MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED JANUARY 2010 D D D D D D D D D Low Supply-Voltage Range, 1.8 V to 3.6 V Ultralow Power Consumption: - Active Mode: 270 µA at 1 MHz, 2.2 V - Standby Mode: 0.7 µA - Off Mode (RAM Retention): 0.1 µA Ultrafast Wake-Up From Standby Mode in Less Than 1 µs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Hardware Multiplier Basic Clock Module Configurations: - Internal Frequencies up to 16 MHz With Four Calibrated Frequencies to ±1% - Internal Very Low Power Low-Frequency (LF) Oscillator - 32-kHz Crystal - High-Frequency (HF) Crystal up to 16 MHz - Resonator - External Digital Clock Source - External Resistor 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Three Capture/Compare Registers On-Chip Comparator for Analog Signal Compare Function or Slope Analog-to-Digital (A/D) Conversion D D D D D D D D Universal Serial Communication Interface - Enhanced UART Supporting Auto Baudrate Detection (LIN) - IrDA Encoder and Decoder - Synchronous SPI - I2Ct Brownout Detector Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse Bootstrap Loader in Flash Devices On-Chip Emulation Module Family Members Include MSP430F2330 8KB + 256B Flash Memory 1KB RAM MSP430F2350 16KB + 256B Flash Memory 2KB RAM MSP430F2370 32KB + 256B Flash Memory 2KB RAM Available in 40-Pin QFN Package and 49-Pin Die-Sized BGA Package For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide (SLAU144) description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The devices feature a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. The MSP430F23x0 series is an ultralow-power microcontroller with two built-in 16-bit timers, one universal serial communication interface (USCI), a versatile analog comparator, and 32 I/O pins. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2010, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 AVAILABLE OPTIONS{ PACKAGED DEVICES} TA PLASTIC 49-PIN DSBGA PLASTIC 40-PIN QFN (YFF) (RHA) MSP430F2330IYFF MSP430F2330IRHA MSP430F2350IYFF MSP430F2350IRHA - 40°C to 85°C MSP430F2370IYFF MSP430F2370IRHA MSP430F2330TRHA MSP430F2350TRHA - 40°C to 105°C MSP430F2370TRHA † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following: D Debugging and Programming Interface -- MSP--FET430UIF (USB) -- MSP--FET430PIF (Parallel Port) D Debugging and Programming Interface With Target Board -- MSP--FET430U23X0 (RHA package) D Production Programmer -- MSP--GANG430 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 AVCC D/AVSS RST/NMI TCK TMS TDI/TCLK TDO/TDI P4.7/TBCLK P4.6/TBOUTH/ACLK P4.5/TB2 MSP430F23x0IRHA and MSP430F23x0TRHA 40 39 38 37 36 35 34 33 32 31 1 30 P4.4/TB1 XIN/P2.6/CA6 2 29 P4.3/TB0 XOUT/P2.7/CA7 P1.0/TACLK 3 4 28 27 P4.2/TB2 P4.1/TB1 26 P4.0/TB0 25 24 P3.7 P3.6 DVCC P1.1/TA0 5 P1.2/TA1 P1.3/TA2 6 7 P1.4/SMCLK 8 23 P3.5/UCA0RXD/UCA0SOMI P1.5/TA0 9 22 P3.4/UCA0TXD/UCA0SIMO P1.6/TA1 10 21 11 12 13 14 15 16 17 18 19 20 P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL RHA PACKAGE (TOP VIEW) P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA pin designation, POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 pin designation, MSP430F23x0IYFF A1 A2 A3 A4 A5 A6 A7 B1 B2 B3 B4 B5 B6 B7 C1 C2 C3 C4 C5 C6 C7 TOP VIEW D1 D2 D3 D4 D5 D6 D7 E1 E2 E3 E4 E5 E6 E7 F1 F2 F3 F4 F5 F6 F7 G1 G2 G3 G4 G5 G6 G7 Package Dimensions The package dimensions for this YFF package are shown in the following table. See the package drawing at the end of this data sheet for more details. PACKAGED DEVICES MSP430F2370IYFF 4 YFF Package Dimensions D 3.20 ± 0.05 mm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 E 3.20 ± 0.05 mm MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 functional block diagram XIN XOUT DVCC D/AVSS AVCC P1.x/P2.x 2x8 P3.x/P4.x 2x8 ACLK Basic Clock System+ SMCLK Flash RAM 32kB 16kB 8kB 2kB 2kB 1kB MCLK 16MHz CPU MAB incl. 16 Registers MDB Hardware Multiplier Emulation JTAG Interface Brownout Protection MPY, MPYS, MAC, MACS Ports P1/P2 2x8 I/O Interrupt capability Watchdog WDT+ 15-Bit Ports P3/P4 2x8 I/O Timer_A3 Timer_B3 Comp_A+ 3 CC Registers 3 CC Registers 8 Channels USCI A0: UART IrDA, SPI USCI B0: SPI, I2C RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Terminal Functions NAME TERMINAL DS-- QFN I/O BGA DESCRIPTION DVCC XIN/P2.6/CA6 XOUT/P2.7/CA7 P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/C A4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 B3 A2 A3 B4 C4 A5 B5 A6 B6 A7 B7 C5 C7 C6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O D7 D6 E7 15 16 17 I/O I/O I/O P3.0/UCB0STE/ UCA0CLK P3.1/UCB0SIMO/UC B0SDA P3.2/UCB0SOMI/ UCB0SCL P3.3/UCB0CLK/UCA 0STE P3.4/UCA0TXD/ UCA0SIMO P3.5/UCA0RXD/ UCA0SOMI P3.6 P3.7 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB0 P4.4/TB1 P4.5/TB2 P4.6/TBOUTH/ACLK E6 18 I/O F7 19 F6 20 G7 21 I/O General-purpose digital I/O pin/USCIB0 slave in/master out in SPI mode, SDA I 2C data in I2C mode I/O General-purpose digital I/O pin/USCIB0 slave out/master in in SPI mode, SCL I 2C clock in I2C mode I/O General-purpose digital I/O/USCIB0 clock input/output, USCIA0 slave transmit enable G6 22 G5 23 F5 G4 F4 G3 G2 F3 G1 F1 F2 24 25 26 27 28 29 30 31 32 E2 E1 D1 D2 33 34 35 36 P4.7/TBCLK TDO/TDI TDI/TCLK TMS 6 Digital supply voltage, positive terminal. Supplies all digital parts. Input terminal of crystal oscillator/general-purpose digital I/O pin/Comparator_A input Output terminal of crystal oscillator/general-purpose digital I/O pin/Comparator_A input General-purpose digital I/O pin/Timer_A, clock signal TACLK input General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output General-purpose digital I/O pin/SMCLK signal output General-purpose digital I/O pin/Timer_A, compare: Out0 output General-purpose digital I/O pin/Timer_A, compare: Out1 output General-purpose digital I/O pin/Timer_A, compare: Out2 output General-purpose digital I/O pin/ACLK output/Comparator_A input General-purpose digital I/O pin/Timer_A, clock signal at INCLK/Comparator_A input General-purpose digital I/O pin/Comparator_A output/Timer_A, capture: CCI0B input/Comparator_A input General-purpose digital I/O pin/Comparator_A input/Timer_A, compare: Out1 output General-purpose digital I/O pin/Comparator_A input/Timer_A, compare: Out2 output General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input General-purpose digital I/O pin/USCIB0 slave transmit enable/USCIA clock input/output I/O General-purpose digital I/O pin/USCIA0 transmit data output in UART mode, slave data in/master out in SPI mode I/O General-purpose digital I/O pin/USCIA0 receive data input in UART mode, slave data out/master in in SPI mode I/O General-purpose digital I/O pin I/O General-purpose digital I/O pin I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A input, compare: Out0 output I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A input, compare: Out1 output I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A input, compare: Out2 output I/O General-purpose digital I/O pin/Timer_B, capture: CCI0B input, compare: Out0 output I/O General-purpose digital I/O pin/Timer_B, capture: CCI1B input, compare: Out1 output I/O General-purpose digital I/O pin/Timer_B, compare: Out2 output I/O General-purpose digital I/O pin/switch all PWM digital outputs to high impedance - Timer_B3: TB0 to TB2/ACLK output I/O General-purpose digital I/O pin/input clock TBCLK - Timer_B3 I/O Test data output port. TDO/TDI data output or programming data input terminal I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. I Test mode select. TMS is used as an input port for device programming and test. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Terminal Functions (Continued) NAME TCK RST/NMI D/AVSS AVCC QFN Pad Reserved TERMINAL DESCRIPTION BGA QFN I/O C1 37 I Test clock. TCK is the clock input port for device programming and test. C2 38 I Reset input, nonmaskable interrupt input port. B1 39 Digital/Analog supply voltage, negative terminal. A1 40 Analog supply voltage, positive terminal. NA NA QFN package pad connection to D/AVSS recommended. A4 NA BGA package GND balls. Connection to DVSS/AVSS is recommended. B2 C3 D3 D4 D5 E3 E4 E5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 short-form description CPU ISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The MSP430 CPU has a 16-bit R Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes. SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination Single operands, destination only Relative jump, un/conditional e.g., ADD R4,R5 e.g., CALL R8 e.g., JNE R4 + R5 - - - > R5 PC - - >(TOS), R8-- - > PC Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX Register F F MOV Rs,Rd Indexed F F MOV X(Rn),Y(Rm) Symbolic (PC relative) F F MOV EDE,TONI Absolute F F MOV &MEM,&TCDAT Indirect F MOV @Rn,Y(Rm) Indirect F MOV @Rn+,Rm autoincrement Immediate F MOV #X,TONI NOTE : S = source D = destination 8 EXAMPLE MOV R10,R11 MOV 2(R5),6(R6) MOV @R10,Tab(R6) MOV @R10+,R11 MOV #45,TONI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 OPERATION R10 - - > R11 M(2+R5)-- - > M(6+R6) M(EDE) - - > M(TONI) M(MEM) - - > M(TCDAT) M(R10) - - > M(Tab+R6) M(R10) - - > R11 R10 + 2-- - > R10 #45 - - > M(TONI) MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active D Low-power mode 0 (LPM0) -- CPU is disabled -- ACLK and SMCLK remain active -- MCLK is disabled D Low-power mode 1 (LPM1) -- CPU is disabled -- ACLK and SMCLK remain active -- MCLK is disabled -- DCO’s dc generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2) -- CPU is disabled -- MCLK and SMCLK are disabled -- DCO’s dc generator remains enabled -- ACLK remains active D Low-power mode 3 (LPM3) -- CPU is disabled -- MCLK and SMCLK are disabled -- DCO’s dc generator is disabled -- ACLK remains active D Low-power mode 4 (LPM4) -- CPU is disabled -- ACLK is disabled -- MCLK and SMCLK are disabled -- DCO’s dc generator is disabled -- Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE Power-up External Reset Watchdog Flash key violation PC out of range (see Note 1) NMI Oscillator Fault Flash memory access violation Timer_B3 Timer_B3 Comparator_A+ Watchdog timer Timer_A3 Timer_A3 USCI_A0/USCI_B0 Receive USCI_B0 I2C Status USCI_A0/USCI_B0 Transmit USCI_B0 I2C Receive / Transmit I/O port P2 (eight flags) I/O port P1 (eight flags) INTERRUPT FLAG PORIFG RSTIFG WDTIFG KEYV (see Note 2) NMIIFG OFIFG ACCVIFG (see Notes 2 and 6) TBCCR0 CCIFG (see Note 3) TBCCR1 and TBCCR2, CCIFGs, TBIFG (see Notes 2 and 3) CAIFG WDTIFG TACCR0 CCIFG (see Note 3) TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (see Notes 2 and 3) UCA0RXIFG, UCB0RXIFG (see Notes 2 and 4) UCA0TXIFG, UCB0TXIFG (see Notes 2 and 5) SYSTEM INTERRUPT Reset WORD ADDRESS 0xFFFE PRIORITY 31, highest (non)-maskable (non)-maskable (non)-maskable 0xFFFC 30 maskable 0xFFFA 29 maskable 0xFFF8 28 maskable maskable maskable 0xFFF6 0xFFF4 0xFFF2 27 26 25 maskable 0xFFF0 24 maskable 0xFFEE 23 maskable 0xFFEC 22 P2IFG.0 to P2IFG.7 (see Notes 2 and 3) P1IFG.0 to P1IFG.7 (see Notes 2 and 3) maskable 0xFFEA 0xFFE8 0xFFE6 21 20 19 maskable 0xFFE4 18 0xFFE2 17 0xFFE0 16 (see Note 7) 0xFFDE 15 (see Note 8) 0xFFDC-- 0xFFC0 14-- 0, lowest NOTES: 1. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x0000 to 0x01FF). 2. Multiple source flags. 3. Interrupt flags are located in the module. 4. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. 5. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. 6. Non-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot. Non-maskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. 7. This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0xFFDC to 0xFFC0 are not used in this device and can be used for regular program code if necessary. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 00h WDTIE OFIE NMIIE ACCVIE 7 6 5 ACCVIE rw-- 0 4 NMIIE rw-- 0 3 2 1 OFIE rw-- 0 0 WDTIE rw-- 0 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. Oscillator fault enable (Non)maskable interrupt enable Flash access violation interrupt enable Address 01h 7 6 5 UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE USCI_A0 receive interrupt enable USCI_A0 transmit interrupt enable USCI_B0 receive interrupt enable USCI_B0 transmit interrupt enable 4 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-- 0 rw-- 0 rw-- 0 rw-- 0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 interrupt flag register 1 and 2 Address 02h 7 WDTIFG 6 5 4 NMIIFG rw-- 0 1 OFIFG rw-- 1 0 WDTIFG rw-- (0) CC CC PORIFG NMIIFG CC Address 7 6 5 03h UCA0RXIFG UCA0TXIFG UCB0RXIFG UCB0TXIFG 4 3 UCB0TX IFG rw-- 0 USCI_A0 receive interrupt flag USCI_A0 transmit interrupt flag USCI_B0 receive interrupt flag USCI_B0 transmit interrupt flag rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device 12 2 PORIFG rw-- (1) Set on watchdog timer overflow or security key violation. Reset on V power-up or a reset condition at RST/NMI pin in reset mode. Flag set on oscillator fault External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on V power up Power-on interrupt flag. Set on V power up. Set via RST/NMI pin OFIFG RSTIFG Legend 3 RSTIFG rw-- (0) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 UCB0RX IFG rw-- 0 1 UCA0TX IFG rw-- 0 0 UCA0RX IFG rw-- 0 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 memory organization Memory Main: interrupt vector Main: code memory Information memory Boot memory RAM Peripherals Size Flash Flash Size Flash Size ROM Size 16-bit 8-bit 8-bit SFR MSP430F2330 8KB Flash 0xFFFF - 0xFFC0 0xFFFF - 0xE000 256 Byte 0x10FF - 0x1000 1KB 0x0FFF - 0x0C00 1KB Byte 0x5FF - 0x0200 0x01FF - 0x0100 0x00FF - 0x0010 0x000F - 0x0000 MSP430F2350 16KB Flash 0xFFFF - 0xFFC0 0xFFFF - 0xC000 256 Byte 0x10FF - 0x1000 1KB 0x0FFF - 0x0C00 2KB Byte 0x9FF - 0x0200 0x01FF - 0x0100 0x00FF - 0x0010 0x000F - 0x0000 MSP430F2370 32KB 0xFFFF - 0xFFC0 0xFFFF - 0x8000 256 Byte 0x10FF - 0x1000 1KB 0x0FFF - 0x0C00 2KB 0x09FF - 0x0200 0x01FF - 0x0100 0x00FF - 0x0010 0x000F - 0x0000 bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature number SLAU265. BSL FUNCTION Data transmit Data receive YFF PACKAGE PINS C4 - P1.1 C6 - P2.2 RHA PACKAGE PINS 5 - P1.1 14 - P2.2 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset segment A is protected against programming or erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is required. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User’s Guide, literature number SLAU144. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very low power LF oscillator. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. DCO CALIBRATION DATA (PROVIDED FROM FACTORY IN FLASH INFO MEMORY SEGMENT A) DCO FREQUENCY CALIBRATION SIZE ADDRESS REGISTER 1 MHz 8 MHz 12 MHz 16 MHz CALBC1_1MHZ CALDCO_1MHZ CALBC1_8MHZ CALDCO_8MHZ CALBC1_12MHZ CALDCO_12MHZ CALBC1_16MHZ CALDCO_16MHZ byte byte byte byte byte byte byte byte 0x10FF 0x10FE 0x10FD 0x10FC 0x10FB 0x10FA 0x10F9 0x10F8 brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. digital I/O There are four 8-bit I/O ports implemented—ports P1 through P4: D All individual I/O bits are independently programmable. D Any combination of input, output, and interrupt conditions is possible. D Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. D Read/write access to port-control registers is supported by all instructions. D Each I/O has an individually programmable pullup/pulldown resistor. The MSP430F23x0 devices provide 32 total port I/O pins available externally. See the device pinout for more information. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16, 16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER YFF RHA B4 - P1.0 4 - P1.0 C7 - P2.1 C4 - P1.1 C6 - P2.2 13 - P2.1 5 - P1.1 14 - P2.2 A5 - P1.2 6 - P1.2 B5 - P1.3 7 - P1.3 DEVICE INPUT SIGNAL TACLK ACLK SMCLK TAINCLK TA0 TA0 VSS VCC TA1 CAOUT (internal) VSS VCC TA2 ACLK (internal) VSS VCC MODULE MODULE INPUT NAME BLOCK TACLK ACLK SMCLK INCLK CCI0A CCI0B GND VCC CCI1A CCI1B GND VCC CCI2A CCI2B GND VCC Timer CCR0 CCR1 CCR2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MODULE OUTPUT SIGNAL OUTPUT PIN NUMBER YFF RHA NA TA0 TA1 TA2 C4 - P1.1 B6 - P1.5 5 - P1.1 9 - P1.5 A5 - P1.2 A7 - P1.6 D7 - P2.3 6 - P1.2 10 - P1.6 15 - P2.3 B5 - P1.3 B7 - P1.7 D6 - P2.4 7 - P1.3 11 - P1.7 16 - P2.4 15 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. INPUT PIN NUMBER YFF RHA E2 - P4.7 33 - P4.7 F4 - P4.0 F3 - P4.3 26 - P4.0 29 - P4.3 G3 - P4.1 G1 - P4.4 27 - P4.1 30 - P4.4 G2 - P4.2 28 - P4.2 TIMER_B3 SIGNAL CONNECTIONS MODULE MODULE DEVICE INPUT MODULE INPUT OUTPUT SIGNAL BLOCK NAME SIGNAL TBCLK TACLK ACLK ACLK Timer NA SMCLK SMCLK TBCLK INCLK TB0 CCI0A TB0 CCI0B CCR0 TB0 VSS GND VCC VCC TA1 CCI1A TB1 CCI1B CCR1 TB1 VSS GND VCC VCC TB2 CCI2A ACLK (internal) CCI2B CCR2 TB2 VSS GND VCC VCC OUTPUT PIN NUMBER YFF RHA F4 - P4.0 F3 - P4.3 26 - P4.0 29 - P4.3 G3 - P4.1 G1 - P4.4 27 - P4.1 30 - P4.4 G2 - P4.2 F1 - P4.5 28 - P4.2 31 - P4.5 universal serial communications interface (USCI) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 pin or 4 pin) or I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI A0 provides support for SPI (3 pin or 4 pin), UART, enhanced UART and IrDA. USCI B0 provides support for SPI (3 pin or 4 pin) and I2C. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 peripheral file map Timer_B3 Timer_A3 Flash Memory Hardware Multiplier Watchdog Timer+ USCI_B0 USCI_A0 PERIPHERALS WITH WORD ACCESS Capture/compare register Capture/compare register Capture/compare register Timer_B register Capture/compare control Capture/compare control Capture/compare control Timer_B control Timer_B interrupt vector Capture/compare register Capture/compare register Capture/compare register Timer_A register Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector Flash control 3 Flash control 2 Flash control 1 Sum extend Result high word Result low word Second operand Multiply signed +accumulate/operand1 Multiply+accumulate/operand1 Multiply signed/operand1 Multiply unsigned/operand1 Watchdog/timer control TBCCR2 TBCCR1 TBCCR0 TBR TBCCTL2 TBCCTL1 TBCCTL0 TBCTL TBIV TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV FCTL3 FCTL2 FCTL1 SUMEXT RESHI RESLO OP2 MACS MAC MPYS MPY WDTCTL 0x0196 0x0194 0x0192 0x0190 0x0186 0x0184 0x0182 0x0180 0x011E 0x0176 0x0174 0x0172 0x0170 0x0166 0x0164 0x0162 0x0160 0x012E 0x012C 0x012A 0x0128 0x013E 0x013C 0x013A 0x0138 0x0136 0x0134 0x0132 0x0130 0x0120 USCI_B0 transmit buffer USCI_B0 receive buffer USCI_B0 status USCI_B0 bit rate control 1 USCI_B0 bit rate control 0 USCI_B0 control 1 USCI_B0 control 0 USCI_B0 I2C slave address USCI_B0 I2C own address USCI_A0 transmit buffer USCI_A0 receive buffer USCI_A0 status USCI_A0 modulation control USCI_A0 baud rate control 1 USCI_A0 baud rate control 0 USCI_A0 control 1 USCI_A0 control 0 USCI_A0 IrDA receive control USCI_A0 IrDA transmit control USCI_A0 auto baud rate control UCB0TXBUF UCB0RXBUF UCB0STAT UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 UCB0SA UCB0OA UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCTL UCA0ABCTL 0x06F 0x06E 0x06D 0x06B 0x06A 0x069 0x068 0x011A 0x0118 0x0067 0x0066 0x0065 0x0064 0x0063 0x0062 0x0061 0x0060 0x005F 0x005E 0x005D PERIPHERALS WITH BYTE ACCESS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Basic Clock System+ Port P4 Port P3 Port P2 Port P1 Special Function 18 PERIPHERALS WITH BYTE ACCESS (continued) Basic clock system control 3 Basic clock system control 2 Basic clock system control 1 DCO clock frequency control Port P4 resistor enable Port P4 selection Port P4 direction Port P4 output Port P4 input Port P3 resistor enable Port P3 selection Port P3 direction Port P3 output Port P3 input Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL P4REN P4SEL P4DIR P4OUT P4IN P3REN P3SEL P3DIR P3OUT P3IN P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN IFG2 IFG1 IE2 IE1 0x0053 0x0058 0x0057 0x0056 0x0011 0x001F 0x001E 0x001D 0x001C 0x0010 0x001B 0x001A 0x0019 0x0018 0x002F 0x002E 0x002D 0x002C 0x002B 0x002A 0x0029 0x0028 0x0027 0x0026 0x0025 0x0024 0x0023 0x0022 0x0021 0x0020 0x0003 0x0002 0x0001 0x0000 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to + 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature: Unprogrammed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C Programmed device (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 105°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions PARAMETER MIN 1.8 2.2 0.0 - 40 - 40 Supply voltage during program execution, VCC Supply voltage during flash memory programming, V CC Supply voltage, VSS MAX UNITS 3.6 V 3.6 V 0.0 V 85 °C 105 °C AVCC = DVCC = VCC (see Note 1) AVCC = DVCC = VCC (see Note 1) AVSS = DVSS = VSS I version Operating free-air free air temperature range, range TA T version VCC = 1.8 V, dc 4.15 Duty cycle = 50% ±10% VCC = 2.7 V, Processor frequency fSYSYTEM (Maximum MCLK frequency) dc 12 MHz Duty cycle = 50% ±10% (see Notes 2 and 3 and Figure g 1) VCC ≥ 3.3 V, dc 16 Duty cycle = 50% ±10% NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AV CC and DVCC can be tolerated during power-up. 2. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 3. Modules might have a different maximum input clock specification. See the specification of the respective module in this datasheet. Legend: 16 MHz z H M - 12 MHz yc ne uq er F 7.5 MHz m et sy S 4.15 MHz Supply voltage range during flash memory programming Supply voltage range during program execution 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage - V NOTE : Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum V CC of 2.2 V. Figure 1. Operating Area POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current (into VCC) excluding external current (see Notes 1 and 2) PARAMETER IAM, 1MHz IAM, 1MHz IAM, 4kHz IAM,100kHz Active mode (AM) current (1MHz) Active mode (AM) current (1MHz) Active mode (AM) current (4kHz) Active mode (AM) current (100kHz) TEST CONDITIONS fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 Hz, Program executes from flash, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 fMCLK = fSMCLK = fACLK = 32,768 Hz/8 = 4,096 Hz, fDCO = 0Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 fMCLK = fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz, 0Hz Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, 0 SCG0 = 0, 0 SCG1 = 0, 0 OSCOFF = 1 TA VCC 2.2 V MIN TYP 270 370 µA 3V 390 2.2 V 226 550 µA 3V 318 - 40_C to 85_C 2.2 V 2 105_C 2.2 V - 40_C to 85_C 3V 105_C 3V - 40_C to 85_C 105_C - 40_C to 85_C 105_C 2.2 V 2.2 V 3V 3V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 6 14 3 9 µA 17 60 72 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. 20 MAX UNIT 85 95 95 105 µA MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 typical characteristics - active mode supply current (into DVCC + AVCC) 8.0 5.0 DCO = 16 MHz f 7.0 A m -t ne rr uC ed o M ev it cA 6.0 DCO f 5.0 4.0 = 12 MHz DCO = 8 MHz f 3.0 2.0 A = 85 °C T A 4.0 m -t ne rr 3.0 uC ed o M 2.0 ev it cA A = 25 °C T CC = 3 V V A = 85 °C T A = 25 °C T 1.0 1.0 0.0 1.5 CC = 2.2 V V DCO = 1 MHz f 2.0 2.5 3.0 3.5 VCC - Supply Voltage - V 4.0 Figure 2. Active mode current vs VCC, TA = 25°C 0.0 0.0 4.0 DCO f 8.0 12.0 16.0 -- DCO Frequency -- MHz Figure 3. Active mode current vs DCO frequency POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low power mode supply currents (into VCC) excluding external current (see Notes 1 and 2) PARAMETER TEST CONDITIONS MCLK = 0MHz, f Low-power mode 0 (LPM0) current, current see Note 3 fSMCLK == ffDCO == 11 MHz, f MHz fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 0, 0 OSCOFF = 0 fMCLK = 0MHz, fSMCLK = fDCO(0, 0) ≈ 100kHz 100kHz, fACLK = 0Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 0, 0 OSCOFF = 1 fMCLK = fSMCLK = 0MHz, fDCO = 1 MHz, fACLK = 32,768 32 768 Hz, Hz BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, 1 SCG0 = 0, 0 SCG1 = 1, 1 OSCOFF = 0 TA --40°C to 85 VCC _C 22V 2.2 TYP 68 MAX UNIT 84 µA 90 µA 88 110 µA 105_C - 40°C to 85_C 36 22V 2.2 Low-power mode 105_C ILPM0, 100kHz 0 (LPM0) current, current - 40°C to 85_C 40 see Note 3 3V 105_C - 40°C to 85_C 20 22V 2.2 Low-power mode 105_C ILPM2 2 (LPM2) current, current - 40°C to 85_C 23 see Note 4 3V 105_C - 40°C to 25°C 0.7 85°C 2.2 V = fSMCLK = 0MHz, 0MHz Low-power mode ffDCO ==fMCLK 105°C 32,768 Hz, ACLK ILPM3,LFXT1 3 (LPM3) current, current CPUOFF = 1, SCG0 = 1, SCG1 = 1, - 40°C to 25°C 0.85 see Note 4 OSCOFF = 0 85°C 3V 105°C - 40°C to 25°C 0.25 85°C 2.2 V fMCLK = fSMCLK = 0MHz, 0MHz Low-power mode ffDCO =from 105°C internal LF oscillator (VLO), ACLK ILPM3,VLOO 3 current, current (LPM3) CPUOFF = 1, SCG0 = 1, SCG1 = 1, 40 ° C to 25°C 0.35 see Note 4 OSCOFF = 0 85°C 3V 105°C - 40°C 25°C 2 2V 2.2V 85°C 1.7 f = f = f = 0MHz 0MHz, SMCLK Low-power mode fDCO = MCLK 105 ° C ACLK 0Hz, 4 (LPM4) current, current CPUOFF ILPM4 = 1, SCG0 = 1, SCG1 = 1, - 40°C see Note 5 OSCOFF = 1 25°C 3V 85°C 1.9 105°C NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V-- T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF. 3. Current for brownout and WDT clocked by SMCLK included. 4. Current for brownout and WDT clocked by ACLK included. 5. Current for brownout included. 115 45 50 50 54 28 32 32 37 1.0 3.3 10 1.2 3.8 12 0.8 2.9 9 1.0 3.5 11 0.5 0.5 2.7 8.6 0.5 0.5 3 9 µA ILPM0, 1MHz 22 105_C MIN - 40°C to 85_C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3V µA µA µA µA µA µA µA µA µA µA µA µA µA µA MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) Schmitt-trigger inputs - Ports P1, P2, P3, P4, JTAG, RST/NMI, and XIN (see Note) PARAMETER TEST CONDITIONS VCC V PPositive-going iti i input i t threshold th h ld voltage 2.2 V 3V V Negative-going N ti i input i t threshold th h ld voltage V Input voltage hysteresis (V - V ) 2.2 V 3V 2.2 V 3V IT+ IT-- hys R Pull IT+ IT-- For pullup: V = V , For pulldown: V = V V = V or V Pullup/pulldown resistor IN C Input capacitance NOTE : XIN only in bypass mode. I IN SS 20 SS IN MIN TYP 0.45 1.00 1.35 0.25 0.55 0.75 0.2 0.3 CC 35 5 CC MAX UNIT 0.75 VCC 1.65 V 2.25 0.55 V 1.20 V 1.65 1.0 V 1.0 CC 50 kΩ pF inputs - Ports P1, P2 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT Port P1, P2: P1.x to P2.x, External trigger puls width to set interrupt t External interrupt timing 2.2 V/3 V 20 ns flag, (see Note) NOTE : An external signal sets the interrupt flag every time the minimum interrupt puls width t is met. It may be set even with trigger signals shorter than t . (int) (int) (int) leakage current - Ports P1, P2, P3 and P4 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT I High-impedance leakage current see Notes 1 and 2 2.2 V/3 V ±50 nA NOTES: 1. The leakage current is measured with V SS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull-- up/pull-- down resistor is disabled. lkg(Px.x) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1, P2, P3 and P4 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT I(OHmax) = - 1.5 mA (see Notes 1) 2.2 V VCC - 0.25 VCC 2.2 V VCC - 0.6 VCC I(OHmax) = - 6 mA (see Notes 2) High-level High level output VOH V voltage g 3V VCC - 0.25 VCC I(OHmax) = - 1.5 mA (see Notes 1) I(OHmax) = - 6 mA (see Notes 2) 3V VCC - 0.6 VCC I(OLmax) = 1.5 mA (see Notes 1) 2.2 V VSS VSS+0.25 2.2 V VSS VSS+0.6 I(OLmax) = 6 mA (see Notes 2) Low-level Low level output VOL V voltage I(OLmax) = 1.5 mA (see Notes 1) 3V VSS VSS+0.25 I(OLmax) = 6 mA (see Notes 2) 3V VSS VSS+0.6 NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. output frequency -- Ports P1, P2, P3 and P4 PARAMETER Port output frequency (with load) TEST CONDITIONS VCC MIN TYP MAX UNIT 2.2 V 7.5 MHz P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ fPx.y (see Note 1 and 2) 3V 12 MHz 2.2 V 7.5 MHz P1.4/SMCLK, CL = 20 pF fPort_CLK Clock output frequency P2.0/ACLK, (see Note 2) 3V 16 MHz NOTES: 1. A resistive divider with 2 times 0.5 k Ω between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% V CC at the specified toggle frequency. 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE A m -t ne rr uC tu tpu O le ve Lw oL la ci py -T L IO 25.0 A m -t ne rr uC tu pt u O le ve Lw oL la ci py T L IO A = 25°C CC = 2.2 V T V P2.4 A = 85°C 20.0 TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE T 15.0 10.0 5.0 0.0 50.0 CC = 3 V V A = 25°C P2.4 T 40.0 A = 85°C T 30.0 20.0 10.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 OL -- Low-Level Output Voltage -- V 1.0 0.0 P2.4 A = 85°C T A = 25°C T 0.5 1.0 1.5 2.0 OH -- High-Level Output Voltage -- V V Figure 6 NOTE : One output loaded at a time. 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE A 0.0 m -t ne rr --10.0 uC tu tpu O le --20.0 ve Lhg --30.0 iH la ci py T --40.0 H IO CC = 2.2 V V 0.0 2.5 Figure 5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE --25.0 2.0 V Figure 4 A m -t ne --5.0 rr uC tu tpu--10.0 O le ve Lhg--15.0 iH la ci py --20.0 T H IO 1.5 OL -- Low-Level Output Voltage -- V V 2.5 CC = 3 V V P2.4 A = 85°C T A = 25°C T --50.0 0.0 0.5 OH V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1.0 1.5 2.0 2.5 3.0 3.5 -- High-Level Output Voltage -- V Figure 7 25 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT (see Figure 8) dVCC/dt ≤ 3 V/s 0.7 × V(B_IT--) V V(B_IT--) (see Figure 8 through Figure 10) dVCC/dt ≤ 3 V/s 1.71 V Vhys(B_IT--) (see Figure 8) dVCC/dt ≤ 3 V/s 70 130 210 mV td(BOR) (see Figure 8) 2000 µs Pulse length needed at RST/NMI pin to t(reset) 2.2 V/3 V 2 µs accepted reset internally NOTES: 1. The current consumption of the brownout module is already included in the I CC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is ≤ 1.8 V. 2. During power up, the CPU begins code execution following a period of t d(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default DCO settingsmustnotbechangeduntilVCC ≥ VCC(min), whereVCC(min) isthe minimumsupply voltagefor thedesired operatingfrequency. VCC(start) V CC V hys(B_IT--) V (B_IT--) CC(start) V 1 0 t d(BOR) Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) V CC 2 CC V t pw 3 V = 3 V Typical Conditions V ) p o r d ( C C V 1.5 1 V CC(drop) 0.5 0 0.001 1 1000 1 ns pw -- Pulse Width -- µs t 1 ns pw -- Pulse Width -- µs t Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal V CC 2 t pw 3 V CC = 3 V V V ) p o r d ( C C V 1.5 Typical Conditions 1 V CC(drop) 0.5 f t = t 0 0.001 1 1000 pw -- Pulse Width -- µs t r tr f tpw -- Pulse Width -- µs t Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency f to: DCO(RSEL,DCO) f average is used for the remaining cycles. The frequency is an average equal ×f = MOD × 32 f ×f +(32−MOD) × f DCO(RSEL,DCO) DCO(RSEL,DCO) DCO frequency PARAMETER VCC f f f f f f f f f f f f f f f f f f S DCO(0,0) DCO(0,3) DCO(1,3) DCO(2,3) DCO(3,3) DCO(4,3) DCO(5,3) DCO(6,3) DCO(7,3) DCO(8,3) DCO(9,3) DCO(10,3) DCO(11,3) DCO(12,3) DCO(13,3) DCO(14,3) DCO(15,3) DCO(15,7) RSEL S Duty cycle DCO 28 TEST CONDITIONS RSELx < 14 RSELx = 14 Supply voltage RSELx = 15 DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 Frequency step between S = f /f range RSEL and RSEL+1 Frequency step between S = f /f tap DCO and DCO+1 Measured at P1.4/SMCLK RSEL DCO DCO(RSEL+1,DCO) DCO(RSEL,DCO+1) + DCO(RSEL,DCO DCO(RSEL,DCO) DCO(RSEL,DCO) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1) + DCO(RSEL,DCO VCC 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 3V 3V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 1) MIN 1.8 2.2 3.0 0.06 0.07 0.10 0.14 0.20 0.28 0.39 0.54 0.80 1.10 1.60 2.50 3.00 4.30 6.00 8.60 12.0 16.0 TYP MAX 3.6 3.6 3.6 0.14 0.17 0.20 0.28 0.40 0.54 0.77 1.06 1.50 2.10 3.00 4.30 5.50 7.30 9.60 13.9 18.5 26.0 1.55 1.05 1.08 1.12 40 50 60 UNIT V V V MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz ratio % MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies - tolerance at calibration PARAMETER Frequency tolerance at calibration fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) TEST CONDITIONS BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1= CALBC1_8MHZ, 8-MHz calibration value DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1= CALBC1_12MHZ, 12-MHz calibration value DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1= CALBC1_16MHZ, 16-MHz calibration value DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 1-MHz calibration value TA 25°C VCC 3V MIN TYP MAX UNIT - 1 ±0.2 +1 % 25°C 3V 0.990 1 1.010 MHz 25°C 3V 7.920 8 8.080 MHz 25°C 3V 11.88 12 12.12 MHz 25°C 3V 15.84 16 16.16 MHz VCC 3.0 V 3.0 V 3.0 V 3.0 V 2.2 V 3.0 V 3.6 V 2.2 V 3.0 V 3.6 V 2.2 V 3.0 V 3.6 V 3.0 V MIN TYP - 2.5 ±0.5 - 2.5 ±1 - 2.5 ±1 -3 ±2 0.970 1 0.975 1 0.970 1 7.760 8 7.800 8 7.600 8 11.64 12 11.64 12 11.64 12 15.52 16 15.00 16 calibrated DCO frequencies - tolerance over temperature 0°C to 85°C PARAMETER 1-MHz tolerance over temperature 8-MHz tolerance over temperature 12-MHz tolerance over temperature 16-MHz tolerance over temperature TEST CONDITIONS TA 0°C to 85°C 0°C to 85°C 0°C to 85°C 0°C to 85°C fCAL(1MHz) 11-MHz MHz calibration value BCSCTL1= CALBC1_1MHZ, CALBC1 1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C fCAL(8MHz) 88-MHz MHz calibration value BCSCTL1= CALBC1_8MHZ, CALBC1 8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1= CALBC1_12MHZ, CALBC1 12MHZ, fCAL(12MHz) 12 12-MHz MHz calibration value DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1= CALBC1_16MHZ, CALDCO 16MHZ fCAL(16MHz) 16-MHz 16 MHz calibration value DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 0°C to 85°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3.6 V MAX +2.5 +2.5 +2.5 +3 1.030 1.025 1.030 8.400 8.200 8.240 12.36 12.36 12.36 16.48 16.48 UNIT % % % % MHz MHz MHz MHz 29 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) CC TA 25°C 25°C 25°C 25°C VCC 1.8 V to 3.6 V 1.8 V to 3.6 V 2.2 V to 3.6 V 3.0 V to 3.6 V MIN TYP MAX UNIT -3 ±2 +3 % -3 ±2 +3 % -3 ±2 +3 % -6 ±2 +3 % 25°C 1.8 V to 3.6 V 0.970 1 1.030 MHz 25°C 1.8 V to 3.6 V 7.760 8 8.240 MHz 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz 25°C 3.0 V to 3.6 V 15.00 16 16.48 MHz TA - 40°C to 105°C - 40°C to 105°C - 40°C to 105°C - 40°C to 105°C VCC 1.8 V to 3.6 V 1.8 V to 3.6 V 2.2 V to 3.6 V 3.0 V to 3.6 V MIN TYP MAX UNIT -5 ±2 +5 % -5 ±2 +5 % -5 ±2 +5 % -6 ±3 +6 % calibrated DCO frequencies -- tolerance over supply voltage V PARAMETER 1 MHz tolerance over VCC 8 MHz tolerance over VCC 12 MHz tolerance over VCC 16 MHz tolerance over VCC fCAL(1MHz) 1MHz calibration value fCAL(8MHz) 8MHz calibration value calibration fCAL(12MHz) 12MHz value calibration fCAL(16MHz) 16MHz value TEST CONDITIONS BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1= CALBC1_8MHZ , DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1= CALBC1_12MHZ , DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms calibrated DCO frequencies -- overall tolerance PARAMETER 1-MHz tolerance overall 8-MHz tolerance overall 12-MHz tolerance overall 16-MHz tolerance overall fCAL(1MHz) 1-MHz calibration value fCAL(8MHz) 8-MHz calibration value calibration fCAL(12MHz) 12-MHz value calibration fCAL(16MHz) 16-MHz value 30 TEST CONDITIONS BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms - 40°C to 105°C 1.8 V to 3.6 V 0.950 1 1.050 MHz - 40°C to 105°C 1.8 V to 3.6 V 7.600 8 8.400 MHz - 40°C to 105°C 2.2 V to 3.6 V 11.40 12 12.60 MHz - 40°C to 105°C 3.0 V to 3.6 V 15.00 16 17.00 MHz POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 1.03 1.02 z H M y c n e u q e r F A = 105 °C T 1.01 A = 85 °C T 1.00 A = 25 °C T 0.99 A = --40 °C T 0.98 0.97 1.5 2.0 2.5 3.0 3.5 4.0 CC -- Supply Voltage -- V V Figure 11. Calibrated 1-MHz Frequency vs VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 ,electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from lower power modes (LPM3/4) PARAMETER t DCO,LPM3/4 TEST CONDITIONS BCSCTL1= CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ BCSCTL1= CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ BCSCTL1= CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ BCSCTL1= CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ DCO clock wake wake-up up time from LPM3/4 (see Note 1) VCC MIN TYP MAX UNIT 2.2 V/3 V 2 2.2 V/3 V 1.5 2.2 V/3 V 1 3V 1 µs CPU wake-up time from LPM3/4 1/f + (see Note 2) t NOTES: 1. The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. t MCLK CPU,LPM3/4 Clock,LPM3/4 typical characteristics - DCO clock wake-up time from LPM3/4 10.00 su e im T ek a W 1.00 O CD RSELx = 0...11 RSELx = 12...15 0.10 0.10 1.00 10.00 DCO Frequency -- MHz Figure 12. Clock Wake-Up Time From LPM3 vs DCO Frequency 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) OSC (see Note) PARAMETER TEST CONDITIONS VCC DCOR = 1, 2.2 V DCO output frequency RSELx = 4, fDCO,ROSC 4 DCOx = 3, 3 MODx = 0, 0 with ROSC 3V TA = 25°C DCOR = 1, Dt Temperature drift 2.2 V/3 V RSELx = 4, DCOx = 3, MODx = 0 DCOR = 1, DV Drift with VCC 2.2 V/3 V RSELx = 4, DCOx = 3, MODx = 0 NOTE : ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and T K = ±50ppm/°C. DCO with external resistor R MIN TYP 1.8 1.95 MAX UNIT ±0.1 %/°C 10 %/V MHz OSC typical characteristics -- DCO with external resistor R 10.00 10.00 z H M y c n e u q e r z H M - 1.00 y c n e u q e r F O C D F 0.10 RSELx = 4 O C D O C D 0.10 RSELx = 4 0.01 10.00 0.01 10.00 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 - 50 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00 2.0 100.00 1000.00 10000.00 ROSC - External Resistor - kΩ Figure 14. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25°C 100.00 1000.00 10000.00 ROSC - External Resistor - kΩ Figure 13. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C z H M y c n e u q e r F 1.00 ROSC = 100k z H M y c n e u q e r F ROSC = 270k O C D ROSC = 1M - 25 0 25 50 75 TA - Temperature - °C 100 Figure 15. DCO Frequency vs Temperature, VCC = 3.0 V ROSC = 100k ROSC = 270k ROSC = 1M 2.5 3.0 3.5 VCC - Supply Voltage - V 4.0 Figure 16. DCO Frequency vs VCC, TA = 25°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) f LFXT1,LF f LFXT1,LF,logic PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT LFXT1 oscillator crystal XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V 32768 Hz frequency, LF mode 0, 1 LFXT1 oscillator logic level = 0, XCAPx = 0, square wave input frequency, XTS 1.8 V to 3.6 V 10000 32768 50000 Hz LFXT1Sx =3 LF mode XTS = 0, LFXT1Sx = 0, f = 32,768 kHz, 500 kΩ C = 6 pF Oscillation allowance for LF crystals XTS = 0, LFXT1Sx = 0, f = 32,768 kHz, 200 kΩ C = 12 pF XTS = 0, XCAPx = 0 1 pF Integrated effective load XTS = 0, XCAPx = 1 5.5 pF capacitance LF mode capacitance, XTS = 0, XCAPx = 2 8.5 pF (see Note 1) XTS = 0, XCAPx = 3 11 pF XTS = 0, Measured at P1.4/ACLK, LF mode 2.2 V/3 V 30 50 70 % f = 32,768 Hz Oscillator fault frequency, XTS = 0, XCAPx = 0. 2.2 V/3 V 10 10000 Hz LF mode (see Note 3) LFXT1Sx = 3 (see Note 2) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Measured with logic level input frequency but also applies to operation with crystals. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. LFXT1,LF OA L,eff LF LFXT1,LF L,eff C L,eff Duty cycle f Fault,LF NOTES: 1. 2. 3. 4. LFXT1,LF internal very low power, low frequency oscillator (VLO) PARAMETER TEST CONDITIONS VCC MIN f VLO frequency 2.2 V/3 V 4 df /dT VLO frequency temperature drift See Note 1 2.2 V/3 V df /dV VLO frequency supply voltage drift See Note 2 1.8 V to 3.6 V NOTES: 1. Calculated using the box method: I Version: (MAX(-- 40...85_C) - MIN(-- 40...85_C))/MIN(-- 40...85_C)/(85_C - (-- 40_C)) T Version: (MAX(-- 40...105_C) - MIN(-- 40...105_C))/MIN(-- 40...105_C)/(105_C - (-- 40_C)) 2. Calculated using the box method: (MAX(1.8...3.6V) - MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V - 1.8V) VLO VLO VLO 34 CC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP 12 0.5 4 MAX UNIT 20 kHz %/°C %/V MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, high frequency modes (see Note 5) f LFXT1,HF0 f LFXT1,HF1 f LFXT1,HF2 f PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT LFXT1 oscillator crystal frequency, XTS = 1, XCAPx = 0, LFXT1Sx = 0 1.8 V to 3.6 V 0.4 1 MHz HF mode 0 LFXT1 oscillator crystal frequency, XTS = 1, XCAPx = 0, LFXT1Sx = 1 1.8 V to 3.6 V 1 4 MHz HF mode 1 1.8 V to 3.6 V 2 10 LFXT1 oscillator ill t crystal t l frequency, f 2.2 V to 3.6 V 2 12 MHz XTS = 1, XCAPx = 0, LFXT1Sx = 2 HF mode 2 3.0 V to 3.6 V 2 16 1.8 V to 3.6 V 0.4 10 LFXT1 oscillator ill t logic l i level l l square 2.2 V to 3.6 V 0.4 12 MHz XTS = 1, XCAPx = 0, LFXT1Sx = 3 wave input frequency, frequency HF mode 3.0 V to 3.6 V 0.4 16 XTS = 1, XCAPx = 0, LFXT1Sx = 0, 2700 f = 1 MHz, C = 15 pF Oscillation allowance for HF XTS = 1, XCAPx = 0, LFXT1Sx = 1 800 Ω crystals f = 4 MHz, C = 15 pF (see Figure 17 and Figure 18) XTS = 1, XCAPx = 0, LFXT1Sx = 2 300 f = 16 MHz, C = 15 pF Integrated effective load capacitance, HF mode XTS = 1, XCAPx = 0 (see Note 2) 1 pF (see Note 1) XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, 2.2 V/3 V 40 50 60 % f = 10 MHz HF mode XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, 2.2 V/3 V 40 50 60 % f = 16 MHz Oscillator fault frequency, HF mode XTS = 1, XCAPx = 0, LFXT1Sx = 3 2.2 V/3 V 30 300 kHz (see Note 4) (see Notes 3) Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Measured with logic level input frequency but also applies to operation with crystals. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. -- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. -- If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. -- Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. LFXT1,HF,logic LFXT1,HF ,logic OA HF LFXT1,HF L,eff LFXT1,HF L,eff LFXT1,HF C L,eff Duty cycle L,eff LFXT1,HF LFXT1,HF f Fault,HF NOTES: 1. 2. 3. 4. 5. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics - LFXT1 oscillator in HF mode (XTS = 1) 100000.00 s m h 10000.00 O ec na w ol 1000.00 A no it lai cs 100.00 O 10.00 0.10 LFXT1Sx = 2 LFXT1Sx = 0 LFXT1Sx = 1 1.00 10.00 Crystal Frequency - MHz 100.00 Figure 17. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 800.0 Au tn er ru C lyp pu Sr ot al ic s O TX LFXT1Sx = 2 700.0 600.0 500.0 400.0 300.0 LFXT1Sx = 1 200.0 100.0 0.0 0.0 LFXT1Sx = 0 4.0 8.0 12.0 16.0 Crystal Frequency - MHz 20.0 Figure 18. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER fTA Timer A clock frequency Timer_A tTA,cap Timer_A, capture timing Timer_B PARAMETER fTB Timer B clock frequency Timer_B tTB,cap Timer_B, capture timing TEST CONDITIONS Internal: SMCLK, ACLK, External: TACLK, TACLK INCLK, INCLK Duty cycle = 50% ±10% TA0, TA1, TA2 VCC 2.2 V 3V 2.2 V/3 V MIN TEST CONDITIONS Internal: SMCLK, ACLK, External: TBCLK, TBCLK Duty cycle = 50% ±10% TB0, TB1, TB2 VCC 2.2 V MIN POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3V 2.2 V/3 V 20 20 MAX UNIT 10 MHz 16 ns MAX UNIT 10 MHz 16 ns 37 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER fUSCI TEST CONDITIONS Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% USCI input clock frequency VCC MIN TYP MAX UNIT fSYSTEM MHz Maximum BITCLK clock frequency (equals baud rate in MBaud) 2.2V /3 V 2 MHz (see Note 6) 2.2 V 50 150 ns UART receive deglitch time tτ (see Note 7) 3V 50 100 ns NOTES: 6. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz. 7. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. fmax,BITCLK USCI (SPI master mode) (see Figure 19 and Figure 20) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time NOTE : f UCxCLK = 2t 1 LOፒHI with t LOፒHI TEST CONDITIONS SMCLK, ACLK Duty cycle = 50% ± 10% ≥ max(t UCLK edge to SIMO valid, CL = 20 pF +t VALID,MO(USCI) t SU,SI(Slave), SU,MI(USCI) VCC MIN TYP MAX UNIT fSYSTEM MHz +t 2.2 V 3V 2.2 V 3V 2.2 V 3V 110 75 30 20 ns ns ns ns ns ns ). VALID,SO(Slave) For the slave’s parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave. USCI (SPI slave mode) (see Figure 21 and Figure 22) tSTE,DIS PARAMETER STE lead time STE low to clock STE lag time Last clock to STE high STE access time STE low to SOMI data out STE disable time STE high to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time tSTE,LEAD tSTE,LAG tSTE,ACC NOTE : f UCxCLK = 2t 1 LOፒHI with t LOፒHI ≥ max(t TEST CONDITIONS VCC MIN 2.2 V/3 V VALID,MO(Master) +t t SU,SI(USCI), SU,MI(Master) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 ns 10 ns 2.2 V/3 V 50 ns 2.2 V/3 V 50 ns 75 50 ns ns ns ns ns ns +t 2.2 V 3V 2.2 V 3V 2.2 V 3V 20 15 10 10 ). VALID,SO(USCI) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. 38 MAX UNIT 50 2.2 V/3 V UCLK edge to SOMI valid, CL = 20 pF TYP 110 75 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)8 1/fUCxCLK UCLK CKPL=0 CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 19. SPI Master Mode, CKPH = 0 1/fUCxCLK UCLK CKPL=0 CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 20. SPI Master Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)9 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 21. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO SOMI Figure 22. SPI Slave Mode, CKPH = 1 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tSTE,DIS MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 23) PARAMETER TEST CONDITIONS Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT tSU,DAT tSU,STO Data hold time Data setup time Setup time for STOP Pulse width of spikes suppressed by input filter tSP fSCL ≤ 100kHz fSCL > 100kHz fSCL ≤ 100kHz fSCL > 100kHz tHD,STA VCC MIN TYP MAX UNIT fSYSTEM MHz 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V 2.2 V 3V 0 4.0 0.6 4.7 0.6 0 250 4.0 50 50 400 kHz µs µs 150 100 600 600 ns ns µs ns tSU,STA tHD,STA SDA 1/fSCL tSP SCL tHD,DAT tSU,DAT tSU,STO Figure 23. I2C Mode Timing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER I(DD) CAON=1 CARSEL=0, CAON=1, CARSEL=0 CAREF=0 I(Refladder/RefDiode) V(IC) V(Ref025) TEST CONDITIONS Common-mode input voltage Voltage @ 0.25 V CC node VCC Voltage @ 0.5V CC node VCC CAON=1, CARSEL=0, CAREF 1/2/3 CAREF=1/2/3, no load at P1.0/CA0 and P1.1/CA1 CAON=1 PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0 and P2.4/CA1 VCC 2.2 V 3V 2.2 V MIN 3V 2.2 V/3 V 0 2.2 V/3 V 0.23 TYP 25 45 30 45 0.24 MAX 40 60 50 71 VCC - 1 UNIT µA µA V 0.25 PCA0=1, CARSEL=1, CAREF=2, 2.2 V/3 V 0.47 0.48 0.5 no load at P2.3/CA0 and P2.4/CA1 PCA0=1, CARSEL=1, CAREF=3, 2.2 V 390 480 540 V(RefVT) (see Figure 27 and Figure 28) mV no load at P2.3/CA0 P2 3/CA0 and P2.4/CA1, P2 4/CA1 3V 400 490 550 TA = 85°C V(offset) Offset voltage See Note 2 2.2 V/3 V - 30 30 mV Vhys Input hysteresis CAON=1 2.2 V/3 V 0 0.7 1.4 mV TA = 25°C, Overdrive 10 mV, 2.2 V 80 165 300 Without filter: CAF=0 ns (see Note 3, Figure 24 and 3 V 70 120 240 Figure 25) Response time t(response) (low-high and high-low) TA = 25°C, Overdrive 10 mV, 2.2 V 1.4 1.9 2.8 With filter: CAF=1 µs (see Note 3, Figure 24 and 3 V 0.9 1.5 2.2 Figure 25) NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to I lkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. Response time measured at P1.3/CAOUT. V(Ref050) 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0 V VCC 0 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V-- 0 0 1 1 CAOUT Set CAIFG Flag τ≈ 2.0 µs Figure 24. Block Diagram of Comparator_A+ Module VCAOUT Overdrive V-- 400 mV t(response) V+ Figure 25. Overdrive Definition CA0 CASHORT CA1 1 VIN + - Comparator_A+ CASHORT = 1 IOUT = 10µA Figure 26. Comparator_A+ Short Resistance Test Condition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics - Comparator_A+ 650 650 VCC = 3 V V 600 m tsl oV ec 550 ne re fe R 500 -) TV FE R V( 450 400 - 45 V 600 m slt oV ec 550 ne re fe R- 500 )T VF ER V( 450 Typical - 25 -5 15 35 55 75 TA - Free-Air Temperature - °C VCC = 2.2 V 95 Figure 27. V(RefVT) vs Temperature, VCC = 3 V 400 - 45 Typical - 25 -5 15 35 55 75 TA - Free-Air Temperature - °C Figure 28. V(RefVT) vs Temperature, VCC = 2.2 V 100.00 s m h O k ec na 10.00 ts is eR tr oh S VCC = 2.2V VCC = 3.0V VCC = 1.8V VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC - Normalized Input Voltage - V/V Figure 29. Short Resistance vs VIN/VCC 44 95 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory VCC(PGM/ ERASE) PARAMETER TEST CONDITIONS VCC Program and erase supply voltage MIN TYP 2.2 MAX UNIT 3.6 V fFTG IPGM IERASE tCPT tCMErase Flash Timing Generator frequency 257 476 kHz Supply current from VCC during program 2.2 V/3.6 V 1 5 mA Supply current from VCC during erase 2.2 V/3.6 V 1 7 mA Cumulative program time (see Note 1) 2.2 V/3.6 V 10 ms Cumulative mass erase time 2.2 V/3.6 V 20 ms 4 5 Program/erase endurance 10 10 cycles tRetention Data retention duration TJ = 25°C 100 years tWord Word or byte program time See Note 2 30 tFTG tBlock, 0 Block program time for first byte or word See Note 2 25 tFTG tBlock, 1-63 Block program time for each additional byte or word See Note 2 18 tFTG tBlock, End Block program end-sequence wait time See Note 2 6 tFTG tMass Erase Mass erase time See Note 2 10593 tFTG tSeg Erase Segment erase time See Note 2 4819 tFTG NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (t FTG = 1/fFTG). RAM PARAMETER TEST CONDITIONS MIN TYP MAX UNIT V(RAMh) RAM retention supply voltage (see Note) CPU halted 1.6 V NOTE : ThisparameterdefinestheminimumsupplyvoltageV CC whenthedatainRAMremains unchanged.No programexecution shouldhappen during this supply voltage condition. JTAG interface PARAMETER fTCK TCK input frequency TEST CONDITIONS See Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK See Note 2 NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG fuse (see Note) PARAMETER TEST CONDITIONS TA = 25°C VCC MIN TYP MAX UNIT 2.2 V 3V 2.2 V/ 3 V 0 0 20 35 5 10 55 MHz MHz kΩ VCC MIN TYP MAX UNIT VCC(FB) Supply voltage during fuse-blow condition 2.5 V VFB Voltage level on TDI/TCLK for fuse-blow: F versions 6 7 V IFB Supply current into TDI/TCLK during fuse blow 100 mA tFB Time to blow fuse 1 ms NOTE : Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 APPLICATION INFORMATION Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x P1IES.x 46 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P1.0 to P1.7 pin functions PIN NAME (P1.X) (P1 X) P1.0/TACLK / P1.1/TA0 / P1.2/TA1 / P1.3/TA2 / P1.4/SMCLK / P1.5/TA0 / P1.6/TA1 / P1.7/TA2 / X FUNCTION 0 P1.0 (I/O) Timer_A3.TACLK DVSS 1 P1.1 (I/O) Timer_A3.CCI0A Timer_A3.TA0 2 P1.2 (I/O) Timer_A3.CCI0A Timer_A3.TA0 3 P1.3 (I/O) Timer_A3.CCI0A Timer_A3.TA0 4 P1.4 (I/O) SMCLK 5 P1.5 (I/O) Timer_A3.CCI0A Timer_A3.TA0 6 P1.6 (I/O) Timer_A3.CCI0A Timer_A3.TA1 7 P1.7 (I/O) Timer_A3.CCI0A Timer_A3.TA2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P1DIR.x P1SEL.x I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 47 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2 pin schematic: P2.0 to P2.4, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x P2IES.x 48 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2.0 to P2.4 pin functions PIN NAME (P2.X) (P2 X) X FUNCTION P2.0/ACLK/CA2 / / CONTROL BITS / SIGNALS CAPD.x P2DIR.x P2SEL.x 0 I: 0, O: 1 0 0 1 1 1 X X 0 I: 0, O: 1 0 0 0 1 0 1 1 1 X X 0 I: 0, O: 1 0 0 1 1 0 0 1 1 X X 0 I: 0, O: 1 0 1 X X 0 1 1 0 I: 0, O: 1 0 1 X X 0 1 1 0 P2.0 (I/O) ACLK CA2 (see Note 4) P2.1/TAINCLK/CA3 / / 1 P2.1 (I/O) Timer_A3.TAINCLK DVSS CA3 (see Note 4) P2.2/CAOUT/TA0/ / / / 2 P2.2 (I/O) CA4 CAOUT TA0 CA4 (see Note 4) P2.3/CA0/TA1 / / 3 P2.3 (I/O) CA0 (see Note 4) Timer_A3.TA1 P2.4/CA1/TA2 / / 4 P2.4 (I/O) CA1 (see Note 4) Timer_A3.TA2 NOTES: 3. X: Don’t care. 4. SettingtheCAPD.xbitdisablestheoutputdriveraswellastheinputtopreventparasiticcrosscurrentswhenapplying analogsignals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2 pin schematic: P2.5, input/output with Schmitt trigger Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 EN P2IRQ.5 Q Set P2IFG.5 P2SEL.5 P2IES.5 Interrupt Edge Select Port P2.5 pin functions PIN NAME (P2.X) (P2 X) P2.5/R / OSC//CA5 X FUNCTION CAPD.5 0 0 0 1 CONTROL BITS / SIGNALS DCOR P2DIR.5 0 I: 0, O: 1 1 X 0 1 0 X P2SEL.5 0 X 1 X 5 P2.5 (I/O) ROSC DVSS CA5 (see Note 6) NOTES: 5. X: Don’t care. 6. SettingtheCAPD.xbitdisablestheoutputdriveraswellastheinputtopreventparasiticcrosscurrentswhenapplying analogsignals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2 pin schematic: P2.6, input/output with Schmitt trigger BCSCTL3.LFXT1Sx = 11 P2.7/XOUT/CA7 LFXT1 off 0 LFXT1CLK 1 Pad Logic To Comparator From Comparator CAPD.6 P2SEL.7 P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/CA6 Bus Keeper EN P2SEL.6 P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q Set P2IFG.6 P2SEL.6 P2IES.6 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2.6 pin functions PIN NAME (P2.X) (P2 X) X FUNCTION P2.6/XIN/CA6 / / CONTROL BITS / SIGNALS CAPD.6 P2DIR.6 P2SEL.6 0 I: 0, O: 1 0 X 1 1 1 X 0 6 P2.6 (I/O) XIN (default) CA6 (see Note 8) NOTES: 7. X: Don’t care. 8. SettingtheCAPD.xbitdisablestheoutputdriveraswellastheinputtopreventparasiticcrosscurrentswhenapplying analogsignals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2 pin schematic: P2.7, input/output with Schmitt trigger BCSCTL3.LFXT1Sx = 11 P2.6/XIN/TA1 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 Pad Logic To Comparator From Comparator CAPD.7 P2SEL.6 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT Bus Keeper EN P2SEL.7 P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q Set P2IFG.7 P2SEL.7 P2IES.7 Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P2.7 pin functions PIN NAME (P2.X) (P2 X) X FUNCTION P2.7/XOUT/CA7 / / CONTROL BITS / SIGNALS CAPD.7 P2DIR.7 P2SEL.7 0 I: 0, O: 1 0 X 1 1 1 X 0 7 P2.7 (I/O) XOUT (default) CA7 (see Note 10) NOTES: 9. X: Don’t care. 10. SettingtheCAPD.xbitdisablestheoutputdriveraswellastheinputtopreventparasiticcrosscurrentswhenapplying analogsignals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P3 pin schematic: P3.0 to P3.5, input/output with Schmitt trigger Pad Logic P3REN.x P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3SEL.x P3IN.x EN Module X IN D Port P3.0 to P3.5 pin functions PIN NAME (P3.X) (P3 X) X FUNCTION P3.0/UCB0STE/ / / UCA0CLK 0 P3.0 (I/O) UCB0STE/UCA0CLK (see Notes 1 and 2) P3.1/UCB0SIMO/ / / 1 P3.1 (I/O) UCB0SDA UCB0SIMO/UCB0SDA (see Notes 1, 2 and 3) P3.2/UCB0SOMI/ / / 2 P3.2 (I/O) UCB0SCL UCB0SOMI/UCB0SCL (see Notes 1, 2 and 3) P3.3/UCB0CLK/ / / 3 P3.3 (I/O) UCA0STE UCB0CLK/UCA0STE (see Notes 1 and 2) P3.4/UCA0TXD/ / / 4 P3.4 (I/O) UCA0SIMO UCA0TXD/UCA0SIMO (see Notes 1 and 2) P3.5/UCA0RXD/ / / 5 P3.5 (I/O) UCA0SOMI UCA0RXD/UCA0SOMI (see Notes 1 and 2) NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to V SS level. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 I: 0, O: 1 0 X 1 55 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt trigger Pad Logic P3REN.x P3DIR.x 0 0 1 P3OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.6 P3.7 P3SEL.x P3IN.x EN Module X IN D Port P3.6 to P3.7 pin functions PIN NAME (P3.X) P3.6 P3.7 56 X 6 P3.6 (I/O) 7 P3.7 (I/O) FUNCTION POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P3DIR.x I: 0, O: 1 I: 0, O: 1 P3SEL.x 0 0 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB0 P4.4/TB1 P4.5/TB2 P4.6/TBOUTH/ACLK P4.7/TBCLK/ TBINCLK P4SEL.x P4IN.x EN Module X IN D Port P4.0 to P4.7 pin functions PIN NAME (P4.X) (P4 X) P4.0/TB0 / P4.1/TB1 / P4.2/TB2 / P4.3/TB0 / P4.4/TB1 / P4.5/TB2 / P4.6/TBOUTH/ACLK / / P4.7/TBCLK / 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS X FUNCTION 0 P4.0 (I/O) Timer_B3.CCI0A Timer_B3.OUT0 1 P4.1 (I/O) Timer_B3.CCI1A Timer_B3.OUT1 2 P4.2 (I/O) Timer_B3.CCI2A Timer_B3.OUT2 3 P4.3 (I/O) Timer_B3.CCI0B Timer_B3.OUT0 4 P4.4 (I/O) Timer_B3.CCI1B Timer_B3.OUT1 5 P4.5 (I/O) N/A Timer_B3.OUT2 6 P4.6 (I/O) Timer_B3.TBOUTH ACLK 7 P4.7 (I/O) Timer_B3.TBCLK POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P4DIR.x P4SEL.x I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 1 1 I: 0, O: 1 0 0 1 57 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG Controlled by JTAG TDI TDO/TDI DVCC DVCC Fuse Test & Emulation Module Burn & Test Fuse TDI/TCLK DVCC TMS TMS DVCC TCK TCK 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 APPLICATION INFORMATION JTAG fuse check mode MSP430F23x0 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 30). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS I I TF TDI/TCLK Figure 3 0. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518C -- AUGUST 2006 -- REVISED OCTOBER 2009 Data Sheet Revision History LITERATURE NUMBER SLAS518 SLAS518A SLAS518B SLAS518C 60 SUMMARY PRODUCT PREVIEW data sheet release PRODUCTION DATA data sheet release The USCI parameter section was revised, pages 36 to 39. Corrected the port schematics of port P2.6 and P2.7 Added in the DSBGA package version. Corrected WDTIFG description in IFG1 register. register Corrected labels in Figure 17 and 18. Corrected test conditions of Comparator_A+ from P1.0, P1.1 to P2.3 and P2.4. Corrected the UART parameters. Release of MSP430F2330IYFF and MSP430F2350IYFF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 13-Jan-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2330IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2330IRHAT ACTIVE VQFN RHA 40 250 CU NIPDAU Level-3-260C-168 HR MSP430F2330IYFFR ACTIVE DSBGA YFF 49 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM MSP430F2330IYFFT ACTIVE DSBGA YFF 49 250 SNAGCU Level-1-260C-UNLIM MSP430F2330TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2330TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350IRHAT ACTIVE VQFN RHA 40 250 CU NIPDAU Level-3-260C-168 HR MSP430F2350IYFFR ACTIVE DSBGA YFF 49 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM MSP430F2350IYFFT ACTIVE DSBGA YFF 49 250 SNAGCU Level-1-260C-UNLIM MSP430F2350TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350TRHAT ACTIVE VQFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370IRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370IRHAT ACTIVE VQFN RHA 40 250 CU NIPDAU Level-3-260C-168 HR MSP430F2370IYFFR ACTIVE DSBGA YFF 49 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM MSP430F2370IYFFT ACTIVE DSBGA YFF 49 250 SNAGCU Level-1-260C-UNLIM MSP430F2370TRHAR ACTIVE VQFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370TRHAT ACTIVE VQFN RHA 40 250 CU NIPDAU Level-3-260C-168 HR Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Green (RoHS & no Sb/Br) Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 13-Jan-2010 package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 28-Mar-2011 TAPE AND REEL INFORMATION *All dimensions are nominal Device MSP430F2370IRHAR Package Package Pins Type Drawing VQFN RHA 40 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2500 330.0 16.4 Pack Materials-Page 1 6.3 B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant 6.3 1.1 12.0 16.0 Q2 PACKAGE MATERIALS INFORMATION www.ti.com 28-Mar-2011 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F2370IRHAR VQFN RHA 40 2500 346.0 346.0 33.0 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated