ML144110 ML144111 Digital–to–Analog Converters with Serial Interface CMOS LSI Legacy Device: Motorola/Freescale MC144110, MC144111 The ML144110 and ML144111 are low–cost 6–bit D/A converters with serial interface ports to provide communication with CMOS microprocessors and microcomputers. The ML144110 contains six static D/A converters; the ML144111 contains four converters. Due to a unique feature of these DACs, the user is permitted easy scaling of the analog outputs of a system. Over a 5 to 15 V supply range, these DACs maybe directly interfaced to CMOS MPUs operating at 5 V. • • • • • • • • Direct R–2R Network Outputs Buffered Emitter–Follower Outputs Serial Data Input Digital Data Output Facilitates Cascading Direct Interface to CMOS µP Wide Operating Voltage Range: 4.5 to 15 V Wide Operating Temperature Range: TA = 0 to 85°C Software Information is Contained in Document M68HC11RM/AD P DIP 18 = VP PLASTIC DIP CASE 707 18 1 SO 20W = -6P SOG PACKAGE CASE 751D 20 1 MC144111 P DIP 14 = CP PLASTIC DIP CASE 646 14 BLOCK DIAGRAM VDD MC144110 1 Qn Rn R1 OUT OUT OUT Q1 OUT SO 16W = -5P SOG PACKAGE CASE 751G 16 1 CROSS REFERENCE/ORDERING INFORMATION PACKAGE LANSDALE MOTOROLA P DIP 18 MC144110P ML144110VP SO 20W MC144110DW ML144110-6P P DIP 14 MC144111P ML144111CP SO 16W MC144111DW ML144111-5P 2R 2R R R R R R 2R 2R 2R 2R 2R Note: Lansdale lead free (Pb) product, as it becomes available, will be identified by a part number prefix change from ML to MLE. HEX BUFFER (INVERTING) C ENB CLK C * D Q Din HEX LATCH C D 6–BIT SHIFT REGISTER Dout * Transparent Latch Page 1 of 8 www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. PIN ASSIGNMENTS ML144110VP ML144110-6P Din 1 18 VDD Din 1 20 VDD Q1 Out 2 17 Dout Q1 Out 2 19 Dout R1 Out 3 16 R6 Out R1 Out 3 18 R6 Out Q2 Out 4 15 Q6 Out Q2 Out 4 17 Q6 Out R2 Out 5 14 R5 Out R2 Out 5 16 R5 Out Q3 Out 6 13 Q5 Out Q3 Out 6 15 Q5 Out R3 Out 7 12 R4 Out R3 Out 7 14 R4 Out ENB 8 11 Q4 Out ENB 8 13 Q4 Out VSS 9 10 CLK VSS 9 12 CLK 10 11 NC NC ML144111CP ML144111-5P Din 1 14 VDD Din 1 16 VDD Q1 Out 2 13 Dout Q1 Out 2 15 Dout R1 Out 3 12 R4 Out R1 Out 3 14 R4 Out Q2 Out 4 11 Q4 Out Q2 Out 4 13 Q4 Out R2 Out 5 12 R3 Out R2 Out 5 10 R3 Out ENB 6 9 Q3 Out ENB 6 11 Q3 Out VSS 7 8 CLK VSS 7 10 CLK NC 8 9 NC NC = NO CONNECTION Page 2 of 8 www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. MAXIMUM RATINGS* (Voltages referenced to VSS) Parameter Symbol Value Unit VDD – 0.5 to + 18 V Vin – 0.5 to VDD + 0.5 V I ± 10 DC Supply Voltage Input Voltage, All Inputs DC Input Current, per Pin Power Dissipation (Per Output) TA = 70°C, MC144110 MC144111 TA = 85°C, MC144110 MC144111 POH Power Dissipation (Per Package) TA = 70°C, MC144110 MC144111 TA = 85°C, MC144110 MC144111 PD Storage Temperature Range Tstg mA mW 30 50 10 20 mW 100 150 25 50 – 65 to + 150 This device contains protection circuitry to guard against damage due to high static voltages or electric fields; however, it is advised that precautions be taken to avoid application of voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation it is recommended that Vin and Vout be constrained to the range VSS ≤ (Vin or Vout) ≤VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). °C * Maximum Ratings are those values beyond which damage to the device may occur. ELECTRICAL CHARACTERISTICS (Voltages referenced to VSS, TA = 0 to 85°C unless otherwise indicated) VDD Min Max Unit VIH High–Level Input Voltage (Din, ENB, CLK) 5 10 15 3.0 3.5 4 — — — V VIL Low–Level Input Voltage (Din, ENB, CLK) 5 10 15 — — — 0.8 0.8 0.8 V IOH High–Level Output Current (Dout) Vout = VDD – 0.5 V 5 – 200 — µA IOL Low–Level Output Current (Dout) Vout = 0.5 V 5 200 — µA IDD Quiescent Supply Current Iout = 0 µA 15 15 — — 12 8 mA Input Leakage Current (Din, ENB, CLK) Vin = VDD or 0 V 15 — ±1 µA Vnonl Nonlinearity Voltage (Rn Out) See Figure 1 5 10 15 — — — 100 200 300 mV Vstep Step Size (Rn Out) See Figure 2 5 10 15 19 39 58 137 274 411 mV Voffset Offset Voltage from VSS Din = $00, See Figure 1 — — 1 LSB IE Emitter Leakage Current VRn Out = 0 V 15 — 10 µA hFE DC Current Gain IE = 0.1 to 10.0 mA TA = 25°C — 40 — — VBE Base–to–Emitter Voltage Drop IE = 1.0 mA — 0.4 0.7 V Symbol Iin Page 3 of 8 Parameter Test Conditions ML144110 ML144111 www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. SWITCHING CHARACTERISTICS (Voltages referenced to VSS, TA = 0 to 85°C, CL = 50 pF, Input tr = tf = 20 ns unless otherwise indicated) Symbol Parameter VDD Min Max Unit twH Positive Pule Width, CLK (Figures 3 and 4) 5 10 15 2 1.5 1 — — — µs twL Negative Pulse Width, CLK (Figure 3 and 4) 5 10 15 5 3.5 2 — — — µs tsu Setup Time, ENB to CLK (Figures 3 and 4) 5 10 15 5 3.5 2 — — — µs tsu Setup Time, Din to CLK (Figures 3 and 4) 5 10 15 1000 750 500 — — — ns th Hold Time, CLK to ENB (Figures 3 and 4) 5 10 15 5 3.5 2 — — — µs th Hold Time, CLK to Din (Figures 3 and 4) 5 10 15 5 3.5 2 — — — µs Input Rise and Fall Times 5 – 15 — 2 µs Cin Input Capacitance 5 – 15 — 7.5 pF OUTPUT VOLTAGE @ Rn Out, % (VDD – VSS ) tr, tf 100 75 Vnonl ACTUAL 50 25 0 0 $00 IDEAL Voffset 15 $0F 31 $1F 47 $2F 63 $3F PROGRAM STEP LINEARITY ERROR (integral linearity). A measure of how straight a device’s transfer function is, it indicates the worst–case deviation of linearity of the actual transfer function from the best– fit straight line. It is normally specified in parts of an LSB. Figure 1. D/A Transfer Function Page 4 of 8 www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. VRn OUT STEP SIZE Step Size = VDD ± 0.75 VDD 64 64 (For any adjacent pair of digital numbers) DIGITAL NUMBER Figure 2. Definition of Step Size ENB 50% tsu CLK th 50% C1 C2 twH twL D1 Din CN D2 DN th tsu Figure 3. Serial Input, Positive Clock ENB tsu th CLK C1 twL Din C2 CN twH D1 D2 tsu DN th Figure 4. Serial Input, Negative Clock Page 5 of 8 www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. PIN DESCRIPTIONS INPUTS Din Data Input Six–bit words are entered serially, MSB first, into digital data input, Din. Six words are loaded into the ML144110 during each D/A cycle; four words are loaded into the ML144111. The last 6–bit word shifted in determines the output level of pins Q1 Out and R1 Out. The next–to–last 6–bit word affects pins Q2 Out and R2 Out, etc. ENB Negative Logic Enable The ENB pin must be low (active) during the serial load. On the low–to–high transition of ENB, data contained in the shift register is loaded into the latch. CLK Shift Register Clock Data is shifted into the register on the high–to–low transition of CLK. CLK is fed into the D–input of a transparent latch, which is used for inhibiting the clocking of the shift register when ENB is high. The number of clock cycles required for the ML144110 is usually 36. The ML144111 usually uses 24 cycles. SeeTable 1 for additional information. OUTPUTS Dout Data Output The digital data output is primarily used for cascading the DACs and may be fed into Din of the next stage. R1 Out through Rn Out Resistor Network Outputs These are the R–2R resistor network outputs. These outputs may be fed to high–impedance input FET op amps to bypass the on–chip bipolar transistors. The R value of the resistor network ranges from 7 to 15 kΩ. Q1 Out through Qn Out NPN Transistor Outputs Buffered DAC outputs utilize an emitter–follower configuration for current–gain, thereby allowing interface to low–impedance circuits. SUPPLY PINS VSS Negative Supply Voltage This pin is usually ground. VDD Positive Supply Voltage The voltage applied to this pin is used to scale the analog output swing from 4.5 to 15 V p–p. Table 1. Number of Channels vs Clocks Required Number of Channels Required Page 6 of 8 Number of Clock Cycles Outputs Used on ML144110 Outputs Used on ML144111 1 6 Q1/R1 Q1/R1 2 12 Q1/R1, Q2/R2 Q1/R1, Q2/R2 3 18 Q1/R1, Q2/R2, Q3/R3 Q1/R1, Q2/R2, Q3/R3 4 24 Q1/R1, Q2/R2, Q3/R3, Q4/R4 Q1/R1, Q2/R2, Q3/R3, Q4/R4 5 30 Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5 Not Applicable 6 36 Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5, Q6/R6 Not Applicable www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. OUTLINE DIMENSIONS P DIP 18 = VP (ML144110VP) PLASTIC DIP CASE 707–02 18 NOTES: 1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 10 B 1 9 A L C K N F H D J M SEATING PLANE G DIM A B C D F G H J K L M N SO 20W = -6P (ML144110-6P) SOG PACKAGE CASE 751D–04 –A– 20 10X P 0.010 (0.25) 1 M B M 10 20X D 0.010 (0.25) M T A B S J S F R C –T– 18X Page 7 of 8 G K SEATING PLANE INCHES MIN MAX 0.875 0.915 0.240 0.260 0.140 0.180 0.014 0.022 0.050 0.070 0.100 BSC 0.040 0.060 0.008 0.012 0.115 0.135 0.300 BSC 0° 15° 0.020 0.040 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. 11 –B– MILLIMETERS MIN MAX 22.22 23.24 6.10 6.60 3.56 4.57 0.36 0.56 1.27 1.78 2.54 BSC 1.02 1.52 0.20 0.30 2.92 3.43 7.62 BSC 15° 0° 0.51 1.02 X 45 DIM A B C D F G J K M P R MILLIMETERS MIN MAX 12.65 12.95 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0 7 10.05 10.55 0.25 0.75 INCHES MIN MAX 0.499 0.510 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0 7 0.395 0.415 0.010 0.029 M www.lansdale.com Issue A ML144110, ML144111 LANSDALE Semiconductor, Inc. OUTLINE DIMENSIONS P DIP 14 = CP (ML144111CP) PLASTIC DIP CASE 646–06 14 8 1 7 B NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. A F DIM A B C D F G H J K L M N L C J N H G D SEATING PLANE K M INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0 10 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0 10 0.39 1.01 SO 16W = -5P (ML144111-5P) SOG PACKAGE CASE 751G–02 –A– 16 9 –B– 8X P 0.010 (0.25) 1 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION. M B M 8 16X J D 0.010 (0.25) M T A S B S F R X 45 C –T– 14X G K SEATING PLANE M DIM A B C D F G J K M P R MILLIMETERS MIN MAX 10.15 10.45 7.40 7.60 2.35 2.65 0.35 0.49 0.50 0.90 1.27 BSC 0.25 0.32 0.10 0.25 0 7 10.05 10.55 0.25 0.75 INCHES MIN MAX 0.400 0.411 0.292 0.299 0.093 0.104 0.014 0.019 0.020 0.035 0.050 BSC 0.010 0.012 0.004 0.009 0 7 0.395 0.415 0.010 0.029 Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. “Typical” parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by the customer’s technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc. Page 8 of 8 www.lansdale.com Issue A