IRF CHL8515 Highâ efficiency variable gate mosfet driver Datasheet

High‐Efficiency Variable Gate MOSFET Driver
FEATURES
DESCRIPTION
 Ideal for Server Memory applications using +5V
 Separate HVCC and LVCC capable of drive voltages
from 4.0 to 13.2V for optimal system efficiency
 Adjustable thermal warning flag for phase‐by‐
phase thermal protection
 Large drivers designed to drive 3nF in < 10ns with
any voltage from 5V to 12V (typ) supplied to the
HVCC and LVCC pins
 Low‐side driver – 2A source/4A sink
 High‐side driver – 2A source/2A sink
 Transitions times & Propagation delays < 10ns
 Integrated bootstrap diode
 Capable of high switching frequencies from 200kHz
up to greater than 1MHz
 Compatible with IR’s patented Active Tri‐Level
(ATL) PWM for fastest response to transient
overshoot
 Non‐overlap and under voltage protection
 Thermally enhanced 10‐pin DFN package
 Lead free RoHS compliant package
 Low Quiescent power to optimize efficiency
APPLICATIONS
 Multiphase synchronous buck converter for Server
CPUs and DDR Memory VR solutions
 High efficiency and compact VRM
 Optimized for Sleep state S3 systems using +5VSB
 Notebook Computer and Graphics VR solutions
BASIC APPLICATION
Figure 1: CHL8515 Basic Application Circuit
1
CHL8515
December 6, 2011 | FINAL | V1.05
The CHL8515 MOSFET driver is a high‐efficiency gate driver
which can switch both high‐side and low‐side N‐channel
external MOSFETs in a synchronous buck converter. It is
intended for use with IR Digital PWM controllers to provide
a total voltage regulator (VR) solution for today’s advanced
computing applications.
The CHL8515 driver is capable of rapidly switching large
MOSFETs with low Rdson and large input capacitance used
in high‐efficiency designs. It is uniquely designed to
operate from a 5V source, minimizing load current.
It also has separate HVCC and LVCC drive inputs, capable
of 4.0V to 13.2V operation. Used in conjunction with IR’s
Variable Gate Drive controller feature, or a 5V standby
source in sleep mode, maximum power stage efficiency
can be attained.
The CHL8515 has a unique circuit which maintains drive
strength to the external MOSFETs regardless of the drive
voltage, insuring fast switching even at 5V as the drive
voltage. The integrated boot diode reduces external
component count. The CHL8515 also features an adaptive
non‐overlap control for shoot‐through protection.
The CHL8515 is configured to drive both the high and
low‐side switches from the patented IR fast Active Tri‐Level
(ATL) PWM signal, which will optimize the turn off time of
individual phases, optimizing transient performance.
Phase‐by‐phase thermal protection can be set from 61C
to 150C with a simple resistor setting, and a thermal flag
can be used to implement a thermal warning or thermal
shutdown of the system by connecting OT# pins together
and to the system enable in multiphase applications.
PIN DIAGRAM
Figure 2: CHL8515 Package Top View
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
ORDERING INFORMATION
CHL8515   
Package
Tape & Reel Qty
Part Number
DFN
3000
CHL8515CRT
T – Tape and Reel
R – Package Type (DFN)
C – Operating Temperature
(Commercial Standard)
Figure 3: CHL8515 Pin Diagram Enlarged
2
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
FUNCTIONAL BLOCK DIAGRAM
Figure 4: CHL8515 Simplified Functional Block Diagram
3
December 6, 2011 | FINAL | V1.05
CHL8515
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
TYPICAL APPLICATION DIAGRAM
Figure 5: 4+1 CPU VR solution using CHL8515 MOSFET Drivers & CHL8112A Controller and CHL8510 Driver as VGD
4
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
PIN DESCRIPTIONS
PIN#
PIN NAME
1
PWM
The PWM signal is the control input for the driver from a 1.8V IR ATL‐based PWM signal. Connect this pin
to the PWM output of the controller.
2
VCC
Connect this pin to a +5V bias supply. Place a high quality low ESR ceramic capacitor from this pin to GND.
3
LVCC
Connect this pin to a separate supply voltage between 4.0V and 13.2V to vary the drive voltage on the
low‐side MOSFETs. Place a high quality low ESR ceramic capacitor from this pin to GND.
4
HVCC
Connect this pin to a separate supply between 4.0V and 13.2V to provide a lower gate drive voltage on the
high‐side MOSFETS. This is the anode of the internal bootstrap diode. Place a high quality low ESR ceramic
capacitor from this pin to GND.
5
BOOT
Floating bootstrap supply pin for the upper gate drive. Connect the bootstrap capacitor between this pin and
the SWITCH pin. The bootstrap capacitor provides the charge to turn on the upper MOSFET. See the Internal
Bootstrap Device section under DESCRIPTION for guidance in choosing the capacitor value.
6
HI_GATE
Upper gate drive output. Connect to gate of high‐side power N‐Channel MOSFET.
7
SWITCH
Connect this pin to the SOURCE of the upper MOSFET and the DRAIN of the lower MOSFET.
This pin provides a return path for the upper gate drive
8
LO_GATE
Lower gate drive output. Connect to gate of the low‐side power N‐Channel MOSFET.
9
OT#
10
OTSET
PAD (11)
GND
5
PIN DESCRIPTION
Open drain active low signal indicating that the temperature of the Driver (very close to Phase temperature)
has exceeded the value set by the OTSET pin. Connect to system controller or to system Enable to create a
thermal shutdown.
Use a 1% resistor to ground to set the Over Temperature set point from 61C to 150C.
Leave open to use default setting of 150C.
Bias and reference ground. All signals are referenced to this node. It is also the power ground return
of the driver.
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
ABSOLUTE MAXIMUM RATINGS
VCC
‐0.3V to +7.0V
LVCC, HVCC
‐0.3V to +15.0V
PWM, OTSET, OT#
‐0.3V to +7.0V
BOOT‐GND, BOOT‐SWITCH
‐0.3V to +35.0V, ‐0.3V to +HVCC
LO_GATE
‐0.3V to LVCC + 0.3V, <200ns: ‐5V to LVCC + 0.3V
HI_GATE
SWITCH – 0.3V to VBOOT + 0.3V, <20ns: SWITCH –5V to VBOOT + 0.3V
SWITCH
‐0.3V to +35.0V, <200ns, ‐8V
ESD
HBM 250V JEDEC Standard
Thermal Information
Thermal Resistance (θJC)
3°C/W
1
Thermal Resistance (θJA)
45°C/W
Maximum Operating Junction Temperature
150°C
Maximum Storage Temperature Range
‐65°C to 150°C
Maximum Lead Temperature (Soldering 10s)
300°C
Note: 1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the
specifications are not implied.
6
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
ELECTRICAL SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS FOR RELIABLE OPERATION WITH MARGIN
Recommended Operating Ambient Temperature Range
‐40°C to 85°C
Recommended Maximum Operating Junction Temperature
125°C
Supply Voltage Range
+5V ± 10%
HVCC, LVCC
+4.0V to +13.2V
The electrical characteristics table lists the spread of values guaranteed within the recommended operating conditions.
Typical values represent the median values, which are related to 25°C, unless otherwise specified. VCC = 5.0V, HVCC = 7.0V,
LVCC = 5.0V.
ELECTRICAL CHARACTERISTICS
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNIT
‐
2.3
‐
mA
2.7
3.1
3.5
mA
VCC Rising Threshold for POR
3.5
3.7
3.9
V
VCC Falling Threshold for POR
3.2
3.4
3.6
V
Supply
Idle Supply Bias Current
Active Supply Bias Current
IVCC + IVDRV
IVCC
PWM input tri‐stated
VCC = 5V
OTSET, OT#
Temperature Setpoint Open
OT
Rset = Open
‐
150
‐
°C
Temperature Setpoint Resistor
OT
Rset = 100kΩ
‐
125
‐
°C
Temperature Hysteresis
OT_HYST
‐
‐20
‐
°C
Temperature Flag Sink Current
OT# Sink
‐
1.5
‐
mA
Temperature Flag Sink Voltage
OT#
‐
0.8
‐
V
PWM Input High Threshold
VIH(C_PWM)
‐
1.0
‐
V
PWM Input Low Threshold
VIL(C_PWM)
‐
0.8
‐
V
PWM Input Tri‐level High Threshold
VTL(C_PWM)
‐
2.5
‐‐
V
PWM Input Tri‐level Low Threshold
VTH(C_PWM)
‐
2.3
‐
V
VPWM = 0V
‐
1.0
‐
mA
VPWM = 1.8V
‐
1.0
‐
mA
PWM Input IR ATL Mode
PWM Input Current Low
IC_PWM
PWM Input Current High
High‐Side Gate Driver
Transition Time – Rise
tR(HS)
3nF Load, 10% – 90%
‐
10
‐
ns
Transition Time – Fall
tF(HS)
3nF Load, 10% – 90%
‐
8
‐
ns
Propagation Delay – Turn‐on
tPDH(HS)
3nF Load, Adaptive
‐
19
‐
ns
Propagation Delay – Turn‐off
tPDL(HS)
3nF Load
‐
20
‐
ns
Propagation Delay – Exit Tri‐state
tPDTS(HS_en)
3nF Load
‐
35
‐
ns
Propagation Delay – Enter Tri‐state
tPDTS(HS_dis)
3nF Load
‐
20
‐
ns
7
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
PARAMETER
SYMBOL
CONDITIONS
CHL8515
MIN
TYP
MAX
UNIT
Source Current
IHS_SOURCE
3nF Load
‐
2
‐
A
Output Impedance Sourcing
RHS_SOURCE
Sink Current at 100mA
‐
1.4
‐
Ω
Sink Current
IHS_SINK
3nF Load
‐
2
‐
A
Output Impedance – Sinking
RHS_SINK
Sink Current at 100mA
‐
0.7
‐
Ω
Low‐Side Gate Driver
Transition Time – Rise
tF(LS)
3nF Load, 10% – 90%
‐
10
‐
ns
Transition Time – Fall
tR(LS)
3nF Load, 10% – 90%
‐
7
‐
ns
Propagation Delay – Turn‐on
tPDH(LS)
3nF Load, Adaptive
‐
9
‐
ns
Propagation Delay – Turn‐off
tPDL(LS)
3nF Load
‐
25
‐
ns
Propagation Delay – Exit Tri‐state
tPDTS(LS_en)
3nF Load
‐
36
‐
ns
Propagation Delay – Enter Tri‐state
tPDTS(LS_dis)
3nF Load
‐
22
‐
ns
Source Current
ILS_SOURCE
3nF Load
‐
2
‐
A
Output Impedance Sourcing
RLS_SOURCE
Sink Current at 100mA
‐
1.5
‐
Ω
Sink Current
ILS_SINK
3nF Load
‐
4
‐
A
Output Impedance – Sinking
RLS_SINK
Sink Current at 100mA
‐
0.4
‐
Ω
Note: 1 Guaranteed by design
8
December 6, 2011 | FINAL | V1.05
High‐Efficiency Variable Gate MOSFET Driver
TIMING DIAGRAM
Active Tri-level (ATL) PWM operation
Normal PWM operation
PWM
tPDL(HS)
tPDL(HS)
HI_GATE
tF(HS)
t R(HS)
LO_GATE
tF(LS)
tPDL(LS)
tPDTS(HS_en) tPDTS(HS_dis)
tPDH(LS)
tR(LS)
tPDTS(LS_dis)
tPDTS(LS_en)
Figure 6: IR Active Tri‐Level (ATL) mode PWM, HI_GATE and LO_GATE signals
9
December 6, 2011 | FINAL | V1.05
CHL8515
High‐Efficiency Variable Gate MOSFET Driver
GENERAL DESCRIPTION
The CHL8515 is a high efficiency, fast MOSFET driver with
large source and sink current capability. It can reliably
drive the external high‐ and low‐side N‐channel MOSFETs
with large input capacitance at switching frequencies up to
1MHz. The patented IR Active Tri‐Level (ATL) feature allows
complete control over enable and disable of both MOSFETs
using the PWM input signal from the controller. The timing
and voltage levels of ATL are shown in Figure 6.
During normal operation the PWM transitions between
low and high voltage levels to drive the low‐ and high‐side
MOSFETs. The PWM signal falling edge transition to a low
voltage threshold initiates the high‐side driver turn off
after a short propagation delay, tPDL(HS). The dead time
control circuit monitors the HI_GATE and switch voltages
to ensure the high‐side MOSFET is turned off before the
LO_GATE voltage is allowed to rise to turn on the low‐side
MOSFET.
The PWM rising edge transition through the high‐side turn
on threshold, initiates the turn off of the low‐side MOSFET
after a small propagation delay, tPDL(LS). The adaptive
dead time circuit provides the appropriate dead time by
determining if the falling LO_GATE voltage threshold has
been crossed before allowing the HI_GATE voltage to rise
and turn on the high‐side MOSFET, tPDH(HS).
.
10
December 6, 2011 | FINAL | V1.05
CHL8515
High‐Efficiency Variable Gate MOSFET Driver
THEORY OF OPERATION
POWER‐ON RESET (POR)
CHL8515
applications with a limited number of board layers. It also
provides switching free of shoot through for slow PWM
transition times of up to 20ns. The CHL8515 is therefore
tolerant of stray capacitance on the PWM signal lines.
The CHL8515 incorporates a power‐on reset feature.
This ensures that both the high‐ and low‐side output
drivers are made active only after the device supply
voltage has exceeded a certain minimum operating
threshold. The Vcc and Vdrv supply is monitored and both
the drivers are set to the low state, holding both external
MOSFETs off. Once Vcc and Vdrv crosses the rising POR
threshold, the CHL8515 is reset and the outputs are held in
the low state until a transition from tri‐state to active
operation is detected at the PWM input. During normal
operation the drivers continue to remain active until the
Vcc and Vdrv falls below the falling POR threshold.
The CHL8515 provides a 1.0mA typical pull‐up current to
drive the PWM input to the tri‐state condition of 3.3V
when the PWM controller output is in its high impedance
state. The 1.0mA typical current is designed for driving
worst case stray capacitances and transition the CHL8515
into the tri‐state condition rapidly to avoid a prolonged
period of conduction of the high‐ or low‐side MOSFETs
during faults. Immediately after the driver is driven into
the tri‐state mode, the 1mA current is disables such that
power is conserved.
INTEGRATED BOOTSTRAP DIODE
One advantage of this fast tri‐state scheme is the ability
to quickly turn‐off all low‐side MOSFETs during a load
release event. This is known as diode emulation since all
the load current is forced to flow momentarily through the
body diodes of the MOSFETs. This results in a much lower
overshoot on the output voltage as can be seen in Figure 7
below.
The CHL8515 features an integrated bootstrap diode
to reduce external component count. This enables the
CHL8515 to be used effectively in cost and space sensitive
designs.
The bootstrap circuit is used to establish the gate voltage
for the high‐side driver. It consists of a diode and capacitor
connected between the SWITCH and BOOT pins of the
device. Integrating the diode within the CHL8515,
results in the need for an external boot capacitor only.
The bootstrap capacitor is charged through the diode
and injects this charge into the high‐side MOSFET input
capacitance when PWM signal goes high.
DIODE EMULATION DURING LOAD RELEASE
I_out 105A to 10A
V_out without diode emulation
Overshoots ~25mV over 0A level
V_out with Diode Emulation
Overshoot within 0A level
Results in reduction of 30mV
overshoot
IR ACTIVE TRI‐LEVEL (ATL) PWM INPUT SIGNAL
The CHL8515 gate drivers are driven by a patented tri‐level
PWM control signal provided by the IR digital PWM
controllers. During normal operation, the rising and falling
edges of the PWM signal transitions between 0V and 1.8V
to switch the LO_GATE and HI_GATE. To force both driver
outputs low simultaneously, the PWM signal crosses a
tri‐state voltage level higher than the tri‐state HI_GATE
threshold. This threshold based tri‐state results in a very
fast disable for both the drivers, with only a small tri‐state
propagation delay. MOSFET switching resumes when the
PWM signal falls below the tri‐state threshold into the
normal operating voltage range.
This fast tri‐state operation eliminates the need for any
tri‐state hold‐off time of the PWM signal to dwell in the
shutdown window. Dedicated disable or enable pins are
not required which simplifies the routing and layout in
11
December 6, 2011 | FINAL | V1.05
Figure 7: Output Voltage Overshoot Reduction
with Diode Emulation
START UP
During initial startup, the CHL8515 holds both high‐ and
low‐side drivers low even after POR threshold is reached.
This mode is maintained while the PWM signal is pulled
to the tri‐state threshold level greater than the tri‐state
HI_GATE threshold and until it transitions out of tri‐state.
It is this initial transition out of the tri‐state which enables
both drivers to switch based on the normal PWM voltage
levels.
High‐Efficiency Variable Gate MOSFET Driver
This startup also ensures that any undetermined PWM
signal levels from a controller in pre‐POR state will not
result in high‐ or low‐side MOSFET turn on until the
controller is out of its POR.
HIGH‐SIDE DRIVER
The high‐side driver drives an external floating N‐channel
MOSFET which can be switched at 1MHz. An external
bootstrap circuit referenced to the SWITCH node,
consisting of a boot diode and capacitor is used to bias
the external MOSFET gate. When the SWITCH node is at
ground, the boot capacitor is charged to near the supply
voltage using the boot diode and this stored charge is used
to turn on the external MOSFET when the PWM signal goes
high. Once the high‐side MOSFET is turned on, the SWITCH
voltage raises to the supply voltage and the boot voltage to
twice the supply voltage.
When the PWM signal goes low, the MOSFET is turned off
by pulling the MOSFET gate to the SWITCH voltage.
LOW‐SIDE DRIVER
The CHL8515 low‐side driver is designed to drive an
external N‐channel MOSFET referenced to ground at
1MHz. The low‐side driver is connected internally to the
supply voltage to turn the MOSFET on.
When the low‐side MOSFET is turned on the SWITCH
node is pulled to ground. This allows charging of the boot
capacitor to the supply voltage ready to drive the high‐side
MOSFET based on the PWM signal level.
ADAPTIVE DEAD TIME ADJUSTMENT
In a synchronous buck configuration dead time between
the turn off of one gate and turn on of the other is
necessary to prevent simultaneous conduction of the
external MOSFETS. It prevents a shoot‐through condition
which would result in a short of the supply voltage to
ground. A fixed dead time does not provide optimal
performance over a variety of MOSFETs, converter duty
cycles and board layouts.
The CHL8515 provides an ‘adaptive’ dead time adjustment.
This feature minimizes dead time to an optimum duration
which allows for maximum efficiency. The ‘break before
make’ adaptive design is achieved by monitoring gate and
SWITCH voltages to determine OFF status of a MOSFET.
It also provides zero‐voltage switching (ZVS) of the low‐
side MOSFET with minimum current conduction through
its body‐diode.
12
December 6, 2011 | FINAL | V1.05
CHL8515
When the PWM is switching between 1.8V and 0V, its
falling edge transition from high to low will turn off the
high‐side gate driver. The adaptive dead time circuit
monitors the HI_GATE and the SWITCH node voltages
during the high‐side MOSFET turn off. When the HI_GATE
falls below 1.7V above the SWITCH node potential or the
SWITCH node voltage drops below 0.8V the high‐side
MOSFET is determined to be turned off and the LO_GATE
turn on is initiated. This turns on the external low‐side
MOSFET. The rising edge transition of the PWM signal from
low to high voltage causes the low‐side gate driver to turn
off. The adaptive circuit monitors the voltage at LO_GATE
and when it falls below 1.7V, the low‐side MOSFET is
determined to be turned off and the high‐side MOSFET
turn on is initiated.
High‐Efficiency Variable Gate MOSFET Driver
APPLICATION INFORMATION
BOOT STRAP CIRCUIT
Once the high‐side MOSFET selection is made, the
bootstrap circuit can be defined. The integrated boot
diode of the CHL8515 reduces the external component
count for use in cost and space sensitive designs. For ultra
high efficiency designs, an external boot strap diode is
recommended.
The bootstrap capacitor CBoot stores the charge and
provides the voltage required to drive the external high‐
side MOSFET gate. The minimum capacitor value can be
defined by:
CBoot = QHS MOSFET_gate / ∆VBoot
CHL8515
The equation defining the overtemperature setpoint, OTSET
as a function of RSET (Figure 6) is:
OTSET  150C  89C 
38k
38k  RSET
The resistor RSET is therefore calculated as:
RSET 
38k  89C
 38k
150C  OTSET
Leaving the OTSET pin open will cause the system to use the
default 150ºC setpoint. A 1% or better resistor should be
used for the best accuracy. Figure 7 shows the values of
RSET chosen as a function of the desired overtemperature
setpoint.
where,
 QHS MOSFET_gate is the total gate charge of the
high‐side external MOSFET(s)
 ∆VBoot is the droop allowed on the boot capacitor
voltage (at the high‐side MOSFET gate)
A series resistor, 1Ω to 4Ω, may be added to customize the
rise time of the high‐side output. Slowing down this output
allows setting the phase node rising slew rate and limits
the surge current into the boot capacitor on start‐up.
ADJUSTABLE OVER TEMPERATURE
In high density multiphase VR solutions, the MOSFET driver
is often located very close to the MOSFETS. Differences in
temperature that occurs from phase to phase in a system
can occur due to mis‐matched thermal solutions, airflow,
surrounding components or manufacturing errors and can
often cause poor efficiency or even system failures if not
monitored.
The CHL8515 utilizes the MOSFET Driver die temperature
as an indicator of the overall temperature of each phase.
The OTSET feature allows the user to vary the OT# flag
indicator from 61ºC to 150ºC using a simple resistor.
13
December 6, 2011 | FINAL | V1.05
Figure 8: Choosing Overtemperature using RSET
The OT# flag an open drain signal and is active low as the
temperature of the CHL8515 die exceeds the OTSET point.
The user can monitor one or all phases, or tie the phases
together and to a system level enable to implement an
over‐temperature shutdown feature in the VR solution.
SUPPLY DECOUPLING CAPACITOR
VCC decoupling to the IR3598 is provided by a 0.1µF
bypass capacitor CVcc located close to the supply input pin.
A series resistor Rvcc, typically 10Ω, is added in series with
the supply voltage to filter high frequency ringing and
noise. A 1.0µF or higher capacitor is recommended for the
VDRV decoupling capacitor, CDRV.
High‐Efficiency Variable Gate MOSFET Driver
PCB LAYOUT CONSIDERATIONS
PCB layout and design is important to driver performance
in voltage regulator circuits due to the high current slew
rate (di/dt) during MOSFET switching.
 Locate all power components in each phase as
close to each other as practically possible in order
to minimize parasitics and losses, allowing for
reasonable airflow.
 Input supply decoupling and bootstrap capacitors
should be physically located close to their
respective IC pins.
 High current paths like the gate driver traces
should be as wide and short as practically possible.
 Trace inductances to the high‐ and low‐side
MOSFETs should be minimized.
 The ground connection of the IC should be as close
as possible to the low‐side MOSFET source.
 Use of a copper plane under and around the IC
and thermal vias to connect to buried copper
layers improves the thermal performance.
MOSFET stages should be well bypassed with capacitors
placed between the drain of the HIGH‐side MOSFET and
the source of the LOW‐side MOSFET.
14
December 6, 2011 | FINAL | V1.05
CHL8515
High‐Efficiency Variable Gate MOSFET Driver
MARKING INFORMATION
PART NUMBER
LOT # & WAFER CODE
ASSEMBLER/DATE CODE
8515
ZZZ-XX
AYYWW
PIN 1
Figure 8: Package Marking
PACKAGE INFORMATION
DFN 3x3mm, 10 pin
Figure 9: Package Dimensions
15
December 6, 2011 | FINAL | V1.05
CHL8515
High‐Efficiency Variable Gate MOSFET Driver
CHL8515
Data and specifications subject to change without notice.
This product will be designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252‐7105
TAC Fax: (310) 252‐7903
Visit us at www.irf.com for sales contact information.
www.irf.com
16
December 6, 2011 | FINAL | V1.05
Similar pages