 2 le ft
u n c o n n e c te d
7
P D 0 /P W M 0
P D 3 /P W M 3
O S C 2
~
P D 7 /T M R 1
C 2
Z
~
P
P A 0 /B
P A 1 /B
P A
A 3 /P F
A 4 ~ P A
B 0 /A N
B 7 /A N
Y S
O S C 1
O S C 3
O S C 4
R C S y s te m O s c illa to r
3 0 k W < R O S C < 7 5 0 k W
H T 4 6 R 6 5 /H T 4 6 C 6 5
O S C
C ir c u it
The following table shows the C1, C2 and R1 values corresponding to the different crystal values. (For reference only)
Crystal or Resonator
C1, C2
R1
4MHz Crystal
0pF
10kW
4MHz Resonator
10pF
12kW
3.58MHz Crystal
0pF
10kW
3.58MHz Resonator
25pF
10kW
2MHz Crystal & Resonator
25pF
10kW
1MHz Crystal
35pF
27kW
480kHz Resonator
300pF
9.1kW
455kHz Resonator
300pF
10kW
429kHz Resonator
300pF
10kW
The function of the resistor R1 is to ensure that the oscillator will switch off should low voltage conditions occur. Such a low voltage, as mentioned here, is one which is less than the lowest value of the
MCU operating voltage. Note however that if the LVR is enabled then R1 can be removed.
Note:
The resistance and capacitance for reset circuit should be designed in such a way as to ensure that the VDD is
stable and remains within a valid operating voltage range before bringing RES to high.
²*² Make the length of the wiring, which is connected to the RES pin as short as possible, to avoid noise
interference.
²VMAX² connect to VDD or VLCD or V1 refer to the table.
LCD Type
LCD bias type
VMAX
Rev. 2.00
R Type
1/2 bias
1/3 bias
C Type
1/2 bias
If VDD>VLCD, then VMAX connect to VDD,
else VMAX connect to VLCD
29
1/3 bias
If VDD > 3/2VLCD, then VMAX connect to VDD,
else VMAX connect to V1
April 13, 2011
HT46R65/HT46C65
Instruction Set
subtract instruction mnemonics to enable the necessary
arithmetic to be carried out. Care must be taken to ensure correct handling of carry and borrow data when results exceed 255 for addition and less than 0 for
subtraction. The increment and decrement instructions
INC, INCA, DEC and DECA provide a simple means of
increasing or decreasing by a value of one of the values
in the destination specified.
Introduction
C e n t ra l t o t he s uc c es s f ul oper a t i on o f a n y
microcontroller is its instruction set, which is a set of program instruction codes that directs the microcontroller to
perform certain operations. In the case of Holtek
microcontrollers, a comprehensive and flexible set of
over 60 instructions is provided to enable programmers
to implement their application with the minimum of programming overheads.
Logical and Rotate Operations
For easier understanding of the various instruction
codes, they have been subdivided into several functional groupings.
The standard logical operations such as AND, OR, XOR
and CPL all have their own instruction within the Holtek
microcontroller instruction set. As with the case of most
instructions involving data manipulation, data must pass
through the Accumulator which may involve additional
programming steps. In all logical data operations, the
zero flag may be set if the result of the operation is zero.
Another form of logical data manipulation comes from
the rotate instructions such as RR, RL, RRC and RLC
which provide a simple means of rotating one bit right or
left. Different rotate instructions exist depending on program requirements. Rotate instructions are useful for
serial port programming applications where data can be
rotated from an internal register into the Carry bit from
where it can be examined and the necessary serial bit
set high or low. Another application where rotate data
operations are used is to implement multiplication and
division calculations.
Instruction Timing
Most instructions are implemented within one instruction cycle. The exceptions to this are branch, call, or table read instructions where two instruction cycles are
required. One instruction cycle is equal to 4 system
clock cycles, therefore in the case of an 8MHz system
oscillator, most instructions would be implemented
within 0.5ms and branch or call instructions would be implemented within 1ms. Although instructions which require one more cycle to implement are generally limited
to the JMP, CALL, RET, RETI and table read instructions, it is important to realize that any other instructions
which involve manipulation of the Program Counter Low
register or PCL will also take one more cycle to implement. As instructions which change the contents of the
PCL will imply a direct jump to that new address, one
more cycle will be required. Examples of such instructions would be ²CLR PCL² or ²MOV PCL, A². For the
case of skip instructions, it must be noted that if the result of the comparison involves a skip operation then
this will also take one more cycle, if no skip is involved
then only one cycle is required.
Branches and Control Transfer
Program branching takes the form of either jumps to
specified locations using the JMP instruction or to a subroutine using the CALL instruction. They differ in the
sense that in the case of a subroutine call, the program
must return to the instruction immediately when the subroutine has been carried out. This is done by placing a
return instruction RET in the subroutine which will cause
the program to jump back to the address right after the
CALL instruction. In the case of a JMP instruction, the
program simply jumps to the desired location. There is
no requirement to jump back to the original jumping off
point as in the case of the CALL instruction. One special
and extremely useful set of branch instructions are the
conditional branches. Here a decision is first made regarding the condition of a certain data memory or individual bits. Depending upon the conditions, the program
will continue with the next instruction or skip over it and
jump to the following instruction. These instructions are
the key to decision making and branching within the program perhaps determined by the condition of certain input switches or by the condition of internal data bits.
Moving and Transferring Data
The transfer of data within the microcontroller program
is one of the most frequently used operations. Making
use of three kinds of MOV instructions, data can be
transferred from registers to the Accumulator and
vice-versa as well as being able to move specific immediate data directly into the Accumulator. One of the most
important data transfer applications is to receive data
from the input ports and transfer data to the output ports.
Arithmetic Operations
The ability to perform certain arithmetic operations and
data manipulation is a necessary feature of most
microcontroller applications. Within the Holtek
microcontroller instruction set are a range of add and
Rev. 2.00
30
April 13, 2011
HT46R65/HT46C65
Bit Operations
Other Operations
The ability to provide single bit operations on Data Memory is an extremely flexible feature of all Holtek
microcontrollers. This feature is especially useful for
output port bit programming where individual bits or port
pins can be directly set high or low using either the ²SET
[m].i² or ²CLR [m].i² instructions respectively. The feature removes the need for programmers to first read the
8-bit output port, manipulate the input data to ensure
that other bits are not changed and then output the port
with the correct new data. This read-modify-write process is taken care of automatically when these bit operation instructions are used.
In addition to the above functional instructions, a range
of other instructions also exist such as the ²HALT² instruction for Power-down operations and instructions to
control the operation of the Watchdog Timer for reliable
program operations under extreme electric or electromagnetic environments. For their relevant operations,
refer to the functional related sections.
Instruction Set Summary
The following table depicts a summary of the instruction
set categorised according to function and can be consulted as a basic instruction reference using the following listed conventions.
Table Read Operations
Table conventions:
Data storage is normally implemented by using registers. However, when working with large amounts of
fixed data, the volume involved often makes it inconvenient to store the fixed data in the Data Memory. To overcome this problem, Holtek microcontrollers allow an
area of Program Memory to be setup as a table where
data can be directly stored. A set of easy to use instructions provides the means by which this fixed data can be
referenced and retrieved from the Program Memory.
Mnemonic
x: Bits immediate data
m: Data Memory address
A: Accumulator
i: 0~7 number of bits
addr: Program memory address
Description
Cycles
Flag Affected
1
1Note
1
1
1Note
1
1
1Note
1
1Note
1Note
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
Z, C, AC, OV
C
1
1
1
1Note
1Note
1Note
1
1
1
1Note
1
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
1
1Note
1
1Note
Z
Z
Z
Z
Arithmetic
ADD A,[m]
ADDM A,[m]
ADD A,x
ADC A,[m]
ADCM A,[m]
SUB A,x
SUB A,[m]
SUBM A,[m]
SBC A,[m]
SBCM A,[m]
DAA [m]
Add Data Memory to ACC
Add ACC to Data Memory
Add immediate data to ACC
Add Data Memory to ACC with Carry
Add ACC to Data memory with Carry
Subtract immediate data from the ACC
Subtract Data Memory from ACC
Subtract Data Memory from ACC with result in Data Memory
Subtract Data Memory from ACC with Carry
Subtract Data Memory from ACC with Carry, result in Data Memory
Decimal adjust ACC for Addition with result in Data Memory
Logic Operation
AND A,[m]
OR A,[m]
XOR A,[m]
ANDM A,[m]
ORM A,[m]
XORM A,[m]
AND A,x
OR A,x
XOR A,x
CPL [m]
CPLA [m]
Logical AND Data Memory to ACC
Logical OR Data Memory to ACC
Logical XOR Data Memory to ACC
Logical AND ACC to Data Memory
Logical OR ACC to Data Memory
Logical XOR ACC to Data Memory
Logical AND immediate Data to ACC
Logical OR immediate Data to ACC
Logical XOR immediate Data to ACC
Complement Data Memory
Complement Data Memory with result in ACC
Increment & Decrement
INCA [m]
INC [m]
DECA [m]
DEC [m]
Rev. 2.00
Increment Data Memory with result in ACC
Increment Data Memory
Decrement Data Memory with result in ACC
Decrement Data Memory
31
April 13, 2011
HT46R65/HT46C65
Mnemonic
Description
Cycles
Flag Affected
Rotate Data Memory right with result in ACC
Rotate Data Memory right
Rotate Data Memory right through Carry with result in ACC
Rotate Data Memory right through Carry
Rotate Data Memory left with result in ACC
Rotate Data Memory left
Rotate Data Memory left through Carry with result in ACC
Rotate Data Memory left through Carry
1
1Note
1
1Note
1
1Note
1
1Note
None
None
C
C
None
None
C
C
Move Data Memory to ACC
Move ACC to Data Memory
Move immediate data to ACC
1
1Note
1
None
None
None
Clear bit of Data Memory
Set bit of Data Memory
1Note
1Note
None
None
Jump unconditionally
Skip if Data Memory is zero
Skip if Data Memory is zero with data movement to ACC
Skip if bit i of Data Memory is zero
Skip if bit i of Data Memory is not zero
Skip if increment Data Memory is zero
Skip if decrement Data Memory is zero
Skip if increment Data Memory is zero with result in ACC
Skip if decrement Data Memory is zero with result in ACC
Subroutine call
Return from subroutine
Return from subroutine and load immediate data to ACC
Return from interrupt
2
1Note
1note
1Note
1Note
1Note
1Note
1Note
1Note
2
2
2
2
None
None
None
None
None
None
None
None
None
None
None
None
None
Read table (current page) to TBLH and Data Memory
Read table (last page) to TBLH and Data Memory
2Note
2Note
None
None
No operation
Clear Data Memory
Set Data Memory
Clear Watchdog Timer
Pre-clear Watchdog Timer
Pre-clear Watchdog Timer
Swap nibbles of Data Memory
Swap nibbles of Data Memory with result in ACC
Enter power down mode
1
1Note
1Note
1
1
1
1Note
1
1
None
None
None
TO, PDF
TO, PDF
TO, PDF
None
None
TO, PDF
Rotate
RRA [m]
RR [m]
RRCA [m]
RRC [m]
RLA [m]
RL [m]
RLCA [m]
RLC [m]
Data Move
MOV A,[m]
MOV [m],A
MOV A,x
Bit Operation
CLR [m].i
SET [m].i
Branch
JMP addr
SZ [m]
SZA [m]
SZ [m].i
SNZ [m].i
SIZ [m]
SDZ [m]
SIZA [m]
SDZA [m]
CALL addr
RET
RET A,x
RETI
Table Read
TABRDC [m]
TABRDL [m]
Miscellaneous
NOP
CLR [m]
SET [m]
CLR WDT
CLR WDT1
CLR WDT2
SWAP [m]
SWAPA [m]
HALT
Note:
1. For skip instructions, if the result of the comparison involves a skip then two cycles are required,
if no skip takes place only one cycle is required.
2. Any instruction which changes the contents of the PCL will also require 2 cycles for execution.
3. For the ²CLR WDT1² and ²CLR WDT2² instructions the TO and PDF flags may be affected by
the execution status. The TO and PDF flags are cleared after both ²CLR WDT1² and
²CLR WDT2² instructions are consecutively executed. Otherwise the TO and PDF flags
remain unchanged.
Rev. 2.00
32
April 13, 2011
HT46R65/HT46C65
Instruction Definition
ADC A,[m]
Add Data Memory to ACC with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the Accumulator.
Operation
ACC ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADCM A,[m]
Add ACC to Data Memory with Carry
Description
The contents of the specified Data Memory, Accumulator and the carry flag are added. The
result is stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m] + C
Affected flag(s)
OV, Z, AC, C
ADD A,[m]
Add Data Memory to ACC
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
ADD A,x
Add immediate data to ACC
Description
The contents of the Accumulator and the specified immediate data are added. The result is
stored in the Accumulator.
Operation
ACC ¬ ACC + x
Affected flag(s)
OV, Z, AC, C
ADDM A,[m]
Add ACC to Data Memory
Description
The contents of the specified Data Memory and the Accumulator are added. The result is
stored in the specified Data Memory.
Operation
[m] ¬ ACC + [m]
Affected flag(s)
OV, Z, AC, C
AND A,[m]
Logical AND Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical AND operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² [m]
Affected flag(s)
Z
AND A,x
Logical AND immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical AND
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²AND² x
Affected flag(s)
Z
ANDM A,[m]
Logical AND ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical AND operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²AND² [m]
Affected flag(s)
Z
Rev. 2.00
33
April 13, 2011
HT46R65/HT46C65
CALL addr
Subroutine call
Description
Unconditionally calls a subroutine at the specified address. The Program Counter then increments by 1 to obtain the address of the next instruction which is then pushed onto the
stack. The specified address is then loaded and the program continues execution from this
new address. As this instruction requires an additional operation, it is a two cycle instruction.
Operation
Stack ¬ Program Counter + 1
Program Counter ¬ addr
Affected flag(s)
None
CLR [m]
Clear Data Memory
Description
Each bit of the specified Data Memory is cleared to 0.
Operation
[m] ¬ 00H
Affected flag(s)
None
CLR [m].i
Clear bit of Data Memory
Description
Bit i of the specified Data Memory is cleared to 0.
Operation
[m].i ¬ 0
Affected flag(s)
None
CLR WDT
Clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT1
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT2 and must be executed alternately with CLR WDT2 to have effect. Repetitively executing this instruction without alternately executing CLR WDT2 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
CLR WDT2
Pre-clear Watchdog Timer
Description
The TO, PDF flags and the WDT are all cleared. Note that this instruction works in conjunction with CLR WDT1 and must be executed alternately with CLR WDT1 to have effect. Repetitively executing this instruction without alternately executing CLR WDT1 will have no
effect.
Operation
WDT cleared
TO ¬ 0
PDF ¬ 0
Affected flag(s)
TO, PDF
Rev. 2.00
34
April 13, 2011
HT46R65/HT46C65
CPL [m]
Complement Data Memory
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa.
Operation
[m] ¬ [m]
Affected flag(s)
Z
CPLA [m]
Complement Data Memory with result in ACC
Description
Each bit of the specified Data Memory is logically complemented (1¢s complement). Bits
which previously contained a 1 are changed to 0 and vice versa. The complemented result
is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m]
Affected flag(s)
Z
DAA [m]
Decimal-Adjust ACC for addition with result in Data Memory
Description
Convert the contents of the Accumulator value to a BCD ( Binary Coded Decimal) value resulting from the previous addition of two BCD variables. If the low nibble is greater than 9 or
if AC flag is set, then a value of 6 will be added to the low nibble. Otherwise the low nibble
remains unchanged. If the high nibble is greater than 9 or if the C flag is set, then a value of
6 will be added to the high nibble. Essentially, the decimal conversion is performed by adding 00H, 06H, 60H or 66H depending on the Accumulator and flag conditions. Only the C
flag may be affected by this instruction which indicates that if the original BCD sum is
greater than 100, it allows multiple precision decimal addition.
Operation
[m] ¬ ACC + 00H or
[m] ¬ ACC + 06H or
[m] ¬ ACC + 60H or
[m] ¬ ACC + 66H
Affected flag(s)
C
DEC [m]
Decrement Data Memory
Description
Data in the specified Data Memory is decremented by 1.
Operation
[m] ¬ [m] - 1
Affected flag(s)
Z
DECA [m]
Decrement Data Memory with result in ACC
Description
Data in the specified Data Memory is decremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] - 1
Affected flag(s)
Z
HALT
Enter power down mode
Description
This instruction stops the program execution and turns off the system clock. The contents
of the Data Memory and registers are retained. The WDT and prescaler are cleared. The
power down flag PDF is set and the WDT time-out flag TO is cleared.
Operation
TO ¬ 0
PDF ¬ 1
Affected flag(s)
TO, PDF
Rev. 2.00
35
April 13, 2011
HT46R65/HT46C65
INC [m]
Increment Data Memory
Description
Data in the specified Data Memory is incremented by 1.
Operation
[m] ¬ [m] + 1
Affected flag(s)
Z
INCA [m]
Increment Data Memory with result in ACC
Description
Data in the specified Data Memory is incremented by 1. The result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC ¬ [m] + 1
Affected flag(s)
Z
JMP addr
Jump unconditionally
Description
The contents of the Program Counter are replaced with the specified address. Program
execution then continues from this new address. As this requires the insertion of a dummy
instruction while the new address is loaded, it is a two cycle instruction.
Operation
Program Counter ¬ addr
Affected flag(s)
None
MOV A,[m]
Move Data Memory to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator.
Operation
ACC ¬ [m]
Affected flag(s)
None
MOV A,x
Move immediate data to ACC
Description
The immediate data specified is loaded into the Accumulator.
Operation
ACC ¬ x
Affected flag(s)
None
MOV [m],A
Move ACC to Data Memory
Description
The contents of the Accumulator are copied to the specified Data Memory.
Operation
[m] ¬ ACC
Affected flag(s)
None
NOP
No operation
Description
No operation is performed. Execution continues with the next instruction.
Operation
No operation
Affected flag(s)
None
OR A,[m]
Logical OR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² [m]
Affected flag(s)
Z
Rev. 2.00
36
April 13, 2011
HT46R65/HT46C65
OR A,x
Logical OR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical OR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²OR² x
Affected flag(s)
Z
ORM A,[m]
Logical OR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical OR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²OR² [m]
Affected flag(s)
Z
RET
Return from subroutine
Description
The Program Counter is restored from the stack. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
Affected flag(s)
None
RET A,x
Return from subroutine and load immediate data to ACC
Description
The Program Counter is restored from the stack and the Accumulator loaded with the
specified immediate data. Program execution continues at the restored address.
Operation
Program Counter ¬ Stack
ACC ¬ x
Affected flag(s)
None
RETI
Return from interrupt
Description
The Program Counter is restored from the stack and the interrupts are re-enabled by setting the EMI bit. EMI is the master interrupt global enable bit. If an interrupt was pending
when the RETI instruction is executed, the pending Interrupt routine will be processed before returning to the main program.
Operation
Program Counter ¬ Stack
EMI ¬ 1
Affected flag(s)
None
RL [m]
Rotate Data Memory left
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ [m].7
Affected flag(s)
None
RLA [m]
Rotate Data Memory left with result in ACC
Description
The contents of the specified Data Memory are rotated left by 1 bit with bit 7 rotated into bit
0. The rotated result is stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ [m].7
Affected flag(s)
None
Rev. 2.00
37
April 13, 2011
HT46R65/HT46C65
RLC [m]
Rotate Data Memory left through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7
replaces the Carry bit and the original carry flag is rotated into bit 0.
Operation
[m].(i+1) ¬ [m].i; (i = 0~6)
[m].0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RLCA [m]
Rotate Data Memory left through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated left by 1 bit. Bit 7 replaces
the Carry bit and the original carry flag is rotated into the bit 0. The rotated result is stored in
the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.(i+1) ¬ [m].i; (i = 0~6)
ACC.0 ¬ C
C ¬ [m].7
Affected flag(s)
C
RR [m]
Rotate Data Memory right
Description
The contents of the specified Data Memory are rotated right by 1 bit with bit 0 rotated into
bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ [m].0
Affected flag(s)
None
RRA [m]
Rotate Data Memory right with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit with bit 0 rotated into bit 7. The rotated result is stored in the Accumulator and the contents of the Data
Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ [m].0
Affected flag(s)
None
RRC [m]
Rotate Data Memory right through Carry
Description
The contents of the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0
replaces the Carry bit and the original carry flag is rotated into bit 7.
Operation
[m].i ¬ [m].(i+1); (i = 0~6)
[m].7 ¬ C
C ¬ [m].0
Affected flag(s)
C
RRCA [m]
Rotate Data Memory right through Carry with result in ACC
Description
Data in the specified Data Memory and the carry flag are rotated right by 1 bit. Bit 0 replaces the Carry bit and the original carry flag is rotated into bit 7. The rotated result is
stored in the Accumulator and the contents of the Data Memory remain unchanged.
Operation
ACC.i ¬ [m].(i+1); (i = 0~6)
ACC.7 ¬ C
C ¬ [m].0
Affected flag(s)
C
Rev. 2.00
38
April 13, 2011
HT46R65/HT46C65
SBC A,[m]
Subtract Data Memory from ACC with Carry
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Accumulator. Note that if the result
of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or
zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SBCM A,[m]
Subtract Data Memory from ACC with Carry and result in Data Memory
Description
The contents of the specified Data Memory and the complement of the carry flag are subtracted from the Accumulator. The result is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is
positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m] - C
Affected flag(s)
OV, Z, AC, C
SDZ [m]
Skip if decrement Data Memory is 0
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0 the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] - 1
Skip if [m] = 0
Affected flag(s)
None
SDZA [m]
Skip if decrement Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first decremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0, the program proceeds with the following instruction.
Operation
ACC ¬ [m] - 1
Skip if ACC = 0
Affected flag(s)
None
SET [m]
Set Data Memory
Description
Each bit of the specified Data Memory is set to 1.
Operation
[m] ¬ FFH
Affected flag(s)
None
SET [m].i
Set bit of Data Memory
Description
Bit i of the specified Data Memory is set to 1.
Operation
[m].i ¬ 1
Affected flag(s)
None
Rev. 2.00
39
April 13, 2011
HT46R65/HT46C65
SIZ [m]
Skip if increment Data Memory is 0
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. As this requires the insertion of a dummy instruction while
the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the program
proceeds with the following instruction.
Operation
[m] ¬ [m] + 1
Skip if [m] = 0
Affected flag(s)
None
SIZA [m]
Skip if increment Data Memory is zero with result in ACC
Description
The contents of the specified Data Memory are first incremented by 1. If the result is 0, the
following instruction is skipped. The result is stored in the Accumulator but the specified
Data Memory contents remain unchanged. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not
0 the program proceeds with the following instruction.
Operation
ACC ¬ [m] + 1
Skip if ACC = 0
Affected flag(s)
None
SNZ [m].i
Skip if bit i of Data Memory is not 0
Description
If bit i of the specified Data Memory is not 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is 0 the program proceeds with the following instruction.
Operation
Skip if [m].i ¹ 0
Affected flag(s)
None
SUB A,[m]
Subtract Data Memory from ACC
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
ACC ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUBM A,[m]
Subtract Data Memory from ACC with result in Data Memory
Description
The specified Data Memory is subtracted from the contents of the Accumulator. The result
is stored in the Data Memory. Note that if the result of subtraction is negative, the C flag will
be cleared to 0, otherwise if the result is positive or zero, the C flag will be set to 1.
Operation
[m] ¬ ACC - [m]
Affected flag(s)
OV, Z, AC, C
SUB A,x
Subtract immediate data from ACC
Description
The immediate data specified by the code is subtracted from the contents of the Accumulator. The result is stored in the Accumulator. Note that if the result of subtraction is negative, the C flag will be cleared to 0, otherwise if the result is positive or zero, the C flag will
be set to 1.
Operation
ACC ¬ ACC - x
Affected flag(s)
OV, Z, AC, C
Rev. 2.00
40
April 13, 2011
HT46R65/HT46C65
SWAP [m]
Swap nibbles of Data Memory
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged.
Operation
[m].3~[m].0 « [m].7 ~ [m].4
Affected flag(s)
None
SWAPA [m]
Swap nibbles of Data Memory with result in ACC
Description
The low-order and high-order nibbles of the specified Data Memory are interchanged. The
result is stored in the Accumulator. The contents of the Data Memory remain unchanged.
Operation
ACC.3 ~ ACC.0 ¬ [m].7 ~ [m].4
ACC.7 ~ ACC.4 ¬ [m].3 ~ [m].0
Affected flag(s)
None
SZ [m]
Skip if Data Memory is 0
Description
If the contents of the specified Data Memory is 0, the following instruction is skipped. As
this requires the insertion of a dummy instruction while the next instruction is fetched, it is a
two cycle instruction. If the result is not 0 the program proceeds with the following instruction.
Operation
Skip if [m] = 0
Affected flag(s)
None
SZA [m]
Skip if Data Memory is 0 with data movement to ACC
Description
The contents of the specified Data Memory are copied to the Accumulator. If the value is
zero, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two cycle instruction. If the result is not 0 the
program proceeds with the following instruction.
Operation
ACC ¬ [m]
Skip if [m] = 0
Affected flag(s)
None
SZ [m].i
Skip if bit i of Data Memory is 0
Description
If bit i of the specified Data Memory is 0, the following instruction is skipped. As this requires the insertion of a dummy instruction while the next instruction is fetched, it is a two
cycle instruction. If the result is not 0, the program proceeds with the following instruction.
Operation
Skip if [m].i = 0
Affected flag(s)
None
TABRDC [m]
Read table (current page) to TBLH and Data Memory
Description
The low byte of the program code (current page) addressed by the table pointer (TBLP) is
moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
TABRDL [m]
Read table (last page) to TBLH and Data Memory
Description
The low byte of the program code (last page) addressed by the table pointer (TBLP) is
moved to the specified Data Memory and the high byte moved to TBLH.
Operation
[m] ¬ program code (low byte)
TBLH ¬ program code (high byte)
Affected flag(s)
None
Rev. 2.00
41
April 13, 2011
HT46R65/HT46C65
XOR A,[m]
Logical XOR Data Memory to ACC
Description
Data in the Accumulator and the specified Data Memory perform a bitwise logical XOR operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XORM A,[m]
Logical XOR ACC to Data Memory
Description
Data in the specified Data Memory and the Accumulator perform a bitwise logical XOR operation. The result is stored in the Data Memory.
Operation
[m] ¬ ACC ²XOR² [m]
Affected flag(s)
Z
XOR A,x
Logical XOR immediate data to ACC
Description
Data in the Accumulator and the specified immediate data perform a bitwise logical XOR
operation. The result is stored in the Accumulator.
Operation
ACC ¬ ACC ²XOR² x
Affected flag(s)
Z
Rev. 2.00
42
April 13, 2011
HT46R65/HT46C65
Package Information
52-pin QFP (14mm´14mm) Outline Dimensions
C
H
D
3 9
G
2 7
I
2 6
4 0
F
A
B
E
1 4
5 2
K
J
1
Symbol
A
Dimensions in inch
Min.
Nom.
Max.
0.681
¾
0.689
B
0.547
¾
0.555
C
0.681
¾
0.689
D
0.547
¾
0.555
E
¾
0.039
¾
F
¾
0.016
¾
G
0.098
¾
0.122
H
¾
¾
0.134
I
¾
0.004
¾
J
0.029
¾
0.041
K
0.004
¾
0.008
a
0°
¾
7°
Symbol
Rev. 2.00
1 3
Dimensions in mm
Min.
Nom.
Max.
A
17.30
¾
17.50
B
13.90
¾
14.10
C
17.30
¾
17.50
D
13.90
¾
14.10
E
¾
1.00
¾
F
¾
0.40
¾
G
2.50
¾
3.10
H
¾
¾
3.40
I
¾
0.10
¾
J
0.73
¾
1.03
K
0.10
¾
0.20
a
0°
¾
7°
43
April 13, 2011
HT46R65/HT46C65
56-pin SSOP (300mil) Outline Dimensions
2 9
5 6
B
A
1
2 8
C
C '
G
H
D
E
Symbol
A
F
Dimensions in inch
Min.
Nom.
Max.
0.395
¾
0.420
B
0.291
¾
0.299
C
0.008
¾
0.012
C¢
0.720
¾
0.730
D
0.089
¾
0.099
E
¾
0.025
¾
F
0.004
¾
0.010
G
0.025
¾
0.035
H
0.004
¾
0.012
a
0°
¾
8°
Symbol
Rev. 2.00
a
Dimensions in mm
Min.
Nom.
Max.
A
10.03
¾
10.67
B
7.39
¾
7.59
C
0.20
¾
0.30
C¢
18.29
¾
18.54
D
2.26
¾
2.51
E
¾
0.64
¾
F
0.10
¾
0.25
G
0.64
¾
0.89
H
0.10
¾
0.30
a
0°
¾
8°
44
April 13, 2011
HT46R65/HT46C65
100-pin LQFP (14mm´14mm) Outline Dimensions
C
D
7 5
G
5 1
H
I
5 0
7 6
F
A
B
E
1 0 0
2 6
K
a
J
2 5
1
Symbol
A
Nom.
Max.
0.626
¾
0.634
B
0.547
¾
0.555
C
0.626
¾
0.634
D
0.547
¾
0.555
E
¾
0.020
¾
F
¾
0.008
¾
G
0.053
¾
0.057
H
¾
¾
0.063
I
¾
0.004
¾
J
0.018
¾
0.030
K
0.004
¾
0.008
a
0°
¾
7°
Symbol
Rev. 2.00
Dimensions in inch
Min.
Dimensions in mm
Min.
Nom.
Max.
A
15.90
¾
16.10
B
13.90
¾
14.10
C
15.90
¾
16.10
D
13.90
¾
14.10
E
¾
0.50
¾
F
¾
0.20
¾
G
1.35
¾
1.45
H
¾
¾
1.60
I
¾
0.10
¾
J
0.45
¾
0.75
K
0.10
¾
0.20
a
0°
¾
7°
45
April 13, 2011
HT46R65/HT46C65
Holtek Semiconductor Inc. (Headquarters)
No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan
Tel: 886-3-563-1999
Fax: 886-3-563-1189
http://www.holtek.com.tw
Holtek Semiconductor Inc. (Taipei Sales Office)
4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan
Tel: 886-2-2655-7070
Fax: 886-2-2655-7373
Fax: 886-2-2655-7383 (International sales hotline)
Holtek Semiconductor Inc. (Shenzhen Sales Office)
5F, Unit A, Productivity Building, No.5 Gaoxin M 2nd Road, Nanshan District, Shenzhen, China 518057
Tel: 86-755-8616-9908, 86-755-8616-9308
Fax: 86-755-8616-9722
Holtek Semiconductor (USA), Inc. (North America Sales Office)
46729 Fremont Blvd., Fremont, CA 94538
Tel: 1-510-252-9880
Fax: 1-510-252-9885
http://www.holtek.com
Copyright Ó 2011 by HOLTEK SEMICONDUCTOR INC.
The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used
solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable
without further modification, nor recommends the use of its products for application that may present a risk to human life
due to malfunction or otherwise. Holtek¢s products are not authorized for use as critical components in life support devices
or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information,
please visit our web site at http://www.holtek.com.tw.
Rev. 2.00
46
April 13, 2011
Similar pages