MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 MIXED SIGNAL MICROCONTROLLER FEATURES 1 • • • • • • Low Supply Voltage Range: 2.2 V to 3.6 V Ultralow Power Consumption – Active Mode (AM): All System Clocks Active 312 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) 140 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical) – Standby Mode (LPM3): Real-Time Clock With Crystal , Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake-Up: 2.6 µA at 3.0 V (Typical) Low-Power Oscillator (VLO), General-Purpose Counter, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake-Up: 1.8 µA at 3.0 V (Typical) – Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wake-Up: 1.69 µA at 3.0 V (Typical) Wake-Up From Standby Mode in Less Than 5 µs 16-Bit RISC Architecture – Extended Memory – Up to 18-MHz System Clock Flexible Power Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power/Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals – High-Frequency Crystals up to 32 MHz • • • • • • • • • • • 16-Bit Timer TA0, Timer_A With Five Capture/Compare Registers 16-Bit Timer TA1, Timer_A With Three Capture/Compare Registers 16-Bit Timer TB0, Timer_B With Seven Capture/Compare Shadow Registers Up to Four Universal Serial Communication Interfaces – USCI_A0, USCI_A1, USCI_A2, and USCI_A3 Each Supporting – Enhanced UART supporting Auto-Baudrate Detection – IrDA Encoder and Decoder – Synchronous SPI – USCI_B0, USCI_B1, USCI_B2, and USCI_B3 Each Supporting – I2CTM – Synchronous SPI 12-Bit Analog-to-Digital (A/D) Converter – Internal Reference – Sample-and-Hold – Autoscan Feature – 14 External Channels, 2 Internal Channels Hardware Multiplier Supporting 32-Bit Operations Serial Onboard Programming, No External Programming Voltage Needed Three Channel Internal DMA Basic Timer With Real-Time Clock Feature Family Members are Summarized in Table 1 For Complete Module Descriptions, See the MSP430x5xx Family User's Guide (SLAU208) 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com DESCRIPTION The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 5 µs. The MSP430F543x and MSP430F541x series are microcontroller configurations with three 16-bit timers, a high performance 12-bit analog-to-digital (A/D) converter, up to four universal serial communication interfaces (USCI), hardware multiplier, DMA, real-time clock module with alarm capabilities, and up to 87 I/O pins. Typical applications for this device include analog and digital sensor systems, digital motor control, remote controls, thermostats, digital timers, hand-held meters, etc. Family members available are summarized in Table 1. Table 1. Family Members USCI (1) (2) Device Flash (KB) SRAM (KB) Channel A: UART/IrDA/ SPI Channel B: SPI/I2C ADC12_A (Ch) I/O Package Type MSP430F5438 256 16 5, 3 MSP430F5437 256 16 5, 3 7 4 4 14 ext / 2 int 87 100 PZ 7 2 2 14 ext / 2 int 67 MSP430F5436 192 16 80 PN 5, 3 7 4 4 14 ext / 2 int 87 100 PZ MSP430F5435 192 16 5, 3 7 2 2 14 ext / 2 int 67 80 PN MSP430F5419 MSP430F5418 128 16 5, 3 7 4 4 14 ext / 2 int 87 100 PZ 128 16 5, 3 7 2 2 14 ext / 2 int 67 80 PN Timer_A (1) Timer_B (2) Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Ordering Information (1) PACKAGED DEVICES (2) TA –40°C to 85°C (1) (2) 2 PLASTIC 100-PIN LQFP (PZ) PLASTIC 80-PIN LQFP (PN) MSP430F5438IPZ MSP430F5437IPN MSP430F5436IPZ MSP430F5435IPN MSP430F5419IPZ MSP430F5418IPN For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Pin Designation, MSP430F5438IPZ, MSP430F5436IPZ, MSP430F5419IPZ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 MSP430F5438IPZ MSP430F5436IPZ MSP430F5419IPZ P9.7 P9.6 P9.5/UCA2RXDUCA2SOMI P9.4/UCA2TXD/UCA2SIMO P9.3/UCB2CLK/UCA2STE P9.2/UCB2SOMI/UCB2SCL P9.1/UCB2SIMO/UCB2SDA P9.0/UCB2STE/UCA2CLK P8.7 P8.6/TA1.1 P8.5/TA1.0 DVCC2 DVSS2 VCORE P8.4/TA0.4 P8.3/TA0.3 P8.2/TA0.2 P8.1/TA0.1 P8.0/TA0.0 P7.3/TA1.2 P7.2/TB0OUTH/SVMOUT P5.7/UCA1RXD/UCA1SOMI P5.6/UCA1TXD/UCA1SIMO P5.5/UCB1CLK/UCA1STE P5.4/UCB1SOMI/UCB1SCL P2.1/TA1.0 P2.2/TA1.1 P2.3/TA1.2 P2.4/RTCCLK P2.5 P2.6/ACLK P2.7/ADC12CLK/DMAE0 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE DVSS3 DVCC3 P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCB1STE/UCA1CLK P3.7/UCB1SIMO/UCB1SDA P4.0/TB0.0 P4.1/TB0.1 P4.2/TB0.2 P4.3/TB0.3 P4.4/TB0.4 P4.5/TB0.5 P4.6/TB0.6 P4.7/TB0CLK/SMCLK 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 P7.4/A12 P7.5/A13 P7.6/A14 P7.7/A15 P5.0/A8/VREF+/VeREF+ P5.1/A9/VREF−/VeREF− AVCC AVSS P7.0/XIN P7.1/XOUT DVSS1 DVCC1 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/SMCLK P1.7 P2.0/TA1CLK/MCLK 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/A3 P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK P5.3/XT2OUT P5.2/XT2IN DVSS4 DVCC4 P11.2/SMCLK P11.1/MCLK P11.0/ACLK P10.7 P10.6 P10.5/UCA3RXDUCA3SOMI P10.4/UCA3TXD/UCA3SIMO P10.3/UCB3CLK/UCA3STE P10.2/UCB3SOMI/UCB3SCL P10.1/UCB3SIMO/UCB3SDA P10.0/UCB3STE/UCA3CLK PZ PACKAGE (TOP VIEW) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Pin Designation, MSP430F5437IPN, MSP430F5435IPN, MSP430F5418IPN P6.3/A3 P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCLK P5.3/XT2OUT P5.2/XT2IN DVSS4 DVCC4 P8.6/TA1.1 P8.5/TA1.0 P8.4/TA0.4 P8.3/TA0.3 P8.2/TA0.2 P8.1/TA0.1 PN PACKAGE (TOP VIEW) 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 P7.4/A12 P7.5/A13 P7.6/A14 P7.7/A15 P5.0/A8/VREF+/VeREF+ P5.1/A9/VREF−/VeREF− AVCC AVSS P7.0/XIN P7.1/XOUT DVSS1 DVCC1 P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 52 9 MSP430F5437IPN MSP430F5435IPN MSP430F5418IPN 10 11 51 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 41 20 P8.0/TA0.0 P7.3/TA1.2 P7.2/TB0OUTH/SVMOUT P5.7/UCA1RXD/UCA1SOMI P5.6/UCA1TXD/UCA1SIMO P5.5/UCB1CLK/UCA1STE P5.4/UCB1SOMI/UCB1SCL P4.7/TB0CLK/SMCLK P4.6/TB0.6 DVCC2 DVSS2 VCORE P4.5/TB0.5 P4.4/TB0.4 P4.3/TB0.3 P4.2/TB0.2 P4.1/TB0.1 P4.0/TB0.0 P3.7/UCB1SIMO/UCB1SDA P3.6/UCB1STE/UCA1CLK P1.4/TA0.3 P1.5/TA0.4 P1.6/SMCLK P1.7 P2.0/TA1CLK/MCLK P2.1/TA1.0 P2.2/TA1.1 P2.3/TA1.2 P2.4/RTCCLK DVSS3 DVCC3 P2.5 P2.6/ACLK P2.7/ADC12CLK/DMAE0 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Functional Block Diagram, MSP430F5438IPZ, MSP430F5436IPZ, MSP430F5419IPZ, DVCC DVSS XIN XOUT AVCC AVSS PA P2.x RST/NMI P1.x XT2IN XT2OUT Unified Clock System ACLK 256KB 192KB 128KB SMCLK Flash MCLK CPUXV2 and Working Registers 16KB Power Management SYS LDO SVM/SVS Brownout RAM Watchdog PB P4.x P3.x I/O Ports P1/P2 2×8 I/Os Interrupt Capability PA 1×16 I/Os P5.x PC P6.x P7.x PD P8.x PE P9.x P10.x PF P11.x I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os I/O Ports P7/P8 2×8 I/Os I/O Ports P9/P10 2×8 I/Os I/O Ports P11 1×3 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os PE 1×16 I/Os PF 1×3 I/Os MAB DMA MDB 3 Channel EEM (L: 8+2) JTAG/ SBW Interface MPY32 TA0 TA1 TB0 Timer_A 5 CC Registers Timer_A 3 CC Registers Timer_B 7 CC Registers RTC_A CRC16 USCI0,1,2,3 ADC12_A UCSI_Ax: UART, IrDA, SPI 12 Bit 200 KSPS 16 Channels (14 ext/2 int) Autoscan UCSI_Bx: SPI, I2C Functional Block Diagram, MSP430F5437IPN, MSP430F5435IPN, MSP430F5418IPN XIN XOUT DVCC DVSS AVCC AVSS RST/NMI P1.x XT2IN XT2OUT Unified Clock System Power Management ACLK SMCLK 256KB 192KB 128KB RAM MCLK CPUXV2 and Working Registers SYS 16KB Flash LDO SVM/SVS Brownout Watchdog PA P2.x I/O Ports P1/P2 2×8 I/Os Interrupt Capability PA 1×16 I/Os P3.x PB P4.x P5.x PC P6.x P7.x PD P8.x I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os I/O Ports P7/P8 2×8 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os MAB DMA MDB 3 Channel EEM (L: 8+2) JTAG/ SBW Interface TA0 MPY32 Timer_A 5 CC Registers Copyright © 2009–2010, Texas Instruments Incorporated TA1 Timer_A 3 CC Registers TB0 Timer_B 7 CC Registers RTC_A CRC16 USCI0,1 ADC12_A USCI_Ax: UART, IrDA, SPI 12 Bit 200 KSPS USCI_Bx: SPI, I2C 16 Channels (14 ext/2 int) Autoscan Submit Documentation Feedback 5 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com TERMINAL FUNCTIONS TERMINAL NAME I/O (1) NO. DESCRIPTION PZ PN P6.4/A4 1 1 I/O General-purpose digital I/O Analog input A4 – ADC P6.5/A5 2 2 I/O General-purpose digital I/O Analog input A5 – ADC P6.6/A6 3 3 I/O General-purpose digital I/O Analog input A6 – ADC P6.7/A7 4 4 I/O General-purpose digital I/O Analog input A7 – ADC P7.4/A12 5 5 I/O General-purpose digital I/O Analog input A12 –ADC P7.5/A13 6 6 I/O General-purpose digital I/O Analog input A13 – ADC P7.6/A14 7 7 I/O General-purpose digital I/O Analog input A14 – ADC P7.7/A15 8 8 I/O General-purpose digital I/O Analog input A15 – ADC P5.0/A8/VREF+/VeREF+ 9 9 I/O General-purpose digital I/O Analog input A8 – ADC Output of reference voltage to the ADC Input for an external reference voltage to the ADC P5.1/A9/VREF-/VeREF- 10 10 I/O General-purpose digital I/O Analog input A9 – ADC Negative terminal for the ADC's reference voltage for both sources, the internal reference voltage, or an external applied reference voltage AVCC 11 11 Analog power supply AVSS 12 12 Analog ground supply P7.0/XIN 13 13 I/O General-purpose digital I/O Input terminal for crystal oscillator XT1 P7.1/XOUT 14 14 I/O General-purpose digital I/O Output terminal of crystal oscillator XT1 DVSS1 15 15 Digital ground supply DVCC1 16 16 Digital power supply P1.0/TA0CLK/ACLK 17 17 I/O General-purpose digital I/O with port interrupt TA0 clock signal TACLK input ACLK output (divided by 1, 2, 4, or 8) P1.1/TA0.0 18 18 I/O General-purpose digital I/O with port interrupt TA0 CCR0 capture: CCI0A input, compare: Out0 output BSL transmit output P1.2/TA0.1 19 19 I/O General-purpose digital I/O with port interrupt TA0 CCR1 capture: CCI1A input, compare: Out1 output BSL receive input P1.3/TA0.2 20 20 I/O General-purpose digital I/O with port interrupt TA0 CCR2 capture: CCI2A input, compare: Out2 output P1.4/TA0.3 21 21 I/O General-purpose digital I/O with port interrupt TA0 CCR3 capture: CCI3A input compare: Out3 output P1.5/TA0.4 22 22 I/O General-purpose digital I/O with port interrupt TA0 CCR4 capture: CCI4A input, compare: Out4 output P1.6/SMCLK 23 23 I/O General-purpose digital I/O with port interrupt SMCLK output P1.7 24 24 I/O General-purpose digital I/O with port interrupt P2.0/TA1CLK/MCLK 25 25 I/O General-purpose digital I/O with port interrupt TA1 clock signal TA1CLK input MCLK output (1) 6 I = input, O = output, N/A = not available on this package offering Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 TERMINAL FUNCTIONS (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION PZ PN P2.1/TA1.0 26 26 I/O General-purpose digital I/O with port interrupt TA1 CCR0 capture: CCI0A input, compare: Out0 output P2.2/TA1.1 27 27 I/O General-purpose digital I/O with port interrupt TA1 CCR1 capture: CCI1A input, compare: Out1 output P2.3/TA1.2 28 28 I/O General-purpose digital I/O with port interrupt TA1 CCR2 capture: CCI2A input, compare: Out2 output P2.4/RTCCLK 29 29 I/O General-purpose digital I/O with port interrupt RTCCLK output P2.5 30 32 I/O General-purpose digital I/O with port interrupt P2.6/ACLK 31 33 I/O General-purpose digital I/O with port interrupt ACLK output (divided by 1, 2, 4, 8, 16, or 32) P2.7/ADC12CLK/DMAE0 32 34 I/O General-purpose digital I/O with port interrupt Conversion clock output ADC DMA external trigger input P3.0/UCB0STE/UCA0CLK 33 35 I/O General-purpose digital I/O Slave transmit enable – USCI_B0 SPI mode Clock signal input – USCI_A0 SPI slave mode Clock signal output – USCI_A0 SPI master mode P3.1/UCB0SIMO/UCB0SDA 34 36 I/O General-purpose digital I/O Slave in, master out – USCI_B0 SPI mode I2C data – USCI_B0 I2C mode P3.2/UCB0SOMI/UCB0SCL 35 37 I/O General-purpose digital I/O Slave out, master in – USCI_B0 SPI mode I2C clock – USCI_B0 I2C mode P3.3/UCB0CLK/UCA0STE 36 38 I/O General-purpose digital I/O Clock signal input – USCI_B0 SPI slave mode Clock signal output – USCI_B0 SPI master mode Slave transmit enable – USCI_A0 SPI mode DVSS3 37 30 Digital ground supply DVCC3 38 31 Digital power supply P3.4/UCA0TXD/UCA0SIMO 39 39 I/O General-purpose digital I/O Transmit data – USCI_A0 UART mode Slave in, master out – USCI_A0 SPI mode P3.5/UCA0RXD/UCA0SOMI 40 40 I/O General-purpose digital I/O Receive data – USCI_A0 UART mode Slave out, master in – USCI_A0 SPI mode P3.6/UCB1STE/UCA1CLK 41 41 I/O General-purpose digital I/O Slave transmit enable – USCI_B1 SPI mode Clock signal input – USCI_A1 SPI slave mode Clock signal output – USCI_A1 SPI master mode P3.7/UCB1SIMO/UCB1SDA 42 42 I/O General-purpose digital I/O Slave in, master out – USCI_B1 SPI mode I2C data – USCI_B1 I2C mode P4.0/TB0.0 43 43 I/O General-purpose digital I/O TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output P4.1/TB0.1 44 44 I/O General-purpose digital I/O TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output P4.2/TB0.2 45 45 I/O General-purpose digital I/O TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output P4.3/TB0.3 46 46 I/O General-purpose digital I/O TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output P4.4/TB0.4 47 47 I/O General-purpose digital I/O TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output P4.5/TB0.5 48 48 I/O General-purpose digital I/O TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com TERMINAL FUNCTIONS (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION PZ PN P4.6/TB0.6 49 52 I/O General-purpose digital I/O TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output P4.7/TB0CLK/SMCLK 50 53 I/O General-purpose digital I/O TB0 clock input SMCLK output P5.4/UCB1SOMI/UCB1SCL 51 54 I/O General-purpose digital I/O Slave out, master in – USCI_B1 SPI mode I2C clock – USCI_B1 I2C mode P5.5/UCB1CLK/UCA1STE 52 55 I/O General-purpose digital I/O Clock signal input – USCI_B1 SPI slave mode Clock signal output – USCI_B1 SPI master mode Slave transmit enable – USCI_A1 SPI mode P5.6/UCA1TXD/UCA1SIMO 53 56 I/O General-purpose digital I/O Transmit data – USCI_A1 UART mode Slave in, master out – USCI_A1 SPI mode P5.7/UCA1RXD/UCA1SOMI 54 57 I/O General-purpose digital I/O Receive data – USCI_A1 UART mode Slave out, master in – USCI_A1 SPI mode P7.2/TB0OUTH/SVMOUT 55 58 I/O General-purpose digital I/O Switch all PWM outputs high impedance – Timer TB0 SVM output P7.3/TA1.2 56 59 I/O General-purpose digital I/O TA1 CCR2 capture: CCI2B input, compare: Out2 output P8.0/TA0.0 57 60 I/O General-purpose digital I/O TA0 CCR0 capture: CCI0B input, compare: Out0 output P8.1/TA0.1 58 61 I/O General-purpose digital I/O TA0 CCR1 capture: CCI1B input, compare: Out1 output P8.2/TA0.2 59 62 I/O General-purpose digital I/O TA0 CCR2 capture: CCI2B input, compare: Out2 output P8.3/TA0.3 60 63 I/O General-purpose digital I/O TA0 CCR3 capture: CCI3B input, compare: Out3 output P8.4/TA0.4 61 64 I/O General-purpose digital I/O TA0 CCR4 capture: CCI4B input, compare: Out4 output VCORE (2) 62 49 Regulated core power supply output (internal use only, no external current loading) DVSS2 63 50 Digital ground supply DVCC2 64 51 Digital power supply P8.5/TA1.0 65 65 I/O General-purpose digital I/O TA1 CCR0 capture: CCI0B input, compare: Out0 output P8.6/TA1.1 66 66 I/O General-purpose digital I/O TA1 CCR1 capture: CCI1B input, compare: Out1 output P8.7 67 N/A I/O General-purpose digital I/O P9.0/UCB2STE/UCA2CLK 68 N/A I/O General-purpose digital I/O Slave transmit enable – USCI_B2 SPI mode Clock signal input – USCI_A2 SPI slave mode Clock signal output – USCI_A2 SPI master mode P9.1/UCB2SIMO/UCB2SDA 69 N/A I/O General-purpose digital I/O Slave in, master out – USCI_B2 SPI mode I2C data – USCI_B2 I2C mode P9.2/UCB2SOMI/UCB2SCL 70 N/A I/O General-purpose digital I/O Slave out, master in – USCI_B2 SPI mode I2C clock – USCI_B2 I2C mode (2) 8 VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 TERMINAL FUNCTIONS (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION PZ PN P9.3/UCB2CLK/UCA2STE 71 N/A I/O General-purpose digital I/O Clock signal input – USCI_B2 SPI slave mode Clock signal output – USCI_B2 SPI master mode Slave transmit enable – USCI_A2 SPI mode P9.4/UCA2TXD/UCA2SIMO 72 N/A I/O General-purpose digital I/O Transmit data – USCI_A2 UART mode Slave in, master out – USCI_A2 SPI mode P9.5/UCA2RXD/UCA2SOMI 73 N/A I/O General-purpose digital I/O Receive data – USCI_A2 UART mode Slave out, master in – USCI_A2 SPI mode P9.6 74 N/A I/O General-purpose digital I/O P9.7 75 N/A I/O General-purpose digital I/O P10.0/UCB3STE/UCA3CLK 76 N/A I/O General-purpose digital I/O Slave transmit enable – USCI_B3 SPI mode Clock signal input – USCI_A3 SPI slave mode Clock signal output – USCI_A3 SPI master mode P10.1/UCB3SIMO/UCB3SDA 77 N/A I/O General-purpose digital I/O Slave in, master out – USCI_B3 SPI mode I2C data – USCI_B3 I2C mode P10.2/UCB3SOMI/UCB3SCL 78 N/A I/O General-purpose digital I/O Slave out, master in – USCI_B3 SPI mode I2C clock – USCI_B3 I2C mode P10.3/UCB3CLK/UCA3STE 79 N/A I/O General-purpose digital I/O Clock signal input – USCI_B3 SPI slave mode Clock signal output – USCI_B3 SPI master mode Slave transmit enable – USCI_A3 SPI mode P10.4/UCA3TXD/UCA3SIMO 80 N/A I/O General-purpose digital I/O Transmit data – USCI_A3 UART mode Slave in, master out – USCI_A3 SPI mode P10.5/UCA3RXD/UCA3SOMI 81 N/A I/O General-purpose digital I/O Receive data – USCI_A3 UART mode Slave out, master in – USCI_A3 SPI mode P10.6 82 N/A I/O General-purpose digital I/O P10.7 83 N/A I/O General-purpose digital I/O P11.0/ACLK 84 N/A I/O General-purpose digital I/O ACLK output (divided by 1, 2, 4, 8, 16, or 32) P11.1/MCLK 85 N/A I/O General-purpose digital I/O MCLK output P11.2/SMCLK 86 N/A I/O General-purpose digital I/O SMCLK output DVCC4 87 67 Digital power supply DVSS4 88 68 Digital ground supply P5.2/XT2IN 89 69 I/O General-purpose digital I/O Input terminal for crystal oscillator XT2 P5.3/XT2OUT 90 70 I/O General-purpose digital I/O Output terminal of crystal oscillator XT2 TEST/SBWTCK (3) 91 71 I PJ.0/TDO (4) 92 72 I/O General-purpose digital I/O Test data output port PJ.1/TDI/TCLK (4) 93 73 I/O General-purpose digital I/O Test data input or test clock input (3) (4) Test mode pin – select digital I/O on JTAG pins Spy-bi-wire input clock See Bootstrap Loader (BSL) and JTAG Operation for use with BSL and JTAG functions See JTAG Operation for use with JTAG function. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com TERMINAL FUNCTIONS (continued) TERMINAL NAME I/O (1) NO. DESCRIPTION PZ PN (4) 94 74 I/O General-purpose digital I/O Test mode select PJ.3/TCK (4) 95 75 I/O General-purpose digital I/O Test clock RST/NMI/SBWTDIO (3) 96 76 I/O Reset input active low Non-maskable interrupt input Spy-bi-wire data input/output P6.0/A0 97 77 I/O General-purpose digital I/O Analog input A0 – ADC P6.1/A1 98 78 I/O General-purpose digital I/O Analog input A1 – ADC P6.2/A2 99 79 I/O General-purpose digital I/O Analog input A2 – ADC P6.3/A3 100 80 I/O General-purpose digital I/O Analog input A3 – ADC Reserved N/A N/A PJ.2/TMS 10 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Copyright © 2009–2010, Texas Instruments Incorporated Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Submit Documentation Feedback 11 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Operating Modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc generator is disabled – Crystal oscillator is stopped – Complete data retention 12 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 2. Interrupt Sources, Flags, and Vectors SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0FFFEh 63, highest SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation NMIIFG, OFIFG, ACCVIFG (SYSUNIV) (1) (Non)maskable 0FFFAh 61 TB0 TBCCR0 CCIFG0 INTERRUPT SOURCE System Reset Power-Up External Reset Watchdog Timeout, Password Violation Flash Memory Password Violation PMM Password Violation System NMI PMM Vacant Memory Access JTAG Mailbox INTERRUPT FLAG WDTIFG, KEYV (SYSRSTIV) (1) (2) (2) (3) Maskable 0FFF8h 60 TB0 TBCCR1 CCIFG1 ... TBCCR6 CCIFG6, TBIFG (TBIV) (1) (3) Maskable 0FFF6h 59 Watchdog Timer_A Interval Timer Mode WDTIFG Maskable 0FFF4h 58 Maskable 0FFF2h 57 Maskable 0FFF0h 56 Maskable 0FFEEh 55 Maskable 0FFECh 54 USCI_A0 Receive/Transmit USCI_B0 Receive/Transmit ADC12_A UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) UCB0RXIFG, UCB0TXIFG (UCAB0IV) ADC12IFG0 ... ADC12IFG15 (ADC12IV) (1) TA0CCR0 CCIFG0 (3) TA0 TA0CCR1 CCIFG1 ... TA0CCR4 CCIFG4, TA0IFG (TA0IV) (1) (3) Maskable 0FFEAh 53 UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) (3) Maskable 0FFE8h 52 UCB2RXIFG, UCB2TXIFG (UCB2IV) (1) (3) Maskable 0FFE6h 51 Maskable 0FFE4h 50 Maskable 0FFE2h 49 Maskable 0FFE0h 48 USCI_B2 Receive/Transmit DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) TA1 TA1CCR0 CCIFG0 (3) TA1 TA1CCR1 CCIFG1 ... TA1CCR2 CCIFG2, TA1IFG (TA1IV) (1) (3) I/O Port P1 USCI_A1 Receive/Transmit P1IFG.0 to P1IFG.7 (P1IV) (1) (3) (3) Maskable 0FFDEh 47 (3) Maskable 0FFDCh 46 (1) (3) UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) USCI_B1 Receive/Transmit UCB1RXIFG, UCB1TXIFG (UCB1IV) Maskable 0FFDAh 45 USCI_A3 Receive/Transmit UCA3RXIFG, UCA3TXIFG (UCA3IV) (1) (3) Maskable 0FFD8h 44 USCI_B3 Receive/Transmit UCB3RXIFG, UCB3TXIFG (UCB3IV) (1) (3) Maskable 0FFD6h 43 Maskable 0FFD4h 42 Maskable 0FFD2h 41 0FFD0h 40 I/O Port P2 RTC_A P2IFG.0 to P2IFG.7 (P2IV) (1) (3) RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (3) Reserved (3) (4) (3) TA0 USCI_A2 Receive/Transmit (1) (2) (3) (1) (3) Reserved (4) ⋮ ⋮ 0FF80h 0, lowest Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Memory Organization Memory (flash) Main: interrupt vector Main: code memory Main: code memory MSP430F5419 MSP430F5418 MSP430F5436 MSP430F5435 MSP430F5438 MSP430F5437 128 KB 00FFFFh–00FF80h 025BFFh–005C00h 192 KB 00FFFFh–00FF80h 035BFFh–005C00h 256 KB 00FFFFh–00FF80h 045BFFh–005C00h Bank 3 N/A 23 KB 035BFFh–030000h 64 KB 03FFFFh–030000h Bank 2 23 KB 025BFFh–020000h 64 KB 02FFFFh–020000h 64 KB 02FFFFh–020000h Bank 1 64 KB 01FFFFh–010000h 64 KB 01FFFFh–010000h 64 KB 01FFFFh–010000h Bank 0 41 KB 00FFFFh–005C00h 41 KB 00FFFFh–005C00h 64 KB 045BFFh–040000h 00FFFFh–005C00h 16 KB 16 KB 16 KB Sector 3 4 KB 005BFFh–004C00h 4 KB 005BFFh–004C00h 4 KB 005BFFh–004C00h Sector 2 4 KB 004BFFh–003C00h 4 KB 004BFFh–003C00h 4 KB 004BFFh–003C00h Sector 1 4 KB 003BFFh–002C00h 4 KB 003BFFh–002C00h 4 KB 003BFFh–002C00h Sector 0 4 KB 002BFFh–001C00h 4 KB 002BFFh–001C00h 4 KB 002BFFh–001C00h Info A 128 B 0019FFh–001980h 128 B 0019FFh–001980h 128 B 0019FFh–001980h Info B 128 B 00197Fh–001900h 128 B 00197Fh–001900h 128 B 00197Fh–001900h Info C 128 B 0018FFh–001880h 128 B 0018FFh–001880h 128 B 0018FFh–001880h Info D 128 B 00187Fh–001800h 128 B 00187Fh–001800h 128 B 00187Fh–001800h BSL 3 512 B 0017FFh–001600h 512 B 0017FFh–001600h 512 B 0017FFh–001600h BSL 2 512 B 0015FFh–001400h 512 B 0015FFh–001400h 512 B 0015FFh–001400h BSL 1 512 B 0013FFh–001200h 512 B 0013FFh–001200h 512 B 0013FFh–001200h BSL 0 512 B 0011FFh–001000h 512 B 0011FFh–001000h 512 B 0011FFh–001000h Size 4KB 000FFFh–000000h 4KB 000FFFh–000000h 4KB 000FFFh–000000h Total Size Flash Flash Size RAM Information memory (flash) Bootstrap loader (BSL) (1) memory (flash) Peripherals (1) 14 The BSL area contains a Texas Instruments provided BSL and cannot be modified. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Bootstrap Loader (BSL) The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the device memory via the BSL is protected by an user-defined password. Usage of the BSL requires four pins as shown in Table 3. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User's Guide, literature number SLAU265. Table 3. BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.1 Data transmit P1.2 Data receive VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 4. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide, literature number SLAU278. Table 4. JTAG Pin Requirements and Functions DEVICE SIGNAL Direction FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input/TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 5. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide, literature number SLAU278. Table 5. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL Direction FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Flash Memory The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually. Segments A to D are also called information memory. • Segment A can be locked separately. RAM Memory The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage, however all data is lost. Features of the RAM memory include: • RAM memory has n sectors. The size of a sector can be found in Memory Organization. • Each sector 0 to n can be complete disabled, however data retention is lost. • Each sector 0 to n automatically enters low power retention mode when possible. • For Devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required. 16 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx Family User's Guide, literature number SLAU208. Digital I/O There are up to ten 8-bit I/O ports implemented: For 100-pin options, P1 through P10 are complete. P11 contains three individual I/O ports. For 80-pin options, P1 through P7 are complete. P8 contains seven individual I/O ports. P9 through P11 do not exist. Port PJ contains four individual I/O ports, common to all devices. • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Pullup or pulldown on all ports is programmable. • Drive strength on all ports is programmable. • Edge-selectable interrupt and LPM5 wakeup input capability is available for all bits of ports P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 through P11) or word-wise in pairs (PA through PF). Oscillator and System Clock The clock system in the MSP430x5xx family of devices is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT1 HF mode or XT2). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal, a high-frequency crystal, the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitally controlled oscillator DCO. • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Real-Time Clock (RTC_A) The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware. Watchdog Timer (WDT_A) The primary function of the watchdog timer (WDT_A) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 18 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 System Module (SYS) The SYS module handles many of the system functions within the device. These include power on reset and power up clear handling, NMI source selection and management, reset interrupt vector generators, boot strap loader entry mechanisms, as well as, configuration management (device descriptors). It also includes a data exchange mechanism via JTAG called a JTAG mailbox that can be used in the application. Table 6. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER ADDRESS INTERRUPT EVENT VALUE SYSRSTIV , System Reset 019Eh No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h PMMSWBOR (BOR) 06h Reserved 08h SYSSNIV , System NMI SYSUNIV, User NMI 019Ch 019Ah Copyright © 2009–2010, Texas Instruments Incorporated Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) 10h SVMH_OVP (POR) 12h PMMSWPOR (POR) 14h WDT timeout (PUC) 16h WDT password violation (PUC) 18h KEYV flash password violation (PUC) 1Ah FLL unlock (PUC) 1Ch Peripheral area fetch (PUC) 1Eh PMM password violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h SVSMLDLYIFG 06h SVSMHDLYIFG 08h VMAIFG 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh SVMLVLRIFG 10h SVMHVLRIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIFG 02h OFIFG 04h ACCVIFG 06h Reserved 08h Reserved 0Ah to 1Eh PRIORITY Highest Lowest Highest Lowest Highest Lowest Submit Documentation Feedback 19 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 7. DMA Trigger Assignments Trigger (1) 20 (1) Channel 0 1 2 0 DMAREQ DMAREQ DMAREQ 1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 TA1CCR2 CCIFG TA1CCR2 CCIFG TA1CCR2 CCIFG 5 TB0CCR0 CCIFG TB0CCR0 CCIFG TB0CCR0 CCIFG 6 TB0CCR2 CCIFG TB0CCR2 CCIFG TB0CCR2 CCIFG 7 Reserved Reserved Reserved 8 Reserved Reserved Reserved 9 Reserved Reserved Reserved 10 Reserved Reserved Reserved 11 Reserved Reserved Reserved 12 Reserved Reserved Reserved 13 Reserved Reserved Reserved 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG 18 UCB0RXIFG UCB0RXIFG UCB0RXIFG 19 UCB0TXIFG UCB0TXIFG UCB0TXIFG 20 UCA1RXIFG UCA1RXIFG UCA1RXIFG 21 UCA1TXIFG UCA1TXIFG UCA1TXIFG 22 UCB1RXIFG UCB1RXIFG UCB1RXIFG 23 UCB1TXIFG UCB1TXIFG UCB1TXIFG 24 ADC12IFGx ADC12IFGx ADC12IFGx 25 Reserved Reserved Reserved 26 Reserved Reserved Reserved 27 Reserved Reserved Reserved 28 Reserved Reserved Reserved 29 MPY ready MPY ready MPY ready 30 DMA2IFG DMA0IFG DMA1IFG 31 DMAE0 DMAE0 DMAE0 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers will not cause any DMA trigger event when selected. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Universal Serial Communication Interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B. The USCI_An module provides support for SPI (3 pin or 4 pin), UART, enhanced UART, or IrDA. The USCI_Bn module provides support for SPI (3 pin or 4 pin) or I2C. The MSP430F5438, MSP430F5436, and MSP430F5419 include four complete USCI modules (n = 0 to 3). The MSP430F5437, MSP430F5435, and MSP430F5418 include two complete USCI modules (n = 0 to 1). TA0 TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 8. TA0 Signal Connections INPUT PIN NUMBER PZ PN DEVICE INPUT SIGNAL 17-P1.0 17-P1.0 TA0CLK MODULE INPUT SIGNAL TACLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA OUTPUT PIN NUMBER PZ PN 18-P1.1 17-P1.0 17-P1.0 TA0CLK TACLK 18-P1.1 18-P1.1 TA0.0 CCI0A 18-P1.1 57-P8.0 60-P8.0 TA0.0 CCI0B 57-P8.0 60-P8.0 ADC12 (internal) ADC12SHSx = {1} ADC12 (internal) ADC12SHSx = {1} DVSS GND CCR0 TA0 TA0.0 DVCC VCC 19-P1.2 19-P1.2 TA0.1 CCI1A 19-P1.2 19-P1.2 58-P8.1 61-P8.1 TA0.1 CCI1B 58-P8.1 61-P8.1 DVSS GND 20-P1.3 20-P1.3 59-P8.2 62-P8.2 DVCC VCC 20-P1.3 20-P1.3 TA0.2 CCI2A 59-P8.2 62-P8.2 TA0.2 CCI2B DVSS GND DVCC VCC CCR1 CCR2 TA1 TA2 TA0.1 TA0.2 21-P1.4 21-P1.4 TA0.3 CCI3A 21-P1.4 21-P1.4 60-P8.3 63-P8.3 TA0.3 CCI3B 60-P8.3 63-P8.3 DVSS GND DVCC VCC CCR3 TA3 TA0.3 22-P1.5 22-P1.5 TA0.4 CCI4A 22-P1.5 22-P1.5 61-P8.4 64-P8.4 TA0.4 CCI4B 61-P8.4 64-P8.4 DVSS GND DVCC VCC Copyright © 2009–2010, Texas Instruments Incorporated CCR4 TA4 TA0.4 Submit Documentation Feedback 21 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com TA1 TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 9. TA1 Signal Connections INPUT PIN NUMBER 22 PZ PN DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 25-P2.0 25-P2.0 TA1CLK TACLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA OUTPUT PIN NUMBER PZ PN 25-P2.0 25-P2.0 TA1CLK TACLK 26-P2.1 26-P2.1 TA1.0 CCI0A 26-P2.1 26-P2.1 65-P8.5 65-P8.5 TA1.0 CCI0B 65-P8.5 65-P8.5 DVSS GND 27-P2.2 27-P2.2 66-P8.6 66-P8.6 DVCC VCC 27-P2.2 27-P2.2 TA1.1 CCI1A 66-P8.6 66-P8.6 TA1.1 CCI1B DVSS GND DVCC VCC CCR0 CCR1 TA0 TA1 TA1.0 TA1.1 28-P2.3 28-P2.3 TA1.2 CCI2A 28-P2.3 28-P2.3 56-P7.3 59-P7.3 TA1.2 CCI2B 56-P7.3 59-P7.3 DVSS GND DVCC VCC Submit Documentation Feedback CCR2 TA2 TA1.2 Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 TB0 TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. It can support multiple capture/compares, PWM outputs, and interval timing. It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 10. TB0 Signal Connections INPUT PIN NUMBER PZ PN DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 50-P4.7 53-P4.7 TB0CLK TBCLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA OUTPUT PIN NUMBER PZ PN 50-P4.7 53-P4.7 TB0CLK TBCLK 43-P4.0 43-P4.0 TB0.0 CCI0A 43-P4.0 43-P4.0 TB0.0 CCI0B TB0.0 ADC12 (internal) ADC12SHSx = {2} ADC12 (internal) ADC12SHSx = {2} DVSS GND DVCC VCC TB0.1 CCI1A 44-P4.1 44-P4.1 TB0.1 CCI1B TB0.1 ADC12 (internal) ADC12SHSx = {3} ADC12 (internal) ADC12SHSx = {3} DVSS GND 45-P4.2 45-P4.2 46-P4.3 46-P4.3 47-P4.4 47-P4.4 48-P4.5 48-P4.5 49-P4.6 52-P4.6 43-P4.0 44-P4.1 44-P4.1 43-P4.0 44-P4.1 44-P4.1 DVCC VCC 45-P4.2 45-P4.2 TB0.2 CCI2A 45-P4.2 45-P4.2 TB0.2 CCI2B DVSS GND DVCC VCC 46-P4.3 46-P4.3 TB0.3 CCI3A 46-P4.3 46-P4.3 TB0.3 CCI3B DVSS GND DVCC VCC 47-P4.4 47-P4.4 TB0.4 CCI4A 47-P4.4 47-P4.4 TB0.4 CCI4B DVSS GND DVCC VCC 48-P4.5 48-P4.5 TB0.5 CCI5A 48-P4.5 48-P4.5 TB0.5 CCI5B DVSS GND 49-P4.6 52-P4.6 DVCC VCC TB0.6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC Copyright © 2009–2010, Texas Instruments Incorporated CCR0 CCR1 CCR2 CCR3 CCR4 CCR5 CCR6 TB0 TB1 TB2 TB3 TB4 TB5 TB6 TB0.2 TB0.3 TB0.4 TB0.5 TB0.6 Submit Documentation Feedback 23 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com ADC12_A The ADC12_A module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. Embedded Emulation Module (EEM, L Version) The Embedded Emulation Module (EEM) supports real-time in-system debugging. The L version of the EEM implemented on all devices has the following features: • Eight hardware triggers/breakpoints on memory access • Two hardware trigger/breakpoint on CPU register write access • Up to ten hardware triggers can be combined to form complex triggers/breakpoints • Two cycle counters • Sequencer • State storage • Clock control on module level 24 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Peripheral File Map Table 11. Peripherals MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (refer to Table 12) 0100h 000h - 01Fh PMM (refer to Table 13) 0120h 000h - 00Fh Flash Control (refer to Table 14) 0140h 000h - 00Fh CRC16 (refer to Table 15) 0150h 000h - 007h RAM Control (refer to Table 16) 0158h 000h - 001h Watchdog (refer to Table 17) 015Ch 000h - 001h UCS (refer to Table 18) 0160h 000h - 01Fh 000h - 01Fh SYS (refer to Table 19) 0180h Port P1/P2 (refer to Table 20) 0200h 000h - 01Fh Port P3/P4 (refer to Table 21) 0220h 000h - 00Bh Port P5/P6 (refer to Table 22) 0240h 000h - 00Bh Port P7/P8 (refer to Table 23) 0260h 000h - 00Bh Port P9/P10 (refer to Table 24) (1) 0280h 000h - 00Bh Port P11 (refer to Table 25) (1) 02A0h 000h - 00Ah Port PJ (refer to Table 26) 0320h 000h - 01Fh TA0 (refer to Table 27) 0340h 000h - 02Eh TA1 (refer to Table 28) 0380h 000h - 02Eh TB0 (refer to Table 29) 03C0h 000h - 02Eh Real Timer Clock (RTC_A) (refer to Table 30) 04A0h 000h - 01Bh 32-bit Hardware Multiplier (refer to Table 31) 04C0h 000h - 02Fh DMA General Control (refer to Table 32) 0500h 000h - 00Fh DMA Channel 0 (refer to Table 32) 0510h 000h - 00Ah DMA Channel 1 (refer to Table 32) 0520h 000h - 00Ah DMA Channel 2 (refer to Table 32) 0530h 000h - 00Ah USCI_A0 (refer to Table 33) 05C0h 000h - 01Fh USCI_B0 (refer to Table 34) 05E0h 000h - 01Fh USCI_A1 (refer to Table 35) 0600h 000h - 01Fh USCI_B1 (refer to Table 36) 0620h 000h - 01Fh USCI_A2 (refer to Table 37) (1) 0640h 000h - 01Fh USCI_B2 (refer to Table 38) (1) 0660h 000h - 01Fh (1) 0680h 000h - 01Fh USCI_B3 (refer to Table 40) (1) 06A0h 000h - 01Fh ADC12_A (refer to Table 41) 0700h 000h - 03Eh USCI_A3 (refer to Table 39) (1) Not available on 'F5437, 'F5435, 'F5418 devices Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 12. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 13. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high side control SVSMHCTL 04h SVS low side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh Table 14. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 15. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC result CRC16INIRES 04h Table 16. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 17. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 18. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h 26 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 19. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootstrap loader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 20. Port P1/P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 27 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 21. Port P3/P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh Table 22. Port P5/P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 pullup/pulldown enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 pullup/pulldown enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Table 23. Port P7/P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 pullup/pulldown enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 pullup/pulldown enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh 28 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 24. Port P9/P10 Registers (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 pullup/pulldown enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Port P10 input P10IN 01h Port P10 output P10OUT 03h Port P10 direction P10DIR 05h Port P10 pullup/pulldown enable P10REN 07h Port P10 drive strength P10DS 09h Port P10 selection P10SEL 0Bh Table 25. Port P11 Registers (Base Address: 02A0h) REGISTER DESCRIPTION REGISTER OFFSET Port P11 input P11IN 00h Port P11 output P11OUT 02h Port P11 direction P11DIR 04h Port P11 pullup/pulldown enable P11REN 06h Port P11 drive strength P11DS 08h Port P11 selection P11SEL 0Ah Table 26. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ drive strength PJDS 08h Table 27. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h Capture/compare control 3 TA0CCTL3 08h Capture/compare control 4 TA0CCTL4 0Ah TA0 counter register TA0R 10h Capture/compare register 0 TA0CCR0 12h Capture/compare register 1 TA0CCR1 14h Capture/compare register 2 TA0CCR2 16h Capture/compare register 3 TA0CCR3 18h Capture/compare register 4 TA0CCR4 1Ah TA0 expansion register 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 28. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1 counter register TA1R 10h Capture/compare register 0 TA1CCR0 12h Capture/compare register 1 TA1CCR1 14h Capture/compare register 2 TA1CCR2 16h TA1 expansion register 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 29. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TB0 control TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h Capture/compare control 3 TB0CCTL3 08h Capture/compare control 4 TB0CCTL4 0Ah Capture/compare control 5 TB0CCTL5 0Ch Capture/compare control 6 TB0CCTL6 0Eh TB0 register TB0R 10h Capture/compare register 0 TB0CCR0 12h Capture/compare register 1 TB0CCR1 14h Capture/compare register 2 TB0CCR2 16h Capture/compare register 3 TB0CCR3 18h Capture/compare register 4 TB0CCR4 1Ah Capture/compare register 5 TB0CCR5 1Ch Capture/compare register 6 TB0CCR6 1Eh TB0 expansion register 0 TB0EX0 20h TB0 interrupt vector TB0IV 2Eh 30 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 30. Real-Time Clock Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds/counter register 1 RTCSEC/RTCNT1 10h RTC minutes/counter register 2 RTCMIN/RTCNT2 11h RTC hours/counter register 3 RTCHOUR/RTCNT3 12h RTC day of week/counter register 4 RTCDOW/RTCNT4 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 31. 32-bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch 32 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 32. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA channel 0 transfer size DMA0SZ 0Ah DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA channel 1 transfer size DMA1SZ 0Ah DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA channel 2 transfer size DMA2SZ 0Ah DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 33. USCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 1 UCA0CTL1 00h USCI control 0 UCA0CTL0 01h USCI baud rate 0 UCA0BR0 06h USCI baud rate 1 UCA0BR1 07h USCI modulation control UCA0MCTL 08h USCI status UCA0STAT 0Ah USCI receive buffer UCA0RXBUF 0Ch USCI transmit buffer UCA0TXBUF 0Eh USCI LIN control UCA0ABCTL 10h USCI IrDA transmit control UCA0IRTCTL 12h USCI IrDA receive control UCA0IRRCTL 13h USCI interrupt enable UCA0IE 1Ch USCI interrupt flags UCA0IFG 1Dh USCI interrupt vector word UCA0IV 1Eh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 34. USCI_B0 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 1 UCB0CTL1 00h USCI synchronous control 0 UCB0CTL0 01h USCI synchronous bit rate 0 UCB0BR0 06h USCI synchronous bit rate 1 UCB0BR1 07h USCI synchronous status UCB0STAT 0Ah USCI synchronous receive buffer UCB0RXBUF 0Ch USCI synchronous transmit buffer UCB0TXBUF 0Eh USCI I2C own address UCB0I2COA 10h USCI I2C slave address UCB0I2CSA 12h USCI interrupt enable UCB0IE 1Ch USCI interrupt flags UCB0IFG 1Dh USCI interrupt vector word UCB0IV 1Eh Table 35. USCI_A1 Registers (Base Address: 0600h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 1 UCA1CTL1 00h USCI control 0 UCA1CTL0 01h USCI baud rate 0 UCA1BR0 06h USCI baud rate 1 UCA1BR1 07h USCI modulation control UCA1MCTL 08h USCI status UCA1STAT 0Ah USCI receive buffer UCA1RXBUF 0Ch USCI transmit buffer UCA1TXBUF 0Eh USCI LIN control UCA1ABCTL 10h USCI IrDA transmit control UCA1IRTCTL 12h USCI IrDA receive control UCA1IRRCTL 13h USCI interrupt enable UCA1IE 1Ch USCI interrupt flags UCA1IFG 1Dh USCI interrupt vector word UCA1IV 1Eh 34 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 36. USCI_B1 Registers (Base Address: 0620h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 1 UCB1CTL1 00h USCI synchronous control 0 UCB1CTL0 01h USCI synchronous bit rate 0 UCB1BR0 06h USCI synchronous bit rate 1 UCB1BR1 07h USCI synchronous status UCB1STAT 0Ah USCI synchronous receive buffer UCB1RXBUF 0Ch USCI synchronous transmit buffer UCB1TXBUF 0Eh USCI I2C own address UCB1I2COA 10h USCI I2C slave address UCB1I2CSA 12h USCI interrupt enable UCB1IE 1Ch USCI interrupt flags UCB1IFG 1Dh USCI interrupt vector word UCB1IV 1Eh Table 37. USCI_A2 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 1 UCA2CTL1 00h USCI control 0 UCA2CTL0 01h USCI baud rate 0 UCA2BR0 06h USCI baud rate 1 UCA2BR1 07h USCI modulation control UCA2MCTL 08h USCI status UCA2STAT 0Ah USCI receive buffer UCA2RXBUF 0Ch USCI transmit buffer UCA2TXBUF 0Eh USCI LIN control UCA2ABCTL 10h USCI IrDA transmit control UCA2IRTCTL 12h USCI IrDA receive control UCA2IRRCTL 13h USCI interrupt enable UCA2IE 1Ch USCI interrupt flags UCA2IFG 1Dh USCI interrupt vector word UCA2IV 1Eh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 35 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 38. USCI_B2 Registers (Base Address: 0660h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 1 UCB2CTL1 00h USCI synchronous control 0 UCB2CTL0 01h USCI synchronous bit rate 0 UCB2BR0 06h USCI synchronous bit rate 1 UCB2BR1 07h USCI synchronous status UCB2STAT 0Ah USCI synchronous receive buffer UCB2RXBUF 0Ch USCI synchronous transmit buffer UCB2TXBUF 0Eh USCI I2C own address UCB2I2COA 10h USCI I2C slave address UCB2I2CSA 12h USCI interrupt enable UCB2IE 1Ch USCI interrupt flags UCB2IFG 1Dh USCI interrupt vector word UCB2IV 1Eh Table 39. USCI_A3 Registers (Base Address: 0680h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 1 UCA3CTL1 00h USCI control 0 UCA3CTL0 01h USCI baud rate 0 UCA3BR0 06h USCI baud rate 1 UCA3BR1 07h USCI modulation control UCA3MCTL 08h USCI status UCA3STAT 0Ah USCI receive buffer UCA3RXBUF 0Ch USCI transmit buffer UCA3TXBUF 0Eh USCI LIN control UCA3ABCTL 10h USCI IrDA transmit control UCA3IRTCTL 12h USCI IrDA receive control UCA3IRRCTL 13h USCI interrupt enable UCA3IE 1Ch USCI interrupt flags UCA3IFG 1Dh USCI interrupt vector word UCA3IV 1Eh 36 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 40. USCI_B3 Registers (Base Address: 06A0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 1 UCB3CTL1 00h USCI synchronous control 0 UCB3CTL0 01h USCI synchronous bit rate 0 UCB3BR0 06h USCI synchronous bit rate 1 UCB3BR1 07h USCI synchronous status UCB3STAT 0Ah USCI synchronous receive buffer UCB3RXBUF 0Ch USCI synchronous transmit buffer UCB3TXBUF 0Eh USCI I2C own address UCB3I2COA 10h USCI I2C slave address UCB3I2CSA 12h USCI interrupt enable UCB3IE 1Ch USCI interrupt flags UCB3IFG 1Dh USCI interrupt vector word UCB3IV 1Eh Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 41. ADC12_A Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET Control register 0 ADC12CTL0 00h Control register 1 ADC12CTL1 02h Control register 2 ADC12CTL2 04h Interrupt-flag register ADC12IFG 0Ah Interrupt-enable register ADC12IE 0Ch Interrupt-vector-word register ADC12IV 0Eh ADC memory-control register 0 ADC12MCTL0 10h ADC memory-control register 1 ADC12MCTL1 11h ADC memory-control register 2 ADC12MCTL2 12h ADC memory-control register 3 ADC12MCTL3 13h ADC memory-control register 4 ADC12MCTL4 14h ADC memory-control register 5 ADC12MCTL5 15h ADC memory-control register 6 ADC12MCTL6 16h ADC memory-control register 7 ADC12MCTL7 17h ADC memory-control register 8 ADC12MCTL8 18h ADC memory-control register 9 ADC12MCTL9 19h ADC memory-control register 10 ADC12MCTL10 1Ah ADC memory-control register 11 ADC12MCTL11 1Bh ADC memory-control register 12 ADC12MCTL12 1Ch ADC memory-control register 13 ADC12MCTL13 1Dh ADC memory-control register 14 ADC12MCTL14 1Eh ADC memory-control register 15 ADC12MCTL15 1Fh Conversion memory 0 ADC12MEM0 20h Conversion memory 1 ADC12MEM1 22h Conversion memory 2 ADC12MEM2 24h Conversion memory 3 ADC12MEM3 26h Conversion memory 4 ADC12MEM4 28h Conversion memory 5 ADC12MEM5 2Ah Conversion memory 6 ADC12MEM6 2Ch Conversion memory 7 ADC12MEM7 2Eh Conversion memory 8 ADC12MEM8 30h Conversion memory 9 ADC12MEM9 32h Conversion memory 10 ADC12MEM10 34h Conversion memory 11 ADC12MEM11 36h Conversion memory 12 ADC12MEM12 38h Conversion memory 13 ADC12MEM13 3Ah Conversion memory 14 ADC12MEM14 3Ch Conversion memory 15 ADC12MEM15 3Eh 38 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) Voltage VCC applied at supply pins DVCC/AVCC to supply pins DVSS/AVSS Voltage applied to any pin (excluding VCORE) –0.3 V to 4.1 V (2) –0.3 V to VCC + 0.3 V Diode current at any device pin ±2 mA Storage temperature range (3), Tstg –55°C to 105°C Maximum junction temperature, TJ 95°C (1) (2) (3) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Thermal Packaging Characteristics VALUE Low-K board (JESD51-3) Junction-to-ambient thermal resistance, still air qJA High-K board (JESD51-7) Junction-to-case thermal resistance qJC QFP (PZ) 50.1 QFP (PN) 57.9 QFP (PZ) 40.8 QFP (PN) 37.9 QFP (PZ) 8.9 QFP (PN) 10.3 UNIT °C/W °C/W Recommended Operating Conditions MIN NOM MAX UNIT VCC Supply voltage during program execution and flash programming (VCC = DVCC1/2/3/4 = AVCC) (1) VSS Supply voltage (VSS = DVSS1/2/3/4 = DVSS= AVSS) TA Operating free-air temperature I version –40 85 TJ Operating junction temperature I version –40 85 2.2 0 CVCORE Recommended capacitor at VCORE (1) (2) (3) Processor frequency (maximum MCLK frequency) (2) V V 470 CDVCC/ Capacitor ratio of DVCC to VCORE CVCORE fSYSTEM 3.6 °C °C nF 10 (3) (see Figure 1) PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 18.0 MHz It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 39 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com System Frequency - MHz 3 18 2 0 2.2 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 1. Frequency vs Supply Voltage 40 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Electrical Characteristics Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) Frequency (fDCO = fMCLK = fSMCLK) Execution Memory VCC PMMCOREVx Flash Flash 3.0 V 2 0.37 0.45 1.27 1.47 2.50 2.84 5.00 5.56 mA RAM RAM 3.0 V 2 0.20 0.29 0.60 0.72 1.12 1.27 2.20 2.60 mA PARAMETER 1 MHz TYP IAM, IAM, (1) (2) (3) 4 MHz MAX TYP 8 MHz MAX TYP 16 MHz MAX TYP UNIT MAX All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing worst case JMP $. fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0. Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER -40 °C 25 °C 55 °C (2) 85°C VCC PMMCOREVx 3.0 V 2 86 98 86 98 86 98 86 98 µA (4) 3.0 V 2 8.0 15.6 8.0 15.6 8.0 15.6 8.0 15.6 µA ILPM3,XT1LF Low-power mode 3, crystal mode (6) (4) 3.0 V 2 2.3 2.6 3.37 4.5 7.9 15.6 µA ILPM3,VLO Low-power mode 3, VLO mode (7) (4) 3.0 V 2 1.39 1.80 2.30 2.95 6.9 14.6 µA 3.0 V 2 1.26 1.69 2.2 3.6 6.8 14.5 µA ILPM0,1MHz ILPM2 ILPM4 (1) (2) (3) (4) (5) (6) (7) (8) Low-power mode 0 (3) (4) Low-power mode 2 (5) Low-power mode 4 (4) TYP MAX TYP MAX TYP MAX TYP MAX UNIT (8) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz Current for brownout included. High and low side supervisor and monitors disabled (SVSH, SVMH, SVSL, SVML). RAM retention enabled. Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for watchdog timer and RTC clocked by ACLK included. For this condition, the VLO must be selected as the source for ACLK, MCLK, and SMCLK otherwise additional current will be drawn due to the REFO oscillator. ACLK = MCLK = SMCLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fVLO = 0 MHz CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Schmitt-Trigger Inputs – General Purpose I/O (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.8 3V 0.4 1.0 20 TYP 35 MAX 50 5 UNIT V V V kΩ pF Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). Inputs – Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) (2) External interrupt timing (2) TEST CONDITIONS VCC Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag 2.2 V/3 V MIN MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) 42 High-impedance leakage current TEST CONDITIONS (1) (2) VCC 1.8 V/3 V MIN MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Outputs – General Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA VOH I(OHmax) = –10 mA (2) High-level output voltage I(OHmax) = –5 mA (1) I(OHmax) = –15 mA (2) I(OLmax) = 3 mA VOL (2) 3V MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC I(OLmax) = 5 mA (1) UNIT V VSS VSS + 0.25 1.8 V VSS VSS + 0.60 VSS VSS + 0.25 3V I(OLmax) = 15 mA (2) (1) 1.8 V MIN (1) I(OLmax) = 10 mA (2) Low-level output voltage VCC (1) V VSS VSS + 0.60 The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Outputs – General Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA VOH 1.8 V I(OHmax) = –3 mA (3) High-level output voltage I(OHmax) = –2 mA (2) 3.0 V I(OHmax) = –6 mA (3) I(OLmax) = 1 mA VOL (3) MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC 1.8 V I(OLmax) = 2 mA (2) 3.0 V I(OLmax) = 6 mA (3) (1) (2) MIN (2) I(OLmax) = 3 mA (3) Low-level output voltage VCC (2) UNIT V VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 V VSS VSS + 0.60 Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Output Frequency – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Port output frequency (with load) fPx.y fPort_CLK (1) (2) Clock output frequency TEST CONDITIONS P1.6/SMCLK MIN MAX UNIT (1) (2) VCC = 3 V PMMCOREVx = 2 25 MHz P1.0/TA0CLK/ACLK P1.6/SMCLK P2.0/TA1CLK/MCLK CL = 20 pF (2) VCC = 3 V PMMCOREVx = 2 25 MHz A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 8.0 VCC = 3.0 V Px.y IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 25.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 7.0 TA = 85°C 6.0 5.0 4.0 3.0 2.0 1.0 0.0 0.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 2.0 0.0 VCC = 3.0 V Px.y IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA 1.5 Figure 3. -5.0 -10.0 TA = 85°C TA = 25°C VCC = 1.8 V Px.y -1.0 -2.0 -3.0 -4.0 TA = 85°C -5.0 -6.0 TA = 25°C -7.0 -8.0 -25.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VOH – High-Level Output Voltage – V Figure 4. 44 1.0 Figure 2. 0.0 -20.0 0.5 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V -15.0 TA = 25°C VCC = 1.8 V Px.y Submit Documentation Feedback 3.5 0.0 0.5 1.0 1.5 VOH – High-Level Output Voltage – V 2.0 Figure 5. Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TA = 25°C VCC = 3.0 V Px.y 55.0 50.0 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 60.0 TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TA = 85°C 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 24 VCC = 1.8 V Px.y TA = 85°C 16 12 8 4 0 0.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA 2.0 0 -10.0 -15.0 -20.0 -25.0 -30.0 -35.0 -40.0 -45.0 TA = 85°C -55.0 TA = 25°C 0.0 1.5 Figure 7. VCC = 3.0 V Px.y -60.0 1.0 Figure 6. 0.0 -50.0 0.5 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V -5.0 TA = 25°C 20 0.5 VCC = 1.8 V Px.y -4 -8 -12 TA = 85°C -16 TA = 25°C -20 1.0 1.5 2.0 2.5 3.0 VOH – High-Level Output Voltage – V Figure 8. Copyright © 2009–2010, Texas Instruments Incorporated 3.5 0.0 0.5 1.0 1.5 2.0 VOH – High-Level Output Voltage – V Figure 9. Submit Documentation Feedback 45 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C ΔIDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C 0.170 32768 XTS = 0, XT1BYPASS = 0 fXT1,LF,SW XT1 oscillator logic-level square-wave input frequency, LF mode XTS = 0, XT1BYPASS = 1 (2) Oscillation allowance for LF crystals (4) 3.0 V 0.290 XT1 oscillator crystal frequency, LF mode (3) 10 Integrated effective load capacitance, LF mode (5) 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 LF mode fFault,LF Oscillator fault frequency, LF mode (7) XTS = 0 (8) (1) (2) (3) (4) (5) (6) (7) (8) 46 Startup time, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF µA Hz 50 kHz 2 5.5 Duty cycle UNIT kΩ XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz tSTART,LF 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0, XCAPx = 0 (6) CL,eff MAX 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 OALF TYP pF 30 70 % 10 10000 Hz 1000 3.0 V ms 500 To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: (a) For XT1DRIVEx = 0, CL,ef f ≤ 6 pF. (b) For XT1DRIVEx = 1, 6 pF ≤ CL,ef f ≤ 9 pF. (c) For XT1DRIVEx = 2, 6 pF ≤ CL,ef f ≤ 10 pF. (d) For XT1DRIVEx = 3, CL,ef f ≥ 6 pF. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Crystal Oscillator, XT1, High-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IDVCC.HF XT1 oscillator crystal current HF mode TEST CONDITIONS VCC MIN TYP fOSC = 4 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C 200 fOSC = 12 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C 260 fOSC = 20 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C MAX 3.0 V UNIT µA 325 fOSC = 32 MHz, XTS = 1, XOSCOFF = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C 450 fXT1,HF0 XT1 oscillator crystal frequency, HF mode 0 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0 (2) 4 8 MHz fXT1,HF1 XT1 oscillator crystal frequency, HF mode 1 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 1 (2) 8 16 MHz fXT1,HF2 XT1 oscillator crystal frequency, HF mode 2 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2 (2) 16 24 MHz fXT1,HF3 XT1 oscillator crystal frequency, HF mode 3 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 3 (2) 24 32 MHz fXT1,HF,SW XT1 oscillator logic-level square-wave input frequency, HF mode, bypass mode XTS = 1, XT1BYPASS = 1 (3) 1.5 32 MHz OAHF tSTART,HF (1) (2) (3) (4) Oscillation allowance for HF crystals (4) Startup time, HF mode (2) XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,HF = 6 MHz, CL,eff = 15 pF 450 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,HF = 12 MHz, CL,eff = 15 pF 320 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2, fXT1,HF = 20 MHz, CL,eff = 15 pF 200 XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 3, fXT1,HF = 32 MHz, CL,eff = 15 pF 200 fOSC = 6 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 15 pF 0.5 fOSC = 20 MHz, XTS = 1, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C, CL,eff = 15 pF Ω 3.0 V ms 0.3 To improve EMI on the XT1 oscillator the following guidelines should be observed. (a) Keep the traces between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Crystal Oscillator, XT1, High-Frequency Mode(1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN CL,eff Integrated effective load capacitance, HF mode (5) Duty cycle HF mode XTS = 1, Measured at ACLK, fXT1,HF2 = 20 MHz 40 fFault,HF Oscillator fault frequency, HF mode (7) XTS = 1 (8) 30 (5) (6) (7) (8) (6) XTS = 1 TYP MAX UNIT 1 50 pF 60 % 300 kHz Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Crystal Oscillator, XT2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER IDVCC.XT2 XT2 oscillator crystal current consumption TEST CONDITIONS VCC MIN (2) TYP fOSC = 4 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C 200 fOSC = 12 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C 260 fOSC = 20 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C MAX 3.0 V UNIT µA 325 fOSC = 32 MHz, XT2OFF = 0, XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C 450 fXT2,HF0 XT2 oscillator crystal frequency, mode 0 XT2DRIVEx = 0, XT2BYPASS = 0 (3) 4 8 MHz fXT2,HF1 XT2 oscillator crystal frequency, mode 1 XT2DRIVEx = 1, XT2BYPASS = 0 (3) 8 16 MHz fXT2,HF2 XT2 oscillator crystal frequency, mode 2 XT2DRIVEx = 2, XT2BYPASS = 0 (3) 16 24 MHz fXT2,HF3 XT2 oscillator crystal frequency, mode 3 XT2DRIVEx = 3, XT2BYPASS = 0 (3) 24 32 MHz fXT2,HF,SW XT2 oscillator logic-level square-wave input frequency, bypass mode XT2BYPASS = 1 (4) 1.5 32 MHz (1) (2) (3) (4) 48 (3) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. To improve EMI on the XT2 oscillator the following guidelines should be observed. (a) Keep the traces between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. (d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation. When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Crystal Oscillator, XT2 (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) PARAMETER OAHF tSTART,HF CL,eff TEST CONDITIONS Oscillation allowance for HF crystals (5) Startup time Integrated effective load capacitance, HF mode (6) (5) (6) (7) (8) MIN 450 XT2DRIVEx = 1, XT2BYPASS = 0, fXT2,HF1 = 12 MHz, CL,eff = 15 pF 320 XT2DRIVEx = 2, XT2BYPASS = 0, fXT2,HF2 = 20 MHz, CL,eff = 15 pF 200 XT2DRIVEx = 3, XT2BYPASS = 0, fXT2,HF3 = 32 MHz, CL,eff = 15 pF 200 fOSC = 6 MHz XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C, CL,eff = 15 pF 0.5 UNIT 3.0 V ms 0.3 1 (1) (7) MAX Ω Measured at ACLK, fXT2,HF2 = 20 MHz Oscillator fault frequency TYP XT2DRIVEx = 0, XT2BYPASS = 0, fXT2,HF0 = 6 MHz, CL,eff = 15 pF fOSC = 20 MHz XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C, CL,eff = 15 pF Duty cycle fFault,HF VCC XT2BYPASS = 1 40 (8) pF 50 30 60 % 300 kHz Oscillation allowance is based on a safety factor of 5 for recommended crystals. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX 6 9.4 14 UNIT fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V 0.5 %/°C Measured at ACLK (2) 1.8 V to 3.6 V 4 %/V Measured at ACLK 1.8 V to 3.6 V dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) 40 50 60 TYP MAX kHz % Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V) Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN UNIT IREFO REFO oscillator current consumption TA = 25°C 1.8 V to 3.6 V 3 µA fREFO REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Hz Full temperature range 1.8 V to 3.6 V ±3.5 3V ±1.5 REFO absolute tolerance calibrated TA = 25°C % dfREFO/dT REFO frequency temperature drift Measured at ACLK (1) 1.8 V to 3.6 V 0.01 %/°C dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) 1.8 V to 3.6 V 1.0 %/V Measured at ACLK 1.8 V to 3.6 V 40%/60% duty cycle 1.8 V to 3.6 V Duty cycle tSTART (1) (2) REFO startup time 40 50 60 25 % µs Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 to 3.6 V) – MIN(1.8 to 3.6 V)) / MIN(1.8 to 3.6 V) / (3.6 V – 1.8 V) Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fDCO(0,0) DCO frequency (0, 0) DCORSELx = 0, DCOx = 0, MODx = 0 0.07 0.20 MHz fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK 40 50 60 % dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz, 0.1 %/°C dfDCO/dVCC DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V Typical DCO Frequency, VCC = 3.0 V, TA = 25°C 100 fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 10. Typical DCO frequency 50 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 PMM, Brown-Out Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.55 V 1.65 V 100 250 mV V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis V(VCORE_BOR_IT–) BORL on voltage, VCORE falling level DVCC = 1.8 V to 3.6 V 0.69 0.83 V V(VCORE_BOR_IT+) BORL off voltage, VCORE rising level DVCC = 1.8 V to 3.6 V 0.83 1.05 V V(VCORE_BOR_hys) BORL hysteresis 70 200 mV tRESET Pulse length required at RST/NMI pin to accept a reset 0.80 1.30 2 µs PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 VCORE2(LPM) Core voltage, low-current 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA mode, PMMCOREV = 2 PSRR(DC,AM) Power-supply rejection ratio, active mode PSRR(DC,LPM) Power-supply rejection ratio, low-current mode Copyright © 2009–2010, Texas Instruments Incorporated 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA MIN TYP MAX UNIT 1.60 1.81 1.89 V 1.68 1.89 1.98 V DVCC = 2.2 V/3.6 V, I(VCORE) = 0 mA, PMMCOREV = 2 60 DVCC = 2.2 V/3.6 V, I(VCORE) = 21 mA, PMMCOREV = 2 60 DVCC = 2.2 V/3.6 V, I(VCORE) = 0 mA, PMMCOREV = 2 50 DVCC = 2.4 V/3.6 V, I(VCORE) = 30 µA, PMMCOREV = 2 50 dB dB Submit Documentation Feedback 51 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT–) V(SVSH_IT+) tpd(SVSH) t(SVSH) SVSH on voltage level SVSH off voltage level SVSH propagation delay SVSH on/off delay time dVDVCC/dt TYP MAX 0 UNIT nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 200 nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 2.0 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69 SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.40 SVSHE = 1, SVSMHRRL = 5 2.70 SVSHE = 1, SVSMHRRL = 6 3.00 SVSHE = 1, SVSMHRRL = 7 3.00 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 V V µs SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 12.5 SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 100 µs DVCC rise time 0 1000 V/s MAX UNIT PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) SVMH current consumption SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 V(SVMH) SVMH on/off voltage level tpd(SVMH) t(SVMH) 52 SVMH propagation delay SVMH on/off delay time Submit Documentation Feedback TYP 0 nA 200 nA 2.0 µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35 SVMHE = 1, SVSMHRRL = 4 2.40 SVMHE = 1, SVSMHRRL = 5 2.70 SVMHE = 1, SVSMHRRL = 6 3.00 SVMHE = 1, SVSMHRRL = 7 3.00 SVMHE = 1, SVMHOVPE = 1 3.75 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 V µs SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 12.5 SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 100 µs Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) V(SVSL_IT–) V(SVSL_IT+) V(SVSL_HYS) tpd(SVSL) t(SVSL) SVSL current consumption SVSL on voltage level SVSL off voltage level SVSL hysteresis SVSL propagation delay SVSL on/off delay time TYP MAX 0 UNIT nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 µA SVSLE = 1, SVSLRVL = 0 1.20 1.27 1.32 SVSLE = 1, SVSLRVL = 1 1.39 1.47 1.52 SVSLE = 1, SVSLRVL = 2 1.60 1.67 1.72 SVSLE = 1, SVSLRVL = 3 1.70 1.77 1.82 SVSLE = 1, SVSMLRRL = 0 1.29 1.34 1.39 SVSLE = 1, SVSMLRRL = 1 1.49 1.54 1.59 SVSLE = 1, SVSMLRRL = 2 1.69 1.74 1.79 SVSLE = 1, SVSMLRRL = 3, 4, 5, 6, 7 1.79 1.84 1.89 SVSLE = 1, SVSMLRRL = 0 70 SVSLE = 1, SVSMLRRL = 1 70 SVSLE = 1, SVSMLRRL = 2 70 SVSLE = 1, SVSMLRRL = 3 70 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 V V mV µs SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 12.5 SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 100 µs PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMLE = 0, PMMCOREV = 2 I(SVML) V(SVML) SVML current consumption SVML on/off voltage level t(SVML) SVML propagation delay SVML on/off delay time Copyright © 2009–2010, Texas Instruments Incorporated MAX UNIT 0 nA SVMLE= 1, PMMCOREV = 2, SVMLFP = 0 200 nA SVMLE= 1, PMMCOREV = 2, SVMLFP = 1 2.0 µA SVMLE = 1, SVSMLRRL = 0 1.28 1.34 1.40 SVMLE = 1, SVSMLRRL = 1 1.49 1.54 1.60 SVMLE = 1, SVSMLRRL = 2 1.68 1.74 1.79 SVMLE = 1, SVSMLRRL = 3, 4, 5, 6, 7 1.76 1.84 1.90 SVMLE = 1, SVSMLOVPE = 1 tpd(SVML) TYP V 2.02 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 µs SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 12.5 SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 100 µs Submit Documentation Feedback 53 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Wake-up from Low Power Modes over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tWAKE-UPFAST tWAKE-UPSLOW (1) (2) Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) TEST CONDITIONS VCC PMMCOREV = SVSMLRRL = 2 SVSLFP = 1 2.2/3.0 V Wake-up time from PMMCOREV = SVSMLRRL = 2 LPM2, LPM3 or LPM4 to SVSLFP = 0 (2) active mode 2.2/3.0 V MIN TYP MAX UNIT 5 150 µs µs This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. Please refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208). This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. Please refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx Family User's Guide (SLAU208). Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10% tTA,cap Timer_A capture timing All capture inputs. Minimum pulse width required for capture. VCC 1.8 V/ 3.0 V 1.8 V/ 3.0 V MIN TYP MAX UNIT 25 MHz 20 ns Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B input clock frequency Internal: SMCLK, ACLK External: TBCLK Duty cycle = 50% ± 10% tTB,cap Timer_B capture timing All capture inputs. Minimum pulse width required for capture. 54 Submit Documentation Feedback VCC 1.8 V/ 3.0 V 1.8 V/ 3.0 V MIN 20 TYP MAX UNIT 25 MHz ns Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 USCI (UART Mode) - recommended operating conditions PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 1 MHz MAX UNIT USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER UART receive deglitch time (1) tt (1) TEST CONDITIONS VCC MIN 2.2 V 50 TYP 600 3V 50 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time. USCI (SPI Master Mode) - recommended operating conditions PARAMETER fUSCI USCI input clock frequency CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz MAX UNIT fSYSTEM MHz USCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note (1), Figure 11 and Figure 12) PARAMETER TEST CONDITIONS USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (2) (3) MIN SMCLK, ACLK Duty cycle = 50% ± 10% fUSCI (1) VCC 2.2 V 65 3V 50 2.2 V 0 3V 0 TYP ns ns 2.2 V 25 3V 20 2.2 V 3V ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 11 and Figure 12. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in Figure 11 and Figure 12. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 11. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tHD,MI tSU,MI SOMI tHD,MO tVALID,MO SIMO Figure 12. SPI Master Mode, CKPH = 1 56 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 USCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Note (1), Figure 13 and Figure 14) PARAMETER TEST CONDITIONS VCC MIN TYP MAX STE lead time, STE low to clock 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V 40 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V 40 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) 40 UNIT tSTE,LEAD ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 62 3V 50 2.2 V 0 3V 0 ns ns fUCxCLK = 1/2×tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 11 and Figure 12. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 11 and Figure 12. tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tSU,SI tLO/HI tHD,SI SIMO tSTE,ACC tHD,SO tVALID,SO tSTE,DIS SOMI Figure 13. SPI Slave Mode, CKPH = 0 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tHD,MO tVALID,SO tSTE,ACC tSTE,DIS SOMI Figure 14. SPI Slave Mode, CKPH = 1 USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 15) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2.2 V/3 V fSCL ≤ 100 kHz UNIT fSYSTEM MHz 400 kHz 4.0 tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V/3 V 0 ns tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for STOP tSP Pulse width of spikes suppressed by input filter fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz tSU,STA tHD,STA 2.2 V/3 V 0 MAX 2.2 V/3 V 2.2 V/3 V µs 0.6 4.7 µs 0.6 4.0 µs 0.6 2.2 V 50 600 3V 50 600 tHD,STA ns tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 15. I2C Mode Timing 58 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 12-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (2) All ADC12 pins: P6.0 to P6.7, P7.4 to P7.7, P5.0, and P5.1 terminals IADC12_A Operating supply current into AVCC terminal (3) fADC12CLK = 5.0 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 IREF+ Operating supply current into AVCC terminal (4) MAX UNIT 2.2 3.6 V 0 AVCC V 125 155 3V 150 220 ADC12ON = 0, REFON = 1, REF2_5V = 1 3V 150 190 ADC12ON = 0, REFON = 1, REF2_5V = 0 2.2 V/3 V 150 180 2.2 V 20 25 pF 200 1900 Ω µA µA Input capacitance Only one terminal Ax can be selected at one time RI Input MUX ON resistance 0 V ≤ VAx ≤ AVCC (3) (4) TYP 2.2 V CI (1) (2) MIN 10 The leakage current is specified by the digital I/O input leakage. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the reference voltage is supplied by an external source or if the internal reference voltage is used and REFOUT = 1, then decoupling capacitors are required. See 12-Bit ADC, External Reference and 12-Bit ADC, Built-In Reference. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. No external load. 12-Bit ADC, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) MAX UNIT VeREF+ Positive external reference voltage input PARAMETER VeREF+ > VREF–/VeREF– (2) 1.4 AVCC V VREF–/VeREF– Negative external reference voltage input VeREF+ > VREF–/VeREF– (3) 0 1.2 V (VeREF+ – VREF–/VeREF–) Differential external reference voltage input VeREF+ > VREF–/VeREF– (4) 1.4 AVCC V IVeREF+ Static input current 0 V ≤ VeREF+ ≤ VAVCC 2.2 V/3 V ±1 µA IVREF–/VeREF– Static input current 0 V ≤ VeREF– ≤ VAVCC 2.2 V/3 V ±1 µA CVREF+/(1) (2) (3) (4) (5) Capacitance at VREF+/- terminal TEST CONDITIONS VCC MIN TYP (5) 10 µF The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10µF and 100nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx Family User's Guide (SLAU208). Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com 12-Bit ADC, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Positive built-in reference voltage output VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active IVREF+ Load current out of VREF+ terminal IL(VREF)+ Load-current regulation, VREF+ terminal CVREF+ TREF+ tSETTLE (1) (2) (3) 60 Capacitance at VREF+ terminal Temperature coefficient of built-in reference (2) Settling time of reference voltage (3) TEST CONDITIONS VCC MIN TYP MAX REF2_5V = 1 for 2.5 V, IVREF+(max) ≤ IVREF+ ≤ IVREF+(min) 3V 2.35 2.45 2.53 REF2_5V = 0 for 1.5 V, IVREF+(max) ≤ IVREF+ ≤ IVREF+(min) 2.2 V/3 V 1.41 1.47 1.53 V REF2_5V = 0 2.2 REF2_5V = 1 2.8 IVREF+ = +10 µA/–1000 µA, Analog input voltage ~0.75 V, REF2_5V = 0 IVREF+ = +10 µA/–1000 µA, Analog input voltage ~1.25 V, REF2_5V = 1 UNIT V 2.2 V –1 3V –1 2.2 V ±2 3V ±2 3V ±2 REFON = REFOUT = 1 (1) 2.2 V/3 V REF2_5V = 0, IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA 2.2 V/3 V REF2_5V = 1, IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ –1 mA 3V 20 100 mA LSB pF 30 ppm/ °C 30 VREF+ = 1.5 V, VAVCC = 2.2 V, REFOUT = 0, REFON = 0 → 1 20 VREF+ = 2.5 V, VAVCC = 2.8 V, REFOUT = 0, REFON = 0 → 1 20 VREF+ = 1.5 V, VAVCC = 2.2 V, CVREF = CVREF(max) REFOUT = 1, REFON = 0 → 1 35 VREF+ = 2.5 V, VAVCC = 2.8 V, CVREF = CVREF(max) REFOUT = 1, REFON = 0 → 1 35 µs Two decoupling capacitors, 10µF and 100nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC12_A. See also the MSP430x5xx Family User's Guide (SLAU208). Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)) The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 12-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC tCONVERT Internal ADC12 oscillator (1) Conversion time VCC MIN TYP MAX UNIT For specified performance of ADC12 linearity parameters 2.2 V/3 V 0.45 4.8 5.4 MHz ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V/3 V 4.2 4.65 5.0 MHz REFON = 0, Internal oscillator, fADC12OSC = 4.2 MHz to 5.4 MHz 2.2 V/3 V 2.4 Turn on settling time of the ADC See tSample Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, t = [RS + RI] × CI (4) (1) (2) (3) (4) µs External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 tADC12ON 3.1 (2) (3) 100 2.2 V/3 V 1000 ns ns The ADC12OSC is sourced directly from MODOSC inside the UCS. 13 × ADC12DIV × 1/fADC12CLK The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ten Tau (t) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance 12-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC EI Integral linearity error 1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V ED Differential linearity error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF 2.2 V/3 V EO Offset error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), Internal impedance of source RS < 100 Ω, CVREF+ = 20 pF 2.2 V/3 V EG Gain error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF ET Total unadjusted error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF 1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC Copyright © 2009–2010, Texas Instruments Incorporated MIN TYP MAX ±2 2.2 V/3 V ±1.7 UNIT LSB ±1 LSB ±1 ±3.5 LSB 2.2 V/3 V ±1.1 ±2 LSB 2.2 V/3 V ±2 ±5 LSB Submit Documentation Feedback 61 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com 12-Bit ADC, Temperature Sensor and Built-In VMID over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ISENSOR Operating supply current into AVCC terminal (1) VSENSOR See (2) TCSENSOR VCC MIN TYP REFON = 0, INCH = 0Ah, ADC12ON = N A, TA = 25°C 2.2 V 150 3V 150 ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V 894 3V 894 2.2 V 3.66 3V 3.66 ADC12ON = 1, INCH = 0Ah tSENSOR(sample) Sample time required if channel 10 is selected (3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V 30 3V 30 VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 × VAVCC 2.2 V 1.1 3V 1.5 tVMID(sample) Sample time required if channel 11 is selected (4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB (1) (2) (3) (4) 2.2 V/3 V 1000 MAX UNIT µA mV mV/°C µs V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1) or (ADC12ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. Typical Temperature Sensor Voltage - mV 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 -40 -25 -10 5 20 35 50 65 80 Ambient Temperature - ˚C Figure 16. Typical Temperature Sensor Voltage 62 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS DVCC(PGM/ERASE) Program and erase supply voltage IPGM Average supply current from DVCC during program IERASE Average supply current from DVCC during erase IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase tCPT Cumulative program time MIN TYP 1.8 3.6 3 See MAX (1) 104 V 5 mA 2 mA 2 mA 16 Program/erase endurance UNIT 105 ms cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time See (2) 64 85 µs tBlock, 0 Block program time for first byte or word See (2) 49 65 µs 1–(N–1) Block program time for each additional byte or word, except for last byte or word See (2) 37 49 µs Block program time for last byte or word See (2) 55 73 µs tErase Erase time for segment, mass erase, and bank erase when available. See (2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1) 0 1 MHz tBlock, tBlock, (1) (2) N 100 years The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the flash controller's state machine. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 µs tSBW, Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V/3 V 1 µs En tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency - 4-wire JTAG (2) Rinternal Internal pulldown resistance on TEST (1) (2) 2.2 V 15 100 0 5 MHz 10 MHz 80 kΩ 3V 0 2.2 V/3 V 45 60 µs Tools accessing the Spy-Bi-Wire interface need to wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com INPUT/OUTPUT SCHEMATICS Port P1, P1.0 to P1.7, Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 DVCC 1 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x EN Module X IN 0 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 P1.5/TA0.4 P1.6/SMCLK P1.7 D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x 64 Submit Documentation Feedback Set Interrupt Edge Select Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 42. Port P1 (P1.0 to P1.7) Pin Functions PIN NAME (P1.x) P1.0/TA0CLK/ACLK P1.1/TA0.0 P1.2/TA0.1 P1.3/TA0.2 P1.4/TA0.3 x 0 1 2 3 4 FUNCTION P1.0 (I/O) 0 0 1 ACLK 1 1 I: 0; O: 1 0 TA0.CCI0A 0 1 TA0.0 1 1 I: 0; O: 1 0 TA0.CCI1A 0 1 TA0.1 1 1 I: 0; O: 1 0 TA0.CCI2A 0 1 TA0.2 1 1 I: 0; O: 1 0 0 1 P1.1 (I/O) P1.2 (I/O) P1.3 (I/O) P1.4 (I/O) P1.5 (I/O) TA0.CCI4A TA0.4 P1.6/SMCLK 6 P1.6 (I/O) SMCLK P1.7 7 P1SEL.x I: 0; O: 1 TA0.3 5 P1DIR.x TA0.TA0CLK TA0.CCI3A P1.5/TA0.4 CONTROL BITS/SIGNALS P1.7 (I/O) Copyright © 2009–2010, Texas Instruments Incorporated 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 Submit Documentation Feedback 65 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P2, P2.0 to P2.7, Input/Output With Schmitt Trigger Pad Logic P2REN.x P2DIR.x 0 0 Module X OUT 1 DVCC 1 P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x EN Module X IN 0 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS P2.0/TA1CLK/MCLK P2.1/TA1.0 P2.2/TA1.1 P2.3/TA1.2 P2.4/RTCCLK P2.5 P2.6/ACLK P2.7/ADC12CLK/DMAE0 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x 66 Submit Documentation Feedback Set Interrupt Edge Select Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 43. Port P2 (P2.0 to P2.7) Pin Functions PIN NAME (P2.x) P2.0/TA1CLK/MCLK P2.1/TA1.0 P2.2/TA1.1 P2.3/TA1.2 P2.4/RTCCLK x 0 1 2 3 4 FUNCTION CONTROL BITS/SIGNALS P2DIR.x P2SEL.x P2.0 (I/O) I: 0; O: 1 0 TA1CLK 0 1 MCLK 1 1 I: 0; O: 1 0 TA1.CCI0A 0 1 TA1.0 1 1 I: 0; O: 1 0 TA1.CCI1A 0 1 TA1.1 1 1 I: 0; O: 1 0 TA1.CCI2A 0 1 TA1.2 1 1 P2.4 (I/O) I: 0; O: 1 0 RTCCLK 1 1 P2.1 (I/O) P2.2 (I/O) P2.3 (I/O) P2.5 5 P2.5 (I/O I: 0; O: 1 0 P2.6/ACLK 6 P2.6 (I/O) I: 0; O: 1 0 1 1 ACLK P2.7/ADC12CLK/DMAE0 7 P2.7 (I/O) I: 0; O: 1 0 DMAE0 0 1 ADC12CLK 1 1 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P3, P3.0 to P3.7, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x 0 0 Module X OUT 1 0 DVCC 1 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN Module X IN 1 Direction 0: Input 1: Output 1 P3OUT.x DVSS P3.0/UB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/USC0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCB1STE/UCA1CLK P3.7/UCB1SIMO/UCB1SDA D Table 44. Port P3 (P3.0 to P3.7) Pin Functions PIN NAME (P3.x) P3.0/UCB0STE/UCA0CLK x 0 FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (2) P3.1/UCB0SIMO/UCB0SDA 1 (3) P3.1 (I/O) UCB0SIMO/UCB0SDA (2) P3.2/UCB0SOMI/UCB0SCL 2 P3.2 (I/O) UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE 3 (4) (2) (4) P3.3 (I/O) UCB0CLK/UCA0STE (2) P3.4/UCA0TXD/UCA0SIMO 4 P3.4 (I/O) UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI 5 (2) P3.5 (I/O) UCA0RXD/UCA0SOMI (2) P3.6/UCB1STE/UCA1CLK 6 P3.6 (I/O) UCB1STE/UCA1CLK (2) P3.7/UCB1SIMO/UCB1SDA 7 P3.7 (I/O) UCB1SIMO/UCB1SDA (1) (2) (3) (4) (5) 68 (5) (2) (4) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output, USCI A1/B1 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P4, P4.0 to P4.7, Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 DVCC 1 1 P4DS.x 0: Low drive 1: High drive P4SEL.x P4IN.x EN Module X IN 0 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0.0 P4.1/TB0.1 P4.2/TB0.2 P4.3/TB0.3 P4.4/TB0.4 P4.5/TB0.5 P4.6/TB0.6 P4.7/TB0CLK/SMCLK D Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 45. Port P4 (P4.0 to P4.7) Pin Functions PIN NAME (P4.x) P4.0/TB0.0 P4.1/TB0.1 P4.2/TB0.2 P4.3/TB0.3 P4.4/TB0.5 x 0 1 2 3 4 FUNCTION 4.0 (I/O) 0 0 1 TB0.0 (1) 1 1 4.1 (I/O) I: 0; O: 1 0 TB0.CCI1A and TB0.CCI1B 0 1 TB0.1 (1) 1 1 4.2 (I/O) I: 0; O: 1 0 TB0.CCI2A and TB0.CCI2B 0 1 TB0.2 (1) 1 1 4.3 (I/O) I: 0; O: 1 0 TB0.CCI3A and TB0.CCI3B 0 1 TB0.3 (1) 1 1 4.4 (I/O) I: 0; O: 1 0 0 1 (1) 4.5 (I/O) TB0.CCI5A and TB0.CCI5B TB0.5 P4.6/TB0.6 6 (1) 4.6 (I/O) TB0.CCI6A and TB0.CCI6B TB0.6 P4.7/TB0CLK/SMCLK (1) 70 7 P4SEL.x I: 0; O: 1 TB0.4 5 P4DIR.x TB0.CCI0A and TB0.CCI0B TB0.CCI4A and TB0.CCI4B P4.5/TB0.5 CONTROL BITS/SIGNALS (1) 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 0 1 1 1 4.7 (I/O) I: 0; O: 1 0 TB0CLK 0 1 SMCLK 1 1 Setting TBOUTH causes all Timer_B configured outputs to be set to high impedance. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P5, P5.0 and P5.1, Input/Output With Schmitt Trigger Pad Logic To ADC12 INCHx = y To/From ADC12 Reference P5REN.x P5DIR.x DVSS 0 DVCC 1 1 0 1 P5OUT.x 0 Module X OUT 1 P5DS.x 0: Low drive 1: High drive P5SEL.x P5.0/A8/VREF+/VeREF+ P5.1/A9/VREF–/VeREF– P5IN.x EN Module X IN Bus Keeper D Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 46. Port P5 (P5.0 and P5.1) Pin Functions PIN NAME (P5.x) P5.0/A8/VREF+/VeREF+ P5.1/A9/VREF–/VeREF– x 0 1 FUNCTION P5.0 (I/O) (4) (5) (6) (7) (8) 72 P5DIR.x P5SEL.x REFOUT I: 0; O: 1 0 X VeREF+ (3) X 1 0 VREF+ (4) X 1 1 A8 (5) X 1 0 P5.1 (I/O) (2) I: 0; O: 1 0 X VeREF– (6) X 1 0 VREF– (7) X 1 1 X 1 0 A9 (1) (2) (3) (2) CONTROL BITS/SIGNALS (1) (8) X = Don't care Default condition Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A. Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF+ reference is available at the pin. When not using an external reference applied to VeREF+ or not outputting the internal reference to VREF+, A8 may be used as an external ADC channel. Setting the P5SEL.0 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A. Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A, VREF– reference is available at the pin. When not using an external reference applied to VeREF+ or not outputting the internal reference to VREF+, A8 may be used as an external ADC channel. Setting the P5SEL.1 bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P5, P5.2, Input/Output With Schmitt Trigger Pad Logic To XT2 P5REN.2 P5DIR.2 DVSS 0 DVCC 1 1 0 1 P5OUT.2 0 Module X OUT 1 P5DS.2 0: Low drive 1: High drive P5SEL.2 P5.2/XT2IN P5IN.2 EN Module X IN Bus Keeper D Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 73 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P5, P5.3, Input/Output With Schmitt Trigger Pad Logic To XT2 P5REN.3 P5DIR.3 DVSS 0 DVCC 1 1 0 1 P5OUT.3 0 Module X OUT 1 P5.3/XT2OUT P5DS.3 0: Low drive 1: High drive P5SEL.3 P5IN.3 Bus Keeper EN Module X IN D Table 47. Port P5 (P5.2) Pin Functions PIN NAME (P5.x) P5.2/XT2IN P5.3/XT2OUT (1) (2) (3) 74 x 2 3 FUNCTION P5.2 (I/O) CONTROL BITS/SIGNALS (1) P5DIR.x P5SEL.2 P5SEL.3 XT2BYPASS I: 0; O: 1 0 X X XT2IN crystal mode (2) X 1 X 0 XT2IN bypass mode (2) X 1 X 1 I: 0; O: 1 0 X X XT2OUT crystal mode (3) X 1 X 0 P5.3 (I/O) (3) X 1 X 1 P5.3 (I/O) X = Don't care Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal mode or bypass mode. Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as general-purpose I/O. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P5, P5.4 to P5.7, Input/Output With Schmitt Trigger Pad Logic P5REN.x P5DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5OUT.x DVSS P5.4/UCB1SOMI/UCB1SCL P5.5/UCB1CLK/UCA1STE P5.6/UCA1TXD/UCA1SIMO P5.7/UCA1RXD/UCA1SOMI P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x EN Module X IN D Table 48. Port P5 (P5.4 to P5.7) Pin Functions PIN NAME (P5.x) x P5.4/UCB1SOMI/UCB1SCL 4 FUNCTION P5.4 (I/O) UCB1SOMI/UCB1SCL (2) P5.5/UCB1CLK/UCA1STE 5 (3) P5.5 (I/O) UCB1CLK/UCA1STE (2) P5.6/UCA1TXD/UCA1SIMO 6 P5.6 (I/O) UCA1TXD/UCA1SIMO P5.7/UCA1RXD/UCA1SOMI 7 (2) P5.7 (I/O) UCA1RXD/UCA1SOMI (2) (1) (2) (3) CONTROL BITS/SIGNALS (1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care The pin direction is controlled by the USCI module. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P6, P6.0 to P6.7, Input/Output With Schmitt Trigger Pad Logic To ADC12 INCHx = y P6REN.x P6DIR.x DVSS 0 DVCC 1 1 0 1 P6OUT.x 0 Module X OUT 1 P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x EN Module X IN 76 Bus Keeper P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 D Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 49. Port P6 (P6.0 to P6.7) Pin Functions PIN NAME (P6.x) P6.0/A0 x 0 FUNCTION P6.0 (I/O) A0 (2) P6.1/A1 1 P6.1 (I/O) A1 (2) P6.2/A2 2 3 4 5 6 7 (3) (3) P6.7 (I/O) A7 (2) (1) (2) (2) (3) P6.6 (I/O) A6 (2) P6.7/A7 (3) P6.5 (I/O) A5 (1) P6.6/A6 (3) P6.4 (I/O) A4 (2) P6.5/A5 (3) P6.3 (I/O) A3 (2) P6.4/A4 (3) P6.2 (I/O) A2 (2) P6.3/A3 (3) (3) CONTROL BITS/SIGNALS (1) P6DIR.x P6SEL.x INCHx I: 0; O: 1 0 X X X 0 I: 0; O: 1 0 X X X 1 I: 0; O: 1 0 X X X 2 I: 0; O: 1 0 X X X 3 I: 0; O: 1 0 X X X 4 I: 0; O: 1 0 X X X 5 I: 0; O: 1 0 X X X 6 I: 0; O: 1 0 X X X 7 X = Don't care Setting the P6SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P7, P7.0, Input/Output With Schmitt Trigger Pad Logic To XT1 P7REN.0 P7DIR.0 DVSS 0 DVCC 1 1 0 1 P7OUT.0 0 Module X OUT 1 P7DS.0 0: Low drive 1: High drive P7SEL.0 P7.0/XIN P7IN.0 EN Module X IN 78 Bus Keeper D Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P7, P7.1, Input/Output With Schmitt Trigger Pad Logic To XT1 P7REN.1 P7DIR.1 DVSS 0 DVCC 1 1 0 1 P7OUT.1 0 Module X OUT 1 P7.1/XOUT P7DS.1 0: Low drive 1: High drive P7SEL.0 XT1BYPASS P7IN.1 Bus Keeper EN Module X IN D Table 50. Port P7 (P7.0 and P7.1) Pin Functions PIN NAME (P7.x) P7.0/XIN x 0 FUNCTION P7.0 (I/O) XIN crystal mode (2) XIN bypass mode P7.1/XOUT 1 (3) P7DIR.x P7SEL.0 P7SEL.1 XT1BYPASS I: 0; O: 1 0 X X X 1 X 0 X 1 X 1 I: 0; O: 1 0 X X XOUT crystal mode (3) X 1 X 0 (3) X 1 X 1 P7.1 (I/O) P7.1 (I/O) (1) (2) (2) CONTROL BITS/SIGNALS (1) X = Don't care Setting P7SEL.0 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P7.0 is configured for crystal mode or bypass mode. Setting P7SEL.0 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.1 can be used as general-purpose I/O. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 79 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P7, P7.2 and P7.3, Input/Output With Schmitt Trigger Pad Logic P7REN.x P7DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P7OUT.x DVSS P7.2/TB0OUTH/SVMOUT P7.3/TA1.2 P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x EN Module X IN D Table 51. Port P7 (P7.2 and P7.3) Pin Functions PIN NAME (P7.x) P7.2/TB0OUTH/SVMOUT P7.3/TA1.2 80 x 2 3 FUNCTION CONTROL BITS/SIGNALS P7DIR.x P7SEL.x P7.2 (I/O) I: 0; O: 1 0 TB0OUTH 0 1 SVMOUT 1 1 P7.3 (I/O) I: 0; O: 1 0 TA1.CCI2B 0 1 TA1.2 1 1 Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P7, P7.4 to P7.7, Input/Output With Schmitt Trigger Pad Logic To ADC12 INCHx = y P7REN.x P7DIR.x DVSS 0 DVCC 1 1 0 1 P7OUT.x 0 Module X OUT 1 P7.4/A12 P7.5/A13 P7.6/A14 P7.7/A15 P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x Bus Keeper EN D Module X IN Table 52. Port P7 (P7.4 to P7.7) Pin Functions PIN NAME (P7.x) P7.4/A12 x 4 FUNCTION P7.4 (I/O) A12 (2) P7.5/A13 5 P7.5 (I/O) A13 (4) P7.6/A14 6 7 (3) (4) (5) (5) P7.7 (I/O) A15 (1) (2) (5) P7.6 (I/O) A14 (4) P7.7/A15 (3) (4) (5) CONTROL BITS/SIGNALS (1) P7DIR.x P7SEL.x INCHx I: 0; O: 1 0 X X X 12 I: 0; O: 1 0 X X X 13 I: 0; O: 1 0 X X X 14 I: 0; O: 1 0 X X X 15 X = Don't care Setting the P7SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits. Setting the P7SEL.x bit disables the output driver as well as the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC12_A channel Ax is connected internally to AVSS if not selected via the respective INCHx bits. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 81 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P8, P8.0 to P8.7, Input/Output With Schmitt Trigger Pad Logic P8REN.x P8DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.x DVSS P8.0/TA0.0 P8.1/TA0.1 P8.2/TA0.2 P8.3/TA0.3 P8.4/TA0.4 P8.5/TA1.0 P8.6/TA1.1 P8.7 P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN D Module X IN Table 53. Port P8 (P8.0 to P8.7) Pin Functions PIN NAME (P8.x) P8.0/TA0.0 P8.1/TA0.1 P8.2/TA0.2 P8.3/TA0.3 P8.4/TA0.4 P8.5/TA1.0 P8.6/TA1.1 x 0 1 2 3 4 5 6 FUNCTION P8.0 (I/O) 82 P8SEL.x I: 0; O: 1 0 0 1 TA0.0 1 1 P8.1 (I/O) I: 0; O: 1 0 TA0.CCI1B 0 1 TA0.1 1 1 P8.2 (I/O) I: 0; O: 1 0 TA0.CCI2B 0 1 TA0.2 1 1 I: 0; O: 1 0 TA0.CCI3B 0 1 TA0.3 1 1 I: 0; O: 1 0 TA0.CCI4B 0 1 TA0.4 1 1 I: 0; O: 1 0 TA1.CCI0B 0 1 TA1.0 1 1 I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 P8.3 (I/O) P8.4 (I/O) P8.5 (I/O) P8.6 (I/O) TA1.1 7 P8DIR.x TA0.CCI0B TA1.CCI1B P8.7 CONTROL BITS/SIGNALS P8.7 (I/O) Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P9, P9.0 to P9.7, Input/Output With Schmitt Trigger Pad Logic P9REN.x P9DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P9OUT.x DVSS P9.0/UCB2STE/UCA2CLK P9.1/UCB2SIMO/UCB2SDA P9.2/UCB2SOMI/UCB2SCL P9.3/UCB2CLK/UCA2STE P9.4/UCA2TXD/UCA2SIMO P9.5/UCA2RXD/UCA2SOMI P9.6 P9.7 P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x EN Module X IN D Table 54. Port P9 (P9.0 to P9.7) Pin Functions PIN NAME (P9.x) P9.0/UCB2STE/UCA2CLK x 0 FUNCTION P9.0 (I/O) UCB2STE/UCA2CLK (2) P9.1/UCB2SIMO/UCB2SDA 1 (3) P9.1 (I/O) UCB2SIMO/UCB2SDA (2) P9.2/UCB2SOMI/UCB2SCL 2 P9.2 (I/O) UCB2SOMI/UCB2SCL P9.3/UCB2CLK/UCA2STE 3 (2) (4) P9.3 (I/O) UCB2CLK/UCA2STE (2) P9.4/UCA2TXD/UCA2SIMO 4 P9.4 (I/O) UCA2TXD/UCA2SIMO P9.5/UCA2RXD/UCA2SOMI 5 (4) (2) P9.5 (I/O) UCA2RXD/UCA2SOMI (2) CONTROL BITS/SIGNALS (1) P9DIR.x P9SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 P9.6 6 P9.6 (I/O) I: 0; O: 1 0 P9.7 7 P9.7 (I/O) I: 0; O: 1 0 (1) (2) (3) (4) X = Don't care The pin direction is controlled by the USCI module. UCA2CLK function takes precedence over UCB2STE function. If the pin is required as UCA2CLK input or output, USCI A2/B2 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port P10, P10.0 to P10.7, Input/Output With Schmitt Trigger Pad Logic P10REN.x P10DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P10OUT.x DVSS P10DS.x 0: Low drive 1: High drive P10SEL.x P10IN.x EN Module X IN P10.0/UCB3STE/UCA3CLK P10.1/UCB3SIMO/UCB3SDA P10.2/UCB3SOMI/UCB3SCL P10.3/UCB3CLK/UCA3STE P10.4/UCA3TXD/UCA3SIMO P10.5/UCA3RXD/UCA3SOMI P10.6 P10.7 D Table 55. Port P10 (P10.0 to P10.7) Pin Functions PIN NAME (P10.x) P10.0/UCB3STE/UCA3CLK x 0 FUNCTION P10.0 (I/O) UCB3STE/UCA3CLK P10.1/UCB3SIMO/UCB3SDA 1 (2) (3) P10.1 (I/O) UCB3SIMO/UCB3SDA (2) P10.2/UCB3SOMI/UCB3SCL 2 P10.2 (I/O) UCB3SOMI/UCB3SCL (2) P10.3/UCB3CLK/UCA3STE 3 P10.3 (I/O) UCB3CLK/UCA3STE P10.4/UCA3TXD/UCA3SIMO 4 (2) P10.4 (I/O) UCA3TXD/UCA3SIMO (2) P10.5/UCA3RXD/UCA3SOMI 5 P10.5 (I/O) UCA3RXD/UCA3SOMI P10.6 P10.7 (1) (2) (3) (4) (5) 84 6 7 (4) (2) (4) CONTROL BITS/SIGNALS (1) P10DIR.x P10SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 P10.6 (I/O) I: 0; O: 1 0 Reserved (5) X 1 P10.7 (I/O) I: 0; O: 1 0 Reserved (5) x 1 X = Don't care The pin direction is controlled by the USCI module. UCA3CLK function takes precedence over UCB3STE function. If the pin is required as UCA3CLK input or output, USCI A3/B3 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. The secondary function on these pins are reserved for factory test purposes. Application should keep the P10SEL.x of these ports cleared to prevent potential conflicts with the application. Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Port P11, P11.0 to P11.2, Input/Output With Schmitt Trigger Pad Logic P11REN.x P11DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P11OUT.x DVSS P11.0/ACLK P11.1/MCLK P11.2/SMCLK P11DS.x 0: Low drive 1: High drive P11SEL.x P11IN.x EN D Module X IN Table 56. Port P11 (P11.0 to P11.2) Pin Functions PIN NAME (P11.x) P11.0/ACLK x 0 FUNCTION P11.0 (I/O) ACLK P11.1/MCLK 1 P11.2/SMCLK 2 P11.1 (I/O) MCLK P11.2 (I/O) SMCLK Copyright © 2009–2010, Texas Instruments Incorporated CONTROL BITS/SIGNALS P11DIR.x P11SEL.x I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 Submit Documentation Feedback 85 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Port J, J.0 JTAG pin TDO, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.0 PJDIR.0 0 DVCC 1 PJOUT.0 0 From JTAG 1 DVSS 0 DVCC 1 1 PJ.0/TDO PJDS.0 0: Low drive 1: High drive From JTAG PJIN.0 EN D Port J, J.1 to J.3 JTAG pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x 0 DVSS 1 PJOUT.x 0 From JTAG 1 DVSS 0 DVCC 1 PJDS.x 0: Low drive 1: High drive From JTAG 1 PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK PJIN.x EN To JTAG 86 D Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 57. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) x CONTROL BITS/ SIGNALS (1) FUNCTION PJDIR.x PJ.0/TDO 0 (2) I: 0; O: 1 PJ.1 (I/O) (2) I: 0; O: 1 PJ.0 (I/O) TDO (3) PJ.1/TDI/TCLK 1 X TDI/TCLK (3) PJ.2/TMS 2 PJ.2 (I/O) TMS (3) PJ.3/TCK 3 (1) (2) (3) (4) X I: 0; O: 1 (4) PJ.3 (I/O) TCK (3) (4) (2) X (2) I: 0; O: 1 (4) X X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care. Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com TLV (Device Descriptor) Structures Table 58 lists the complete contents of the device descriptor tag-length-value (TLV) structure. Table 58. Device Descriptor Table (1) Info Block Die Record ADC12 Calibration Peripheral Descriptor (1) 88 Description Address Size bytes 'F5438 'F5437 'F5436 'F5435 'F5419 'F5418 Value Value Value Value Value Value 06h Info length 01A00h 1 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 per unit per unit per unit per unit per unit per unit Device ID 01A04h 1 54h 54h 54h 54h 54h 54h Device ID 01A05h 1 38h 37h 36h 35h 19h 18h Hardware revision 01A06h 1 per unit per unit per unit per unit per unit per unit Firmware revision 01A07h 1 per unit per unit per unit per unit per unit per unit Die Record Tag 01A08h 1 08h 08h 08h 08h 08h 08h Die Record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/Wafer ID 01A0Ah 4 per unit per unit per unit per unit per unit per unit Die X position 01A0Eh 2 per unit per unit per unit per unit per unit per unit Die Y position 01A10h 2 per unit per unit per unit per unit per unit per unit Test results 01A12h 2 per unit per unit per unit per unit per unit per unit ADC12 Calibration Tag 01A14h 1 10h 10h 10h 10h 10h 10h ADC12 Calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC Gain Factor 01A16h 2 per unit per unit per unit per unit per unit per unit ADC Offset 01A18h 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Factor 01A1Ah 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 30°C 01A1Ch 2 per unit per unit per unit per unit per unit per unit ADC 1.5-V Reference Temp. Sensor 85°C 01A1Eh 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Factor 01A20h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 30°C 01A22h 2 per unit per unit per unit per unit per unit per unit ADC 2.5-V Reference Temp. Sensor 85°C 01A24h 2 per unit per unit per unit per unit per unit per unit Peripheral Descriptor Tag 01A26h 1 02h 02h 02h 02h 02h 02h Peripheral Descriptor Length 01A27h 1 5Dh 55h 5Eh 56h 5Dh 55h Memory 1 2 08h 8Ah 08h 8Ah 08h 8Ah 08h 8Ah 08h 8Ah 08h 8Ah Memory 2 2 0Ch 86h 0Ch 86h 0Ch 86h 0Ch 86h 0Ch 86h 0Ch 86h Memory 3 2 0Eh 30h 0Eh 30h 0Eh 30h 0Eh 30h 0Eh 30h 0Eh 30h NA = Not applicable Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 Table 58. Device Descriptor Table(1) (continued) Description Address Size bytes 'F5438 'F5437 'F5436 'F5435 'F5419 'F5418 Value Value Value Value Value Value Memory 4 2 2Eh 98h 2Eh 98h 2Eh 97h 2Eh 97h 2Eh 96h 2Eh 96h Memory 5 0/1 NA NA 94h 94h NA NA delimiter 1 00h 00h 00h 00h 00h 00h Peripheral count 1 1Fh 1Bh 1Fh 1Fh 1Fh 1Bh MSP430CPUXV2 2 00h 23h 00h 23h 00h 23h 00h 23h 00h 23h 00h 23h SBW 2 00h 0Fh 00h 0Fh 00h 0Fh 00h 0Fh 00h 0Fh 00h 0Fh EEM-8 2 00h 05h 00h 05h 00h 05h 00h 05h 00h 05h 00h 05h TI BSL 2 00h FCh 00h FCh 00h FCh 00h FCh 00h FCh 00h FCh Package 2 00h 1Fh 00h 1Fh 00h 1Fh 00h 1Fh 00h 1Fh 00h 1Fh SFR 2 10h 41h 10h 41h 10h 41h 10h 41h 10h 41h 10h 41h PMM 2 02h 30h 02h 30h 02h 30h 02h 30h 02h 30h 02h 30h FCTL 2 02h 38h 02h 38h 02h 38h 02h 38h 02h 38h 02h 38h CRC16 2 01h 3Dh 01h 3Dh 01h 3Dh 01h 3Dh 01h 3Dh 01h 3Dh RAMCTL 2 00h 44h 00h 44h 00h 44h 00h 44h 00h 44h 00h 44h WDT_A 2 00h 40h 00h 40h 00h 40h 00h 40h 00h 40h 00h 40h UCS 2 01h 48h 01h 48h 01h 48h 01h 48h 01h 48h 01h 48h SYS 2 02h 42h 02h 42h 02h 42h 02h 42h 02h 42h 02h 42h Port 1/2 2 08h 51h 08h 51h 08h 51h 08h 51h 08h 51h 08h 51h Port 3/4 2 02h 52h 02h 52h 02h 52h 02h 52h 02h 52h 02h 52h Port 5/6 2 02h 53h 02h 53h 02h 53h 02h 53h 02h 53h 02h 53h Port 7/8 2 02h 54h 02h 54h 02h 54h 02h 54h 02h 54h 02h 54h Port 9/10 2 02h 55h NA 02h 55h NA 02h 55h NA Port 11/12 2 02h 56h NA 02h 56h NA 02h 56h NA JTAG 2 08h 5Fh 0Ch 5F 08h 5Fh 0Ch 5F 08h 5Fh 0Ch 5F TA0 2 02h 62h 02h 62h 02h 62h 02h 62h 02h 62h 02h 62h TA1 2 04h 61h 04h 61h 04h 61h 04h 61h 04h 61h 04h 61h TB0 2 04h 67h 04h 67h 04h 67h 04h 67h 04h 67h 04h 67h RTC 2 0Eh 68h 0Eh 68h 0Eh 68h 0Eh 68h 0Eh 68h 0Eh 68h Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430F543x, MSP430F541x SLAS612C – AUGUST 2009 – REVISED MARCH 2010 www.ti.com Table 58. Device Descriptor Table(1) (continued) Description Interrupts 90 Address Size bytes 'F5438 'F5437 'F5436 'F5435 'F5419 'F5418 Value Value Value Value Value Value MPY32 2 02h 85h 02h 85h 02h 85h 02h 85h 02h 85h 02h 85h DMA-3 2 04h 47h 04h 47h 04h 47h 04h 47h 04h 47h 04h 47h USCI_A/B 2 0Ch 90h 0Ch 90h 0Ch 90h 0Ch 90h 0Ch 90h 0Ch 90h USCI_A/B 2 04h 90h 04h 90h 04h 90h 04h 90h 04h 90h 04h 90h USCI_A/B 2 04h 90h NA 04h 90h NA 04h 90h NA USCI_A/B 2 04h 90h NA 04h 90h NA 04h 90h NA ADC12_A 2 08h D0h 10h D0h 08h D0h 10h D0h 08h D0h 10h D0h TB0.CCIFG0 1 64h 64h 64h 64h 64h 64h TB0.CCIFG1..6 1 65h 65h 65h 65h 65h 65h WDTIFG 1 40h 40h 40h 40h 40h 40h USCI_A0 1 90h 90h 90h 90h 90h 90h USCI_B0 1 91h 91h 91h 91h 91h 91h ADC12_A 1 D0h D0h D0h D0h D0h D0h TA0.CCIFG0 1 60h 60h 60h 60h 60h 60h TA0.CCIFG1..4 1 61h 61h 61h 61h 61h 61h USCI_A2 1 94h 01h 94h 01h 94h 01h USCI_B2 1 95h 01h 95h 01h 95h 01h DMA 1 46h 46h 46h 46h 46h 46h TA1.CCIFG0 1 62h 62h 62h 62h 62h 62h TA1.CCIFG1..2 1 63h 63h 63h 63h 63h 63h P1 1 50h 50h 50h 50h 50h 50h USCI_A1 1 92h 92h 92h 92h 92h 92h USCI_B1 1 93h 93h 93h 93h 93h 93h USCI_A3 1 96h 01h 96h 01h 96h 01h USCI_B3 1 97h 01h 97h 01h 97h 01h P2 1 51h 51h 51h 51h 51h 51h RTC_A 1 68h 68h 68h 68h 68h 68h delimiter 1 00h 00h 00h 00h 00h 00h Submit Documentation Feedback Copyright © 2009–2010, Texas Instruments Incorporated MSP430F543x, MSP430F541x www.ti.com SLAS612C – AUGUST 2009 – REVISED MARCH 2010 DATA SHEET REVISION HISTORY REVISION DESCRIPTION SLAS612 Initial release SLAS612A Removed previews of MSP430F5437IZQW, MSP430F5435IZQW, MSP430F5418IZQW SLAS612B All A-suffix devices moved to separate data sheet (SLAS655) SLAS612C Corrected base address for USCI_B3 Copyright © 2009–2010, Texas Instruments Incorporated Submit Documentation Feedback 91 PACKAGE OPTION ADDENDUM www.ti.com 23-Jul-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) MSP430F5418AIPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office MSP430F5418AIPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5418IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5418IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5419AIPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5419AIPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5419AIZQW PREVIEW BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Samples Not Available MSP430F5419AIZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Request Free Samples MSP430F5419AIZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Purchase Samples MSP430F5419IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office MSP430F5419IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5435AIPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5435AIPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5435IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5435IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Jul-2010 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) MSP430F5436AIPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5436AIPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5436AIZQW PREVIEW BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Samples Not Available MSP430F5436AIZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Request Free Samples MSP430F5436AIZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Purchase Samples MSP430F5436IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office MSP430F5436IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5437AIPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Purchase Samples MSP430F5437AIPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5437IPN ACTIVE LQFP PN 80 119 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office MSP430F5437IPNR ACTIVE LQFP PN 80 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5438ACY PREVIEW DIESALE Y 0 320 Green (RoHS & no Sb/Br) Call TI N / A for Pkg Type Samples Not Available YS 0 1 TBD Call TI Call TI Samples Not Available MSP430F5438ACYS PREVIEW WAFERSALE MSP430F5438AIPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office MSP430F5438AIPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples MSP430F5438AIZQW PREVIEW BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) Addendum-Page 2 SNAGCU Level-3-260C-168 HR Samples Not Available PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Jul-2010 Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) MSP430F5438AIZQWR ACTIVE BGA MICROSTAR JUNIOR ZQW 113 2500 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Request Free Samples MSP430F5438AIZQWT ACTIVE BGA MICROSTAR JUNIOR ZQW 113 250 Green (RoHS & no Sb/Br) SNAGCU Level-3-260C-168 HR Purchase Samples MSP430F5438IPN OBSOLETE LQFP PN 80 TBD Call TI MSP430F5438IPZ ACTIVE LQFP PZ 100 90 MSP430F5438IPZR ACTIVE LQFP PZ 100 XMS430F5438AIPZ PREVIEW LQFP PZ XMS430F5438AIPZR PREVIEW LQFP PZ Call TI Samples Not Available Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Contact TI Distributor or Sales Office 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR Request Free Samples 100 90 TBD Call TI Call TI Samples Not Available 100 1000 TBD Call TI Call TI Samples Not Available (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 23-Jul-2010 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 4 MECHANICAL DATA MTQF010A – JANUARY 1995 – REVISED DECEMBER 1996 PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135 / B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DLP® Products www.dlp.com Communications and Telecom www.ti.com/communications DSP dsp.ti.com Computers and Peripherals www.ti.com/computers Clocks and Timers www.ti.com/clocks Consumer Electronics www.ti.com/consumer-apps Interface interface.ti.com Energy www.ti.com/energy Logic logic.ti.com Industrial www.ti.com/industrial Power Mgmt power.ti.com Medical www.ti.com/medical Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Space, Avionics & Defense www.ti.com/space-avionics-defense RF/IF and ZigBee® Solutions www.ti.com/lprf Video and Imaging www.ti.com/video Wireless www.ti.com/wireless-apps Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated