AVAGO AMMP-6545-TR1G 18 to 40 ghz gaas mmic sub-harmonic mixer in smt package Datasheet

AMMP-6545
18 to 40 GHz GaAs MMIC Sub-Harmonic Mixer
in SMT Package
Data Sheet
Description
Features
Avago’s AMMP-6545 is an easy-to-use broadband
sub-harmonic mixer, with the LO injected at half the
frequency of that required by a conventional mixer.
MMIC includes an 180° balanced diode based mixer.
The MMIC is fabricated using PHEMT technology. The
surface mount package allows elimination of “chip
& wire” assembly for lower cost. This MMIC is a cost
effective alternative to multi-chip solution that have
higher loss and complex assembly.
•
•
•
•
•
•
Applications
Typical 18-30 GHz
•
•
•
•
Microwave radio systems
Satellite VSAT, DBS up/down link
LMDS & Pt-Pt mmW long haul
Broadband wireless access
(including 802.16 and 802.20 WiMax)
• WLL and MMDS loops
Package Diagram
LO
NC
NC
IF
1
2
3
8
RF Frequency : 18-40 GHz
LO Frequency : 9-20 GHz
IF Frequency : DC-3.5 GHz
5x5 mm Surface Mount Package
Suitable for Up and Down Conversion
Diode Mixer
Performance
Conversion Loss
IIP3
2LO-R Leakage
2LO-I Leakage
5
NC
NC
NC
:
:
:
:
13 dB
+12 dBm
-40 dBm
-55 dBm
Typical 30-40 GHz
Conversion Loss
IIP3
2LO-R Leakage
2LO-I Leakage
NC
NC
IF
1
2
3
RF
LO
6
11 dB
+11 dBm
-45 dBm
-60 dBm
Functional Block Diagram
4
7
:
:
:
:
x2
8
4
7
6
5
NC
NC
NC
RF
PIN
1
2
3
4
5
6
7
8
FUNCTION
NC
NC
IF
RF
NC
NC
NC
LO
TOP VIEW
PACKAGE BASE: GND
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A) : 30V
ESD Human Body Model (Class 0) :100V
Refer to Avago Technologies Application Note A004R:
Electrostatic Discharge, Damage and Control.
Note: MSL Rating - Level 2A
Electrical Specifications
1. Small/Large -signal data measured in a fully de-embedded test fixture form TA = 25°C.
2. Pre-assembly into package performance verified 100% on-wafer.
3. This final package part performance is verified by a functional test correlated to actual performance at one or
more frequencies.
4. Specifications are derived from measurements in a 50 Ω test environment. Aspects of the amplifier performance
may be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise
(Гopt) matching.
5. NF is measure on-wafer. Additional bond wires (-0.2nH) at Input could improve NF at some frequencies.
Table 1. RF Electrical Characteristics
TA=25°C, Zo=50 Ω, LO=+15dBm, IF=2GHz
Parameter
RF=18-30GHz, LO=9-15GHz
RF=30-40GHz, LO=15-20GHz
Min
Min
Conversion Loss, CL [1]
Input Third Order Intercept, IIP3 [1]
10.5
Input Third Order Intercept, IIP3 [1]
RF: 24-30GHz
8.5
RF: 18-24GHz
Typ
Max
11
12
Typ
Max
Unit
13
dB
11
12
dBm
11
12
dBm
2LO-R Leakage, 2LO-R
-45
-40
-40
dBm
2LO-I Leakage, 2LO-I
-60
-50
-55
dBm
L-R Leakage, L-R
-30
-35
dB
L-I Leakage, L-I
-35
-30
dB
Comment
Note:
1.Production RF tested at 21, 23 and 26 GHz in upconverter configuration
All tested parameters are guaranteed with the following measurement accuracy:
RF=18-24 GHz: ±0.8 dBm for RF-leakage, ±2.5 dBm for IF-leakage, ±1.2dB for Conversion Loss, ±0.5 dBm for IIP3
RF=24-30 GHz: ±0.8 dBm for RF-leakage, ±4.0 dBm for IF-leakage, ±0.6 dB for Conversion Loss, ±0.5 dBm for IIP3
Table 2. Recommended Operating Range
1. Ambient operational temperature TA = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal
Resistance at backside temperature (Tb) = 25°C calculated from measured data.
Parameter
Min.
RF Frequency, RFfreq
LO Frequency, LOfreq
Typical
Max.
Unit
18
40
GHz
9
20
GHz
IF Frequency, IFfreq
DC
3.5
GHz
LO Power, LO
+12
+22
dBm
Min Ambient Operating Temp, Tmin
-55
+15
Comments
°C
Max Ambient Operating Temp, Tmax
+125
°C
Max.
Unit
Comments
25
dB
+150
°C
260
°C
Absolute Minimum and Maximum Ratings
Table 3. Minimum and Maximum Ratings
Pin
Min.
RF CW Input Power, Pin
Storage Temperature, Tstg
Maximum Assembly Temperature, Tmax
-65
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
2
20 second maximum
AMMP-6545 Typical Performance
(TA = 25°C, Zin = Zout = 50 Ω), IF Freq = 2 GHz, LO Power = +15 dBm unless noted)
UP-CONVERTER TYP. PERFORMANCE
7
9
11
15
IIP3 (dBm)
C.L. (dB)
13
LO = +13 (dB)
LO = +15 (dB)
LO = +17 (dB)
LO = +19 (dB)
LO = +20 (dB)
17
19
21
23
25
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
UP-CONVERTER TYP. PERFORMANCE
28
LO = +13 dBm
26
LO = +15 dBm
24
LO = +17 dBm
LO = +19 dBm
22
LO = +20 dBm
20
18
16
14
12
10
8
6
4
2
0
20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
RF FREQUENCY (GHz)
RF FREQUENCY (GHz)
Figure 1. Up-conversion loss at LO = +13 to +20 dBm
(high side LO)
Figure 2. Up-conversion IIP3 at LO = +13 to +20 dBm
(high side LO)
UP-CONVERTER TYP. PERFORMANCE
7
9
11
15
IIP3 (dBm)
C.L. (dB)
13
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
17
19
21
23
25
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
UP-CONVERTER TYP. PERFORMANCE
28
LO = +13 dBm
26
LO = +15 dBm
24
LO = +17 dBm
LO = +19 dBm
22
LO = +20 dBm
20
18
16
14
12
10
8
6
4
2
0
16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46
RF FREQUENCY (GHz)
RF FREQUENCY (GHz)
Figure 4. Up-conversion IIP3 at LO = +13 to +20 dBm
(low side LO)
Figure 3. Up-conversion loss at LO = +13 to +20 dBm
(low side LO)
DOWN-CONVERTER TYP. PERFORMANCE
7
9
11
15
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
17
19
21
23
25
18
IIP3 (dBm)
C.L. (dB)
13
20
22
24
26
28
30
32
34
RF FREQUENCY (GHz)
Figure 5. Down-conversion loss at LO = +13 to +20 dB
(low side LO)
3
36
38
40
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
18
DOWN-CONVERTER TYP. PERFORMANCE
LO = +13 dBm
LO = +15 dBm
LO = +17 dBm
LO = +19 dBm
LO = +20 dBm
20
22
24
26
28
30
32
34
RF FREQUENCY (GHz)
Figure 6. Down-conversion IIP3 at LO = +13 to +20 dBm
(low side LO)
36
38
40
AMMP-6545 Typical Performance
-30
-40
-35
-45
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
-50
-40
-45
-50
-55
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
-60
-65
2LO-I LEAKAGE (dBm)
2*LO-R LEAKAGE (dBm)
(TA = 25°C, Zin = Zout = 50 Ω), IF Freq = 2 GHz, LO Power = +15 dBm unless noted)
-55
-60
-65
-70
-75
-80
-85
-70
18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
-90
18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
RF FREQUENCY (GHz)
2*LO FREQUENCY (GHz)
Figure 8. 2*LO-I leakage at LO = +12 to +17 dBm
20
20
25
25
30
30
35
40
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
45
50
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
LO FREQUENCY (GHz)
Figure 9. L-R isolation at LO = +12 to +17dBm
4
L-I ISOLATION (dB)
L-R ISOLATION (dB)
Figure 7. 2*LO-R leakage at LO = +12 to +17 dBm
LO = +12 dBm
LO = +13 dBm
LO = +14 dBm
LO = +15 dBm
LO = +16 dBm
LO = +17 dBm
35
40
45
50
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
LO FREQUENCY (GHz)
Figure 10. L-I isolation at LO = +12 to +17dBm
Package Dimension, PCB Layout and Tape and Reel information
Please refer to Avago Technologies Application Note 5520, AMxP-xxxx production Assembly Process (Land Pattern A).
AMMP-6545 Part Number Ordering Information
Part Number
Devices per
Container
Container
AMMP-6545-BLKG
10
Antistatic bag
AMMP-6545-TR1G
100
7” Reel
AMMP-6545-TR2G
500
7” Reel
For product information and a complete list of distributors, please go to our website:
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2013 Avago Technologies. All rights reserved. Obsoletes AV02-0251EN
AV02-1382EN - July 8, 2013
Similar pages