DAC7714 DAC ® 771 4 Quad, Serial Input, 12-Bit, Voltage Output DIGITAL-TO-ANALOG CONVERTER FEATURES DESCRIPTION ● LOW POWER: 250mW (max) ● UNIPOLAR OR BIPOLAR OPERATION ● SETTLING TIME: 10µs to 0.012% The DAC7714 is a quad, serial input, 12-bit, voltage output Digital-to-Analog Converter (DAC) with guaranteed 12-bit monotonic performance over the –40°C to +85°C temperature range. An asynchronous reset clears all registers to either mid-scale (800H) or zeroscale (000H), selectable via the RESETSEL pin. The device can be powered from a single +15V supply or from dual +15V and –15V supplies. ● 12-BIT LINEARITY AND MONOTONICITY: –40°C to +85°C ● USER SELECTABLE RESET TO MIDSCALE OR ZERO-SCALE Low power and small size makes the DAC7714 ideal for process control, data acquisition systems, and closed-loop servo-control. The device is available in a SO-16 package, and is guaranteed over the –40°C to +85°C temperature range. ● SECOND-SOURCE for DAC8420 ● SMALL SO-16 PACKAGE APPLICATIONS ● ● ● ● ● ATE PIN ELECTRONICS PROCESS CONTROL CLOSED-LOOP SERVO-CONTROL MOTOR CONTROL DATA ACQUISITION SYSTEMS VCC GND VREFH DAC Register A DAC A DAC Register B DAC B DAC Register C DAC C DAC Register D DAC D VOUTA SDI Serial-toParallel Shift Register CLK CS VOUTB 12 DAC Select LOADDACS RESET RESETSEL VOUTC VOUTD VREFL VSS International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 Twx: 910-952-1111 • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132 http://www.burr-brown.com/ http://www.ti.com/ Copyright © 2000, Texas Instruments Incorporated SBAS119 PDS-1533A Printed in U.S.A. September, 2000 SPECIFICATIONS (Dual Supply) At TA = –40°C to +85°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, unless otherwise noted. DAC7714U PARAMETER CONDITIONS ACCURACY Linearity Error Linearity Matching(2) Differential Linearity Error Monotonicity Zero-Scale Error Zero-Scale Drift Zero-Scale Matching(2) Full-Scale Error Full-Scale Matching(2) Power Supply Sensitivity ANALOG OUTPUT Voltage Output(3) Output Current Load Capacitance Short-Circuit Current Short-Circuit Duration DIGITAL INPUT Logic Levels VIH VIL Data Format TYP MAX MIN TMIN to TMAX Code = 000H ±2 At Full Scale ✻ VREFL –5 VREFH +5 No Oscillation ✻ ✻ To VSS, VCC, or GND VREFL +1.25 –10 –0.5 –3.5 +10 VREFH – 1.25 3.0 0 8 0.25 2 65 ✻ ✻ ✻ ✻ ✻ ✻ 10 V mA pF mA ✻ ✻ ✻ ✻ V V mA mA ✻ µs LSB nV-s nV/√Hz ✻ ✻ ✻ 3.325 ✻ 1.575 +14.25 –15.75 –40 ✻ ✻ ✻ ✻ ✻ 500 ±20 Indefinite 6 –6 180 V V ✻ Straight Binary TEMPERATURE RANGE Specified Performance LSB(1) LSB LSB Bits LSB ppm/°C LSB LSB LSB ppm/V ±1 ✻ ±1 10 –8 ±1 ±1 ±1 ✻ ±2 ±2 ±2 f = 10kHz UNITS ✻ Code = FFFH To ±0.012%, 20V Output Step Full-Scale Step MAX ✻ 12 1 IIH ≤ ±10µA IIL ≤ ±10µA POWER SUPPLY REQUIREMENTS VCC VSS ICC ISS Power Dissipation TYP ±2 ±2 ±1 REFERENCE INPUT VREFH Input Range VREFL Input Range Ref High Input Current Ref Low Input Current DYNAMIC PERFORMANCE Settling Time Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage MIN DAC7714UB +15.75 –14.25 8.5 ✻ ✻ ✻ 250 +85 ✻ ✻ ✻ ✻ ✻ ✻ ✻ ✻ V V mA mA mW ✻ °C NOTES: (1) LSB means Least Significant Bit; if VREFH equals +10V and VREFL equals –10V, then one LSB equals 4.88mV. (2) All DAC outputs will match within the specified error band. (3) Ideal output voltage does not take into account zero or full-scale error. The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems. ® DAC7714 2 SPECIFICATIONS (Single Supply) At TA = –40°C to +85°C, VCC = +15V, VSS = GND, VREFH = +10V, VREFL = 0V, unless otherwise noted. DAC7714U PARAMETER ACCURACY Linearity Error(1) Linearity Matching(3) Differential Linearity Error Monotonicity Zero-Scale Error Zero-Scale Drift Zero-Scale Matching(3) Full-Scale Error Full-Scale Matching(3) Power Supply Sensitivity ANALOG OUTPUT Voltage Output(4) Output Current Load Capacitance Short-Circuit Current Short-Circuit Duration CONDITIONS DIGITAL INPUT/OUTPUT Logic Levels VIH VIL Data Format POWER SUPPLY REQUIREMENTS VCC ICC Power Dissipation TEMPERATURE RANGE Specified Performance TYP MAX MIN TYP ±2 ±2 ±1 TMIN to TMAX Code = 004H ±4 At Full Scale ✻ VREFH +5 No Oscillation ✻ ✻ To VCC or GND VREFL +1.25 0 –0.3 –2.0 ✻ V mA pF mA ✻ ✻ ✻ ✻ V V mA mA ✻ µs LSB nV-s nV/√Hz ✻ ✻ ✻ 500 ±20 Indefinite +10 VREFH – 1.25 1.5 0 8 0.25 2 65 ✻ ✻ ✻ ✻ ✻ ✻ 10 ✻ ✻ ✻ 3.325 ✻ 1.575 14.25 V V ✻ Straight Binary 15.75 ✻ ✻ ✻ 3.0 45 –40 LSB(2) LSB LSB Bits LSB ppm/°C LSB LSB LSB ppm /V ±2 ✻ ±2 20 VREFL –5 IIH ≤ ±10µA IIL ≤ ±10µA ±1 ±1 ±1 ✻ ±4 ±4 ±4 f = 10kHz UNITS ✻ Code = FFFH To ±0.012%, 10V Output Step MAX ✻ 12 2 REFERENCE INPUT VREFH Input Range VREFL Input Range Ref High Input Current Ref Low Input Current DYNAMIC PERFORMANCE Settling Time(5) Channel-to-Channel Crosstalk Digital Feedthrough Output Noise Voltage MIN DAC7714UB +85 ✻ ✻ ✻ V mA mW ✻ °C NOTES: (1) If VSS = 0V, specification applies at code 004H and above. (2) LSB means Least Significant Bit; if VREFH equals +10V and VREFL equals 0V, then one LSB equals 2.44mV. (3) All DAC outputs will match within the specified error band. (4) Ideal output voltage does not take into account zero or full-scale error. (5) Full-scale positive 10V step and negative step from code FFFH to 020H. ® 3 DAC7714 ELECTROSTATIC DISCHARGE SENSITIVITY ABSOLUTE MAXIMUM RATINGS(1) VCC to VSS ........................................................................... –0.3V to +32V VCC to GND ......................................................................... –0.3V to +16V VSS to GND ......................................................................... +0.3V to –16V VREFH to GND ....................................................................... –9V to +11V VREFL to GND (VSS = –15V) ................................................. –11V to +9V VREFL to GND (VSS = 0V) .................................................... –0.3V to +9V VREFH to VREFL ....................................................................... –1V to +22V Digital Input Voltage to GND .............................................. –0.3V to 5.8V Digital Output Voltage to GND ............................................ –0.3V to 5.8V Maximum Junction Temperature ................................................... +150°C Operating Temperature Range ........................................ –40°C to +85°C Storage Temperature Range ......................................... –65°C to +150°C Lead Temperature (soldering, 10s) ............................................... +300°C This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. NOTE: (1) Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability. PACKAGE/ORDERING INFORMATION PRODUCT MAXIMUM LINEARITY ERROR (LSB) MAXIMUM DIFFERENTIAL LINEARITY (LSB) DAC7714U PACKAGE PACKAGE DRAWING NUMBER SPECIFICATION TEMPERATURE RANGE ±2 ±1 SO-16 211 –40°C to +85°C " " " " " " DAC7714UB ±1 ±1 SO-16 211 –40°C to +85°C " " " " " " ORDERING NUMBER(1) TRANSPORT MEDIA DAC7714U DAC7714U/1K DAC7714UB DAC7714UB/1K Rails Tape and Reel Rails Tape and Reel NOTE: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /1K indicates 1000 devices per reel). Ordering 1000 pieces of “DAC7714UB/1K” will get a single 1000-piece Tape and Reel. ESD PROTECTION CIRCUITS VCC VCC REFH VOUT REFL VSS VSS Internal VDD GND Typical of Each Logic Input Pin ® DAC7714 4 PIN DESCRIPTIONS—U Package PIN CONFIGURATION—U Package Top View PIN SO LABEL DESCRIPTION Positive Analog Supply Voltage, +15V nominal. 1 VCC 2 VOUTD DAC D Voltage Output 3 VOUTC DAC C Voltage Output 4 VREFL Reference Input Voltage Low. Sets minimum output voltage for all DACs. 5 VREFH Reference Input Voltage High. Sets maximum output voltage for all DACs. VCC 1 16 RESETSEL 6 VOUTB DAC B Voltage Output VOUTD 2 15 RESET 7 VOUTA DAC A Voltage Output 8 VSS GND VOUTC 3 VREFL 4 VREFH 5 Negative Analog Supply Voltage, 0V or –15V nominal. 14 LOADDACS 13 NIC 9 12 CS 10 SDI Serial Data Input 11 CLK Serial Data Clock 12 CS Chip Select Input 13 NIC Not Internally Connected 14 LOADDACS The selected DAC register becomes transparent when LOADDACS is LOW. It is in the latched state when LOADDACS is HIGH. 15 RESET Asynchronous Reset Input. Sets all DAC registers to either zero-scale (000H) or midscale (800H) when LOW. RESETSEL determines which code is active. 16 RESETSEL When LOW, a LOW on RESET will cause all DAC registers to be set to code 000H. When RESETSEL is HIGH, a LOW on RESET will set the registers to code 800H. DAC7714U VOUTB 6 11 CLK VOUTA 7 10 SDI VSS 8 9 GND Ground ® 5 DAC7714 TYPICAL PERFORMANCE CURVES: VSS = 0V At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified. LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel 85°C (Typical of Each Output Channel) DLE (LSB) 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H LE (LSB) 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 200H 400H 600H 800H A00H C00H E00H FFFH 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H 200H 400H A00H C00H E00H ZERO-SCALE ERROR vs TEMPERATURE (Code 004H) FFFH 2.0 1.5 DAC C DAC A 1.0 0.5 0 –0.5 DAC B DAC D –1.0 –1.5 –2.0 200H 400H 600H 800H A00H C00H E00H –40 –30 –20 –10 0 FFFH CURRENT vs CODE All DACs Set to Indicated Code VREFH VREF Current (mA) 2.0 1.5 DAC C 1.0 DAC A 10 20 30 40 50 60 70 80 90 Temperature (°C) FULL-SCALE ERROR vs TEMPERATURE (Code FFFH) DAC B 1.2 1.0 0.8 0.6 0.4 0.2 0 –0.2 –0.4 VREFL 0 VREF Current (mA) Full-Scale Error (mV) 800H LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel –40°C (Typical of Each Output Channel) Digital Input Code 0.5 600H Digital Input Code 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 Digital Input Code Zero-Scale Error (mV) DLE (LSB) LE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel 25°C (Typical of Each Output Channel) –0.5 DAC D –1.0 –1.5 –2.0 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 Temperature (°C) 200H 400H 600H 800H A00H Digital Input Code ® DAC7714 0 –0.2 –0.4 –0.6 –0.8 –1.0 –1.2 –1.4 –1.6 000H 6 C00H E00H FFFH TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.) At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified. POSITIVE SUPPLY CURRENT vs DIGITAL INPUT CODE POWER SUPPLY CURRENT vs TEMPERATURE 6.00 5.00 3.5 No Load, All 4 DACs Set to Indicated Code ICC 4.00 ICC (mA) 2.5 1.5 ICC 3.00 2.00 0.5 1.00 –0.5 –40 –30 –20 –10 0 0 000H 10 20 30 40 50 60 70 80 90 100 400H 600H 800H A00H C00H E00H FFFH Digital Input Code OUTPUT VOLTAGE vs SETTLING TIME (0V to +10V) OUTPUT VOLTAGE vs SETTLING TIME (+10V to Code 020H) Large Signal Settling Time: 5V/div Output Voltage Output Voltage 200H Temperature (°C) Large Signal Settling Time: 5V/div Small Signal Settling Time: 1LSB/div Small Signal Settling Time: 1LSB/div +5V LOADDACS 0 +5V LOADDACS 0 Time (2µs/div) Time (2µs/div) OUTPUT VOLTAGE MID-SCALE GLITCH PERFORMANCE OUTPUT VOLTAGE MID-SCALE GLITCH PERFORMANCE 7FFH to 800H +5V LOADDACS 0 Time (1µs/div) Output Voltage (200mV/div) Output Voltage (200mV/div) Quiescent Current (mA) 4.5 800H to 7FFH +5V LOADDACS 0 Time (1µs/div) ® 7 DAC7714 TYPICAL PERFORMANCE CURVES: VSS = 0V (Cont.) At TA = +25°C, VCC = +15V, VSS = 0V, VREFH = +10V, VREFL = 0V, representative unit, unless otherwise specified. OUTPUT NOISE vs FREQUENCY OUTPUT VOLTAGE vs RLOAD 1000 15 12 Source VOUT (V) Noise (nV/√Hz) Code 020H 100 Code FFFH 9 6 3 Sink 10 0 0.1 1 10 100 Frequency (kHz) 1000 0 0.01 10000 Short to Ground PSRR (dB) IOUT (mA) 5 0 –5 –10 Short to VCC 200H 400H 600H 800H A00H C00H –40 –50 –60 –70 –80 –90 –100 –110 –120 +15V 101 E00H FFFH 102 103 104 Frequency (Hz) Digital Input Code ® DAC7714 100 0 –10 –20 –30 10 –20 000H 10 POWER SUPPLY REJECTION RATIO vs FREQUENCY SINGLE SUPPLY CURRENT LIMIT vs INPUT CODE –15 1 RLOAD (kW) 20 15 0.1 8 105 106 TYPICAL PERFORMANCE CURVES: VSS = –15V At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified. LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel 85°C (Typical of Each Output Channel) DLE (LSB) 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H LE (LSB) 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 200H 400H 600H 800H A00H C00H E00H FFFH 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H 400H 600H 800H A00H C00H LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel –40°C (Typical of Each Output Channel) CURRENT vs CODE All DACs Set to Indicated Code VREF Current (mA) VREF Current (mA) 200H 400H 600H 800H A00H C00H E00H E00H FFFH 0 –0.5 –1.0 –1.5 –2.0 –2.5 –3.0 000H VREFL 200H 400H 600H 800H A00H C00H E000H FFFH Digital Input Code Digital Input Code BIPOLAR ZERO-SCALE ERROR vs TEMPERATURE (Code 800H) POSITIVE FULL-SCALE ERROR vs TEMPERATURE (Code FFFH) 2.0 1.5 1.5 1.0 DAC C 0.5 0 –0.5 DAC D DAC B FFFH VREFH 2.5 2.0 1.5 1.0 0.5 0 –0.5 2.0 –1.0 200H Digital Input Code 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 000H 0.5 0.4 0.3 0.2 0.1 0 –0.1 –0.2 –0.3 –0.4 –0.5 Digital Input Code Positive Full-Scale Error (mV) Bipolar Zero-Scale Error (mV) DLE (LSB) LE (LSB) DLE (LSB) LE (LSB) LINEARITY ERROR AND DIFFERENTIAL LINEARITY ERROR vs CODE Single Channel 25°C (Typical of Each Output Channel) DAC A –1.5 –2.0 DAC C 1.0 0.5 DAC B 0 –0.5 DAC D –1.0 DAC A –1.5 –2.0 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 –40 –30 –20 –10 0 Temperature (°C) 10 20 30 40 50 60 70 80 90 Temperature (°C) ® 9 DAC7714 TYPICAL PERFORMANCE CURVES: VSS = –15V (Cont.) At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified. NEGATIVE FULL-SCALE ERROR vs TEMPERATURE (Code 000H) POWER SUPPLY CURRENT vs TEMPERATURE 8 6 1.5 Quiescent Current (mA) Negative Full-Scale Error (mV) 2.0 DAC C 1.0 DAC A 0.5 0 –0.5 DAC B DAC D –1.0 ICC 4 2 0 –2 ISS –4 Data = FFFH (all DACs) No Load –6 –1.5 –8 –2.0 –40 –30 –20 –10 0 –40 –30 –20 –10 0 10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90 Temperature (°C) Temperature (°C) OUTPUT VOLTAGE vs RLOAD SUPPLY CURRENT vs CODE 8 15 ICC 6 10 Supply Current (mA) Source 0 –5 Sink –10 4 No Load, All 4 DACs Set to Indicated Code 2 0 –2 –4 ISS –6 –15 0.01 0.1 1 10 –8 000H 100 RLOAD (kΩ) 200H 400H 600H 800H A00H E00H FFFH OUTPUT VOLTAGE vs SETTLING TIME (+10V to –10V) Large Signal Settling Time: 5V/div Output Voltage Large Signal Settling Time: 5V/div Small Signal Settling Time: 0.5LSB/div Small Signal Settling Time: 0.5LSB/div +5V LOADDACS 0 +5V LOADDACS 0 Time (2µs/div) Time (2µs/div) ® DAC7714 C00H Digital Input Code OUTPUT VOLTAGE vs SETTLING TIME (–10V to +10V) Output Voltage VOUT (V) 5 10 TYPICAL PERFORMANCE CURVES: VSS = –15V (Cont.) At TA = +25°C, VCC = +15V, VSS = –15V, VREFH = +10V, VREFL = –10V, representative unit, unless otherwise specified. DUAL SUPPLY CURRENT LIMIT vs INPUT CODE SHORT TO GROUND POWER SUPPLY REJECTION RATIO vs FREQUENCY 20 15 5 PSRR (dB) IOUT (mA) 10 0 –5 –10 –15 400H 600H 800H A00H C00H –15V +15V –70 –80 –90 –100 –110 –120 101 E00H FFFH 102 103 104 Digital Input Code Frequency (Hz) OUTPUT VOLTAGE MID-SCALE GLITCH PERFORMANCE BROADBAND NOISE 7FFH to 800H 105 106 Noise Voltage (500µV/div) 200H 800H to 7FFH +5V LOADDACS 0 Time (1ms/div) Time (1µs/div) OUTPUT NOISE vs FREQUENCY 1000 Noise (nV/√Hz) Output Voltage (200mV/div) –20 000H 0 –10 –20 –30 –40 –50 –60 100 Noise at any code 10 0 0.1 1 10 100 Frequency (kHz) 1000 10000 ® 11 DAC7714 THEORY OF OPERATION At the negative offset limit of –4LSB (–9.76mV), for the single-supply case, the first specified output starts at code 004H. The DAC7714 is a quad, serial input, 12-bit, voltage output DAC. The architecture is a classic R-2R ladder configuration followed by an operational amplifier that serves as a buffer. Each DAC has its own R-2R ladder network and output op amp, but all share the reference voltage inputs, as shown in Figure 1. The minimum voltage output (“zeroscale”) and maximum voltage output (“full-scale”) are set by external voltage references (VREFL and VREFH, respectively). The digital input is a 16-bit serial word that contains the 12-bit DAC code and a 2-bit address code that selects one of the four DACs (the two remaining bits are unused). The converter can be powered from a single +15V supply or a dual ±15V supply. Each device offers a reset function which immediately sets all DAC output voltages and internal registers to either zero-scale (code 000H) or mid-scale (code 800H). The reset code is selected by the state of the RESETSEL pin (LOW = 000H, HIGH = 800H). Figures 2 and 3 show the basic operation of the DAC7714. REFERENCE INPUTS The reference inputs, VREFL and VREFH, can be any voltage between VSS + 4V and VCC – 4V provided that VREFH is at least 1.25V greater than VREFL. The minimum output of each D/A is equal to VREFL – 1LSB plus a small offset voltage (essentially, the offset of the output op amp). The maximum output is equal to VREFH plus a similar offset voltage. Note that VSS (the negative power supply) must either be connected to ground or must be in the range of –14.75V to –15.75V. The voltage on VSS sets several bias points within the converter. If VSS is not in one of these two configurations, the bias values may be in error and proper operation of the device is not guaranteed. The current into the reference inputs depends on the DAC output voltages and can vary from a few microamps to approximately 3mA. The reference input appears as a varying load to the reference. If the reference can sink or source the required current, a reference buffer is not required. See “Reference Current vs Code” in the Typical Performance Curves. The analog supplies must come up before the reference power supplies, if they are separate. If the power supplies for the references come up first, then the VCC and VSS supplies will be powered from the reference via the ESD protection diodes (see page 4). ANALOG OUTPUTS When VSS = –15V (dual supply operation), the output amplifier can swing to within 4V of the supply rails, over the –40°C to +85°C temperature range. With VSS = 0V (singlesupply operation), the output can swing to ground. Note that the settling time of the output op amp will be longer with voltages very near ground. Care must also be taken when measuring the zero-scale error when VSS = 0V. If the output amplifier has a negative offset, the output voltage may not change for the first few digital input codes (000H, 001H, 002H, etc.) since the output voltage cannot swing below ground. RF R R 2R 2R 2R R 2R R R 2R 2R R 2R VOUT R 2R 2R VREFH VREFL FIGURE 1. DAC7714 Architecture. ® DAC7714 12 +15V + 1µF to 10µF DAC7714 0.1µF 0V to +10.0V 0V to +10.0V 1 VCC 2 RESETSEL 16 VOUTD RESET 15 Reset DACs(1) 3 VOUTC LOADDACS 14 Update Selected Register 4 VREFL NIC 13 5 VREFH CS 12 Chip Select 6 VOUTB CLK 11 Clock 7 VOUTA SDI 10 Serial Data In 8 VSS GND 9 +10.000V 0.1µF 0V to +10.0V 0V to +10.0V NOTE: (1) As configured, RESET LOW sets all internal registers to code 000H (0V). If RESETSEL is HIGH, RESET LOW sets all internal registers to code 800H (5V). FIGURE 2. Basic Single-Supply Operation of the DAC7714. +15V DAC7714 + 1µF to 10µF 0.1µF 1 VCC –10V to +10V 2 –10V to +10V –10.0V 16 VOUTD RESET 15 Reset DACs(1) 3 VOUTC LOADDACS 14 Update Selected Register 4 VREFL NIC 13 5 VREFH CS 12 Chip Select 6 VOUTB CLK 11 Clock 7 VOUTA SDI 10 Serial Data In 8 VSS GND 9 0.1µF +10.0V 0.1µF –10V to +10V –10V to +10V +5V RESETSEL –15V + 1µF to 10µF 0.1µF NOTE: (1) As configured, RESET LOW sets all internal registers to code 800H (0V). If RESETSEL is LOW, RESET LOW sets all internal registers to code 000H (–10V). FIGURE 3. Basic Dual-Supply Operation of the DAC7714. Note that CS and CLK are combined with an OR gate and the output controls the serial-to-parallel shift register internal to the DAC7714 (see the block diagram on the front of this data sheet). These two inputs are completely interchangeable. In addition, care must be taken with the state of CLK when CS rises at the end of a serial transfer. If CLK is LOW when CS rises, the OR gate will provide a rising edge to the shift register, shifting the internal data one additional bit. The result will be incorrect data and possible selection of the wrong DAC. DIGITAL INTERFACE Figure 4 and Table I provide the basic timing for the DAC7714. The interface consists of a serial clock (CLK), serial data (SDI), and a load DAC signal (LOADDACS). In addition, a chip select (CS) input is available to enable serial communication when there are multiple serial devices. An asynchronous reset input (RESET) is provided to simplify start-up conditions, periodic resets, or emergency resets to a known state. The DAC code and address are provided via a 16-bit serial interface (see Figure 4). The first two bits select the DAC register that will be updated when LOADDACS goes LOW (see Table II). The next two bits are not used. The last 12 bits is the DAC code which is provided, most significant bit first. If both CS and CLK are used, then CS should rise only when CLK is HIGH. If not, then either CS or CLK can be used to operate the shift register. See Table III for more information. ® 13 DAC7714 (MSB) SDI A1 A0 X X D11 (LSB) D10 D9 D3 D2 D1 D0 CLK tcss tCSH tLD1 tLD2 CS LOADDACS tLDDW tDS tDH SDI tCL tCH CLK tLDDW LOADDACS tS tS 1 LSB ERROR BAND VOUT 1 LSB ERROR BAND tRSTW RESET tRSSH RESETSEL FIGURE 4. DAC7714 Timing. SYMBOL tDS tDH tCH tCL tCSS tCSH tLD1 tLD2 tLDDW tRSSH tRSTW tS DESCRIPTION Data Valid to CLK Rising Data Held Valid after CLK Rises CLK HIGH CLK LOW CS LOW to CLK Rising CLK HIGH to CS Rising LOADDACS HIGH to CLK Rising CLK Rising to LOADDACS LOW LOADDACS LOW Time RESETSEL Valid to RESET LOW RESET LOW Time Settling Time MIN 25 20 30 50 55 15 40 15 45 25 70 10 TYP MAX UNITS ns ns ns ns ns ns ns ns ns ns ns µs A0 LOADDACS RESET L(1) L H L H X X L L L L H X H(2) H H H H L A B C D NONE ALL L H H X(3) X STATE OF SELECTED DAC REGISTER Transparent Transparent Transparent Transparent (All Latched) Reset(4) NOTES: (1) L = Logic LOW. (2) H = Logic HIGH. (3) X = Don’t Care. (4) Resets to either 000H or 800 H , per the RESETSEL state (LOW = 000H, HIGH = 800H). When RESET rises, all registers that are in their latched state retain the reset value. TABLE I. Timing Specifications (TA = –40°C to +85°C). TABLE II. Control Logic Truth Table. ® DAC7714 A1 SELECTED DAC REGISTER 14 CS(1) CLK(1) LOADDACS RESET SERIAL SHIFT REGISTER H(2) X(3) H H No Change L(4) L H H No Change L ↑(5) H H Advanced One Bit ↑ L H H Advanced One Bit H(6) X L(7) H No Change H(6) X H L(8) No Change LAYOUT A precision analog component requires careful layout, adequate bypassing, and clean, well-regulated power supplies. As the DAC7714 offers single-supply operation, it will often be used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it will be to achieve good performance from the converter. NOTES: (1) CS and CLK are interchangeable. (2) H = Logic HIGH. (3) X = Don’t Care. (4) L = Logic LOW (5) = Positive Logic Transition. (6) A HIGH value is suggested in order to avoid a “false clock” from advancing the shift register and changing the shift register. (7) If data is clocked into the serial register while LOADDACS is LOW, the selected DAC register will change as the shift register bits “flow” through A1 and A0. This will corrupt the data in each DAC register that has been erroneously selected. (8) RESET LOW causes no change in the contents of the serial shift register. Because the DAC7714 has a single ground pin, all return currents, including digital and analog return currents, must flow through the GND pin. Ideally, GND would be connected directly to an analog ground plane. This plane would be separate from the ground connection for the digital components until they were connected at the power entry point of the system. TABLE III. Serial Shift Register Truth Table. The power applied to VCC (as well as VSS, if not grounded) should be well regulated and low noise. Switching power supplies and DC/DC converters will often have high-frequency glitches or spikes riding on the output voltage. In addition, digital components can create similar high-frequency spikes as their internal logic switches states. This noise can easily couple into the DAC output voltage through various paths between the power connections and analog output. Digital Input Coding The DAC7714 input data is in Straight Binary format. The output voltage is given by the following equation: VOUT = VREFL + (VREFH – VREFL ) • N 4096 where N is the digital input code (in decimal). This equation does not include the effects of offset (zero-scale) or gain (full-scale) errors. ® 15 DAC7714 PACKAGE OPTION ADDENDUM www.ti.com 19-Jun-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) DAC7714U ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U DAC7714U/1K ACTIVE SOIC DW 16 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U DAC7714UB ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U B DAC7714UB/1K ACTIVE SOIC DW 16 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U B DAC7714UBG4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U B DAC7714UG4 ACTIVE SOIC DW 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR -40 to 85 DAC7714U (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 19-Jun-2015 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant DAC7714U/1K SOIC DW 16 1000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 DAC7714UB/1K SOIC DW 16 1000 330.0 16.4 10.75 10.7 2.7 12.0 16.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DAC7714U/1K SOIC DW 16 1000 367.0 367.0 38.0 DAC7714UB/1K SOIC DW 16 1000 367.0 367.0 38.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2015, Texas Instruments Incorporated