Infineon IPB107N20N3G Optimostm3 power-transistor Datasheet

IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
OptiMOSTM3 Power-Transistor
Product Summary
Features
• N-channel, normal level
• Excellent gate charge x R DS(on) product (FOM)
VDS
200
V
RDS(on),max (TO263)
10.7
mW
ID
88
A
• Very low on-resistance R DS(on)
• 175 °C operating temperature
• Pb-free lead plating; RoHS compliant
• Qualified according to JEDEC1) for target application
• Halogen-free according to IEC61249-2-21
• Ideal for high-frequency switching and synchronous rectification
Type
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
Package
PG-TO263-3
PG-TO220-3
PG-TO262-3
Marking
107N20N
110N20N
110N20N
Maximum ratings, at T j=25 °C, unless otherwise specified
Parameter
Symbol Conditions
Continuous drain current
ID
Value
T C=25 °C
88
T C=100 °C
63
Unit
A
Pulsed drain current2)
I D,pulse
T C=25 °C
352
Avalanche energy, single pulse
E AS
I D=80 A, R GS=25 W
560
mJ
Reverse diode dv /dt
dv /dt
10
kV/µs
Gate source voltage
V GS
±20
V
Power dissipation
P tot
300
W
Operating and storage temperature
T j, T stg
-55 ... 175
°C
T C=25 °C
IEC climatic category; DIN IEC 68-1
1)
2)
55/175/56
J-STD20 and JESD22
See figure 3
Rev. 2.3
page 1
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
Parameter
Values
Symbol Conditions
Unit
min.
typ.
max.
-
-
0.5
minimal footprint
-
-
62
6 cm2 cooling area3)
-
-
40
200
-
-
Thermal characteristics
Thermal resistance, junction - case
R thJC
Thermal resistance, junction ambient
R thJA
K/W
Electrical characteristics, at T j=25 °C, unless otherwise specified
Static characteristics
Drain-source breakdown voltage
V (BR)DSS V GS=0 V, I D=1 mA
Gate threshold voltage
V GS(th)
V DS=V GS, I D=270 µA
2
3
4
Zero gate voltage drain current
I DSS
V DS=160 V, V GS=0 V,
T j=25 °C
-
0.1
1
V DS=160 V, V GS=0 V,
T j=125 °C
-
10
100
V
µA
Gate-source leakage current
I GSS
V GS=20 V, V DS=0 V
-
1
100
nA
Drain-source on-state resistance
R DS(on)
V GS=10 V, I D=88 A,
(TO220, TO262)
-
9.9
11
mW
V GS=10 V, I D=88 A,
(TO263)
-
9.6
10.7
-
2.4
-
W
71
141
-
S
Gate resistance
RG
Transconductance
g fs
|V DS|>2|I D|R DS(on)max,
I D=88 A
3)
Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm 2 (one layer, 70 µm thick) copper area for drain
connection. PCB is vertical in still air.
Rev. 2.3
page 2
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
Parameter
Values
Symbol Conditions
Unit
min.
typ.
max.
-
5340
7100
-
401
533
Dynamic characteristics
Input capacitance
C iss
Output capacitance
C oss
Reverse transfer capacitance
C rss
-
5
-
Turn-on delay time
t d(on)
-
18
-
Rise time
tr
-
26
-
Turn-off delay time
t d(off)
-
41
-
Fall time
tf
-
11
-
Gate to source charge
Q gs
-
23
-
Gate to drain charge
Q gd
-
8
-
Switching charge
Q sw
-
15
-
Gate charge total
Qg
-
65
87
Gate plateau voltage
V plateau
-
4.4
-
Output charge
Q oss
-
162
216
nC
-
-
88
A
-
-
352
-
1
1.2
-
142
-
640
V GS=0 V, V DS=100 V,
f =1 MHz
V DD=100 V,
V GS=10 V, I D=44 A,
R G=1.6 W
pF
ns
Gate Charge Characteristics4)
V DD=100 V, I D=44 A,
V GS=0 to 10 V
V DD=100 V, V GS=0 V
nC
V
Reverse Diode
Diode continous forward current
IS
Diode pulse current
I S,pulse
Diode forward voltage
V SD
Reverse recovery time
t rr
Reverse recovery charge
Q rr
4)
T C=25 °C
V GS=0 V, I F=88 A,
T j=25 °C
V R=100 V, I F=44 A,
di F/dt =100 A/µs
V
ns
-
nC
See figure 16 for gate charge parameter definition
Rev. 2.3
page 3
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
1 Power dissipation
2 Drain current
P tot=f(T C)
I D=f(T C); V GS≥10 V
320
100
280
80
240
60
ID [A]
Ptot [W]
200
160
40
120
80
20
40
0
0
0
50
100
150
200
0
50
TC [°C]
100
150
200
TC [°C]
3 Safe operating area
4 Max. transient thermal impedance
I D=f(V DS); T C=25 °C; D =0
Z thJC=f(t p)
parameter: t p
parameter: D =t p/T
103
100
1 µs
10 µs
100 µs
102
ZthJC [K/W]
0.5
ID [A]
1 ms
101
10 ms
10-1
0.2
0.1
DC
0.05
100
0.02
0.01
single pulse
10-2
10-1
10-1
100
101
102
103
10-4
10-3
10-2
10-1
100
tp [s]
VDS [V]
Rev. 2.3
10-5
page 4
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
5 Typ. output characteristics
6 Typ. drain-source on resistance
I D=f(V DS); T j=25 °C
R DS(on)=f(I D); T j=25 °C
parameter: V GS
parameter: V GS
200
20
10 V
175
4.5 V
7V
150
15
5V
5V
RDS(on) [mW]
ID [A]
125
100
75
4.5 V
50
7V
10
10 V
5
25
0
0
0
1
2
3
4
5
0
20
40
VDS [V]
60
80
100
120
140
ID [A]
7 Typ. transfer characteristics
8 Typ. forward transconductance
I D=f(V GS); |V DS|>2|I D|R DS(on)max
g fs=f(I D); T j=25 °C
parameter: T j
200
180
180
160
160
140
140
120
gfs [S]
ID [A]
120
100
100
80
80
60
60
40
40
175 °C
20
20
25 °C
0
0
0
2
4
6
8
VGS [V]
Rev. 2.3
0
25
50
75
100
125
150
ID [A]
page 5
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
9 Drain-source on-state resistance
10 Typ. gate threshold voltage
R DS(on)=f(T j); I D=88 A; V GS=10 V
V GS(th)=f(T j); V GS=V DS
parameter: I D
35
4
30
3.5
2700 µA
3
25
20
VGS(th) [V]
RDS(on) [mW]
270 µA
2.5
98%
15
2
1.5
typ
10
1
5
0.5
0
0
-60
-20
20
60
100
140
180
-60
-20
20
Tj [°C]
60
100
140
180
Tj [°C]
11 Typ. capacitances
12 Forward characteristics of reverse diode
C =f(V DS); V GS=0 V; f =1 MHz
I F=f(V SD)
parameter: T j
104
103
Ciss
Coss
103
102
25°C, 98%
175 °C
IF [A]
C [pF]
102
25 °C
Crss
101
175°C, 98%
101
100
0
40
80
120
160
0.5
1
1.5
2
VSD [V]
VDS [V]
Rev. 2.3
0
page 6
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
13 Avalanche characteristics
14 Typ. gate charge
I AS=f(t AV); R GS=25 W
V GS=f(Q gate); I D=44 A pulsed
parameter: T j(start)
parameter: V DD
100
10
25 °C
8
160 V
100 °C
100 V
125 °C
40 V
VGS [V]
IAS [A]
6
10
4
2
0
1
1
10
100
0
1000
20
40
60
80
Qgate [nC]
tAV [µs]
15 Drain-source breakdown voltage
16 Gate charge waveforms
V BR(DSS)=f(T j); I D=1 mA
230
V GS
Qg
VBR(DSS) [V]
220
210
V gs(th)
200
190
Q g(th)
Q sw
Q gs
180
-60
-20
20
60
100
140
Q gate
Q gd
180
Tj [°C]
Rev. 2.3
page 7
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
PG-TO220-3: Outline
Rev. 2.3
page 8
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
PG-TO263-3: Outline
Rev. 2.3
page 9
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
PG-TO262-3: Outline
Rev. 2.3
page 10
2011-07-14
IPB107N20N3 G
IPP110N20N3 G
IPI110N20N3 G
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of
conditions or characteristics. With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device,
Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,
including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please
contact the nearest Infineon Technologies Office (www.infineon.com).
on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with
the express written approval of Infineon Technologies, if a failure of such components can
reasonably be expected to cause the failure of that life-support device or system or to affect
the safety or effectiveness of that device or system. Life support devices or systems are
intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.
Rev. 2.3
page 11
2011-07-14
Similar pages